
BOUNDING TECHNIQUES IN SHAKEDOWN AND RATCHETTING 

BY 

JOSE RICARDO QUEIROZ FRANCO, M. Sc., B. Eng. 

A thesis submitted for the degree of 

Doctor of Philosophy 

of the University of Leicester. 

January 1987 

n 



Bounding Techniques in 

Shakedown and Ratchetting 

Jose Ricardo Queiroz Franco 

JANUARY 1987 



ACKNOWLEDGEMENTS 

I would like to express gratitude to my supervisor Professor 

Alan R. S. Ponter. He has been a profound source of 

encouragement and inspiration in the making of this thesis. 

Mention has to be made of his open mind and vision in 

matters of research. 

I also would like to extend my sincere thanks to the 

following persons, who somehow helped to see me through the 

work: 

Mr Phillip Brown, Senior Computer officer, for his constant 

availability and assistance. 

Dr. Keith Carter, for constructive discussions during the 

course of the research. 

Dr. Robert Colls, who so freely volunteered to revise the 

language of the thesis. 

Dr Richard Mobbs, who has also given so freely of his time 

to improve the presentation of the text. 

Mr. Colin Morrison, whose experimental skills made it 

possible to run the tests so smoothly. 

Dr. Dimitrios Papadakos, for his help with part of the 

graphical routines. 



Mrs Helen Townsend, for her skilful typing of the equations. 

The Drawing Office Staff, for producing half of the diagrams 

in this thesis. 

My friends in the Computer Office and in the Enginneering 

Department, whose support and friendship made my work much 

more pleasant and easy. 

My friends from FEMVIEW LTD., who have always been free to 

advise me regarding the acquisition of computer hardware and 

software. 

Finally I would like to gratefully acknowledge the financial 

support provided by the Conselho Nacional de Desenvolvimento 

Cientifico e Tecnologico(CNPq). 



To Cecilia, Pedro and Paulo for their love, 

patience and encouragement. 



BOUNDING TECHNIQUESIN SHAKEDOWN AND RATCHETTING 
by 

JOSE RICARDO QUEIROZ FRANCO 

ABSTRACT 

A review of Shakedown and Ratchetting concepts and their 
extensions is presented in an attempt to recount all the 
aspects of the problems considered in this research 
programme. The concept of Stress Concentration Factor was 
the first to be further investigated, by analysing two 
representative types of structures operating under severe 
stress concentration, namely; two-bar structures and 
cylindrical vessels with variable thickness subjected to 
cyclic mechanical loads. The material behaviour considered 
are: elastic-perfectly plastic and isotropic hardening. Such 
an analytical investigation allowed the assessment of the 
influence of the Stress Concentration Factor below and above 
the limit of reversed plasticity. 

The primary aim of this research was to develop simplified 
techniques capable of solving thermal loading problems in 
the presence of steady mechanical loads. A simplified 
technique was then developed to analyse a tube subjectd to a 
complex thermal loading simulating the fluctuation of level 

of sodium in Liquid Metal Fast Breeder Reactors(LMFBR). The 
technique was also able to include a second important aspect 
of shakedown problems which is cases of multiple mechanical 
loads. The construction of bi-dimensional Bree type 
diagrams, from tri-dimensional ones obtained for such cases, 
allowed an easy assessment of the modes of deformation of 
the structure. The effects of the temperature on the yield 
stress were explored. 

A third aspect of thermal cyclic problems investigated was 
the experimental verification of the reliablity of the 
extended Upper Bound Theorem proposed in Chapter 2. This was 
achieved by experimental tests on portal frames at 400°C. 
Contours representing states of constant of deformation were 
obtained from the experimental measurements. A fourth aspect 
of the problem was the development of theoretical technique 
to estimate the transient plastic deformation in excess of 
the shakedown limit which allowed the construction of 
theoretical contours directly comparable with the 
experimental ones. 

The fifth and major contribution of this thesis was the 
development of a general technique for the analysis of 
axi-symmetric shells based in a displacement formulation for 
the Finite Element Method. Limit analysis and shakedown 
problems were reduced to minimization problems by developing 
a technique to obtain consistent relationship between the 
displacement field and the plastic strain field. Such a 
technique, based upon a Galerkin type of approach, consist 
of minimizing the difference between the two representations 
of the strain within the element; in terms of nodal 
displacement and in terms of plastic multipliers. The 
problem was then solved by Linear Programming. Finally, the 
conclusions and proposal for future work are presented. 
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CHAPTER 1 

INTRODUCTION 

1.1 General Considerations 

This chapter aims first to provide a brief description of 

the several aspects of shakedown problems studied in this 

thesis, and second to summarize the objectives and 

achievements of the present research. 

Shakedown and Ratchetting concepts have been widely used as 

an aid to structurgl design over the last twenty years. 

During the last 6 years, general finite element codes have 

appeared(such as ABAQUS) which are capable of analysing 

structures subjected to complex histories of load and 

deformation. It has been realized, however, that it is very 

difficult to extract a general understanding of structural 

behaviour through a step by step solution of individual 

cases. It is also impossible to assess the sensitivity of 

behaviour to variations in geometry, material assumptions 

and histories of loading. This problem is particularly 

accute for structures subjected to severe thermal loading. 

The need to understand ratchetting phenomena has encouraged 

a reappraisal of the usefulness of shakedown theory as the 

basis of computer analysis techniques, as the theory is 

capable of producing, directly, quantities of direct use in 

design; viz. the limit load, shakedown limit, and the 

ratchet limit. 
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However, before the results of computer methods can be 

accepted as reliable, it is necessary to understand the 

relationship between classical plasticity theory and 

ratchetting phenomena. Although the analysis of pressure 

vessels under cyclic internal pressure based on shakedown 

theory and the subsequent translation of the results into 

design methods has greatly contributed to establish 

shakedown as the basis for design criteria, certain aspects 

have still to be studied. For example, the effects of 

stress concentration, the capability of the material to work 

harden and the type of structure need to be studied. 

Several papers have been published (10,11,12,13,14] 

concerning the interpretation of the difference between 

theoretical and experimental results for mechanical loading 

problems. The conclusions vary from the strict application 

of the shakedown concept, as required by the present Codes 

of Practice, yielding loads which are too high due to an 

underestimate of the stress concentration factor[9], or to 

being sometimes unnecessarily conservative. The latter 

argument is based on the fact that, although metals can 

withstand several thousands cycles of reversed plasticity, 

the shakedown limit eliminates both possibilities of 

ratchetting and reversed plasticity (13,14] without 

distinguishing between the two phenomena. 

More recently, the application of shakedown theory to 

thermal loading problems has become a major task in the 

design of components operating at high temperatures and 

subjected to cyclic thermal loading in the presence of 

static mechanical loads. These problems have gained 
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considerable significance with the advent of the Liquid 

Metal Fast Breeder Reactor(LMFBR) and advanced aeronautical 

structures such as the solid propellant rocket booster of 

the Space Shuttles in the USA and the rocket booster of the 

satellite launcher Ariane in France. The thermal loading 

problems are now significantly more complicated with much 

higher temperatures and much more severe thermal conditions. 

The mechanical loads for such problems may consist of 

internal pressure, axial load, own weight of the component 

or the weight of coolant it carries. Although in the 

literature there exist very few attempts to consider more 

than one mechanical load, in practice such loads are more 

likely to occur simultaneously or at least in pairs. The 

primary aim of the present research is the development of a 

general technique capable of analysing a wide range of 
4Xti`ýww+TýtL 

axi-symmetric vessel components under a variety ok`'fhermal 

loading conditions (as described above) and the work 

contained in this thesis contributes towards such an 

objective. 

1.2 On Some Factors Governing the Shakedown Behaviour of the 

Structure 

The several aspects of shakedown problems considered here 

can be described as follows: 

a) The influence of the Stress Concentration Factor on the 

shakedown limits. 

b) Structural and Material behaviour above the limit of 
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reversed plasticity; an extended upper bound formulation 

to define the ratchetting bound above reversed 

plasticity for cyclic mechanical load problems. 

c) Cyclic Hardening above the limit of reversed plasticity. 

d) Thermal Loading Problems involving more than one 

mechanical load; including the effects of the dependence 

of the material yield stress on the temperature. 

e) Experimental Analysis of a Portal Frame_ operating at 

high temperatures and subjected to simulated thermal 

cyclic loading in the presence of mechanical loads; a 

direct correlation with the extended upper bound 

formulation and a theoretical estimate of the 

accumulation of transient plastic deformation beyond 

shakedown limits. 

f) A Displacement Formulation for the Finite Element 

Shakedown Analysis of a Wide Range of Axi- Symmetric 

Pressure Vessels. 

1.3 Summary of the Objectives of the Present Research 

The overall objective of this thesis is to develop a 

simplified technique, based on a Finite Element Approach and 

Linear Programming, capable of performing a complete 
o, cZS w,. ý, 'tt c 

shakedown analysis of thermal loading problems applied to a 

wide range of axi-symmetric pressure vessels. This 

technique aims also to encompass, in the future, most of the 

material and structural features listed above so that a 

better and more economical design can be achieved by: 

4 



a) The use of a simplified but reliable numerical technique 

for the analysis of complex thermal loading problems. 

b) Preventing incremental deformation(ratchetting) in the 

structure without eliminating the possibility of 

reversed plasticity. 

C) Applying the technique to as many representative vessels 

components and loading conditions as possible in order 

to obtain a better picture of the factors which control 

the behaviour of such structures. 

d) Considering different material properties and material 

models to evaluate the best assumption, when compared 

with experimental results. 

e) Providing the designer with a selection of solutions 

which could help in the assessment of the circumstances 

when a more detailed analysis is required or more 

experimental data is needed. 

1.4 Summary of the Contents of this Thesis 

The present chapter together with Chapter 2 will provide a 

clear picture of the several aspects of the problems studied 

in this research programme. In Chapter 2 there will be a 

review of Shakedown and Ratchetting concepts and their 

application to pressure vessels. Sections 2.1 and 2.2 

present some aspects of the stress-strain relationships, and 

the basic assumptions behinc them. In Section 2.3 the 

dependence of the shakedown behaviour of pressure vessels on 

the stress concentration factor is discussed. The two 

fundamental shakedown theorems (Melan's and Koiter's) are 

5 



presented and discussed in Section 2.4, which in their 

classical form imply materials obeying elastic/perfectly 

plastic material properties. The extension of the Upper 

Bound Theorem for Cyclic Hardening materials proposed by 

Ponter and Karadeniz [36,371 is also reviewed in Section 

2.4. Such an extension may be used to define bounds 

separating the region of plastic shakedown from the 

ratchetting region in a Bree type diagram, which would allow 

the designer to assess the region where ratchetting can be 

prevented without eliminating the possibility of reversed 

plasticity. The extension of Koiter's theorem to include 

cyclic thermal loading is also considered in Section 2.4.3. 

In Chapter 3 two types of structure subjected to cyclic 

mechanical loads are analysed using the upper bound and the 

extended upper bound theorems, and their behaviour above the 

limit of reversed plasticity is also discussed. The 

structures are analysed considering two different types of 

materials; elastic-perfectly plastic and isotropic hardening 

materials. The two types of structures are: 

- two-bar structures 

- cylindrical vessels with a discontinuity in the 

thickness 

In Chapter 4, a much more complex, thermal loading problem 

is considered where a simplified analysis is performed of a 

tube subjected to mechanical loads and moving temperature 

fronts. Such a problem represents the simulation of the 
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fluctuation of the level of sodium in a LMFB reactor. The 

mechanical loads may consist of internal pressure, axial 

load, self weight of the component or the weight of the 

coolant it carries. The three combinations of mechanical 

and thermal loads considered in the calculations can be 

summarized as follows: 

- moving temperature front in the presence of steady 

axial load 

- moving temperature front in the presence of steady 

internal pressure 

- moving temperature fronts in the presence of steady 

axial load and internal pressure 

Two sets of calculations using the upper bound theorem were 

performed for each case; in the first set the material 

properties were assumed to be independent of the temperature 

and in the second set the dependence of the yield stress of 

the material was considered. The results are presented in 

the form of Bree type diagrams and for the third loading 

case such a diagram is a tri-dimensional one. However, a 

much simpler bi-dimensional diagram may be obtained, where 

the designer can easily assess the regions of different 

modes of deformation for the overall design concept. 

In Chapter 5 the results of tests performed on portal frames 

uniformly heated to 400°C and subjected to simulated thermal 

cyclic loading in the presence of steady mechanical load is 
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analysed. The material ratchetting and cyclic hardening are 

assessed and the regions of reversed plasticity and 

shakedown are defined. Contours representing the bounds of 

steady state of ratchetting rates are estimated by simple 

mathematical representations of uniaxial incremental growth 

of the material (material ratchetting), and compared with 

the contours obtained experimentally. The sensitivity of 

the structural behaviour to large variations of temperature 

is also assessed. 

In Chapter 6a displacement formulation for the Finite 

Element analysis of pressure vessels is developed in the 

form of a general technique. The primary aim of this 

technique is the solution of thermal cyclic loading problems 

by means of the upper bound theorem. By imposing certain 

restrictions on the class of mechanisms of deformation 

assumed, the shakedown or limit analysis problem can be 

reduced to a minimization problem and solved by Linear 

Programming. Nevertheless, such problems can only be solved 

by a minimization process if a consistent relationship 

between the displacement fields which describe such 

mechanisms of deformation and the kinematically admissible 

strain fields can be found. In Section 6.5 a general method 

of obtaining such a consistent relationship is developed, 

based upon a Galerkin type technique which minimize the 

difference between the two representations of strain within 

each element. This general technique is based upon four 

basic types of shell elements; cylindrical, conical, 

spherical and toroidal. The class of displacement fields 

and the yield. condition (Tresca) chosen are such that the 
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solutions generated can be directly compared with available 

analytic solutions. However the technique is capable of 

extension to a wide class of displacement fields and 

piecewise linear yield conditions. For the purposes of this 

thesis all the elements were tested individually in limit 

analysis problems and also torispherical vessels were 

analysed consisting of the combination of three basic 

elements. 

Finally the conclusions and proposals for future 

developments are presented in Chapter 7. 
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CHAPTER 2 

A REVIEW OF SHAKEDOWN THEOREMS AND ' EXTENSIONS 

2.1 Introduction 

The work presented in this thesis is largely related to 

shakedown theory and in order to avoid repeating the basic 

concepts for each particular problem considered, this 

chapter stands as an attempt to encompass all the necessary 

features of the shakedown theorems which could be referred 

to in following chapters. 

In the design of components subjected to variable loads and 

particularly for those operating under cyclic thermal 

loading, shakedown theory can prove to be a much more 

powerful tool than the direct application of classical 

plasticity as a step-by-step incremental problem. This is 

because the theory is concerned with the evaluation of 

quantities of direct relevance to design, and because global 

solutions for a whole class of structures can be 

constructed. The primary application to pressure vessels 

has been in the support of design codes and design charts, 

ie, information and technique which can be used in the early 

stages of design. 

The two existing shakedown theorems present very important 

complementary features, i. e. to the statical shakedown 

theorem, which is formulated in terms of stress variables 

and gives rise to a lower bound on a load parameter, 

10 



corresponds a similar theorem of a kinematical type which 

allows the determination of a upper bound in terms of a 

compatible strain field. Although shakedown theory was 

developed for particular classes of problems as long ago as 

1926 [1), and has been fairly well understood from the 

theoretical point of view for many years, only relatively 

recently has it been used as an aid to design. The delay in 

the application of these theorems to practical problems is 

perhaps explained by the complexity of the theory when 

expressed in its original form (e. g. Koiter's description of 

the upper bound theorem (28,291). The definition of either 

equilibrium stress fields for the lower bound or, consistent 

strain fields for upper bound, has proved to be rather 

complicated especially for thermal loading problems where 

such stress and strain fields depend on the position of the 

point considered and also on the current time. 

The lower bound theorem has been successfully applied in the 

design of pressure vessels under variable mechanical load 

[4,5], but the fact that the strict application of the 

shakedown concept produces bounds on load which eliminate 

both ratchetting and reversed plasticity altogether, has 

been cause for serious criticism. The reason for this is 

that reverse plasticity may be tolerated in design, and that 

a more general method, which distinguishes between non- 

ratchetting reverse plasticity and ratchetting reverse 

plasticity, is required. One of the aims of the present 

chapter is to present such an extension of shakedown 

proposed by Ponter and Karadeniz [36,37] based on the 

classical upper bound shakedown theorem, which extends the 

11 



classical shakedown boundary to include the reversed 

plasticity region. Extensions of the shakedown theorems to 

include non-uniformly heated bodies and the formulation for 

beams and frames where the deformation is assumed to be 

caused only by bending moments are also included in this 

chapter, with emphasis on the upper bound shakedown theorem. 

2.2 Stress-Strain Relationships and Basic Assumptions 

Consider an elastic-plastic body of volume V and surface S 

(Fig. 2.1). Assume that at any instant t this body is 

subjected to body forces per unit of volume bi, surface 

forces pi prescribed on surface Sp (part of S where the 

forces are prescribed) where X is a load parameter and 

applied surface displacement ui on Su, the remainder of the 

total surface where the displacements are prescribed. For 

the sake of simplicity the discussion of the shakedown 

theorems will be restricted to cases where the prescribed 

displacements vanish on surface Su. In addition, it is 

assumed that a history of temperature 6(x, t) may occur for t 

> 0. 

All deformations are assumed to be sufficiently small so 

that changes in geometry can be disregarded. 

12 



2.2.1 State of Stress 

The state of stress at an internal point of the body is 

defined by aij which represents components of a stress 

tensor in a nine dimensional stress space. Assuming 

negligible geometric changes during the deformed state it 

becomes sufficient to refer to the stress tensor in the 

undeformed state. 

A statically admissible stress field must satisfy the 

following conditions: 

a) Equilibrium Equations 

cr is .i+ 
bi =0 2.1 

where the comma denotes partial differentiation with respect 

to the space variables and bi are the body forces per unit 

volume. 

b) Stress Boundary Conditions 

aijnj = aP 2.2 

where nj are the direction cosines of the outward normalsto 

the surfaces. 

13 



2.2.2 State of Strain 

The state of strain at a point is defined by the symmetric 

strain tensor Eij representing an elastic, a plastic and a 

possible thermal expansion component e 
2j. 

eia 
9 2.3 

_e`P+ Eij Eij Eij 

where the elastic part of the constitutive relation is given 

by Hooke's law 

aij = Dijhkeij 2.4 

and Dijhk denotes the tensor of elastic coefficients which is 

symmetric, positive definite and independent of temperature. 

The strain-displacement relations for the linear theory is 

given by 

i auj 
Eii =2 

[au, 
axi 

W. axi 
2.5 

and likewise the strain rate tensor tij is expressed in 

terms of the velocities 0i by an identical expression. 

2.2.3 Equilibrium Conditions 

The Principle of Virtual Displacement can be used to express 

the conditions of equilibrium as 

Vfa 
dV =Vf biUidV +XS PiUidS 2.6 

P 
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an equation valid for any stress distribution aij, in 

equilibrium in the interior and surface of the body, ie, 

with bi and Xpi and for any displacement field Ui compatible 

with the corresponding strain distribution sib. Equation 

(2.6) also holds if the displacement field and corresponding 

stress distribution are replaced by a velocity field Ui and 

corresponding strain rate distribution Eid. 

2.2.4 Gerieral Stress-Strain Relations 

The stress state corresponding to stress points within the 

elastic domain has been referreJ to as a safe stress state 

and denominated by cis) whereas admissible stress state 

oij) is a term given to all the stress points within and at 

the boundary of the elastic domain. The boundary of the 

elastic domain is called in geometric terms the yield 

surface on which any stress point can give rise to 

increments of plastic strain, ie plastic deformation can 

develop if the stress distribution in the element satisfy 

¢(cij) - vy where +(oij) defines the yield surface. 

Plastic stress-strain relations have been derived using 

various approaches always involving propositions based on 

essentially correct but restricted assumptions. The first 

approach to such relations was proposed by Saint-Venant in 

1870 (151 who suggested that the principal stress axes 

should coincide with the principal axes of strain increment. 

Levy and von Mises [16,171 later developed, independently, 
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general three dimensional equations relating the increments 

of total strain to the stress deviator. in this approach 

the total strain increments are assumed to be equal to the 

plastic strain increment, the elastic strain being ignored. 

Thus it cannot be applied in the elastoplastic range but 

only to large plastic flow. The generalization of the 

approach to include both elastic and plastic strain 

components was proposed by Prandtl (191 and Reuss[20). 

These relations all originated from the assumption above 

proposed by Saint-Venant and have been shown to imply the 

von Mises yield criterion 1231. A general plastic stress- 

strain relation for any yield criterion was derived by 

Drucker 120,21,221 through stability postulates termed the 

fundamental quasi-thermodynamic postulates. Drucker's first 

postulate termed stability "in the small" starts with a more 

precise definition of work hardening which may be formulated 

as follow: 

Consider an element of the continuum in some initial state 

of stress and then some external agency applies an 

additional set of stresses with the subsequent slow removal 

of them. Work hardening implies that the element will 

remain in equilibrium and 

(a) positive work is done by the external agency during the 

application of the added set of stresses and 

(b) the net work performed by the external agency during its 

application and removal is zero or positive. 
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It should be emphasized that the work referred to is only 

the work done by the added set of forces on the resulting 

displacements. In other words, work hardening implies that 

useful net energy cannot be extracted from the element and 

the system of forces acting on it. 

Mathematically it can be put as follows: Suppose that an 

external agency is applied to an element of the continuum 

initially under a state of stress oij and strain eij so that 

the strain and stress at each point is changed by amounts 

dein and dvij respectively where one component of the total 

strain increment is elastic and the other may be plastic; 

ie, dein - dee + dePi. If the added forces are removed the ii i 

plastic increments remain in the element. 

For work hardening implication (a) gives 

daiidsij >02.7 

and from (b) 

dais(dei3 - dein) ;02.8 

ie 
daideij + del') >0 

thus 

da de e02.9 iPj 

Inequalities (2.8,2.9) represent the mathematical definition 

of stable work hardening. Druckers second postulate, 

stability "in the large", involves the assumption (a) and 
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(b) applied to a finite change in the external agency. This 

results in the following inequalities, which had previously 

been suggested by Hill [291 as the maximum work principle. 

.p [Qij - vij (s) ]eij > ') 2.10 

[vi 
j -ii (a) Jeii >02.11 

where cij is a state of stress on the yield surface at which 

plastic strain rates sij occur. It has been shown that in 

virtue of Equation (2.11) the yield surface is convex and 

the equality sign is only possible in the absence of plastic 

deformation. Another form of the postulate j2. ß'" is 

expressed by 

QijEi 
j>02.12 

where cij is the stress rate corresponding to the plastic 

strain rate epj and will always be equal to zero for 

perfectly plastic material. A full derivation of the 

general plastic stress-strain relations can be found in [23] 

and [28] and will not be presented here. From the previous 

definition of work hardening the general form of the stress- 

strain relations for work hardening and perfectly plastic 

materials are expressed by the respective associated flow 

rules: 

Work Hardening material 

a4td dein -GQ ii d4 
ij 

2.13 
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where G is a scalar which may depend on stress, strain and 

history and +(cij) is the yielding criterion assumed. 

Perfectly Plastic material 

dein = d11 aQ 
2.14 

where d» is a scalar. It should be noted here that these 

postulate can only provide statements about the plastic 

strain rates. For the total plastic strains the entire 

history of the element has to be given. 

2.3 The Dependence of Shell Performance on the Stress 

Concentration Factor 

Lower bounds of shakedown loads have been obtained by Leckie 

(4] and Leckie and Penny [5] for radial nozzles in spheres 

composed of elastic/perfectly plastic materials, based on 

Melan's theorem which states that; the structure will shake 

down if any distribution of self-equilibrating residual 

stresses can be found which, when superimposed on to the 

elastic stresses due to cyclic load, do not violate the 

yield condition. The actual self-stress distribution will 

always be greater than the assumed values since the 

structure tends to find the best residual distribution. 
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These lower bound, solutions for cyclic pressure have been 

proved by Rose [21 to depend upon the elastic stress 

concentration factor (SCF) defined by 

Sc!, M maximum elastic stress 2.16 
membrane stress in the sphere 

It has been shown that for small values of SCF, while the 

permanent residual strain is small, the pressure for initial 

yielding(pi) is higher than for large values of SCF where 

the permanent set is increased. It can also be concluded 

from Rose (Figs. 2a, b) that for small values of SCF the 

shakedown pressure (ps) can be greater than the test 

pressure and according to Ponter 1141 the plastic collapse 

pressure pl and the shakedown pressure ps are equal when the 

SCF is less than about 2. 

If a SCF>2 is considered, shakedown pressure is then the 

limiting condition, eliminating both possibilities of 

reversed plasticity and ratc; 

better explained by Fig. (2.3) 

shown by Rose (2] and Leckie 

achieved shakedown pressure 

pressure for first yield. 

heti ng. This situation can be 

for plane stress. It has been 

and Payne [61 that the maximum 

is ps=2pi where pi is the 

Defining a shakedown factor as Kssps/pi the maximum value of 

Ks=2 can be found by using Melan's theorem where the 

residual stresses field is represented by d' and the elastic 

stresses correspond to line dd' (Fig. 2.3). It can be seen 

that 
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le 
- pij 2 ýij 

2.4 Shakedown Theorems 

2.17 

Before the theorems are stated, it is useful to have some 

definitions of the terms involved. 

SHAKEDOWN: A structure subjected to cyclic load is 

considered to be in a state of shakedown, if the response of 

the structure becomes elastic after the appearance of 

plastic deformation during the first cycleL. 

REVERSED PLASTICITY: When a small volume of the structure is 

subjected to an elastic stress range larger than 2oy 

developing plastic strain, alternatively in tension and 

compression for each part of the cycle, that part of the 

structure is said to be operating in a reversed plasticity 

condition. 

RATCHETTING: A structure, when its deformation increases 

over each loading cycle, is said to be ratchetting. 

2.4.1 Melan's Statical Shakedown Theorem 

The first general shakedown theorem for elastic-perfectly 

plastic material, based on a statical approach to the 

problem of structures operating under several loads varying 

independently within prescribed limits, was proposed by 

Melan (24,25,26). This theorem may be formulated as followas 
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Shakedown will occur if a state of residual stress pij(x), 

independent of time, can be found, such that superposition 

of this residual stress on the elastic stresses due to 

prescribed mechanical and thermal cyclic loads aij(x, t) 

nowhere violate the yield criterion, ie 

VQiý) <y2.18 

where 

Qij(x, t) = Qij(x, t) + p(x) 2.19 

In general, structures do not shake down to a unique shake- 

down state independent of the loading programme. However, a 

residual stress field is normally search so that a maximum 

admissible load variation is obtained. In this sense the 

application of Melan's theorem leads to lower bounds of the 

limits of load variation. 

The proof of this theorem was given by several authors 

[27,28,29,301. 

2.4.2 Koiter's Kinematical Shakedown Theorem 

The second general theorem generally referred to in the 

literature as Koiter's theorem, is based on kinematical 

principles and was proposed by Koiter 1281.. Here, its form 

for cyclic loading, with cycle time At is discussed. 
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First, it is convenient to give some definitions as follows: 

the concept of an arbitrary field of admissible plastic 

strain rate cycle eil is defined by its property that the 

plastic strain increments during a cycle t-0 to t- At. 

oec 
At 

=j ec (t)dt 
ij 

0 
11 2.20 

constitute a kinematically admissible strain distribution, 

ie, osij satisfies the compatibility conditions (2.5) and 

the corresponding displacement field are zero on Su. 

Corresponding to the plastic strain rate field tij(t) there 

is a unique residual stress rate distribution pik(t) and 

corresponding elastic strain rates. The kinematically 

admissible total strain rate field 

" "e .C eij 2.21 

is obtained from a velocity field Ui from (2.5). In 

addition the total stress rate history is given by 

"e 
_ Eij DijA 2.22 

and is now defined by ; 
ij - oij - cij, where aij is the 

rate of change of elastic stresses for the same loading 

history. The residual stresses at the end of a cycle t- At 

return to their initial values at time t-0 as the 

increments of plastic strains are kinematically admissible; 

hence 
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j gi3(t)dt =0 2.23 

while the displacement increments over a cycle time At are 

&Ui= f 
`(t)dt 

2.24 

Koiter's theorem may now be formulated by the following 

statements: the structure will not reach a state of shake- 

down, in other words it will either suffer ratchetting or 

reversed plasticity, if any system of external cyclic loads 

and any admissible plastic strain rate cycle cij(t) within 

prescribed limits satify 

T 
fTdt{f bi(t)UidV +xfp (t)Ui(t)dS} >f dt f D(Ei)dV 
0v Sp ov2.25 

where D(Eij) is the plastic energy dissipation D(ein) - 

Qijeij for the admissible strain rate cycle cij. However, 

the structure will shake down if a number k >1 exists so 

that for the prescribed loading system 

JTdt{ j bi(t)Ui(t)dV +xf Pj(t)Uci(t)dS} f dt, f D(c )dV 
ovS10V 

p 2.26 

is valid for all admissible plastic strain rate cycleseij. 
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Koiter (28,291 and Martin 1301 have presented proof for this 

general theorem. 

2.4.3 Extensions of Koiter's Theorems to include Cyclic 

Thermal Loading 

The shakedown problem when a temperature field is included 

-n the loading programme was first studied by Prager [31] 

and Rosemblum [32] who presented the proof for the extended 

version of Melan's theorem. 

Koiter"s theorem was also extended to non-uniformly heated 

bodies [33,34,351 in a slightly different formulation. An 

additional term of the form 

T 
f dt 

Vpij6ija6(x, 
t)dV 

0 
2.27 

has to be added to the left-hand side of (2.25) and (2.26) 

where a is the coefficient of linear thermal expansion, Sij 

is the Kronecker delta ( Sij-l for i-j and Sij-O for i#j) 

and pij is the residual stress rate produced by the plastic 

strain rate Eij where the thermal expansion strains are 

included in the definition ofvij. The uniqueness of the 

residual stress rate pij and the corresponding given plastic 

strain rate Eij followed by the unique thermal stress 

distribution cej(x, t) related to the thermal strain field 

Sija9(x, t) give rise to the following equation 
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5 dt j piý6 a8(x, t)dV = fT f a6ý(x, t)E 11 dV 2.28 
oV0V 

which is a consequence of the virtual work and the 

reciprocity theorem. Assuming that the body forces bi and 

the surface forces Xpi are time independent, Koiter's non- 

shakedown theorem can now be expressed as 

T 
J bid UidV +Xf pidUidS +j 

dt j Q1ý (x, t) ei j 
(t) dV >5 dt faj cj (t) dV 

VS0Vo 

2.29 

where äij(x, t) denotes the elastic stresses due to the time 

dependent loads, which could include some variable 

mechanical load. It may be noted that no additional term 

was included in Equation (2.29). This inequality depends 

only on the plastic strain rate Eid and the corresponding 

displacement increment dUi with no involvement of the 

residual stress field pij induced by Eid during the 

transient part of the cycle. Once a consistent relationship 

between eij and dUi is defined corresponding to each instant 

during the elastic stress history aij(x, t), Equation (2.29) 

may be used to calculate upper bounds on the load parameter. 

A systematic -, technique has been developed and will be 

presented in a later chapter where a Displacement 

Formulation for the Finite Element Shakedown Analysis of 

Pressure Vessels is used to define compatible strain fields 

for certain classes of linear yield surfaces. The 

optmization of Equation (2.29) to give minimum upper bounds 

is achieved by reducing the problem to a Linear Programming 

Problem. 
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2.4 .4 Extension of the Upper Bound Shakedown Theorem 

(Koiter's) for Cyclically Hardening materials 

As it has already been stated, the classical shakedown 

theory eliminates both the possibility of ratchetting and of 

reversed plasticity. This constitutes a real deficiency of 

the shakedown concept in structural design. The capability 

of many metals of work hardening and therefore being able to 

withstand several thousand cycles of reversed plasticity 

presents a real need to develop simple techniques to assess 

the range of the reversed plasticity region F in a Bree type 

diagram (Fig. 2.4). This region would certainly not only 

provide useful information to the designer but also'lead to 

more economical design, as the possibility of ratchetting 

and fatigue can be separately assessed. 

2.4.4.1 Description of the Problem 

Consider the body shown in Fig. 2.1 and the assumptions 

described in Section 2 with constant body and surface forces 

and a cyclic history of temperature occuring at point x, for 

a cyclic time t. The temperature history is given by 

e(x, t) = eo + e(x, t) 2.30 

where 9o denote some reference temperature and e(x, t) is a 

quasistatic cycling temperature which has the form 
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e(x, t) = Q(x)ij(t)oe 
o<p <1 ;0 <42<1 

2.31 

where A® denotes the maximum temperature difference and Q(x) 

is a nondimensioanal shape function. This implies that the 

thermo elastic stress history follows a straight line path 

in stress space. 

Assuming a perfectly plastic material element with a yield 

stress ay, a Bree type diagram (Fig. 2.4) can be obtained 

with axes proportional to the steady mechanical load P/PL 

and to the maximum effective thermal-elastic stress vt/oy 

due to the cyclic thermal loading where PL is defined as the 

limit load. The classical shakedown region S where an 

elastic mode of behaviour is achieved after some cycles of 

transient plastic strain is defined by the boundary ABD. 

The region of interest of this section is the reversed 

plasticity region F where plastic strains may occur in 

alternating directions in some part of the element. This 

region can be isolated from the ratchetting region R, where 

incremental plastic strains occur at each cycle, by an 

extended boundary BC which can be determined by the extended 

upper bound theorem proposed by Ponter and Karadeniz 

(36,37]. 
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2.4.4.2 Material and 'Structural Shakedown for Cyclically 

Hardening materials 

The conditions for material shakedown of a perfectly plastic 

material is defined by cyclic stress histories that will not 

cause incremental growth. Although material data for 

cyclic s loading conditions and especially for cyclic thermal 

loading is complex and limited at the present time, simple 

conservative assumptions can still be adopted to develop a 

reliable theory of analysis such as that proposed by Ponter 

and Karadeniz [36,37). This theory can be described as 

follows: The yield criterion is defined in the stress space 

by (2.18) and the associated flow rule given by (2.14). 

A particular class of stress histories which cannot be 

contained within the yield surface but cause no strain 

growth will be defined as the reversed plasticity condition. 

Despite the shortage of material data for the behaviour of 

specific materials such as the SS316 under plastic cyclic 

loading, some general discussion on the subject is presented 

in Chapter 5. The conditions of material shakedown can, 

however, be formulated by the use of some simplifying 

assumptions. 

It is assumed that material shakedown will occur for a 

cyclic history of stress cij(t) and temperature e(t) if 

either of the following conditions are satisfied : 

(a) the stress history is contained within the yield 

surface, ie, +[ ci j (t) j< cy[ 6(t) j 
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(b) for those stress histories which exceed the limits of 

the yield surface, and for which condition (a) cannot be 

satisfied, the extremes of the stress history are 

assumed to be related by afjax s- Qijin during the 

cycle. 

Fig. 2.5 shows schematically these conditions. Because of 

the lack of experimental data to assess it, no effect of the 

variation of temperature on the cycle has been considered in 

condition (b). The insensitiveness of the relationship 

between the stress and strain amplitudes to the mean stress 

when the cyclic state is reached, has been shown by, for 

example, Pellisier-Tanon et al. (38] which implies that the 

stress histories, which occur in practice, belong to class 

of histories of the form 

CF* (x, t) = XQi3 + QBý(t) + pia 2.32 

where cij(t) denotes a thermo-elastic/plastic stress history 

for zero applied load, oij is the elastic solution due to 

constant applied loads pi(x) and pij is an arbitrary 

residual stress field in equilibrium with zero applied load 

on Sp. The construction of aij requires that cyclic 

material behaviour be fully described, what is not normally 

available. For stress histories within the yield surface 
the response to the cyclic component will be close to the 

linear elastic solution, whilst for large amplitudes which 

imply condition (b) the actual response lies between the 

predictions of perfect',, plasticity and linear elasticity. 
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2.4.4.3 The Extended Koiter's Theorem 

The extended upper bound theorem presented in this section 

defines those states of loading for which no incremental 

plastic strain occurs after a significant number of cycles, 

although the state of stresses resulted from it cannot be 

contained within the yield surface, ie the maximum effective 

thermoelastic stress at <2 cy. The extended theorem is 

identical to the classical theorem when the stress history 

lies within the yield surface, which implies that it 

contains the classical upper bound as a special case and 

provides an upper bound for the definition of a boundary 

between region R of ratchetting and region F of reversed 

plasticity. 

The conclusion reached by Ponter and Karadeniz (36,37] after 

considering special cases that the assumption of complete 

cyclic hardening within the reverse plasticity region of the 

body would provide the smallest F region, leads to a 

simplifying assumption on the cyclic stress history which 

can be stated as follows: 

The steady cyclic stress history in (2.32) will assume the 

form of the linear elastic stress history, ie c0j " cep 

wherecij is the linear elastic stress history. The effect 

of temperature on the elastic moduli will be neglected in 

all these arguments as is the case for the classical 

shakedown theorem. The implication of this assumption is 
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that no knowledge of the cyclic material behaviour is 

required. 

The total volume V of the body described in Section 2 may be 

divided into two subvolumes; Vs where the thermal stress 

history äej(x, t) can be contained within the limits of the 

yield surface by a rigid body translation in stress space 

and VF where öej(x, t) exceeds those limits and hence causes 

reverse plasticity. 

In order to formulate the new theorem, a particular form of 

The residual stress field will now be chosen, so that 

123 
pik Pii + Pia + Pii 2.33 

where pij denotes part of the residual stress which cancels 

aij in Vg, pij is a residual stress field which enforces 

condition (b) of the material shakedown in VF and pij is an 

arbitrary stress field in Vs that ensures that the 

equilibrium equations are satisfied if VF were removed. 

The total stress history (2.32) now becomes 

1^23 
vii(t) - (AQij + pij) + (ali(t) + pij) + pii 

2.34 

To satisfy assumption (b) of the material shakedown in VF 

two conditions have to be imposed 

- the stress distribution 
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p= ^p 1 2.3 5 
Qi j Qiß + pi j 

must be either zero or a purely hydrostatic state of stress 

within VF with the former requirement being sufficient for 

plane stress states. This condition then implies oij - Oil 

+ pik in VF, since pik is defined only in Vs. 

- considering that the stress histories generally vary 

between a maximum extreme a9 ax(tl) and minimum &(t2) 

along a linear path in stress space, the residual stress 

pik may be identified in VF as 

pik = 
.1 aO ax(tl + -emin(t2)1 2.36 

so that 

aii ax =2L aii (tl)- aii 
-(t 2) 

]=- 
ai j in 

in VF 

2.37 

It is important to note that pij given by assumption (b) in 

VF must also be defined in Vs. 

The analysis now reduces to a shakedown problem within vs 

which can be formulated by the following theorem: 

The structure will shake down if an arbitrary stress field 

such as (2.35) exists so that 
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(1) Within VF aPj -0 which implies that condition (b) of 

the material assumption can be satified by a residual 

stress field of the type shown in (2.36) 

(2) +(oij) < ay within Vs for a cij is given by 

a* (t) = AQij + Qg3 + p3 2.38 

where Xa? is in equilibrium with the applied load in Vs, 

QAj - äeß + oij and pij is an arbitrary residual stress in 

Vs. The following inequality now holds: 

2.39 

Afp dUc dS < STdt f Qc -AG (t) e° dV - . 
Tdt 

f1 
emax(t 

)+aemin(t )e dV i10 VS ij ij 
I 

11 
0VF2 

Kj 
1 ij 2 ij 

This theorem may be proved by applying the upper bound to Vs 

to give 

AS pidUidS f dt f ('ii-0i)eij +V PiýdEiýdV 
2.40 

where dein - jeij dt. The integral involving pi sums to i 
zero since the residual stress field is in equilibrium with 

zero applied loads in Vs. Considering that the thermal 

stress field on the right hand side of Equation (2.40) is 

äij - crij + Pij then 
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1dt fQ «cY ýci3dV =f dt f CoýeiJdV +j dt j p, Jc dV 
0 VS 0 VS 0 VS 2.41 

where the second term on the right hand side is given by 

fT dt f piidV = fTdt f piýc dV -JTdt 
f pijeijdV 

0 VS 0V0 VF 
2.42 

As the residual stress pij is in equilibrium with zero load 

in the total volume V, the first integral on the right hand 

side of (2.42) is also zero. Hence the upper bound, 

Equation (2.40) becomes (2.39), which is determinate for 

prescribed Eij(t). It can be noted that the term involving 

the elastic thermal cyclic stress history cij in Vs is the 

only term which depends upon an arbitrary time during the 

cycle. Once the strain rate sij is prescribed, Equation 

(2.39) may be used to search for the minimum value of 

corresponding to a particular time "to" during the cycle. 

This condition can be better described in geometric terms, 

which is shown schematically in Figs. 2.6,2.7. The instant 

"to" corresponds to the stress point on the yield surface, 

where the cyclic stress history a (t) touches when 

translated in the stress space as a rigid body by the action 

of the constant mechanical stresses aPj, if such a 

translation is admissible. 
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This translation can also result in the cyclic stress 

history touching the yield surface at two points during the 

cycle as shown in Fig. 2.7. In that case two plastic flows 

deij and dsij are activated at different times, corres- 

ponding to the two extremes of the cycle ti and t2. Thus, 

the total plastic strain during the cycle can be written as 

dein = dein +. dein 2.43 

Hence, the first term on the right hand side of Equation 

(2.39) becomes 

Tr 
f dtv 

IQ 

ii ijit) 

I Eij _ 

V [Cyij--ij(t1)1dei1dV 
+v 

[1a 
(t2)JdcdV 2.44 

The applicability of the extended upper bound theorem 

(Equation (2.39)) to thermal cyclic problems is limited to 

some class of structures for which design in the reversed 

plasticity regions is possible. They can be identified as 

those structures capable of bearing certain loading 

conditions, within some restricted volume Vg, in excess of 

the classical shakedown limits without excessively or/and 

incrementally deforming. In such a category of structures, 

the thermal loading may suffer large variations and there 

would still exist some region in the structure capable of 

transmitting the mechanical load through the structure. The 

first step to assess the applicablity of (2.39) is to 

identify volumes VF and Vs. The condition whether the 

region Vs is capable of transmitting the loads Api has then 
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to be examined. In other words, Equation (2.39) can only be 

applied if a volume Vs exists, which does not contain a 

mechanism of deformation, in which case a boundary 

separating the regions of reversed plasticity F and 

ratchetting R may be determined. 

2.4.5 Formulation of the Upper Bound Theorem for Beams and 

Frames 

This formulation is based on the assumption that bending 

moments are the only agencies producing deformation. 

Because of its easy availability in the literature (99,101, 

1011, only a brief summary will be presented here, with 

emphasis on the problem experimentally analysed in Chapter 

5. Some information on material behaviour is also given in 

Chapter 5. 

Let the loads consist of cyclic thermal loading in the 

presence of a steady mechanical load which will both 

generate bending moments. The bending moment in a generic 

section i, due to the cyclic thermal load alone, will vary 

between a maximum value M©max(tl) and a minimum value 

M9min(t2). During the early cycles of loading, plastic 

transient deformation introduces residual bending moments mi 

to the structure. Shakedown will occur when the following 

inequalities are satisfied for any generic section i: 

as(Mi + MfOmax(tl)) + mi< Mp 2.45 
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^e Xs(Mi + Mi min(t2)) 
+ mi; - Mp 2.46 

where Xs is the shakedown load factor, MP is the bending 

moment (assumed positive) due to the mechanical load and Mp 

is the plastic moment defined in Chapter 5. For an upper 

bound formulation a mechanism of incremental collapse is 

assumed with hinge rotations ei's occuring in positions 

where the bending moment equals the plastic moment. What- 

ever the sign convention, any plastic moment Mp and the 

corresponding hinge rotation ®i will have an identical sign, 

ie, corresponding to a positive MP there is a positive ei 

and vice-versa. For any section where a hinge is formed, 

inequalities (2.45,2.46) are replaced by equalities: 

e X AMP + Mi max) 
+ mi = Mi 

p 2.47 

e as (Mi « Mi min)+j 
i=- 

Mi 
P 

If the hinge rotation 6i of the assumed mechanism is 

introduced to Equations (2.47) gives 

Mi + Mi max 2.4 8 fe xs 

MP 
emin 6i + mi6i = ýiKP9i) 

i+Mi 

where the right hand side of Equation (2.48) is always 

positive. When all the hinges of the assumed mechanism is 

considered and the Equations summed gives 
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MP 
+M 

0max' 

xi1 ei =L IMieiI 2.49 

1M+Mi e min p 

since the residual moments are in equilibrium with zero load 

and 

I mies =o 2.50 

Equation (2.49) can either yield upper bounds of the 

shakedown load or its actual value if the true mechanism of 

incremental collapse is known. 
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CHAPTER 3 

SHAKEDOWN AND RATCHETTING ABOVE THE LIMIT OF REVERSED 

PLASTICITY; NUMERICAL APPLICATION FOR THE CASE OF CYCLIC 

MECHANICAL LOADS 

The purpose of the present numerical analysis is to study 

the dependence of the shakedown behaviour on the stress 

concentration factor and on the type of structure for 

mechanical loading problems. 

Two types of structures are considered in the calculations, 

and the behaviour of such structures above the limit of 

reversed plasticity for two different types of material is 

explored. The two types of structures and material 

considered are: two-bar structures subjected to variable 

axial loads, and cylindrical vessels with variable thickness 

and under cyclic internal pressure. The materials 

considered are the elastic/perfectly plastic and the 

isotropic hardening materials. 

3.1 The Two-Bars Structure 

3.1.1 Notation 

1 lengtL of bar 1 

n ratio of the lengths of the bars 
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k ratio of the cross areas of the 

bars 

PL limit load Ps shakedown load 

ay yield stress of material 

of stress in bar 1 after first cycle 

a2 stress in bar 2 

pl, p2 residual stresses 

a2 - c2 + p2 

additional load after cyclic hardening 

3.1.2 Introduction 

The lower bound theorem was used to study the two-bar 

structure (Fig. 3.1) assuming first the bars made of 

elastic/perfectly plastic material. 

The load history is shown in Fig. (3.2) and the elastic 

stresses can be calculated by equations 

Q* = 
2- 

1 (r1 +k )A 3.1 

_ a2 
(n 

P+ 
k)A 3.2 

The load that will make the structure collapse is given by: 

PL (1 +k )AQy 
3.3 
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3.1.3 Behaviour of two-bars structure 

The stress-strain diagrams for a load which makes bar 1 

yield, but not bar 2, can be seen in Fig. (3.3a, b). In the 

first cycle the stress difference Aal (Fig. (3.3a) which 

should be supported by bar 1, is transferred to bar 2. At 

the end of the first cycle Aal and hol/k will appear as 

residual stresses and will keep the relation pl--kp2. If 

the same load is maintained, the structure will behave 

elastically. 

increasing the load may cause one of two conditions: the 

first condition is when the limit load is reached first. 

This is always the case for the ratio of the lengths of the 

bars within the range n<2k/(k-l). The stress-strain 

diagrams are represented by Fig. (3.4 a, b) and it can be said 

that the shakedown load is equal to the limit load. 

The second condition (Fig. 3.5 a, b), for fl>2k/(k-1), implies 

a reduction of the shakedown load with the increase of n. 

This reduction is due to the dependence of the shakedown 
load on the stress concentration in bar 1, which increases 

with n. The shakedown load for such cases is given by 

2(n+k)PL 
Ps 

n(1+k) < PL 3.4 

If an rl equal to infinity is considered, the shakedown load 

becomes 

2PL 
Ps (1+k) 3.5 

46 



which tends to zero as k tends to infinity. The elastic 

stresses in the two bars for n--a and k#W are 

P 
Q1 =Ä Q2=0 3.6 

Bar 2 will, therefore, only receive the load transferred 

from bar 1 to maintain the equilibrium of the residual 

stresses. From the relationships p2--pl/k and pl--oy we can 

see that the stress in bar 2 can be very low, depending upon 

the value of k. This conclusion encourages the increasing 

of the load over the limit of reversed plasticity, since the 

possibility of catche 
Ling 

is eliminated by the elastic 

behaviour of bar 2. The possibility of failure by fatigue 

must then be investigated. The stress-strain diagrams for 

loads greater than Ps is shown in Fig. 3.6. Fig. 3.7 

represents the limit condition when Ps-PL. 

If the possibility of cyclic hardening is considered, for 

Ps-PL and n>2k/(k-1), bar 1 will increase its capacity of 

receiving load and will transfer less load to bar 2 each 

cycle. Fig. 3.8 represents the process, which stabilizes 

after a few cycles with no transference of load in the end. 

Then, as the stress in bar 2 is less than ay, the structure 

can now support an additional load P before failure. The 

non-dimensinal additional load can be calculated by 

P [n(k-1) - 2k] 3.7 
PL - 2k (1+k) 
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Plotting the non-dimensional load P/PL against n, for 

particular values of k, Fig. 3.9 is obtained. Region E 

represents completely elastic behaviour of the structure. 

Elastic shakedown will happen in S region while plastic 

shakedown will occur within the PS region in the absence of 

ratchetting. The region of plastic shakedown with hardening 

is also represented and shows loads greater than PL. 

3.1.4 Conclusions 

From this theoretical analysis it can be concluded that 

depending on the capacity of the material to withstand 

cyclic load without failing by fatigue, the structure can 

work subject to operating conditions above the shakedown 

limit. The elimination of ratchetting will be assured by 

the elastic behaviour of bar 2 which prevents great 

displacements up to the structure rupture. 

3.2 Cylindrical Pressure Vessel with Vari%le Thickness 

3.2.1 Notation 

R radius of cylinder 

T1 thickness of thicker cylinder 

T thickness of thinner cylinder 

t thickness of the elastic part 

k t/T 

a T1/T 
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ß R/T 

AP variable pressure 

p primary constant load 

PL limit pressure 

H, M edge force and bending moment per unit of 

circumference 

NX, N+ axial and hoop forces 

cx, o¢ axial and hoop stresses 

01,72 extreme axial stresses 

3.2.2 Introduction 

Present day design rules for pressure vessels under cyclic 

load have as a limiting condition the lower bound 

shakedown estimates which are quite safe but do not give 

much information about the general behaviour of the 

structure. For this reason, in the study of cylindrical 

pressure vessels with variable thicknesses, which follows, 

the upper bound theorem was used instead. The other 

important point that justifies the determination of the 

upper bound is the great possibility of guessing the actual 

mechanism of deformation in pressure vessels, which gives 

the exact bound. 

When a cylindrical pressure vessel has a variation in its 

thickness (Fig. 3.10a) the junction constitutes a point of 

weakness because of the local stress concentration that 

takes place. Depending upon the geometry of the vessel, it 

can fail either as a membrane or due t-o the stress 
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concentration at the junction. If the vessel is considered 

to be composed of two cylinders with different thicknesses 

it can be assumed that the maximum stresses occur in the 

thinner one. The load history is shown in Fig. 3.10b and in 

order to obtain general results, the elastic stresses will 

be calculated as a function of the two nondimensinal 

geometric parameters: 
T 

= 1- a! T 

R 
ßT 

where T1, T, and R are defined (Fig. 3.10a). 

3.2.3 Elastic Solutions 

3.2.3.1 Edges Forces Calculations (H, M) 

Elastic Solutions were obtained by ensuring compatibility of 

displacements between the two cylinders. This analysis was 
the 

made using (theory of thin shells, superimposing on to the 

membrane solution the effect of edge forces H and M(Fig. 

3.11). Equations 3.8 and 3.9 give the values of H and M in 

terms of the nondimensional parameters: 

v Poisson's ratio 

_ 
(a3+V)(a-1) 

fl 
[2av, 'a-(a+l) + (a"+1) + 2a2] 

- 
(a3-a)(a-1) 

f2 
[2a/(a+1) + (a"+1) + 2a2] 
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H=3 )TfI(a)p 3.8 

M= ßT2 f2(cx)p/2 3.9 

3.2.3.2 Global Collapse 

Considering the Tresca yield condition, the collapse will 

occur if the geometry of the vessel is such that the hoop 

stress reaches yield before the axial stress, as indicated 

in Fig. 3.12. Details of the calculations for this mode of 

deformation are given in Appendix A and the equation which 

defines the bound for such a collapse to occur is given by 

p- +2 -P- =13.10 PL PL 

3.2.4 The Upper Bound Theorem 

3.2.4.1 The Mechanism of Deformation 

The assumed axial mechanism of deformation is shown in 

Fig. (3.13). Equation (3.11) represents the upper bound 

theorem. The left hand side term(I) expresses the internal 

dissipation of energy at plastic rupture. The first term on 

the right side(II) expresses the work done by the primary 

constant load p and the last term(III) of Equation (3.11) 

represents the work corresponding to the maximum positive 

stresses due to varying loads. 
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The limit load is assumed to be the load which makes the 

axial membrane stress reach yield and can be calculated by 

2TQ 2a 
pL= Rß3.12 

The calculations of the upper bound using Equation (3.11) 

and the collapse mechanism shown in Fig. 3.13 are given in 

Appendix A. 

3.2.5 Limit Design Boundary 

3.2.5.1 Ratchetting Bound 

Equation 3.13 is obtained in Appendix A in terms of non- 

dimensional groups 

2 6p 

_ 
(36f2(a) + 1) 

f2(a) XP3.13 1 
PL + 24 

where p and op are, respectively, the primary constant 

pressure and variable pressure, pL is the limit load, and f2 

is a function of the geometric parameter a(=T1/T) previously 
defined. Equation (3.13) defines a line which is the 

ratchetting bound for variable loads smaller than the 

shakedown limit. This line corresponds to the beginning of 
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axial incremental growth. 

3.2.5.2 Reverse Plasticity Bound 

If a Tresca yield condition is considered (Fig. 3.14) the 

axial shakedown limit is calculated by superimposing on to 

the membrane stress the stress due to the edge moment M 

(Equation 3.14). 

QX(Op/2) =+ 
6M(Tpp/2) 

= Qy 3.14 

which gives 

AP 2 
PL [1 + 6f 

2(a)] 
3.15 

The boundary constituted by the two bounds AB and BC in Fig. 

3.15 is the one used in the design of pressure vessels. To 

complete the ratchetting bound above the reverse plasticity 

limit (Av>2cy) it is necessary to assume two different 

regions in the vessel thickness as proposed by Ponter and 

Karadeniz 136,371: Vom, and Vc (Fig. 3.16). V,,, is the 

region where reversed plasticity occurs and can take no 

primary load (p). Therefore the upper bound is applied to 

VS only, where the stresses remain within the yield surface. 
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3.2.6 Work Hardening material 

The first material to be analysed was the isotropic 

hardening material, which theoretically maintains the 

linearity of the stress distribution, reaching stresses 

greater than the yield stress in the plastic region VF1 

(Fig. 3.16). 

3.2.6.1 Ratchetting Bound Above Reverse Plasticity 

Again all the calculations are presented in Appendix A which 

give rise to Equation 3.16 when the extended upper bound 

theorem is applied to the volume Vs alone. 

42- 3f2(a) + 9f2(a))ý - (1 - 6f2(a))] 3.16 p- 
12f2(4t) 

[gyp/PL 

L 

Equation 3.16 is used in range o2<vy. When c2>cy another 

region (Vg2) of plastic stresses appears as indicated in 

Fig. 3.17. 

The same procedure is used to obtain the final part of the 

limit curve for ratchetting in a work hardening material 

(Equation 3.17). 

1 1_ i- 
PL 6f2(a)'Ap/pL 3.17 

Depending on the geometry of the vessel, the membrane stress 

A (-ApR/4T) can be greater than the stress due to edge 

moment BT/2(-6M/T2). In other words A> BT/2. The stress 
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distribution for this case is shown in Fig. 3.18. It can be 

seen that only the positive part of the load cycle is 

considered (Ap>0). 

The extended upper bound theorem is again applied to obtain 

Equation 3.18. 

Z11- (3fi (a)- 9f2(a) - 
1) 

- (1-6f (a))ý 3.18 
PL - 12f2(C1) 

[AP/PL 
4 pL 2 

3.2.7 Elastic/Perfectly Plastic material 

When the same vessel which has previously been considered is 

composed of elastic/perfectly plastic material, a different 

equilibrium must be satisfied. The stress diagram through 

the thickness for this particular material can be divided in 

two different parts (Figs. A 6a, b) as shown in Appendix A. 

For the region where the stresses remain- within the yield 

surface, the stress diagram is linear and a function of z 

(Equation 3.19). For the plastic region the stress is 

constant and equal to ay (Equation 3.20). 

QX A+ Bz 3.19 

QX = Qy 3.2 0 
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3.2.7.1 Ratchetting Bound Above Reverse Plasticity 

The application of the upper bound theorem to VS in Figs 

(3.19a, b, c) is given with some detail in Appendix A. 

The Equation representing the first part of the bound 

separating the region of reversed plasticity from the 

ratchetting region, obtained in Appendix A is 

ý3_ 
IC3-k2 

rk 
2. f? _kf2+ (ý)2 

L 12 C f2 p 
(1_k)j LL 

L 

[18(1-k) +1 
r18(ß k) f2 - 

3(1-k) (1 + 2f2) + 
(lk-k) 

- 21 _ 3.21 
J PL 

_ 
(1-k) 19(1-k) 

- 
6(1-k) 

+ 
(1-k) 

kL k3 k 

Figs. 3.20a, b represent the new stress distribution within 

the thickness where a new plastic zone (VF2) is forming. 

The calculations of the new stress distribution is given in 

Appendix A and the equation for the second part of the 

ratchetting/reversed plasticity bound is found to be 

k3 
-2 PL (6f (a) -3 '6p) - 3(1-k2) 3.22 

24 PL PL 

for f2(a) > 0.5. The problems when f2(a) < 0.5 are also 

discussed in Appendix A. 
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3.2.8 Numerical Examples 

For a vessel of small a (-2), it can be seen from Fig. 3.21 

that the global collapse will be the most important factor. 

Before reaching ratchetting or reverse plasticity, the 

vessel will collapse as a membrane. 

a 
If a-8 is adopted, anlysis of the results can be done for 

two different materials: the work hardening and the elastic/ 

perfectly plastic materials. 

The results in the case of a work hardening material are 

presented by different regions of the diagram shown in Fig. 

3.22. The vessel behaviour will be purely elastic for loads 

within region E, The response of the structure will still 

be elastic for working conditions in region ES after initial 

yield during the first cycle. In region PS some parts of 

the vessel suffer reverse plasticity. Finally the structure 

will fail as a membrane if the loads go toltx' area GC. It is 

interesting to notice that for an isotropic hardening 

material these theoretical results indicate that global 

collapse occurs always before ratchetting. 

If the material of the vessel is assumed to be 

elastic/perfectly plastic however, the theoretical results 

change considerably as shown in Fig. 3.23. Perhaps the 

actual curve representing the ratchetting limit condition, 

for loads above the alternating plasticity is neither one of 

these but any other that lies between. 
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The limit case, for equal to infinity, is shown in Fig. 

3.24. The important conclusion in this case, and in those 

cases where the stress concentration is high, is the fact 

that depending on the load the global collapse will not be 

reached first. These results can, perhaps, provide 

encouragement to experimental work, mainly with the zone of 

plastic shakedown (PS) in mind. It can be seen in Fig. 3.24 

that theoretically, for elastic/perfectly plastic material, 

ratchetting can occur before the vessel collapses as a 

membrane. 

3.2.9 Conclusions 

The theoretical analysis presented has shown that for 

cylindrical vessels with variable thicknesses the upper 

bound theorem gives a general picture of the vessel 
behaviour. From the results obtained it is possible to 

conclude that it would be an interesting experimental test 

if these vessels were submitted to working conditions in the 

region of plastic shakedown. The possibility of 

ratchetting, but not of reversed plasticity, would then be 

eliminated and the problem is likely to be one of low cycle 
fatigue analysis instead. 
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CHAPTER 4 

SIMPLIFIED ANALYSIS OF TUBES SUBJECTED TO MECHANICAL 

LOADS AND MOVING TEMPERATURE FRONT 

4.1 Introduction 

The problem of shakedown and ratchetting at elevated 

temperature in components of Nuclear Reactors has been the 

subject of extensive study since 1959 when Miller [39] first 

derived criteria to determine limits on the stresses to 

prevent incremental growth or to estimate the expansion per 

cycle when that was due to occur. In particular, Miller 

studied the problem of the behaviour of nuclear reactor fuel 

cans under the effects of cyclic thermal loading and 

constant internal pressure. Bree (40] extended his work to 

include a more complete material model capable of 

introducing to the calculations effects of work-hardening, 

dependence of the yield stress on the temperature and also 

the effects of creep. A more detailed study of the effect 

of creep was subsequently published by Bree [41]. Other 

authors [42-46] following similar procedures ie, using 

uniaxial models to predict thermal ratchet mechanisms, 

succeeded in obtaining exact solutions for simplified 

versions of practical engineering problems. Nevertheless, 

the ever-increasing demand for nuclear energy in recent 

years has brought the construction of more advanced reactors 

such as the Liquid Metal Fast Breeder Reactors (LMFBR) which 

operate in conditions of much higher and complex loading 
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systems. The consequence of this rapid development in 

nuclear technology is that engineering problems related to 

thermal cyclic loading have become more complicated and 

considerable effort has been devoted in recent years to 

better understand the new aspects of the problem. 

New materials selected for the new reactors (LMFBR) had 

exhibited a Bauschinger effect, as pointed out by Mulcahy 

[47,48]. In consequence, the thermal ratchetting response of 

a kinematic hardening material model representing an 

idealised Bauschinger effect, had to be studied. 

Although the current design codes still require conservative 

shakedown boundaries which impose design and operating 

conditions completely free of ratchetting, more precise 

methods of analysis had to be developed by means of 

simplified numerical techniques to avoid the cost and time 

required to perform a complete inelastic F. E. analysis for 

such problems. The development of these numerical 

techniques of detailed analysis for the design of structures 

at elevated temperatures has received great support in the 

last decade. 

One contribution to this development has been made by 

Arnaudeau et al. (491 analysing the upper part of the French 

LMFBR main vessel with consists of a thin cylinder subjected 

to axisymmetrical thermal load and axial mechanical load 

representing the weight of the vessel. A bi-dimensional 

model was used in their approach in an attempt to apply more 

precise rules to the analysis instead of the classical 
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uniaxial model mentioned previously and a comparison was 

made for a perfectly plastic material. 

The new problems of designing fast breeder reactors has been 

the subject of thorough study at the University of Leicester 

in the last 10 years. Several papers have been published 

encompassing different aspects of structural and material 

behaviour. At first, simple structural models like the 

two-bars structure were analysed by Megahed [50] to simulate 

the fuel can of a sodium cooled reactor where a theoretical 

analysis was performed to study the modes of behaviour of 

sucha simple structure under rapid cooling cyclic or down 

shock loading. The need to understand the effect of thermal 

loading in the design of LMFBR's beyond the restrictions of 

the present codes which will prevent not only ratchetting 

but also reversed plasticity was pointed out later by Ponter 

(14] who proposed an alternative approach to simplified 

analysis which would allow a much more detailed method. 

Ponter's technique consists of defining conservative bounds 

separating the region F of reversed plasticity and the 

region R of ratchetting for Bree-like structures. The 

technique has been developed recently (36,37] and applied to 

a number of thermal transient problems. The solutions shown 

in (37] demonstrate that ratchetting can occur in the 

presence of very moderate mechanical load when the thermal 

cyclic load is high, as in the case of the liquid-metal fast 

breeder reactors. Also the realization that the ratchetting 

mode of behaviour depends considerably on the variation of 

the yield stress with the temperature and that it becomes 

possible even in the abs ense of mechanical load, has been a 

80 



great contribution to the understanding of the effects of 

thermal cyclic transients. 

Subsequently a more systematic method of analysis was 

developed by Karadeniz and Ponter (511 for thin cylindrical 

shells subjected to cyclic thermal loading based upon the 

upper bound kinematic shakedown theorem (goiter's Theorem) 

and *, a Finite Element Approach. The solution of the 

problem was achieved by choosing a suitable displacement 

field and reducing the upper bound theorem to a problem in 

linear programming. The generalization of this technique 

for several different types of shells was further developed 

and will be presented in a later chapter of this thesis. 

In this chapter a simplified analysis of a similar problem 

of a tube subjected to mechanical loads and moving 

temperature fronts as presented in [51] will show how simple 

calculation can predict the behaviour of a tube under 

rather complicated combinations of load. The analysis is 

extended to combine more than one mechanical load (internal 

pressure/axial load) with the moving temperature front. 

Such analyses are only possible without becoming excessively 

complex, by assuming some simplifications. Apart from these 

simplifications all the assumptions in [51] will also hold 

here and an analogous procedure will be used by analysing 
individually the combination of the mechanical loads, axial 
load and internal pressure with the moving temperature 

front. A third loading system is then considered consisting 

of the combination of the two mechanical loads applied 

simultaneously with the thermal cyclic loading. In fact, 
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the last case is the one more likely to occur in practice 

where the internal pressure can be due to the release of 

gaseous fission materials from the fuel and the axial load 

represents any dead weight or the own weight of the vessel. 

4.2 The Simplified Analysis 

4.2.1 Geometry and Loading 

The problem of the fluctuation of the level of sodium in 

LMFB reactors which is here simulated by the moving 

temperature front has been the subject of an international 

benchmark project on simplified methods for elevated 

temperature design and analysis [521. The temperature 

distribution through the thickness of the tube is assumed to 

be constant and the thermal stresses arise from a step of 

temperature 49 moving along a prescribed length of the tube 

in alternating directions. The geometry of the tube and the 

mechanical loads considered are illustrated in Fig. 4.1a 

whilst the thermal loading is shown in Fig. 4.1b. 

4.2.2 Thermal Stress Distribution Assumed 

The thermal stress distribution used in (511 was given by 

Arnaudeau et al. [49] for the steady step variation A® as 

shown schematically in Fig. 4.2a. 
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a0 =- ate-ßxcos ßx + 2nvýa e-axsin ßx for x>0 

ýA - Qteßx cos ßx + 2nvýQteox sin ßx for x<0 

P= 2nvýQt e-ßx sin ßx for x>0 

QX = 2nvEa eax sin ßx for x<0 

where 

{3/( 1-v21 
1/2 2 

0.25 

_ß= 
{3(R-ß 

I 

_ 
Ea1A 

ýt 2 

v is Poisson's ratio, n is the distance across the thickness 

and the origin is at the temperature discontinuity (x - 0). 

The same assumptions made by Karadeniz (60], Karadeniz and 

Ponter (51] that the maximum thermal stress amplitude is tot 

and that it occurs at x-0 will hold here. Its worth 

mentioning that the thermal stress distributions are of a 

localized nature and as such will give rise to localized 

hinge-conical mechanisms or to localized thinning due to net 

deformation in the axial direction. For the present 

simplified analysis, only the maximum thermal hoop stress 

will be considered to contribute to the deformation pattern 

between hinges, as shown in Fig. (4.2b). 
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4.2.3 The Effects of the Simplifications Adopted on the 

Shakedown Boundary and Modes of Deformation 

In order to clarify the implications of the simplified 

assumptions adopted for the present analysis, some 

discussion is required about their effects on the results 

when compared with those obtained in (51]. 

The sequence of contours defining the shakedown limit in a 

Bree type diagram presented in [511 (Fig. 4.3) was divided 

in regions corresponding to different modes of deformation 

of the tube. The stress histories and the corresponding 

modes of mechanism are illustrated in Fig. 4.4. 

For these calculations the following simplified assumptions 

will be introduced: 

- the incremental collapse deformation between hinges 

will be caused mainly the maximum thermal hoop 

stress 

- the axial stress will contribute to the energy 

dissipation in the formation of hinges and with the 

axial strain for the case of axial load 

- mode I in Fig. 4.4 will no longer be possible since 

only the maximum thermal hoop stresses will be taken 

into consideration 
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- the three hinge global mechanism(mode III, Fig. 4.4) 

will be assumed as symmetric despite the axial strain 

in the case of the axial mechanical load. Such 

symmetry does not affect the shakedown limit but only 

the positions of the hinges, which in this case are 

imposed to be symmetric. 

Mode II representing an incremental deformation in the axial 

direction will still be valid here, hence for the present 

calculations the possible mechanisms of deformation are the 

one represented by mode II (Fig. 4.4) and a slightly 

modified(symmetric) three hinges mechanism shown in Fig. 

(4.5) with the respective stress history. Defining these 

two modes of response "a priori" allows a direct application 

of the Upper Bound Theorem to determine the bounds which 

will define the shakedown boundary for the problem. 

4.3 Simplified Analy sis of a Tube Subjected to Constant 

Axial Load and Moving Tem perature Fronts 

In this section two sets of calculations will be carried out 

for the problem of a tube subjected to a step of temperature 

moving in alternating directions along a certain length of 

the tube in the presence of sustained axial load. First the 

material properties are assumed to be independent of the 

temperature and in the second set of calculations the effect 

of the temperature on the yield stress is considered. 
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The upper bound theorem is given by Equation (2.39) 

At 
fPd UcdS ;tt [o (t) -a (x,. v, t)eiýdtdV 4.1 
SoV ij ii 

where cij(t) is 

temperature and 

the hoop directi 

eij at time "t" 

generally the yield stresses dependent on 

oej(x, t) is the maximum thermal stresses in 

on, both corresponding to the plastic strain 

4.3.1 Temperature independent Calculations 

4.3.1.1 Applying the Upper Bound Theorem to the Mode of 

Deformation II 

The mechanism of deformation and the stress history for this 

mode is shown in Fig. (4.6) in some more detail. The bound 

obtained by applying Equation (4.1) to this mechanism 
of defines the loading points where axial increments"strain 

accumulate whilst the hoop strain is cancelled by yielding 

in tension and compression during the cycle. This bound 

coincides with the straight line BC (Fig. 4.3) given in 

[51]. 

The line equation is obtained as follows% 

(a) The energy dissipation WI is given by 

vii dE: ij= Qiideii 
iideii 4.2 
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where 

CC 
ac 22 ýijdcij = ýijdeij = aYX 4.3 

Thus 

lix 
WI =f aid dein dV =J2 ay X 27Rhdx = 41rRhaayAX 

4 .4 Vo 

b) The external work WE due to aa, i(x, t) is 

a (x, t) eil(t) = 
Gr (x, tl)dei1(tl) + Qiý(x, t2)dee (t2) 

4.5 

ii 11 11 

or 

Q6i(x, t) eil(t) = Qta + (-Qt) (-X) = 2AQt 4.6 

Thus 

At AX 
WE =fJ Qe (X, t) E: E ii 

(t)dtdV =J 2AQt2lTRhdx = 41TRhXCr 
tAX 4.7 

0Vo 

c) The external work due to the mechanical load 

fP dUcdS = iR2PX&X 4.8 
S 

The equation for such line can then be written 

rQ PL=2(i-Qyý 
)) 4.9 

where PL is defined as PL - 2oyh/R. 
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4.3.1.2 Applying the Upper Bound Theorem to the Modified 

Mode of Deformation III 

Consider a tube subjected to a stress history as indicated 

in Fig. (4.5) arising from the thermal axial load and cyclic 

loading shown in Figs. (4. la, b) respectively. The upper 

bound theorem can then be applied to the inward three hinge,, \ 

mechanism (Fig. 4.5) which is a consequence of yielding 

occuring at the maximum temperature. Making use of the 

mechanism symmetry, the radial displacement can be described 

as 

wow (1- ) 

4.10 

where w0 and a are defined in Fig. 4.5. The strains in the 

axial and circumferential directions cam'' be defined by 

C 

dEe =R dcx 
dx 4.11 

The axial and hoop strains can be determined from Equations 

(4.10), (4.11) and Fig. (4.5) to give 

deb = R0 (1 
- 

ä) 4.12 

and in addition 

dex =- deb 4.13 

The axial displacement needed for the left hand side of 
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Equation (4.1) can be calculated from the axial strain 

relation dex_duc/dx so that 

W 

dUc=-°(1-äýdx 

Hence 

4.14 

aaww 
Au =f dUc =Jo (1 

- 
x) dx =-o a 

0oRaR24.15 

All the terms in Equation (4.1) are now in a position to be 

calculated. The term on the left hand side is thus 

JP dUcdS =F AUC = 7R2P ß-° 
2 4.16 

S 

The term involving cif in (4.1) represents the energy 

dissipation and needs to be integrated within two different 

volumes; the hinges volumes and the volumes of the elements 

between hinges, so that 

f viidei3dV =J vi3dcijdV +f Qiidci1dV 
V VElement VHinge 4.17 

If the symmetry is to be taken into consideration, only half 

of the mechanism is needed for the calculations. Thus, the 

energy dissipation within the element becomes 

Qii ii = are Ee ' QXdEx 4.18 

Substituting Equation (4.13) into (4.17) gives 

vii 
ij (QX Je)d 

c 
4.19 
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The first. term on the right hand side of (4.17) then gives 

V Element 
dei3 dV =j Qy -R° (1 -a) 21rRhdx = 7rhawö 

y 4.20 
Element Element 

The detailed calculation for the energy dissipation during 

the formation of a hinge, will be given in Appendix D. In 

this section only the final equation for such energy 

dissipation will be given which is 

h2 
WH = 2nRA 4.21 

where 0 is the curvature or rotation at the hinge, 

compatible with the mechanism. For the present symmetrical 

conical mechanism (Fig. 4.5), half of the total energy 

dissipation during the formation of the hinges is given by 

w 
Qi jdeii 

4 2rtR ý° + a°) = Qyh7rR ý° 4.22 

Similarly the integral involving the thermal cyclic load can 

be written as 

�e 
QX/2 [__2 -w 'j 

a1 dcidV = (-Qt) (1-ä)] 2nRhdx 4.23 

since only the maximum cyclic hoop stress will be 

considered. Thus (4.23) becomes 

c 4atX - tX2 N- 
v 

a1 deiidV vtw02nh( 8a 4.24 

Substituting Equations (4.16), (4.20), (4.21) into (4.1) gives 
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PRa 
_ah 

(a2+Rh) 
- ah 

(4a4X - AX2) 
2yat 4a 4.25 

which in terms of non-dimensional parameters becomes 

P (a2+Rh) at (4aAX - AX2) 
2 PL a ay 4a 4.26 

Taking the derivative of Equation (4.26) w. r. t. "a" and 

making it equal to zero, gives the size of the mechanism as 

a function of the travel length of the moving temperature 

front corresponding to a minimum P/P 

a_ 1 2Rh 1 
x2+ AX -at FIT( AR) 4.27 

Substituting Equation (4.27) into (4.26) gives Equation 

(4.28), which represents shakedown bounds as shown in Fig. 

(4.7), defining operating points where the inward mechanism 

would occur when the yield stress is assumed to be 

independent of the temperature. 

Y"R- 

21 
at 

PL 
yn) +4a OR)l 

1-y PL 
1+2 Rhý 1 

4.28 [2 
AX Qt/Qy(8R)ý 

The contours obtained using Equation (4.27) are shown in 
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Fig. (4.7). Comparison with the contours presented by 

Karadeniz and Ponter [51] for the same problem, shows that 

despite the simplifications adopted for these calculations 

they are very close as shown in Fig. (4.8). The greatest 

difference seems to be in the region where Mode I of 

deformation was defined in [511 (Fig. 4.4), which was not 

considered in the present analysis. 

4.3.2 Temperature Dependent Calculations 

4.3.2.1 Mode of Deformation II 

In order to include the effects'of temperature on the yield 

stress of the material, the calculations were repeated using 

the yield stress values dependent upon the temperature given 

in Table 1-14.5 of Code N47 for the 316SS [53). The 

calculations were then normalized in terms of the yield 

stress at a fixed temperature eR - 150°C. The stress 

history for Mode II of deformation (Fig. 4.6) indicates that 

yielding occurs during the cycle, in tension and compression 

in the hoop direction and therefore cancelling each other. 

On the other hand a localized thinning due to the axial 

strain develops incrementally in each cycle. Taking into 

account the dependence of yield stress on the temperature 

for this stress history, the maximum stress which produces 

tensile yielding corresponds to the basic yield stress at 
150°C whilst the minimum stress arises out of compressive 

yielding at a temperature of 150°C + AO and the 

corresponding yield stress has to be considered. Applying 
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Equation (4.1) to the mechanism shown in Fig. 4.6 but taking 

into account different yield stresses for the two extremes 

of the cycle, gives 

Pa (eR+Ae) Qt 
PL(eR) 

1+ 
Qy(eR) -2 ay (0 ) 4.29 

which again coincides with the bound found in [51). The 

diagram with a complete classic shakedown boundary for 

temperature dependent yield stress is shown in Fig. (4.9). 

4.3.2.2 Mode of Deformation III 

Equation (4.28) was then adapted to include the variation of 

the yield stress with the temperature by normalizing it in 

terms of vy(AR) as follows: The left hand side in Equation 

(4.27) became 

pv (AR) 
p 

PL AR+A6 Qy (eR+Qe) PL g 4.3 0 

and 

Qt QtceR) 
ay e R+AB) ° ay a eR+oe 4.31 

which gives 

Z1 at 1 
P aY(eR+Ae) AT +4a (eR) a (eR+A6 vy(eR) 

a(eR) 
1-r 4.32 

y ,R2 QY(0R+oe)Ia (eR) Z I2 +2 AXE at/ay(eR) 
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and 

a=1 , h2 Y(0R+oe)/Qy(0R) AX 2 2ý Axt vt/aY(9R) 4.33 

Again, this more simplified technique was able to predict 

contours (Fig. 4.9) which were nearly coincident with those 

produced by a rigorous F. E. analysis in [51]. Such 

comparison is shown in Fig. (4.10). 

4.4 Simplified Analysis of a Tube Subjected to Internal 

Pressure and Moving Temperature Fronts 

In this section a thin cylindrical shell with closed ends 

will be analysed under the effect of constant internal 

pressure p and an axially moving temperature front identical 

to that in the previous cases. Again, in the first set of 

calculations the effects of temperature on material 

properties will be ignored. Despite the similarity with the 

axial loading case the present solution exhibits significant 
independent characteristics listed as follows: 

- although region LO (Fig. 4.3) had been neglected in the 

axial load case due to the simplification of the axial 

stress history, in the present calculations mode I of 
deformation actually does not occur and therefore the 

possible modes of deformation are still the ones used in the 

previous cases. 
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- for the present case mode III(global mechanism) involves 

radial displacement and three hinges with no axial 

elongation and the symmetry is an actual fact not a 

simplification as in the case of the axial loading. 

- in contrast to the yielding condition at the hot side of 

the cycle for the case of the axial load which gave rise to 

an inward mechanism, the internal pressure will produce 

yielding at maximum positive hoop stress and minimum 

temperature resulting in a outward mechanism. 

Mode II of deformation is still valid here as a local 

yielding mechanism with axial strain increment taking place 

at the lower half cycle whilst the hoop strains sum to zero. 

4.4.1 Temperature Independent Calculations 

4.4.1.1 Mode II of Deformation 

A similar procedure to the axial load case is used to 

determine the reversed plasticity bound(line BC in Fig. 

4.12). For this case, however, reversed plasticity ie, 

yielding occuring at both extremes of the cycle, arises at a 

much higher thermal load. This difference in mode of 

response can perhaps be explained by the amount of energy 

dissipation required to reach such a state of deformation 

for each loading case. Equation (4.34) defines the reversed 

plasticity bound. 
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p =4 
Q (1-a(9 4.34 

LyR 

4.4.1.2 Mode III of Deformation(outward mechanism) 

The mechanism of deformation and the stress history for the 

present case is shown in Fig. (4.11). Applying Equation 

(4.1) to this mechanism gives rise to the same Equation 

(4.28) with the difference that the limit mechanical load is 

now pL - ay(eR)h/R. Hence the equation defining the 

shakedown bounds for the internal pressure is 

2 

[(a) +17t ýX 4Q (9) 
-P- =1- 2yR24.35 PL 11 

2+2 AXE at/Qy(8R) 

The resulting diagram with shakedown bounds for a range of 

values of travel length is shown in Fig. (4.12). 

4.4.2 Temperature Dependent Calculations 

4.4.2.1 Mode II of Deformation 

The same procedure as in Section 4.3.2.2 can be applied here 

to find the reversed plasticity bound equation (line BC in 

Fig. 4.13) which gives 

Q (a +ý9) a 

PL =2Ii+a (eR 2a (eR) 
I 

4.36 
YY 
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In contrast to the hinge-conical mechanism (mode III) the 

localized thinning type of mechanism is very much dependent 

upon the effects of temperature on the yield stress as shown 

in Fig. (4.13). 

4.4.2.2 Mode III of Deformation 

As previously stated the internal pressure will give rise to 

yielding at the basic temperature 0R due to maximum hoop 

stresses which makes this mode of deformation independent of 

the variation of the temperature. Consequently, Equation 

(4.35) is still valid to define the shakedown limits shown 

in Fig. 4.13. 

4.5 Simplified Analysis of a Tube Subjected to Axial Load, 

Internal Pressure and Moving Temperature Fronts 

To the author's knowledge there has been no attempt to 

analyse thermal loading problems in the presence of more 

than one mechanical load, although the papers by Leckie and 

Penny [5,8] present a simple graphical technique, using the 

lower bound theorem to solve the problem of multiple 

mechanical loading applied to pressure vessels. As 

emphasized by Leckie [13] the application of the lower bound 

theorem when two or more variable loads are acting on the 

shell is excessively complicated even when the problem 

involves only mechanical loads. Simple techniques like that 

suggested in [13] have great appeal for the design of 
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pressure vessels since they avoid complex calculations and 

the cost associated with them and also allow more complex 

problems to be tackled while still providing a high level 

of confidence in the integrity of the structure. 

For the particular case of fast nuclear reactor components, 

the primary or mechanical loads are normally internal 

pressure and dead weight which, so far, have been considered 

individually in the solution of particular thermal cyclic 

problems for such components. Several papers have been 

published [39,40,41,51,551 where the internal pressure is 

taken as the primary load which could be in practice due to 

the release of gaseous fission products as pointed out by 

Bree [40]. On the other hand, the problem of dead weight 

acting as primary load has also been the subject of study by 

several authors (49,51,54,55] in search of better design 

techniques for fast-reactor components. Arnaudeau (49], for 

example, assumes the self-weight of the vessel, which is 

always present, as an axial load, whilst Goodman (54] 

considers the weight of the fluids sustained by the vessel 

which could be assumed to produce internal pressure as well. 

Independent of the agent responsible for causing the primary 

loads, it is very likely in practice that during the life- 

time of the vessel more than one mechanical load will be 

present most of the time. 

The simplicity of the technique applied in the previous 

sections and the fact that the results obtained from it 

compare closely with those presented by Karadeniz and Ponter 

X51], as shown in Figs. 4.8 and 4.10, provided the necessary 
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encouragement to carry on with the study of the moving 

temperature fronts in a tube in the presence of both 

internal pressure and axial load. 

The problem now involves a system of three loads and if a 

Bree type diagram is to be plotted it will be a three 

dimensional one as shown in Fig. 4.14 for a temperature 

independent yield stress. Obviously many more bounds have 

to be determined to define the limits for the different 

modes of behaviour which can be described as follows from 

Fig. 4.14: 

- elastic limit; defined by planes AGFH and AEH 

- plastic collapse due to axial load alone; defined as 

point E 

- plastic collapse due to the internal pressure; defined 

as line GF 

- plastic collapse due to the combination of the two 

mechanical loads in the absence of thermal load; 

defined as line FE 

- plastic collapse due to the combination of the two 

mechanical loads in the presence of thermal load below 

the ratchetting limit; defined as plane FEMJ 

- incremental collapse (shakedown limit) for a 

particular travel length( Tx - 2.1) of the temperature 
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front; defined as surface KGFJ; the incremental 

collapse mechanism for an operating point at surface 

KGFJ is the outward conical-hinge mechanism 

- incremental collapse (shakedown limit) for the same 

travel length( TX - 2.1) of the temperature front 

referred above; defined as surface LEM; the 

incremental collapse mechanism for an operating point 

at surface LEM is the inward conical-hinge mechanism 

- reversed plasticity limit; defined as plane ABCD; for 

the same particular travel length ( Cx - 2.1) of the 

temperature front related to the shakedown limit 

above, the reversed plasticity limit is confined to 

the area AKJML of the plane ABCD 

When the effects of the temperature on the yield stress is 

taken into account, a similar diagram may be plotted by 

normalizing the three coordinates in terms of the yield 

stress ay(eR) corresponding to a fixed temperature 6R- 150°C 

as in the previous cases. Fig. 4.15 shows the Bree type 

diagram produced when the temperature dependent yield stress 

is included in the calculations. Details of this diagram 

will be discussed in Section 4.5.3. 

4.5.1 Temperature Independent Calculations 

4.5.1.1 inward mechanism for a Predominant Axial Load 
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The inward mechanism formed due to the current mechanical 

loads and the respective stress history are shown in Fig. 

4.5. Applying Equation (4.1) to such mechanism considering 

the internal pressure and the axial load acting 

simultaneously with the thermal cyclic load gives 

1 SAX) 
Z at 

4Q(0 )1 1Q P_ 1_ y R_ 
+2 pL (9R 

1+ 2(RZ1Z 
pL 

4.37 
2 AX) Qt ay(0R )]i 

Equation (4.37) represents the equation of a surface which 

depends on the travel length of the temperature front. One 

of such surfaces for a particular travel length ( 0R - 2.1) 

is illustrated as LEM in Fig. 4.14. The intersection of this 

surface with the plane ABCD defines one of the bounds of the 

confined reversed plasticity region shown as curve LM for 

this particular travel length. 

4.5.1.2 Outward Mechanism for a Predominant internal 

Pressure 

Similarly, Equation (4.1) can be applied again assuming the 

ratchetting mechanism and the stress history shown in Fig. 

4.11. As can be seen from Fig. 4.11, the axial load makes no 

contribution to the formation of the outward mechanism. As 

a result the upper bound theorem (Equation (4.1)) gives rise 

to the same Equation (4.35) as that obtained in Section 

4.4.1.1 which is independent of the axial load. 
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Equation (4.35) represents in this case a surface 

perpendicular to the plane ABGO in Fig. (4.14) which depends 

upon the travel length and defines the boundary of the 

shakedown region for an outward mechanism. The curve KJ 

shown in Fig. (4.14) defines the intersection between this 

surface and the plane ABCD which is the other bound of the 

reversed plasticity boundary for the travel length value sX 

= 2.1. Similar curves to KJ and LM can be obtained for 

different values of the travel length. 

4.5.1.3 Reversed Plasticity mechanism 

When two mechanical loads are considered in the application 

of the upper bound theorem (Equation (4.1)) to 
vlocalized 

thinning mechanisms such as those described in previous 

sections, the resulting bound is a plane which for the 

particular case of internal pressure and axial load is given 

by 

1_ P+1 g- 
at 

2 PL 4 pL vy 4.38 

Suchaplane defined in Fig. 4.14 as ABCD is limited by the 

planes BCFG, CDFE and ADEO representing the different 

combinations of the mechanical loads capable of causing 

plastic collapse alone, ie, independent of the thermal 

stress. However, when a moving temperature front along any 

travel length is considered, the reversed plasticity region 

is reduced to a sector of the plane ABCD similar to that 

defined as AKJML in Fig. 4.14 for the particular value of AX 
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= 2.1. Sector AKJML is limited by the intersection of the 

plane ABCD with the two surfaces representing the shakedown 

bounds corresponding to any travel length for the two 

possible incremental collapse mechanisms. 

4.5.2 A Bi-Dimensional Representation of the Tri-Dimensional 

Bree Type Diagram 

The tri-dimensional diagram provides a global picture of the 

several bounds separating the regions of modes of 

deformation and allows the plotting of results for various 

travel lengths if necessary. However, the actual plotting 

of the results can be tedious, even though it can be 

programmed to be plotted by computer. For design purposes a 

bi-dimensional diagram representing the projection of the 

bounds for various modes of behaviour on the plane positive 

quadrant defined by the mechanical loads axes P/PL and p/pL 

is much more convenient. As it will be shown later in this 

section, for simplicity, it is better to plot one of such 

diagrams for each different travel length making possible an 

easy comparison between two or more diagrams. 

A better understanding of the bi-dimensional diagram can be 

provided by a detailed analysis of such a diagram for the 

particular value of travel length aX - 2.1 as shown in Fig. 

(4.16). 

The possible modes of deformation can be described as 
follows from Fig. (4.16): 
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- the region marked as LEM defines where the axial load 

predominates and the inward mechanism is due to occur 

depending on the level of thermal load. Line NP, and 

the lines parallel to it, are the projections on the 

plane of the diagram of points on the shakedown 

boundary corresponding to constant normalized thermal 

stresses. Any point on line NP, for example, 

corresponds to a point on the shakedown boundary at a 

normalized stress at/ay - 0.70. Any increase in the 

thermal stress for that particular combination of 

mechanical loads defined by line NP will give rise to 

an incremental collapse with the formation of a inward 

cone-hinge mechanism. 

- the region marked as ALMJK is the reversed plasticity' 

region. Line PQ across this region represents the 

projection of the points on the reversed plasticity 

boundary at the same level of normalized thermal 

stress ct/ay - 0.70. A net of axial deformation will' 

result if the thermal stress is increased for the 

points on line PQ. The lines parallel to PQ 

correspond also to projections of points on the 

reversed plasticity boundary but at different levels 

of thermal stress. 

- for mechanical loading points described by line AI, 

ie, P/PL - 1.5 p/pL the only possible mode of 

deformation is the localized axial thinning at the 

reversed plasticity limit. In this case the tube will 

respond elastically for any thermal stress below that 
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limit and no shakedown region exists. Line AI also 

defines the regions where one of the mechanical loads 

becomes predominant, ie, region AXE for the axial load 

and AIFG for the internal pressure 

- the region marked as KJCB is where internal pressure 

predominates and the inward mechanism occurs. Line QR 

at the normalized thermal stress of/vy - 0.70 and the 

other lines parallel to it represent the projection of 

the shakedown boundary for the outward incremental 

mechanism at different levels of thermal stress. As 

has already been pointed out, this mode of behaviour 

is independent of the axial load which can be seen by 

the lines projections of the boundary parallel to the 

axis P/PL. 

- the lines DC and CB are the bounds for the plastic 

collapse caused by the combination of the mehanical 

loads alone, ie, without any thermal load. 

A sequence of Bree type diagrams are shown in Fig. (4.17) 

for several values of UR which illustrate the way the 

bounds change with the length of ,, travel. By comparing 

the various diagrams it can be seen that the bounds are much 

more sensitive to the length of short travels resulting in 

great reduction of the reversed plasticity region for a 

small increase in the travel length. In other words, a 

small increase in the length of a short travel causes a 

considerable reduction of the mechanical loads at the 

shakedown limit. For large movements of the temperature 
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front the two regions where hinge-conical mechanisms can 

occur tend to close-in towards line AI eliminating the 

reversed plasticity region. This can be better visualized 

from Fig. 4.14 where the shakedown limit surfaces tend to 

flatten towards the elastic limit planes for large movements 

of the temperature front, eliminating in this way not only 

the reversed plasticity region but, most importantly, the 

shakedown region as well. 

4.5.3 Temperature Dependent Calculations 

4.5.3.1 Inward Mechanism for a Predominant Axial Load 

A similar procedure as used in earlier sections will give 

rise to the equation of a new shakedown limit surface which 

includes the effects of the temperature on the yield stress. 

The basic temperature was again taken as 150°C and the 

resulting equation for such a surface is given by 

1)/ 1 ay 1 

P Qy(8R+A9) 
1_ 

ax)+ a (6R) vy(9R+09)/Qy(6R) 
+1y P) Qy(6R) 

+22 
Qy(6R+AA)/Qy(AR) 2 pLL((6-R) 

2 AX) at/Qy(9R) 

4.39 

For the travel length 0X - 2.1, Equation (4.39) gives rise 

to the surface L'E'M' shown in Fig. 4.15 which intersects 

the plane A'B'C'D' through the curve L"M'. The planes 
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C'D'E'F' and B'C'F'G', which define the bounds for plastic 

collapse due to the mechanical loads alone, are no longer 

independent of the thermal stress, ie, parallel to thermal 

load axis. Instead of being perpendicular to the positive 

quadrant limited by the mechanical loads axes, they now form 

an angle with it due to the effects of the temperature on 

the yield stress (Fig. 4.15). 

4.5.3.2 Outward Mechanism for a Predominant Internal 

Pressure 

As has been already stated the outward mechanism occurs for 

the maximum positive circumferential stress at the cold side 

of the temperature front which is at the basic temperature 

eR - 150°C. As a result Equation (4.35), independent of the 

effects of the temperature on the yield stress and of the 

axial load, defining the shakedown limit surface 

perpendicular to the plane A'B'G'O', is still valid here. 

The intersection of this surface with the plane A'B'C'D' for 

the travel length Ux - 2.1 is shown as curve K'J' in Fig. 

(4.15). 

4.5.3.3 Reversed Plasticity mechanism 

The resulting bound from the application of the upper bound 

theorem to such a mode of deformation when the temperature 
dependent yield stress is taken into account is the plane 
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shown as A'B'C'D' in Fig. (4.15) given by the following 

equation 

P=i+ ay( eR+oe) 
_2 

cr t_1 P6 ay(OR) 9 (E)' 2 pLl9R) 
4.40 

As in the previous case, this plane is intersected by the 

shakedown limit surfaces corresponding to any travel length 

of the temperature front through curves like those shown in 

Fig. (4.15) as K'J' and L'M' for the particular travel 

length ýX - 2.1. These intersections will occur at a much 

lower level of thermal stress since the reversed plasticity 

plane in Fig. (4.15) has substantially moved downwards due 

to the effects of the temperature on the yield stress. The 

consequences of this change in the reversed plasticity bound 

will be discussed in the next section. 

4.5.4 A Bi-Dimensional Bree Type Diagram for the Temperature 

Dependent Yield Stress 

Following similar procedures as those presented in Section 

4.5.2, a detailed description of the bi-dimensional Bree 

type diagram will again provide a better understanding of 

several important features of the results. Fig. (4.18) 

shows such a diagram for a temperature dependent yield 

stress corresponding to the travel length &X - 2.1 . 
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The diagram shown in Fig. (4.18) exhibits many similar 

features to those presented in the temperature independent 

case. Therefore, only the significant differences will be 

described here as follows: 

- the shakedown limit region for the inward mechanism 

has substantially increased at the cost of a reduction 

of the reversed plasticity region. 

- the projections of the points defined by the inter- 

section of the shakedown limit surfaces with the plane 

C'D'E'F' (Fig. 4.15), bound of the plastic collapse 
due to the mechanical loads alone, at different levels 

of thermal loads, will no longer coincide with line 

E'F' at zero thermal stress. This is due to the 

dependence of the mode of deformation represented by 

the plane C'D'E'F' on the thermal stress. The 

projections of those points on the present diagram 

(Fig. 4.18) are now shown as curves E'M' and F'J'. 

- in contrast with the inward mechanism, the outward 

mechanism will have its shakedown region reduced in 

favour of a much larger reversed plasticity area. The 

curved bound K'J' which separates the regions of these 

two modes of deformation has moved inside the outward 

mechanism region due to the effects of the temperature 

on the yield stress whilst the shakedown surface bound 

has remained unchanged. 
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From Fig. 4.18 it can be concluded that the dependence of 

the yield stress on the temperature gives rise to a 

reduction of the reversed plasticity region where the axial 

load is predominant, whilst the opposite takes place in the 

region where the internal pressure imposes the formation of 

an outward hinge-cone mechanism. When a sequence of 

diagrams for a number of travel length values (Fig. 4.19) is 

plotted in order to show how sensitive to the length of the 

travel the various bounds are, a very similar pattern of 

behaviour to those for the temperature independent yield 

stress is obtained. This set of solutions, however, shows 

that for a prevailing axial load and large values of SX the 

reversed plasticity region is reduced to such extent that 

incremental deformation in the form of inward mechanism 

starts taking place even for zero applied loads. At the 

limit, the sector of the reversed plasticity region corres- 

ponding to the inward mechanism (A'L'M'H'in Figs. 4.15 and 

4.18) disappears completely as shown in Fig. (4.19). 

The inclusion of temperature dependence of yield stress in 

the analysis leads to incremental deformation at much lower 

combinations of mechanical and thermal loads. Furthermore 

ratchetting in the form of inward conical mechanism of 
deformation prevails upon the localized thinning mechanism 

for it requires less energy dissipation to occur. 

A considerably different situation from one where the axial 
load is predominant can be seen for the outward mechanism 

region which is reduced due to the increase of the reversed 

plasticity region under the influence of the yield stress 
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temperature dependence. In addition, ratchetting occurs at 

the same combinations of mechanical and thermal loads. 

4.6 Conclusions 

The assumption of simple mechanisms and a simplified 

analysis has been able to predict the same behaviour of a 

tube under rather complex loading conditions, as the 

solution produced by a rigorous Finite Element analysis. 

Further, the solution could be extended to include more than 

one mechanical load in the analysis which in practice is 

more likely to occur. Such simplified techniques provides 

also a better picture of the structural and material 

behaviours when compared with those solutions obtained by a 

step by step analysis. 
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CHAPTER 5 

EXPERIMENTAL TESTS ON PORTAL FRAMES OPERATING AT 400°C 

SUBJECTED TO CYCLIC THERMAL LOADING IN THE PRESENCE OF 

STEADY MECHANICAL LOAD 

5.1 Introduction 

Detailed analysis in support of the design of structure 

which operates under cyclic thermal loading and at high 

temperatures has required a considerable amount of research 

in recent years. As a result there has been considerable 

progress in the development of new analytical methods, in 

the understanding of material behaviour and even in the 

improvement of design criteria. Nevertheless, there is 

still insufficient experimental data which can be used to 

verify the correlation between the various theoretical 

assumptions proposed and the actual behaviours of materials 

and structures. 

The present experimental investigation has been undertaken 

because of the lack of experiments capable of substantiating 

or not the increasing theoretical data available. It has 

also been motivated by the need to demonstrate that the 

extended shakedown theory, described in Chapter 2, is 

capable of describing real behaviour. 

The theory used to analyse this particular class of 

problems, which involves cyclic thermal loading in the 
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presence of high temperatures and mechanical loads, has been 

developed from classical models based upon the theory of 

plasticity, and then extended to more complete constitutive 

equations which include new important features of metal 

behaviour under cyclic loading. Two of these material 

cyclic phenomena have already been identified as playing a 

major role in the description of the properties of metals 

used in nuclear reactor structures, viz.: material ratchett- 

ing and cyclic hardening [102]. Material ratchetting, a 

phenomenon which is not completely understood, is a form of 

softening of the material due to incremental growth of the 

material under cyclic loading conditions in the plastic 

range. It has become clear that much more experimental data 

has to be produced for a better comprehension of the effects 

of this particular material behaviour on the performance of 

the structure. The other important characteristic of some 

materials selected for nuclear structures is cyclic 

hardening when operating in the regime of reverse 

plasticity. Many components in fast breeder reactors 

operate subject to small constant primary load and large 

thermal cyclic loading which makes this regime particularly 

important for the design of such components. It has been 

found that for the SS316 at 400°C cyclic hardening is 

significant but material ratchetting is absent. 

The purpose of the present set of experiments is to define 

the extent of the reverse plasticity and shakedown regions 

with the inclusion of cyclic hardening in simple 

constitutive relations for the structural analysis. This 

was achieved by analysing the structurrJbehaviour of portal 
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frames made of SS316 operating under simulated cyclic 
a 

thermal gradients andvhorizontal mechanical load at 400°C. 

Simple mathematical representation of the uniaxial 

incremental growth of the material was used to predict a 

state of constant plastic deformation. 

5.2 Material Behaviour 

A knowledge of the most important features of material 

cyclic behaviour can provide a better understanding of 

structural behaviour and therefore the class of constitutive 

equations has to be chosen or even developed so that these 

main features are included in the analysis. Unfortunately, 

the main cause of the lack of development in mathematical 

material models which contain most of the already 

experimentally observed cyclic behaviour is the limited 

applicability they may have due to the complex form they are 

likely to take. Nevertheless, some of the most relevant 

features of the SS316 will be presented in this section for 

later use together with the two most commonly used hardening 

rules; isotropic and kinematic hardening. 

5.2.1 Bending Moment-Curvature Relationship 

It will be assumed throughout this chapter that the 

deformation occurs only as a result of bending of the 

members of the frame and the bending moment- curvature will 
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provide useful information about some characteristics of a 

hardening material such as the stainless steel 316 proved 

to be. 

Plotting values of curvature against the corresponding 

bending moment gives rise to a curve similar to that shown 

in Fig. 5.1. The modes of behaviour along the diagram can 

be described as follows: 

- elastic behaviour from 0 to A, ie, the curvature varies 

linearly with the bending moment and unloading leads to 

the return to the initial state. 

- above point A the behaviour is no longer elastic or 

linear; a complete unloading will result in some 

permanent curvature as illustrated by the dashed line BE 

in Fig. 5.1. 

- for a strain-hardening material a slow increase of the 

bending moment above point C in Fig. 5.1 will still be 

followed by an increase of the curvature. Depending 

upon the capacity of the material to strain-harden the 

increase of the curvature can be quite considerable. 

For some materials the bending moment can reach the 

collapse value soon above point C as shown by the dashed 

curve CD'in Fig. 5.1. Such behaviour is not relevant 

for the material used in the experiment (SS316) and will 

not be considered here. 

132 



5.2.2 Cyclic Stress-Strain Curve 

For most engineering metals the hysteresis loops 

formed during each cycle (Fig. 5.2) will have their 

proportions changed as cycling progresses. It is said that 

the material is capable of cyclically hardening when the 

stress amplitude increases for a constant strain cycling, 

whereas cyclic softening takes place if the material 

presents the opposite behaviour. For both strain-hardening 

and softening materials the phenomenon observed when plastic 

cycling takes place between prescribed strain [103,104,105] 

or stress [106] limits is of a very rapid rate of hardening 

or softening during the first cycles which decreases 

continously towards a steady cyclic state. A significant 

result of experimental investigations is the discovery of 

the uniqueness of the steady cyclic state irrespective of 

the initial condition of the material for many metals and 

alloys. As an example of this, the experimental hysterese 

loops for cold-worked and annealed copper at a plastic 

strain amplitude of 1% obtained by Oldroyd (107,108] are 

shown in Figs. 5.3a, b. Nearly the same stress range was 

reached at the cyclic state despite the considerable 

contrast in the initial condition of the two materials. 

A set of steady cyclic hystereses loops for different strain 

amplitudes is shown schematically in Fig. 5.4. The curve 

passing through the tips of these loops is known in the 

literature as the cyclic stress-strain curve, skeleton curve 

or backbone curve. The backbone curve can show features 

which differ significantly from the monotonic stress-strain 
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curve and has considerable importance for both shakedown 

analysis and low cycle fatigue problems. As a measure of 

the hardening or softening of the material it can be said 

that the metal cyclically hardens if the backbone curve is 

above the monotonic stress-strain curve or the metal 

cyclically softens if it falls below it (1051. 

Experimental observation has shown that the SS316 exhibits a 

considerable amount of transient strain-hardening when 

subjected to cyclic loading in the plastic range. Fenn 

(109] has obtained experimentally a set of hysteresis loops 

for the 316 stainlees steel at a total prescribed strain 

amplitude of 2% which showed similar cyclic transient 

behaviour to that of the TPHC copper. Later Ponter and 

Karadeniz (36,37] constructed the cyclic stress-strain curve 

for the SS316 at 400°C using mainly material data supplied 

by the UKAEA laboratories at Risley. This curve and the 

monotonic stress-strain curve are presented in Fig. 5.5 

together with other curves representing the classical 

material models; ie, perfect plasticity, isotropic and 

kinematic hardening. From Fig. 5.5 it is evident that 

although the monotonic curve shows some strain hardening the 

cyclic curve shows a much greater cyclic hardening. The 

cyclic stress-strain curve will, therefore, be much more 

realistic for the determination of the bound separating the 

regions of reversed plasticity and ratchetting for the 

present problem of portal frames subjected to steady 

mechanical load and thermal cyclic loading. Modelling the 

monotonic curve using either isotropic or kinematic 

hardening gives rise to substantially different responses 
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under reverse loading. The isotropic hardening is expected 

to overestimate the amount of cyclic hardening whilst the 

kinematic hardening, coinciding with the monotonic curve, 

underestimate the capacity of the material to cyclically 

harden as shown in Fig. S. S. From the two models the 

isotropic hardening may lead to solutions more consistent 

with the actual response of the portal frame in question. 

5.3 Theoretical Analysis of a Portal Frame For An Isotropic 

Material model 

The portal frame considered in this analysis is shown in 

Fig. 5.6 where the loading history is composed of a 

sustained horizontal load at node C and a cyclic horizontal 

movement of node A, simulating a cyclic thermal load, as 

shown in Fig. 5.7. The material used was 316 stainless 

steel which will be modelled as a linear isotropic 

hardening material. The uniaxial stress/strain curve is 

shown in Fig. 5.8. 

5.3.1 Description of Possible Modes of Behaviour 

Relevant values of the elastic solution are- shown 
in 

Table 

(5.1). The response of the frame when operating under the 

combination of the two loads depends upon the values of P 

and S. The alternatives for the structural behaviour within 

the classical shakedown boundary and during the first half 

cycle are: 
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- elastic behaviour 

- plastic deformation starting at either nodes B, C or D 

and the rest of the structure deforming elastically 

Boundaries defining the above modes of behaviour of the 

structure can be analytically determined as functions of the 

loads and can be usefully plotted as a Bree type diagram. 

The classical shakedown boundary is composed of two bounds. 

The first bound is defined by the cyclic load necessary to 

form a reversing plastic hinge at node B (reversed 

plasticity) and the second occurs when a mechanism of 

incremental collapse consisting of plastic hinges at nodes 

B, C and D (Fig. E3)is assumed to operate. For loads in 

excess of these boundaries the following modes of behaviour 

are expected to occur: 

- alternating plasticity at the hinge at node B with zero 

strain growth 

- ratchetting or incremental growth 

A safe estimate of the boundary separating the reverse 

plasticity region and the ratchetting region can be achieved 

by using the extended shakedown theorem [36,37] which 

assumes that the material cyclically hardens towards a state 

of fully elastic behaviour in the same manner as isotropic 

hardening. In the case of this particular problem, the 

volume of the frame is divided into two subvolumes: 
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- VF where the stress history due to the cyclic thermal 

loading cannot be contained within the yield surface and 

will, therefore, cause alternating plasticity. The 

volume VF of the portal frame can be identified as a 

region developing from node B where the moment due to 

the cyclic loading first exceeds the assumed moment 

necessary to form a hinge. 

- Vs where the stress history is contained within the 

yield surface. This volume is represented by the 

remainder of the structure. 

According to the extended upper bound theorem the classical 

upper bound theorem can then be applied to the remainder 

volume Vs by removing VF from the calculations which, for 

the particular case of the portal frame corresponds to 

treating node B as a hinge, ie, to analyse a frame like that 

shown in Fig. 5.9. The volume Vs is further reduced when 

the limit moment is next exceeded at node D and a second 

hinge starts to develop from there. The upper bound theorem 

can again be applied to the reduced structure shown in Fig. 

5.10 where the new volume Vs has nodes B and D operating as 

hinges. The bounding conditions representing the different 

modes of behaviour described above are calculated in 

Appendix E 
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5 .4 Description of the Test Specimens, Apparatus and 

Equipment 

The portal frames used for the experiments were manufactured 

out of 5/8" 316 austenitic stainless steel sheets byispark 

erosion technique as shown in Fig. 5.11 and Fig. 5.12. Two 

frames were produced from each sheet. The frames were then 

painted with a protective coating to prevent excessive 

oxidation during the heat-treatment which consisted of an 

annealing process at 1050°C for approximately one hour and a 

subsequent rapid air cooling. The dimensions of the frame 

are given in Section 5.6. 

The apparatus and data-recording equipment used during the 

experiments are shown in Fig. 5.13 and Fig. 5.14. A brief 

description can be summarized as follows: 

-A mains transformer (on the right of Fig. 5.13) induced 

high secondary current into the frame so that it could 

be uniformily heated to the desired temperature (400°C). 

The temperature was controlled by a P. I. D. temperature 

controller, with a thermocouple (Nickel Chrome/Nickel 

Aluminium) welded to the frame as control feedback, 

shown on the left of Fig. 5.13. 

- The mechanical loading system can be seen in Fig. 5.13 

and consists of dead weights hanging from a wire coupled 

to the bottom left hand node or for multi-step loads by 

use of a motorized ball-screw jactuator driven by a 

servo-amplifier with the load as a feedback. 
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- The portal frame support at the botton right is clamped 

and the pinned support at the top right is constrained 

to allow vertical movements above and below the unloaded 

position (Fig. 5.13). Such cyclic displacements, +6A' 

simulating thermal cyclic loading, were applied to the 

frame by a servo-hydraulic jack, controlled by a DC 

Servo Amplifier, shown at the top of Fig. 5.13. 

- Linear Variable Differential Transformers (LVDT) were 

used to measure the control displacements +6A and the 

displacements at the top of the frame as shown in Fig. 

5.13. The control LVDT mounted in the jack would also 

feedback the displacement to the amplifier control 

system. 

- The loads required to produce the displacements +8A were 

measured by means of a Load-cell situated between the 

jack and the pinned support. 

- The values of force and displacement together with the 

feedback to the servo control system were all plotted 

continuously by a chart recorder during the whole 

experiment. The plotter is shown in Fig. 5.14. 

- The experiments were controlled by an RML micro computer 

(Fig. 5.14) and a program in Basic language had to be 

written to enable the generation of the command codes to 

the D/A (Digital to Analog) convertor and the digital 

relay board. The data was collected by an Apple based 
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scanning/recording system 

initiated by the digital 

enabled dual tasking to 

periods. The data was tran 

the mainframe at the end of 

overall view of the control 

(Fig. 5.14) which was 

relay board. This method 

be effected without hold 

sfered from the Apple disk to 

each test. Fig 5.14 shows a 

system. 

- Figs. 5.15a, b show the experiment running at the two 

extremes of the cycle, ie at +6A. 

5.5 Description of the Experimental Procedure 

5.5.1 On the Collapse Mechanical Load 

A step by step collapse test of the frame at 400°C was 

carried out by increasing load in increments of 1Kg. The 

load was left still for a few minutes to assess the effects 

of creep, and increments were added until the frame was 

considerably deformed. The horizontal displacements were 

measured, and the results are displayed in Fig. 5.16. 

Assuming that PL is given by linear extrapolation for 

elastic behaviour and collapse behaviour, a value of PL 

45Kg was obtained. A theoretical Bree diagram, 

schematically illustrated in Fig. 5.17, based upon an 

isotropic hardening model was then plotted using the 

following quantities. 

- the limit load obtained from the collapse test 

- the frame dimensions defined previously 
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- the value of EI obtained from the tests within the 

elastic range 

This Bree diagram was used as a reference for the analysis 

of results of the tests which are presented in the form of 

contours of states of constant plastic displacements, ie 

up -U- ue where u is the measured displacement and ue the 

elastic displacement calculated assuming an elastic 

behaviour of the structure. 

5.5.2 The Cyclic Loading Test 

A sequence of 20 tests on portal frames at 400°C was carried 

out during which the mechanical load remained constant. For 

each level of constant mechanical load P the node A was 

cycled through controlled horizontal displacements +6A for 

100 cycles at a sequence of increasing values. The number 

of times the cyclic loading had to be incremented varied 

from 6 to 13 depending upon the value of the mechanical load 

applied to the test. During the tests the following data 

was recorded for the subsequent analysis. 

- the control displacement varying from -SA to + SA 

- the horizontal force necessary to impose such 

displacement, ie the horizontal reaction at node A. 

- the horizontal displacement at B 

Data values were read every 5 cycles intercalated by maximum 

and minimum values. At the end of each block of 100 cycles, 
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values corresponding to neutral cyclic loading, ie, SA 
the load 

0.0, were read before V was increased. The data was 

transferred to the University main frame computer which 

produced plots showing variations with the number of cycles 

carried out during the test. A set of data for particular 

combinations of loading are shown in Figs. 5.18a, b, c 

5.6 Analysis of the Experimental Results 

The theoretical equation for the elastic horizontal 

displacement of a portal frame with dimensions shown in Fig. 

5.19 is: 

Ue 13 PEI3 ± 22 aA 5.1 

or in a more general way 

Ue - A*P + B*&A 5.2 

where A and B are constants dependent upon the geometry and 

on the material. When the mechanical load is the only load 

applied to the frame and is in the elastic range the 

horizontal displacement measured in the experiment can be 

used to calculate EI as follow: 

EI = 
13 PL3 
132 UP 

e 

5.3 
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where Ue is the displacement due to P alone in the elastic 
o 

range read during the test and "L" is the length ofýthe 

three bars composing the frame. Similar procedures can be 

used to calculate constant B in Equation (5.2). Instead of 

adopting the theoretical value 5/22 shown in Equation (5.1), 

B can be determined by simple subtraction once A has been 

found, as proposed above, provided the combination of the 

two loads still remains in the elastic range. The total 

displacement of the portal frame when operating subjected to 

a loading system outside the elastic range is: 

UT - Ue + Up 5.4 

where Up is the plastic component. While Ue can be 

calculated from (5.2), UT is obtained from the experiment as 

a direct reading and the plastic component is calculated by 

simple subtraction. 

For each test corresponding to a constant mechanical load, 

these plastic displacements were then plotted against the 

various incremented cyclic thermal load SA to produce a set 

of curves as shown in Fig. 5.20. From these curves a set of 

contours were plotted superimposing the Bree diagram 

allowing a direct comparison between the theoretical 

extended shakedown boundary and the actual behaviour of the 

structure under cyclic loading. These contours represent a 

state of constant plastic deformation after transient 

plastic deformations accumulate over a few initial cycles. 

This observation is consistent with several other works 

(13,14,60,110,111] which have already concluded that 
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components subjected to small primary loads and high thermal 

gradients may be operating under regimes of reversed 

plasticity without ratchetting. The Bree diagram and the 

approximate contours are shown in Fig. 5.21a. Fig. 5.21b 

shows the plastic displacement plotted against the increment 

of mechanical load corresponding to contours of constant 

plastic deformation. It corresponds to assume that only 

increments of mechanical load occur beyond the limit of 

shakedown, ie SA remain constant. Although the curves 

obtained seem to follow no regular pattern, it can be seen 

in Fig. 5.21b that the curve corresponding to dA -0 

constitutes a upper bound as expected. 

5.7 A Theoretical Estimate of the Accumulation of Transient 

Plastic Strain Beyond Shakedown for the Portal Frame 

The contours obtained from the tests on the portal frames 

can be directly compared with theoretical contours 

calculated from estimates of cyclic states of constant 

plastic deformation after initial transient strain for the 

isotropic hardening material model. 

5.7.1 The Isotropic Hardening Model 

A slightly modified isotropic rule will be used for the 

purpose of the present calculations. The uniaxial stress- 

strain curve for the kinematic hardening model for the 316SS 

used in the experiments and for the assumed isotropic 
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hardening model, is shown in Fig. 5.22. The isotropic 

hardening will prevail until a plastic hinge is formed 

corresponding to the plastic moment when the cross section 

will not be able to take any more increment of moment. 

The stress a- 3ay/2 corresponds to the, plastic moment ML. 

The equations for the elastic moments at nodes B, C and D 

from Table (1) can be used. 

For Line BC in the Bree diagram 

12EI MB = -222. PL+ 117 dA 

M_ -7 p3 EI 
C 22 L1 11 y6 A 

_ 
10 -9 EI MD 
22 PL ` 11 F aA 

5.5 

The accumulation of strain over a number of initial cycles 
depends very much upon the combination of the loads which 
determines how the hinges extend from the nodes along the 

bars of the frame. This can be better understood by 

rearranging the elastic moment Equations (5.5) in terms of 

non-dimensional parameters and as functions of the plastic 

moment as follows: 
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The collapse mechanical load has already been defined in 

Appendix E as PL -3 ML/L and the cyclic load to form a 

hinge at node B was also defined as 

6 _112-2 L 36 EI 
3ML 5.6 

The maximum elastic moments can then be written as: 

_ 
15 Pd MB ý22 

PL + dL) 
ML 

21 P65.7 MC =- (22 
PL ` TL) ML 

M_ 30 P+ 3 
n 

ý22 
PL 4TL ML 

In order to estimate the amount of transient strain 

accumulated during initial cycles it is necessary to have an 

estimate of how far the hinges will spread along the bars of 

the frame for the particular hardening model. As has been 

said previously, it depends on the combination of the loads. 

The estimation will be exemplified here through numerical 

calculation using the data from the experiments carried out 

on the portal frames. Table (5.2) shows the values of 

moments at nodes B, C and D for different operating points at 

the boundary. 
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The examples chosen correspond to the same values of the 

mechanical loads applied in the experiments so that a direct 

comparison can be made. Although approximate, the 

calculations give reasonable estimates of the actual 

extension of the hinges. The set of operating points are 

taken from the bound BC on the Bree Diagram. 

Table (5.2) shows that loading points at the bound BC will 

produce moments which are redistributed through the 

structure in two different ways: 

Consider, for example, the moment distribution for P- 35Kg 

which is illustrated in Fig. 5.23. The classical isotropic 

hardening model would allow the moment at node D to be 

greater than the plastic moment, but for the model assumed 

here any cross section subjected to ML will operate as a 

plastic hinge and therefore will be unable to 'take any more 

increment of moment. For this particular loading point only 

MD is in excess of Mp by an amount of AMD - 0.311 which has 

tob redistributed to the rest of the structure (Fig. 5.23). 

Assuming that the redistribution will take place 

proportionally toYhcurrent moment at the cross section, give: 

AM=AM+ AMC 5.8 

and 

AMC 
Bk 5.9 
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hence 

aMD 5.10 AM =C l+k 

and 

_k B 1+k MD 5.11 

For the particular case of P- 35Kg and AMD - 0.311 give 

AMC - 0.152 and AMB - 0.159. Hence, MB - 1.023 and MC - 

0.978 which needs to be once more redistributed but now in 

the same way as the other cases shown in Table (5.2) for the 

bound BC. The other mode of redistribution of moments 

occurs when the loading points produce elastic moments at B 

and C greater than Mp. Table (5.2) shows that this is the 

case for all the other mechanical loads considered. In 

these cases two hinges will start to extend; one from node B 

and the other from D. Fig. 5.24 illustrates the way it 

occurs: 

An estimate of the extent of the hinges is given by 

dBs = 
AM BL5.12 

ýu[c t MD 

D AM D 5.13 
ds =MD+MCL 
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The values that will be used on the estimates of the 

accumulation of the transient strain is the total extension 

consisting of the sum of the values for each node. Table 

(5.3) shows the total extension of the hinges for the 

various mechanical loads. 

5.7.2 On the Calculation of the Transient Plastic Strain 

According to the Prandtl-Reuss equations [23], the plastic 

stress increment is proportional to the instantaneous stress 

deviation at any point of the loading, ie, de? j - SijdX 

which corresponds to state that the increments of plastic 

strain depends on the current state of deviatoric stress and 

not on the increment of stress required to achieve this 

condition . Mendelson [23] has demonstrated that dX can be 

determined by using the yield criterion to give 

p3 
dcp 5.14 

dei j'2 Qe 

where ae and dep are called equivalent or effective stress 

and plastic strain increment, respectively defined as: 

Q e= 
C(a a )2 + (a -a )2 + (a -QX)2 + 6(T2 +T2 +TZX)]1/2 5.15 
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dc = C(dep-dep)2 + (dcp-dep)2 + (dcp-dep)2 + p3xyyzzx 

6(d6Xy + 6(deyz)2 + 6(dcZX)z]V2 

5.16 

For an uniaxial tensile test in the x direction the 

effective stress and effective plastic strain increment 

become oe - cx and dcp = dcx. Comparing the equivalent 

stress with the von Mises yield criterion it is seen that 

they are identical and since 
Prandtl-Reuss 

relations 

make use of it the von Mises yield criterion is implied. 

The concept of strain energy density or plastic work per 

unit volume is frequently used in theory of plasticity and 

is given by 

5.17 dWp=Sid deýj 

It can be demonstrated that this plastic work can be written 

in terms of the equivalent stress and the equivalent strain 

increment as 

dWp = Qe dEP 5.18 

The Prandtl-Reuss relations, Equation (5.14) can also be 

written in terms of the plastic work to give: 

p_3 
dW 

dEi3 '2P. Si., 5.19 
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The equivalent plastic strain was used by Mendelson [231 as a 

measure of work hardening where the yield function was 

assumed to be a function of the equivalent plastic strain. 

As the equivalent stress has been assumed to be the same as 

the von Mises yield function for the Prandtl-Reuss equations 

gives: 

ae =F (Ep ) 5.2 0 

where 

ep =f dsp 5.21 

The functional relationship between the equivalent plastic 

strain ep and the yield function can be obtained 

experimentally and then substituted into Equation (5.20) to 

calculate the plastic strain increments. This experimental 

relationship given by Equation (5.20) can be taken from the 

uniaxial tensile test diagram shown in Fig. 5.25 where the 

abscissa and ordinate are replaced by ep (- jdep) and ce 

respectively. The slope of this curve in the plastic range 

is given by: 

da 
E' = dEe 

P 
5.22 

Substituting Equations (5.18) and (5.22) into (5.19) give 
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P_? 
da 

e 
S? 

l 
dEii 

2 E' Qe 

which in terms of actual stresses become 

da r 
dex = Fa- 

eý 
!. a -. (a 

ya) 

de r 
dey = E, 

Q Ivy -2 (a --a 

5.23 

de I 
dc i= 

E' a2 (a +Qy(dep+dc ) 
5.24 

de 
de p_3 

xy 2 E'ae Txy 

de p3 
de 

T 
yz 2 E'Qe yz 

dep =3 
dP 

z 
zx 2 E'a zx e 

In the case of uniaxial problems, say in the x direction, 

Equations 5.24 simplify to 

dEX = dep 5.25 

CF =a 5.26 
ex 
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and the actual uniaxial stress-strain curve (Fig. 5.26) can 

be used to find the experimental relationship given by 

Equation (5.20). 

5.7.3 Theoretical Contours of Constant Ratchet Strain 

5.7.3.1 A General Approach 

Any loading point on the shakedown boundary will be 

associated with a certain mechanism of ratchet which after a 

number of cycles will either reach a state of steady 

incremental growth or a cyclic state of constant plastic 

deformation. The latter is more likely to occur if the 

material is able to work harden under cyclic loading. The 

material considered here is a work hardening material and it 

will be assumed that for an operating point beyond the 

shakedown limit the ratchet mechanism will remain the same. 

At some time of the cycle "to" the stress point in a 

material element will be on the yield surface, and 

associated with it there is a transient plastic strain 

vector which is compatible with a plastic ratchet mechanism. 

This stress is given by 

_p+e5.27 ßi3 = ßi3 aij(t0) + pij 

Assuming that only the primary load will be incremented by 

an amount AP in excess of shakedown, transient plastic 
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strain will dominate during the first few cycles followed by 

a state of constant plastic deformation. According to the 

hardening rule suggested by Prager [112] the yield surface 

moves in translation during the transient plastic 

deformation. Despite the special cases pointed out in [1131 

no deformation of the yield surface will be considered and 

therefore the original form of Prager's rule applies here 

only to von Mises' yield condition (Fig. 5.27) which is 

consistent with the calculations of the previous section. 

The increment of stress on the element due to the increment 

of primary load AP is given by 

Acli3 = AQij + ppij 5.28 

The convexity of the yield surface and the fact that the 

stress point must lie inside it after translation can be 

demonstrated from the mathematical definition of strain- 

hardening (Equation 5.29 obtained from (23]). 

Aal dci j>05.29 

These two facts allow the following inequality to hold 

(Ac -AQiý) dei3 >05.30 

where ooij is given by Equation (5.28) and Avid represents 

the new position of the translated yield surface as shown in 

Fig. 5.27. The transient strain rate vector dept is assumed 

to be compatible with the incremental mechanism and is given 

by Equation (5.23) which is a generalized equation including 
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both elastic and plastic components of strain. 

substituting Equations (5.23) and (5.28) into (5.30) and 

integrating over the volume give: 

E'Q 2 
Sine 

f dcpi de 
ii v 

dV >f &Qii dein dV +V pp, j 
dcij dV 5.31 

The fact that the residual stress Apij is in equilibrium 

with zero applied load makes the second integral on the 

right hand side equal to zero and Equation (5.31) becomes 

E'Q 23 
Se 

f dEiý dein dV > APAu 
ij 

5.32 

The compatibility between the strain increment and the 

assumed incremental mechanism is given by 

dei3 = DuPi3(x) 5.33 

where Pij (x) is a function of geometric parameters and 

position. From Equation (5.32) the displacement 4u is given 

by 

s äp 
Du >3 EiQ 

/f P1ý(x) P1ý(x) dV, 5.34 

ev 

155 



5.7.3.2 Uniaxial Behaviour 

The uniaxial behaviour of the material element transforms 

the inequality of Equation (5.34) into an equality. When 

the following expression for the stress deviation (for the 

uniaxial case) 

Sij 3 ýx 5.35 

is substituted into Equation (5.34), along with oe - aX, it 

becomes 

Au = 
EP /f Piý(x) P1ý(x) dV 5.36 

V 

Equation (5.36) will be used in the next section to 

determine theoretical contours of constant plastic strain 

for the portal frame which will allow a direct comparison 

with the experimental results. 

5.7.4 On the Determination of Contours for the Portal Frame 

Equation (5.36) shows that function Pij(x) is the only 

parameter in the equation which has to be calculated for 

each type of structure. For the portal frame it will be 

determined as follows: 
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Consider that hinges have extended from the nodes along the 

bars of the frame for a total distance ds producing plastic 

deformation compatible with the plastic horizontal 

displacement as shown in Fig. 5.28. The relationship 

between the plastic strain and plastic displacement of the 

material element is given by 

de ='5.37 dsL 

where Au and L are defined in Fig. 5.28 whilst y and ds are 

defined in Fig. 5.29 which represents the material element 

as the sum of the hinges extended along the bars joined 

together. 

Substituting Equation (5.37) into the integral of (5.36) and 

integrating over the volume give 

E'Au b h3 
_ Ap 5.38 

ds V 12 

or 

A_EI. TAu__ 5.39 
kR ds 

where k was defined in Fig. 5.26 as the strain hardening 

parameter E' - E/k. For the particular 316SS used in the 

experiments k has been defined from the monotonic 

stress-strain curve obtained experimentally (Fig. 5.30) as 

22.5. For the cyclic styes-strain constructed by Ponter and 
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Karadeniz (36,37] k 7. The values presented' in 

Table (5.3) for total ds were used to define theoretical 

contours corresponding to both values of k and compared with 

the contour obtained experimentally for the case of u- 4mm. 

(Fig. 5.31). 
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EQUATIONS FOR THE PRIMARY LOAD 

HORIZONTAL REACTION 5p 
AT NODE A 

HA 
22 

VERTICAL REACTION 6 
AT NODE A 

VA= 
If 

P 

I MOMENT AT B 

MOMENT AT C 

MOMENT AT D 

ELASTIC DISPLACEMENT 

AT 8 

ELASTIC LOAD LIMIT 

LOAD TO FORM A HINGE 
AT D 

EQUATIONS FOR THE 

HORIZONTAL REACTION 
AT NODE A 

VERTICAL REACTION 
AT NODE A 

MOMENT AT B 

IMOMENT AT C 

MOMENT AT D 

ELASTIC DISPLACEMENT 
AT 8 

M= 2 PI (MIN) 82 

MC ;z7 pl 22 

Mp= 22 PI (MAX) 

UB13 p13 B 132 

PE = 0.49 PL 

Pm-- 0.73 PL 

CYCLIC THERMAL LOAD 

_ 
12 EI HA 
if 13 

ýA 

V -- 
3H_9 EI 

A4A II 13 A 

M6=i? 
--(=§A)(MAX) 

Ms3 EI (, S )(MIN) C 11 12 A 

MD =-9 
El (: 5A) 

_ F52- + fiB 22 (- SA) 

ELASTIC LIMIT SE 
c 11 3P 

54 EI L 

LOAD TO FORM A HINGE SL II 13 
AT 8 36 TF PL 

TABLE 5.1 



P P/P b /b MB/ML MC/ML MD /ML 

p 35 0.778 0.333 0.864 -0.826 1.311 

BC 23 Cl 511 -0733 1.082 -0.671 1.247 

18 0.4 0.9 1.173 0.607 1.22 

15 0.333 1.0 1.227 -0.568 1.205 

TABLE 5.2 

P OMB AMD d9 (mm) dS(mm) ds 

35 0.0 23 4311 1.72 20 21.7 

23 0.082 C1247 7 19 26 

18 0.173 0.22 14.6 18 32.6 

15 0.227 0205 19 17 34 

TABLE 5.3 



M 
M -8-- C 

i 

0 
E 

LMP 

Fig. 5.1- 

FIG. 5.2 
-Stress-strain hysteresis loop. 

159 
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Fig. 5.6 - SIMPLIFIED REPRESENTATION OF THE 
PORTAL FRAME GEOMETRY 
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Fig. 5.8 - UNIAXIAL STRESS -STRAIN BEHAVIOUR 

OF A LINEAR ISOTROPIC HARDENING 
MATERIAL 
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Fig. 5.9 - REMAINDER PORTAL FRAME CORRESPONDING TO 
BOUND BD IN THE BREE DIAGRAM AFTER A 

PLASTIC HINGE IS FORMED AT NODE B 

Fig. 5.10 - REMAINDER OF THE PORTAL FRAME 
CORRRESPONDING TO BOUND DE IN THE 
BREE DIAGRAM AFTER PLASTIC HINGES 
ARE FORMED AT NODES B AND D 
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FIG. 5.11 SPARK EROSION TECHNIQUE 

FIG. 5.12 
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Fig 5.17 -SKETCH OF THE BREE DIAGRAM SHOWING THE 

REGIONS OF DIFFERENT MODES OF BEHAVIOUR 

170 



cn 
W 
J 
U 

U 

Z- 

a 

0 

Z 
W 

W 
U 

J 
0 
U) 

0 
J 
0 

Z 
0 
U 

C7 
00 

L1) 

(D 
Li- 

171 

OUO Lfl OO UI OUO 
MN-- Lr OLn-NNM 



U-) 
W 
J 

U 

b 

+1 

F- 

z w 

w 

U 

J 
a- 

0 

W 
2 
F- 

W 
U 

0 
O 
ry 
a- 

0 
f- 

0 
W 
fr- 
Z) 
O 
LU 
CY- 

W 
U 

O 
LL 

CO 
22 
(D 
LL 

z 

W 
U 

LL. 

172 

OOOO C) O cC O 
O I-n C-j Lfl OOOO Lfl O 

C\1 N "" ifOLl- c\1 



LL] 
J 
(__) 

U 

w 

LL 
w 

LL 
O 

F- 
LL 
W 
J 

3- 
O 
F- 

LU 
2 
F- 

a 
W 

Z) 

W 

ul 

Z 
W 

U Ln 

JU 

Z 

U 
00 

U- 

J 

0 

173 

--: V MN- C7 r- CV M 



A 
i 

Rad. 6.4 u 

rý öýt 
° Cross section A-A U, 

t=16mm; 0.01, t-6mm±0.1 

L=150 

Dimensions in mm 

FIG. 5.19 PORTAL FRAME DIMENSIONS 
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Fig. 5.20 PLASTIC DISPLACEMENT /, CONTROL DISPLACEMENT DIAGRAM 
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FIG: 5.21c. CONTOURS REPRESENTING STATES OF Up 
CONSTANT PLASTIC DEFORMATION 



Fig 5.21 b 
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Fig. 5.22 - UNIAXIAL STRESS-STRAIN DIAGRAM FOR 
THE ISOTROPIC AND KINEMATIC HARDENING 
MODELS 
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MC< 

Fig 523 - MOMENT DISTRIBUTION FOR AN OPERATING 
POINT AT THE SHAKEDOWN BOUNDARY 
CORRESPONDING TO P. 35 Kg 

L 

Fig. 5.24 " MOMENT " DISTRIBUTION FOR SOME OPERATING 
POINTS AT BOUND BC OF THE BREE 
DIAGRAM 
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Fig. 5.27 PRAGERS RULE 

Fig. 5.28 SCHEMATIC REPRESENTATION OF THE 
HINGES EXTENT 
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FIG. 5.29 THE TOTAL EXTENT OF THE HINGES 

Cc) 

a) The geometry of the material element 
b) The element deformed as a hinge 
c) A frontal view 
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FIG. 5.31 COMPARISON BETWEEN THE EXPERIMENTAL AND 
THEORETICAL CONTOURS FOR Up=4mm 
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CHAPTER 6 

A DISPLACEMENT FORMULATION FOR THE FINITE ELEMENT 

SHAKEDOWN ANALYSIS OF PRESSURE VESSELS 

6.1 Introduction 

In recent years the application of mathematical programming 

methods to the solution of shakedown and limit analysis 

problems has received a great deal of attention in civil 

engineering structural problems [59]. The selection of 

numerical methods, such as the Finite Element Method(FEM), 

as a means of discretizing continuous structural problems 

for the application of these methods to shell problems 

[51,60,61,62,63,64], is beginning to contribute to the 

development of simplified techniques capable of reliably 

solving such problems. The approaches used in these 

techniques are generally based upon a statement on the 

equilibrium of forces, ie, a lower bound(STATICS) or upon a 

statement on the compatibility of deformations, ie, an upper 

bound (KINEMATICS). The simplified procedures adopted to 

make the development of these techniques viable rely upon 

the use of perfect plasticity, but it is hoped that it may 

be possible to use more complete constitutive relations to 

describe the structural behaviour of the material. For 

example, Zarka [64] has described a technique for linear 

kinematic hardening material. The STATIC, the KINEMATIC and 

the CONSTITUTIVE relations constitute the fundamentals of a 

structural mechanics problem, although they are established 
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independently of each other with no implied relationship 

between statics and kinematics. One practical solution is 

to obtain a lower bound based on the equilibrium of the 

loading system which agrees as close. -as possible with an 

upper bound based on structural geometry. An accepted 

important feature of Structural Mechanics is a duality 

which, when satisfied at every stage of the calculations, 

consists of a reliable criterion for the FEM formulation. 

In addition, the use of Linear Programming in shakedown 

analysis on the basis of the classical shakedown theorems 

constitutes a dual pair which allows one to switch from one 

formulation to the other by means of certain mathematical 

rules. 

There has been some progress in the development of 

techniques involving FEM [61,62,66,67] and mathematical 

programming to solve shakedown problems but only very 

recently have attempts been made to include thermally loaded 

structures in such numerical approaches (51,60,63,64]. 

Another feature of) most of the existing techniques is the 

emphasis of their applicability to beams and framed types of 

structure more common to civil engineers as became evident 

in the EUROMECH 185 conference [59]. The lower bound 

theorem (Melan's Theorem) seems also to have some preference 

among the techniques available and the shakedown concept 

applied via such theory is well established as the basis for 

design criteria for pressure vessels, although its 

application has been primarily limited to mechanical loads 

[4,5,6,7,8]. The application of the lower bound theorem to 

pressure vessel design by means van analytical approach was 
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first proposed by Leckie (4). Subsequently, the technique 

was developed by Leckie and Penny (5] by using linear 

programming to obtain lower bound shakedown estimates of the 

applied loads. Several papers have latterly contributed to 

the understanding of this particular problem and the 

technique proposed to solve it [6,8,9], and for its 

simplicity it is worthwhile mentioning the description and 

discussion of the shakedown concept applied to pressure 

vessels presented by Findlay and Spence (7]. 

The kinematic shakedown formulation has recently been 

applied by Karadeniz and Ponter [51] and Karadeniz [60] to 

the problem of cylindrical pressure vessels subjected to a 

programme of cyclic thermal and steady mechanical loading 

whose solution was obtained by adapting the problem to a 

linear programming standard form where the actual continuous 

structure is replaced by a compatible system of finite 

elements. Such a method of analysis allows the construction 

of an interactive diagram for the shakedown limit for 

classes of thermal loading history in the form of a Bree 

diagram, as well as also providing a picture of the 

deformation patterns liable to occur. Although the 

technique used to obtain the solutions presented in (51,60] 

has some degree of generality, its application is limited to 

the peculiarities of cylindrical vessels' geometry. A 

Tresca yield condition was used together with a restricted 

class of displacement fields. 

In the present chapter a general technique will be developed 

based upon a upper bound displacement formulation for the 

Finite Element Method applied to shakedown analysis of axi- 
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symmetric pressure vessels by using linear programming, for 

Tresca type yield surfaces. The kinematic shakedown theorem 

(Koiter's) will be used according to its reformulated form 

presented in Chapter 2 and the results will yield upper 

bounds. 

This general technique for pressure vessels will be 

associated with four basic types of axi-symmetrical 

elements, namely 

- cylindrical 

- conical 

- spherical 

- toroidal 

Theoretically the method would allow any combination of such 

elements, although for the present work the technique has 

been applied only to vessels composed of the basic elements 

individually and for torispherical vessels composed of the 

combination of cylindrical, toroidal and spherical elements. 

The results obtained are compared with other solutions 

obtained either from analytical methods or from numerical 

techniques already available and will be discussed in a 

later section. The computer code written to obtain the 

solutions was quite flexible, in the sense that the 

inclusion of a new type of shell resulting from a different 

combination of the basic elements proved possible with 

relative ease. 
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The emphasis upon the upper bound theorem arises from two 

considerations. Although the main emphasis in Section 6.10 

is on the solution of limit load problems, in the longer 

term the solution of thermal loading problems is of much 

greater importance. The application of the lower bound 

theorem has not produced particularly good results, as 

pointed out by Ponter (14]. The reason for this is that the 

residual stress fields required to produce a good lower 

bound are often quite complex. For example, in the classic 

Bree problem [40] the residual stress field at the shakedown 

limit is not linear through the plate thickness, but 

involves two regions of linear variation with a 

discontinuity on the centre surface. Using finite elements 

it is very difficult to define classes of approximating 

residual stresses which can provide this type of variation, 

and the use of linearly varying fields, or even continuous 

fields, yields poor lower bounds. On the other hand, the 

classes of displacement field associated with the shakedown 

limit are of a simple form and can be easily represented by 

suitable classes of finite element displacement 

distributions. Although the results are upper bounds, the 

choice of a sufficiently wide class of displacement fields 

will ensure acceptably accurate solutions. 

The method described in Section 6.5 is expressed in a 

general form for a Tresca yield condition. For applications 

the same class of simple displacements is chosen as that 

used by Karadeniz and Ponter [511 as a means of 

demonstrating the technique and to allow comparison with 

known solutions. The displacement field assumes that all 
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the meridional curvature occurs at nodal points, ie, plastic 

hinge lines, and the meridional and circumferential strains 

occur within the element with no curvature. This 

displacement field, together with the Tresca yield 

condition, give rise to identical results for limit load 

calculations as those obtained by using the limited 

interaction yield surface of Drucker and Shield [751 

expressed in terms of membrane forces and bending moments. 

It is worth noting that for thermal loading problems, the 

use of the upper bound in terms of generalized forces 

implies the assumption of residual stress fields varying 

linearly through the thickness of the shell. However, as 

commented previously, it is known that this is generally not 

the case and if the upper bound is used in terms of stresses 

and strains, no such assumption is made and the resulting 

upper bound is greatly improved. 

In the next section, the argument used by Drucker and Shield 

and others for the simplification of yield surfaces are 

recounted, although subsequently, for the reasons given 

above, the general technique is described in terms of 

stress and strain- tensors. 

6.2 An Approximate Yield Surface for Symmetrically Loaded 

Thin Shells of Revolution 

The derivation of appropriate yield surfaces for axially- 

symmetric loaded shells of revolution in terms of force and 

moments resultants is rather more complex than it is in the 
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case of a biaxial state of plane stress. The problem of a 

symmetrically loaded cylindrical shell was extensively 

studied by several authors with the inclusion of axial and 

circumferential forces acting individually or simultaneously 

with bending moment [69,70,71,72,73]. Onat and Prager [74] 

extended the investigation to general shells of revolution 

(Fig. 6.1). Drucker and Shield [75] have shown that the 

yield surface for a thin cylindrical shell can be used for 

any axi-symmetric thin shell of revolution as a very good 

approximation. They also propose the use of an hexagonal 

prism approximation obtained from the actual yield surface. 

The method proposed in [75,76] for obtaining these yield 

surfaces can be summarized as follows: 

In the case of general shells of revolution, both meridional 

and circumferential bending moments M+ and MA appear in the 

equilibrium equations, which are, for example according to 

reference 57 and Fig. 6.1 

dNe 
r* (Ne - N0)Rlcos e- rQ + rR1T =06.1 

rN+ R1Nesin ý+d (rQ) + rRlp =06.2 

dM 
rd+ R1(Mý - Me) cos4 - rR1Q =06.3 

The significance of the circumferential moment MO for the 

yield criterion will be discussed later. 

The yield surface for such a case is in a four-dimensional 

stress space by the two moment limited interaction surface 
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proposed by Hodge (78) in the form 

f(Ný, Ne, Mý, Me) = k2 6.4 

In general, due to its complexity, the applicability of such a 

yield criterion is restricted to simple problems [74]. For 

this reason it was essential to develop simplified versions 

of this yield surface which would allow its direct 

application to practical problems without compromising the 

reliability of the results. The search for more practical 

yield surface started from the observation that for the 

cylindrical case, within the framework of small displacement 

theory, the circumferential bending moment Me plays no role 

in the load bearing capacity of the shell. It has been 

described as an induced or passive moment although equal to 

M+/2 if a Poisson's ratio of 0.5 (ie, incompressibility) is 

always assumed for the plastic range. The yield surface may 

then be described in three dimensions 

f(N4, Ne, Mý) k 
6.5 

and MA does not appear in the equations of equilibrium. On 

the other hand, for the general axisymmetric case the moment 

Me does enter into the equilibrium equations and also does 

work during deformation due to changes in the circum- 

ferential curvature. However, for thin shells, ie, h/R0 « 

1, the contribution of MO to the yield criterion becomes 

negligible and the term containing (M+ -MO) in the 

equilibrium Equation (6.3) can be ignored. Two inter- 

pretations of that assumption were given in (751 and it 
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enables the use of the yield condition (6.5) in the analysis 

of general shells of revolution. 

The way M® should be treated in the equation of equilibrium 

(6.3) proposed in [75] is as follows: In the equilibrium 

equation (6.3) the order of magnitude of the term involving 

(M¢-MG) can be neglected when compared with the other two 

terms, except for portions of the shell near the axis of 

revolution where h/Ro may not be small. This interpretation 

was used by Gill [79] to calculated lower and upper bounds 

to the limit pressure for flush cylindrical nozzle in 

spherical pressure vessels. The second interpretation, 

which was later reinforced by Dinno and Gill [80] 

corresponds to putting MA - M+ in Equation (6.3). The 

theorems of limit or shakedown analysis given in [81] and 

[28] respectively, could then be applied using the resulting 

equations of equilibrium in conjunction with any particular 

four-dimensional interaction yield surface to calculate a 

true lower bound. In addition, as pointed out in [80], 

since MA - M+ the one-moment limited interaction surface 

will be contained within, or on, such 
a 

yield surface and 

therefore may be used. Dinno and Gill [801 have also 

proposed another way of dealing with MO in Equation (6.3), 

which is to assume M® - 0. That again would lead to the use 

of the one-moment limited surface but they concluded that 

the additional work involved for most practical problems 

makes the use of it less encouraging. 

Despite all the simplification the use of the one moment 

limited interaction yield surface may bring to the analysis 
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of general shells of revolution, its original form presents 

a high level of complexity which is still incompatible with 

the necessary practicability of analysis as an aid to 

design. Therefore, for the sake of simplicity and 

convenience of practical design inscribed and circumscribed 

linearized surfaces (Hexagonal Prism, Fig. 6.2), which give 

rise to lower and upper bounds respectively have been 

proposed. Since the lower and upper bounds computed from 

inscribed and circumscribed hexagonal prisms respectively 

would be too far apart for engineering purposes, the use of 

an intermediate sized inscribed prism has been proposed 

which would allow the application of the static theorem to 

provide reliable lower bound answers. In addition, Drucker 

and Shield [75] proposed that the upper bound theorem based 

upon the circumscribed hexagonal prism could then be reduced 

by multiplying by a factor 7/8. This proposition has been 

used by Gill [79) who obtained a limit pressure factor 

smaller than the shakedown factor calculated by Leckie [4] 

for the same type of vessel. This contradiction raised the 

question whether the shakedown factor obtained by Leckie was 

too high? The answer) which seems to be reasonable was given 

in two ways; first, experimental investigation indicated 

that the result obtained by Leckie was a lower bound of the 

true value and it was also consistent with Gill's unmodified 

values, ie, his results obtained before multiplying by 7/8. 

In fact, as suggested by Leckie this factor should not be 

included in the analysis except for some physical reason. A 

second reason why the reducing factor 7/8 should not 

necessarily be used was subsequently given by Dinno and Gill 

1801 where the lower bound results obtained by assuming Me 
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0 in the equilibrium equations coincided with the upper 

bound results [79], both based on a circumscribing yield 

surface. 

Thus, it seems proper to adopt the circumscribed surface 

(Fig. 6.2), for comparison, because the conclusions 

discussed above appear to be reasonable. 

An important feature of thin shells is their high bending 

flexibility which leads to a primary membrane behaviour, 

except for some localized curvature. This characteristic 

has been widely used (79,80,82,83,75,51,76,84] to separate 

the distinct volumes of the shell where either bending or 

membrane behaviour are independently relevant. These 

volumes are the plastic hinges where curvatures (ke, k+) are 

unrestricted and the regions between two adjacent hinges 

where only circumferential (e®) and meridional (s+) strains 

occur. This important conclusion was drawn from the 
Ike 

normality condition and from the convexity of,, hexagonal 

prism yield surface [75]. The several analytical solutions 
for plastic collapse problems referenced above had a 
deformation pattern consisting of localized three hinges 

mechanism where the positions of the hinges are obtained 

generally from the lower bound approach by finding the 

positions where the bending moment is maximum, ie, where 
dM4/d$ - 0. For the application of the upper bound for 

constant load using a displacement field, which consists of 
discrete hinges at the nodes of a finite element subdivision 

and zero curvature within the element(hinge-cone displacement 

field), results in identical upper bounds to those obtained 
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using the non-interactive yield surface (Fig. 6.2). Such a 

displacement field separates membrane action from bending 

action as in the case of the approach using Fig. 6.2 in 

terms of (M., N+, N©)and corresponding deformations 

(k¢, E+, se). However, for thermal loading problems, quite 

complex variations of thermal stress have to be included, 

both through the thickness of the shell and along the centre 

line. The use of generalized stresses implies that the 

residual stress in the exact solution can be satisfactorily 

described in terms of linear variations through the shell 

thickness and it -is known for the Bree problem that the 

actual residual stresses are not of that form. For this 

reason, the upper bound theorem will be applied directly for 

the Tresca yield condition, but with the knowledge that the 

choice of the hinge-cone type mechanism will yield limit 

load solutions directly comparable with the analytical 

solutions, generated from the non-interactive yield surface 

of Fig. 6.2. When the same technique is applied to thermal 

loading problems, however, there exists no restriction on 

the variation of the residual stress through the thickness 

of the shell. In addition, the method may also be applied 

to a wide class of displacement and this is discussed later 

in this chapter. 

6.3 Discretization of the Axi-Symmetric Shells via Finite 

Elements 

The elastic-plastic deformation pattern for thin shells may 

be defined in terms of the displacement field of its middle 

196 



surface Ue(s) and the plastic strains in terms of plastic 

multipliers Xk(s) which characterize the plastic behaviour 

of the material. It is convenient to describe the dis- 

placement field using global displacement. components in the 

outward horizontal direction W(s) and in the downward 

vertical direction U(s), respectively perpendicular and 

parallel to the axis of symmetry, as shown in Fig. 6.3. The 

local displacement components normal w(s) and tangential 

u(s) to the meridional direction can be obtained byasimple 

transformation. The finite element formulation for the 

elastic-plastic problem of thin shells may be derived from 

suitable interpolation of the displacement field and of the 

plastic multipliers as a function of nodal values. For this 

purpose, let the shell be discretized into NE finite 

elements. The displacement field within each element i (i - 

1,..., NE) may be expressed in terms of nodal displacements 

(UN}i as 

{U1(s)} = {u }+ [ci(s)] {u'} 
6.6 

where 41(s) is a matrix of suitably chosen interpolation 

functions which ensures the continuity between adjacent 

elements when the assemblage is performed. The element 

nodal displacements {UN}1 can be divided into two 

independent parts; constant rigid body motions (Uö) which 

give no contribution to the strain field and the so called 

natural displacements which generate the straining modes 

{vn}. 
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Multiplying the global displacement by an appropriate 

transformation matrix [T] gives rise to the local 

displacement field with components normal and tangential to 

the meridional surface of the shell (Fig. 6.3). 

{ue(s, c )} = [T] i {u (s)} 6.7 

where 

sin cos 
[T]' = 

-cos sin 
6.8 

Substituting (6.6) into (6.7) gives 

{ue(s, c )} = [T]{Uö} + [T] [ (s)) {u1} 6.9 

Compatible strain fieldiwithin the element i as functions of 

nodal displacements can be obtained by applying equation 
(2.5) to (6.9) to produce the classical relation independent 

of the rigid body motions 

{Ei} = (B] {u1} 6.10 

where 

el 
fc1J 6.11 

El 
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Details of such displacement and strain fields assumed for 

the case of axi-symmetric shells, are given in Appendix B. 

The plastic strains can also be related to the plastic 

multiplier fields via a suitable matrix for any linearized 

yield surface. For the Tresca yield condition, assuming no 

variation of strain through the shell thickness, the 

relation between plastic strains and plastic multipliers can 

be defined from Fig. 6.4 as follows: 

{EZ 1= [N] {A(s) } for k=1,6 6.12 

where 

1E2 
{E2}. 6.13 

Ee 

10 -1 -1 01 
[N] - 6.14 

0110 -1 -1 

Similarly to the displacement field, the plastic multipliers 

field for the element can be interpolated in terms of nodal 

parameters Xn in a finite element approximation 

{7li(s)} = LAi(s)J {x } 6.15 

where the only restriction on (Al(s)) is 
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[A1(s)] 0 6.16 

within the element for any (X }>0. 

The reduction of the upper bound theorem (Equation 2.39) to 

a linear programming problem requires that the two separate 

descriptions of the plastic strain increments sij, given by 

Equation (6.10) and (6.12), must be consistent with each 

other at both nodes and within the element. Karadeniz and 

Ponter (511 show that, for cylindrical shells, suitable 

shape functions 9i and Ai could be found so that forcing 

equality of strains for (6.10) and (6.12) at the nodes would 

imply that equality was also satisfied within the element. 

Generally, however, this cannot be achieved and there do not 

exist shape functions which give such consistency for other 

shapes of shell element. Therefore, a means by which (6.10) 

and (6.12) may be made consistent with each other, in a 

average sense, has to be found. This problem is similar to 

the problem discussed by Corradi 1661 for incremental finite 

element solutions, where evaluation of the stress within an 

element is given by the relationship 

{Qiý} [D] I 
{Eii} [N] {x }} 6.17 

where (D) is the elastic stiffness coefficient matrix. This 

equation can give poor results, if separate descriptions of 

the total strain and of the plastic multipliers are adopted. 

Corradi used a procedure suggested by Oden (85,86] to obtain 

improved results. Oden (85] describes a procedure, which 
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produces a continuous stress field (oij) that is consistent 

with the discontinuous stress field (ae ) obtained, using 

the traditional Finite Element procedure, from the elastic 

strains, by imposing the condition 

V 
{a }T{Ei 

j 
}dv =V {aei }T{Eid }dV 6.18 

Such a condition has to be satisfied for all possible strain 

fields (eij) belonging to the class assumed in the finite 

element method. The solution to this problem is claimed by 

Oden [85,861 to be unique, and the procedure is discussed in 

the following section. 

6.4 On a Consistent Relationship Between Nodal Displacement 

Variables and Nodal Plastic Multipliers 

6.4.1 Stress and Strain Fields as Functions of Generalized 

Quantities 

Assuming that the behaviour of individual elements may be 

described in terms of generalized variables, the stress and 

strain fields within the element can be expressed as 
follows: 

Let [b(s) I be a suitable interpolation matrix which gives 

rise to an internal distribution of strain in terms of 

generalized strain quantities {E}. 
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{Eid }_ [b1] {Ei } 6.19 

Similarly, let the stress field be written in terms of 

generalized stress quantities (E) by means of matrix (q, (s)) 

{Qiý} = CVýiýJ {Ei} 
6.20 

Note that the stress distribution defined by Equation (19), 

although apparently independent of the constitutive law, 

when applied to an elastic material the constitutive 

equation imposes constraints on the form of (b] and [W], 

which then define the stiffness matrix of the element. By 

the following argument, Oden suggests a relationship between 

[b] and [*] independent of the constitutive law: 

The generalized stresses and strains within the element must 

satisfy the principle of virtual displacements (871 which 

states that 

{Ei}T{Ei} =f {aid}T{Eid } dV 6.21 
V 

Equations (6.19) and (6.21) imply the biorthogonality 

condition 

Vf 
[4i ] [bi] dV = [I] 6.22 

A solution of Equation (6.22) can be obtained by imposing 

I*ijI a [biI [C]1 6.23 
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as proposed in [85,86], where [Cl' is a symmetric and non- 

singular matrix defined as 

[C] j [bi]T[bh]dV 6.24 
V 

Note that this result is independent of the constitutive 

relationship. Corradi [66] uses the functions ['] of (6.23) 

to calculate internal stresses from nodal values {E}i which 

have been generated by the solution of the finite element 

formulation. He obtains improved results compared to the 

conventional approach. 

In the present formulation, the generalized strains are 

replaced by the displacement [Uni) with the rigid body 

translation removed and the generalized stresses are 

replaced by forces {F}i, so that 

[F IT {Un} _ {E}T{E} =f {aii}T{Eii}dV 6.25 
V 

where the strain distribution field within the element {Eij} 

is defined by Equation (6.10), and the stress distribution 

field is assumed to be described in terms of the generalized 

forces by means of a matrix (*1 of suitable interpolation 

functions 

{aii} - ['i' ] {F} 
6.26 

Equality (6.25) will now always be satisfied for any (Un) 

and (F) if 
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[* ij] = [B] [U] 6.27 

where (C] is given by 

CýJ = 
{J[B]TCB]dV }'' 6.28 

V 

A consistent relationship between the two strain fields 

(eil) and }eij} can now be defined by requiring that 

{F}T{Un} =v {ajj}T{Eij}dV =V {ajj}T{Eij}dV 6.29 

where (aij) was defined in (6.26) for arbitrary values of 

(F). Substituting (6.10), (6.26), (6.27) and (6.28) into 

(6.29) gives the result 

{Un} = [L] {x } 6.30 

where 

[L] _ [C] f [B] [K(s)]dV 6.31 
V 

and 

[K(s)] = [N] [A(s)] 6.32 

This gives the required relationship between the nodal 

values Xn of the plastic multipliers and the nodal 

displacements (Un) so that the consistent relationship 

(6.29) is always satisfied. 
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6.5 A General Solution for the Biorthogonality Condition 

In the case of axi-symmetrical shells, the elements which 

show constant and conical deformation patterns are those 

whose meridian angles are constant and in this case it might 

be expected that Equations (6.26), (6.27) and (6.28) satisfy 

the required condition (6.25). For curved elements however, 

the deformation pattern (eij) varies as a function of the 

meridional angles along the element and it is no longer 

linear. Although the approximate solution given by (6.27) 

will also satisfy the required condition (6.25) for a non- 

linear deformation pattern, it will be shown in Section 6.10 

that, using (6.27) the difference between the two strain 

fields (cij} and {Eid} is not neglegible. However, a 

general solution for (6.25) different from (6.30) can be 

obtained as follows: let (R) be a matrix of the same size as 

[B] so that 

[H] _ 
{f[B]T[R]dv}' 

6.33 

is a non-singular matrix. Hence, the following statement 

can be proved: Equation (6.25) can be satisfied if a matrix 

(R] can be found such that 

C4)] _ (RI[H] 6.34 
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Then 

f [iI]T [B]dV =f [H]T [R]T [B]dV 6.35 
VV 

where 

[H]T =ff [R]T [B]dV}_1 
V ff 

6.36 

which leads to 

J [4)) [B]dV = [I] 6.37 

Thus, the solution given by (6.27) is a special case for [R] 

_ [B). 

Let the consistent relationship between the two strain 

fields, Equation (6.29), be written in the form of the 

orthogonality condition 

j{Q}T({E1} - {c2}) dV =06.38 v 

where (a) is defined by (6.26) and (6.27) so that (6.38) 

holds for all {Un), (Xk) and {F). It seems that this 

condition will only provide reliable displacement-plastic 

multipliers relation for [R] - (B) if {e1) is linear, as 

(E2) assumed for the present case. Hence, Equations (6.30) 

to (6.32) provide a consistent relation between displacement 

field and the plastic multipliers field only if the entries 

of matrix [B] are at most linear. 
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However, when the entries of [B] are polynomials of higher 

order or not polynomials, a more general solution for the 

biorthogonality condition (6.37), such as that given by 

(6.34), is required, so that 

{Un }_ [H] {J [R]T[K]dV}. {ak} 
cV 6.39 

when (6.26) and (6.34) are substituted into (6.29). Let 

matrix [L) now be 

[L] _ [H] 
c( f [R]T[K]dV} 6.40 

V ff 

Hence, 

{Un} _ [L]{7ýk} 6.41 

Equation (6.41) enforces a general consistency relation 

between displacement field and plastic multipliers field for 

each individual element and therefore gives rise to two such 

relations for each nodal displacement. Once assemblage is 

performed, interelement continuity may be ensured by taking 

the average of the nodal values, relative to the sharing 

node of adjacent elements. Details of this averaging process 

is given in Appendix C. 

The difficulty of this approach is that the matrix (R] is 

arbitrary and there is no obvious criteria for its choice. 

In order to discuss a procedure to choose a consistent 

matrix [R], let the relationship (6.39) be rearranged in a 
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simpler form by multiplying both of its sides by 

(IV (R]T (B) dV}, which gives the condition 

j [R]T([B] {UR} 
- [K] {x}) dV -06.42 

ie, 

v [R]T({el} - {E2}ý dV =06.43 

Such a condition requires that the difference between (el) 

and (c2} shall be orthogonal to the arbitrary matrix [R]. 

The elements of (R] need, therefore, to be chosen so that 

the strain difference is as small as possible. Expanding 

(6.43) into its individual components given by (6.11) and 

(6.13), results in 

f 
R11(E6-ee)dV +I R21(c1-e2)dV =06.44 

VV 

f 
R12(e6. eg)dV +f R22(c1-E2 )dV =06.45 

VV 

I R(c'-ee)dV + R(E 1- 

13 J 23 
dV =06.46 

VV 

where dV - 2nR(s)h(s)ds. The components of (R] can now be 

seen to be a set of functions in a Galerkin type procedure 

for the minimization of the strain differences. The final 

choice was as follows 

100 
6.47 

[R] = 

0 (1-s/Li)/R (s/! Li)/R 
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This choice implies that Equation (6.44) becomes 

v (e-e2 )dv =06.48 

ie, (el-s2) is zero in the mean within each element and the 

combination of Equations (6.45) and (6.46) is equivalent to 

V [A(1-s/9i) +B s/2i] (c -ee)/R2dV =06.49 

which represents the ortogonality of (e1-e ) to an arbitrary 

linear function. It has been found that this gives the 

identical result to (RJ - [Bj for cylindrical and conical 

elements, but a markedly different result for any curved 

element. The numerical results are discussed in the Section 

(6.10). 

6.6 Approximate Displacement and Strain Fields for Axi- 

symmetric Shells 

For the current stage of the present technique, the 

displacement field within the element will be assumed to be 

interpolated by linear functions. The equations defining 

the displacements and strain fields will be given here 

directly in a matrix form and all the algebraic development 

is given in Apendix B. Equation (6.50) represents the 

global displacement field (defined in Section 6.3) which for 

an axi-symmetric shell element (Fig. 6.3) becomes 
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U(s) Ui s/Li 

{vets)}. 

W(s) 00 

00 Ui+! -Ui 

w1 6.5 0 
(1-s/JCi) e/1ý1 wi+l 

where li is the length of a generic element i, and the rigid 

body translation and the nodal displacements are defined by 

the vectors 

Ui Ui+=-Ui 

{Uo} a; fun }: Wi 
0 Wi+ 

The local displacement field is given by 

u(s, $) Ui sin $R sin $ (1 -) cos 
ii 

W(s, $) -U cos -R cos (i 
- sin 

ii 

where +-+(s) - ¢i + s/R1 (Fig. 6.3) 

6.51 

R 
cos U-Ui 

i 
wi 6.52 

sin w 
J+j i 

The strain field (see Appendix B) may now be written as 

sin - cos cos üi+l-üi 

Wi 

ee(sýý) 0 (1 - )/(Rzsin$ ) (8)/(Rzsiný ) Wits 
11 

6.53 
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or 

{c(s, 4) }= [a] fun} 6.10 

6.7 The Upper Bound Theorem Applied to Axi-Symmetric Shells 

Via Finite Element Technique and Linear Programming 

For the current stage of development of the present 

technique the extended upper bound theorem (Equation (2.39)) 

will become identical to the classical form, ie, it will be 

applied only for stress histories contained within the yield 

surface. Equation (2.39) can thus be written as 

Xf pidUidS < 
At 

f dt V[aij(t) 
- Qeý(x, Y, t)7ýeij(t)dV 6.54 

0 

when the effects of temperature on the yield stress is 

considered. Equation (6.54) implies a search for a minimum 

value of the right hand side for a prescribed value of 

WE =f pidUi dS =16.55 
S 

This can be achieved by defining the instants during the the 

cycle, when the term ( cij(t)-cej(x, t)j corresponding to 

tij(t) is a minimum. In the case of limit analysis 

problems, ie, for cej(x, t) -0 in (6.54), the calculations 

are independent of time. For problems involving cyclic 

thermal loading, however, an additional requirement, 

relating the plastic strain field rate tij(t) and the 
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corresponding time in the cyclic thermal stress history 

c (x, t) is necessary to ensure an absolute minimum value 

for the mechanical load within 0<t<T. As stated 

previously this kinematic theorem requires the prescription 

"a priori" of the deformation mode defined by the strain and 

displacement fields. The class of mechanism of deformation, 

following definition in Section 6.2, will be precribed as 

that in which plastic hinges may occur at nodal points 

whilst a uniform membrane strain is assumed to distribute 

linearly along the element. 

In this way, the shakedown problem is reduced to a 

minimization problem and the present technique will use 

Linear Programming to search for the absolute minimum value 

for the the mechanical load multiplier X, by assuming that 

the integral on the left hand side of (6.54) is constant. 

Such an assumption will only define the size of the 

prescribed mechanism and will appear in the calculations as 

an additional constraint for the Linear Programing problem 

to be solved. The cost function for a standard Linear 

Programming problem can now be 

At 

as J dt f [alc 
^6 

i(t) - aij(x. Y, t)7eij(t)dV 6.56 
0V element + hinge 

if the general constraint condition (6.55) is introduced to 

the problem. Inequality (6.56) may be split, for 

integration purposes, into two different volumes: 
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s 
0t 

s a I1 + IZ J dt f [Qiý(t) - cr (xY, t) r:. (t)dV + 
0 Velement 

Qt 
6.57 

f dt f (cri(t) - Q(z"Y"t)je(t)dV 
o Vhinge 

The general consistent relation between displacement field 

and plastic strain field described by plastic multipliers 

XkIs, discussed in Sections 6.4 and 6.5 (Equation (6.41)), 

will be used as a basic concept for the present technique. 

All the variables involved in the solution of the Linear 

Programming problem need to appear in the equations as 

functions of the plastic multipliers. Most of the detailed 

calculations involving matrix manipulations, following the 

substitution of Equation (6.41) into the appropriate 

equations governing the behaviour of the assembled system of 

elements, will be given in the Appendices. In this section, 

only some details of the basic principles involved are 

discussed. 

On the Minimization of the Cost Function (6.57): Let the 

first integral on the right of Equation (6.57) be written in 

terms of plastic multipliers by means of (6.41) for a 

generalized element "i" of a axi-symmetric shell to give 

At 
I1J dt f(a (t) - 

&e (t)] [N]{Xk(t)} dV 6.58 
0V 
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where [N] was defined in Section 6.3 and will be rearranged 

as follows 

6 

I1 =[f [ai -Qej(tk)]{Nij}k{Xk(tk)} dV 6.59 
k=1 Velement 

with {Nib}1 - (1 0], {Nib}2 - (0 11 and so on. The absolute 

minimum of (6.57) has to be found in two levels. For a 

yield stress independent of the temperature the construction 

shown in Fig. 6.5 can be used to define the instants tk's 

during the cycle, corresponding to each plastic multiplier, 

when the term [oil - "oej(s, tk)] {Nib}k is a local minimum. 

Inequality (6.57) becomes thus 

6 
<Ij tai, 

aeJ(tk)]{N1j}k{Xk(tk)}dV + 
ksi Velement 

6.60 

J [Qij Qe(tk)]deij(tk)dV - I1 + 12 
Vhinge 

for a particular element "i". The second integral, 12, on 

the right side of (6.57), over the volume of the hinge, is 

discussed in detail in Appendix D. The minimization of X 

given by inequality (6.58), for all X 's defining the 

compatible strain field and the nodal variables defining the 

hinge rotations in 12 (see next section), is achieved by 

Linear Programming, when the assemblage of elements is 

performed. The solution of 
. 

the problem consists of the 

minimum value of A and the mechanism of collapse requiring 

the least amount of energy dissipation defined by the values 

of the plastic multipliers ak, s, which contributed to the 

mode of deformation and the nodal positions where plastic 

hinges have formed. 
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On the General Constraint Equation (6.55): Equation (6.55) 

represents the external work produced by the mechanical 

loads, which for the current stage of the present technique 

will be limited to two cases: 

(a) Internal Pressure 

Consider the generic element "i" of an axi-symmetric shell 

shown in Fig. 6.6. The elemental contribution to the 

external work due to the internal pressure is given by 

(6.55) as 

WE f Pid Ui dS =f Piw(s )dS +Fj 
dsC 

ds 6.61 
S 

where the first integral on the right represents the work 
done in the radial direction and the second integral 

represents the work due to axial displacements when the 

shell has its end(s) closed by a rigid plate(s). 

The radial displacement w(s) is given by (6.52) and the work 
in that direction becomes 

Ri 
'j fp w(s)dS = 2irpi 

([ f cos ý r(s)ds J Ui + 
S0 

r 1i 
{- 1Js 

cos ý r(s)dsI(Ui+l-Ui) + LLL 

i(1 
-i 

)r(s)ds] W1 + 
6.62 

If .l 0 
[- 

fs cos 4 r(s )ds1 Wi+l 
0 
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where dS - 2nr(s)ds. The geometric parameters R1, ro, "i 

etc., describing the shell, are defined in Fig. 6.6 with 

r(s) = Ri sin ý- r0 6.63 

where + was defined in (6.54). The sign convention for ro 

is positive from the left to the right as indicated in Fig. 

6.6. Thus, Equation (6.64) represents the work due to the 

internal pressure on the radial direction for the element i. 

The total work resulting from the sum of the contribution of 
all NE elements can be written as 

NE 
WE = 2irpi I [IFWUI(i)Ui + IFWU(i)(Ui; 

i-Ui) + 
i=1 6.64 

IFWI(i) Wi + IFWIP1(i) Wiý1] 

where the following definitions hold 
Li 

IFWU(i) _fs cos 4 r(s)ds 
io 

Ii 

IFWUI(i) f cos$ r(s)ds 
o 6.65 

zi 
IFWI(i) = j(1 

-R) sin 4 r(e)ds 
i 0 

R 
IFWIP1(i) =RJs sin $ r(s)ds 

i0 

Equation (6.64) defines a general additional constraint to 

be satisfied. 

The Linear Programming problem will be solved in terms of 

nodal plastic multipliers X' s and the global nodal 
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displacements in (6.64) have to be substituted as functions 

of X' s by means of (6.41). Some details of such a 

substitution, which involves fairly complex matrix 

manipulations, is given in Appendix D. 

b) Ring Load Applied to Node "i" 

Fig. 6.7 shows schematically the ring load case applied to a 

generic node "i" connecting two adjacent elements. The 

equation defining the external work produced by such a load 

in the radial direction is 

WE =2n riPiwi 6.66 

where wi - -Ui cosfi + sinfi Wi. Equation (6.66) is valid 

for any node not coincident with the axis of revolution, 

where ri - 0. Again the global displacements have to enter 

Equation (6.66) as functions of the plastic multipliers. 

6.8 The Constraint Equations for the Linear Programming 

In addition to the general constraint (6.64), there are a 

set of nodal constraints, related to the formation of 

plastic hinges, which must be satisfied, defining the 

unrestricted curvatures (rotations) at the nodes in terms of 
displacement variables. These nodal plastic rotations 

contribute to the internal energy dissipation and also to 

the work done by thermal cyclic loading, when meridional 
bending moments are induced by it. Fig. 6.8 illustrates such 
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a rotation in a generic node "i" with an appropriate sign 

convention, and the constraint equation may be defined at 

each node as 

A= dw (R -1) dw (0) i ds i+ ds 6.67 

In order to ensure that the Linear Programming will be 

dealing with non-negative variables as required, the 

following auxiliary non-negative variables will be 

introduced 

6i ° 6i+) - ei-) 6.68 

for of+) >0 and 6i-ý <0 so that 

e(+) =e ii6.69 
if ei >0 

ei-) 0 

and 

e(+) =0 i 
if ei <06.70 

The derivative of the radial displacement (6.52) for the 

element "i" is 
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) 
dw (s) = 

Ui 
sind + (s sin4 - cos4) 

(U 
i+i-U i+ 

ds R1R1 9"i 

(1 
- 

c09 sin cJ Wi + 
LLL ii6.71 

CR cosh + sind 
Wýi+l 

1 

Substituting (6.71) into (6.67) for the respective values of 

"s" corresponding to- node "i" on two generic parental 

elements gives 

Ai = Ai+) - 9i-) = CU1()(Ui-Ui-i ) +Cl (i) wi-i + 

-- 6.72 

C2(i) Wi + C3 (i) Wi+l + cu(i) (Ui+l-Ui) 

where 

CU1(i) = cos ýi/Zi ; CU2(i) =- cos ýi/Ri 

C1(i) = sin "i/Ri-1; C2(i) _- sin 4 (ýi1-1ý 6.73 
i i-1 

C3(i) = sin ýiAi 

The constraint equations relative to each node can then be 

written in terms of nodal plastic multipliers by means of 
(6.41) for the Linear Programming procedures. From equation 
(6.72) it can be seen that the constraint equations involve 

displacements from three nodes. when such displacements are 

substituted into (6.72) in terms of plastic multipliers, 

using the relationships given in Appendix C, each constraint 

equation will be dealing with X's from five nodes. Thus, 
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the set of variables for each constraint equation, 

corresponding to a particular node, consists of 30 plastic 

multipliers and the two nodal variables Oi+)t and Ai 

representing the hinge rotation. If Equation (6.72) is 

rearranged in terms of plastic multipliers for all the 

nodes, the set of constraint equations for the Linear 

Programming may be schematically represented as shown in 

Fig. 6.9. 

6.9 End Conditions for Axi-Symmetrical Shells 

Assuming that both ends of the shell are fully constrained 

the following conditions must be satisfied at the extreme 

nodes 

At Node 1 

u(1) = Ul sin ý1+ Wl cos ý1 = ul (prescribed) 6.74 

WM= -Ui cos c1+ W1 sin ý1 = wl (prescribed) 6.75 

Node NN(last node) 

u(NN) UN sin N+ 
WN cos $N = uN (prescribed) 6.76 

W(NN) -- UN cos ýN + WN sin 0N = WN (prescribed) 
6.77 

For the case of axi-symmetric loading, one single external 
displacement constraint in the direction of the axis of 
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revolution is sufficient to avoid the shell translating as a 

rigid body. This condition is generally imposed at one or 

at both ends of the shell as follows 

NE 
U1 =0 which implies UN = (Ui+l-Ui) 6.78 

i=1 

or 

NE 
UN =0 for U1 =- (Ui+l-Ui) 

i=1 6.79 

Conditions (a) and (b) may be introduced to the Linear 

Programming as constraint equations by substituting (Ui+l 

Ui) as functions of X 's as shown in Appendix C. 

The internal constraints, which actually enforce the end 

conditions of the shell, are defined by the local 

displacements at the extreme nodes (u(1), w(1)) and 

(u(NN), w(NN)). Assuming the global condition (b)(Equation 

(6.79)), for example, the end conditions for both ends fully 

constrained become 

At Node 1 

NE 
. u(1) L (Ui+l -Ui) sin +W cos ý1 = ui (prescribed) 6.80 

i=l 

NE 
w(1) =L (Ui+l-Ui) cos $+ W1 cos $1 wl (prescribed) 6.8 1 

i=i 

For ul = w1 =0 the end conditions at node 1 will be 

satisfied by simply imposing 
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NE 

i1 
(Ui+i _Ui) =06.8 2 

W1 =06.83 

At Node NN 

The assumption of condition (b) implies UN -0 and therefore 

the local meridional and radial displacements can be 

determined from (6.76) and (6.77) as 

W(NN) = WN sin IN = wN (prescribed) 6.84 

U(NN) = WN cos4 = UN (prescribed) 
6.85 

These two equations become redundant if the prescribed 

displacements are zero, ie, uN = WN - 0, and it is 

sufficient to have the condition 

WN0 6.86 

Again these end conditions must be introduced to the LP as 

consistent functions of the plastic multipliers by 

substituting the global displacements as functions of X 's. 

6.10 Numerical Solutions 

As already stated in Section (6.1) the numerical solutions 

for the present stage of development of the technique 
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proposed, will only consider problems involving the basic 

shell elements individually, described previously, and 

problems involving torispherical vessels. The first set of 

calculations are concerned with the solution of limit 

analysis problems and the results are compared either with 

exact solutions obtained analytically, or with other 

numerical solutions. A versatile code (CONRE) has been 

written in a way that allows the easy inclusion of further 

developments of the technique. CONRE current structure is 

likely to suffer only minor changes as a result of 

improvements and future developments. 

The integrations involved in the calculations are perfomed 

using Gaussian quadrature, where a suitable number G of 

Gaussian points (usually 5) within the element are chosen. 

Thus, an integral over the element volume can be reasonably 

estimated by means of the following expression 

G 
Jf (x) dV =I yk Wk 6.8 7 
V k=i 

where yk - f(xk) and the weighting factors Wk are given by 

Zienkiewicz [88]. 

Some observations on the element discretization of the shell 

may be useful to clarify some points about the end 

conditions which the Code (CONRE) allows to be considered in 

the calculations. First, let the axis of revolution be 

considered in the vertical position so that the shell can be 

described from top to bottom as illustrated in Fig. 6.10. 

The numbering system adopted for the nodes and elements is 
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also shown in Fig. 6.10, starting with node 1 at the top and 

ending with node NN at the botton. For curved elements, the 

meridional angle will be measured clockwise, with the origin 

coincident with the axis of revolution. 

6.10.1 Limit Load Problems 

6.10.1.1 Cylindrical Shells 

Case 1: Cylindrical Vessels Subjected to a Ring of Pressure 

Such a simple example has already been solved analytically 

by several authors (69,73,89,90,91] where the influence of 

the end conditions and of the length of the vessel on the 

limit load is analysed. Drucker (69] was the first to 

approach such a problem for an infinitely long cylindrical 

shell, where he uses different limit yield conditions, 

including the exact one, from which he defines approx- 

imations of rectangular and hexagonal shape. Drucker's 

solutions are based on the yield surfaces shown in Fig. 6.11 

and his normalized lower bounds for each yield condition are 

given by 

p BAR PL 6.88 

where ß is a constant dependent on the yield criterion and 

PL is defined as 

224 



PL R 
6.89 

which represents the pressure at which the shell would fail 

as a membrane. The values of ß for the various yield 

surfaces (Fig. 6.11) are presented in Table 6.1. 

Table 6.1 

Yield Condition 0 

Inscribed Rectangle 1.5 

Hexagon 1.73 

Exact 1.82 

Circumscribed 2.00 

As pointed out by Drucker (691, if the upper bound theorem 

is applied to a hinge-cone deformation pattern (Fig. 6.12) 

for the hexagonal or exact yield criterion the same upper 

bound ß- 2.00 is found. He concludes that the conical shape 

of the mechanism chosen agrees with the requirement of zero 

rate of curvature between hinges implied be the normality 

condition. Nevertheless, the hexagonal and exact yield 

criteria require a non-zero curvature for their sloping and 

curved sides, respectively, which explains the divergence of 

the upper and lower bounds for such yield surfaces and the 

agreement for the rectangular. The optimum size of the 

mechanism, ie, the mechanism which would lead to a minimum 

value of P/cy may be easily found as 
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A-h 6.90 

and may be considered as the length of the shell 0411L'04" P is 

effectively carried. 

The "a priori" knowledge that the optimum size of 

the mechanism is given by (6.90) allows the choice of an 

element discretization, which would lead to a solution 

coincident with Druckers. That in a sense, demonstrates 

the reliability of the present technique despite the 

simplicity of the problem. If no knowledge of this kind 

were available, a fine mesh of elements would be required to 

ensure an accurate result. 

Some examples will be given to illustrate the application of 

this technique to such problems: 

Numerical Examples: Consider the cylindrical vessel 

discretized into finite elements as shown in Fig. 6.13 where 

the geometric parameters are defined. From (6.90) the 

optimum size of the mechanism would be a-0.045. The 

element structure chosen, however, enforces a mechanism, at 

the best, of a-0.05, which is the size of the elements and 

consequently the limit load obtained (Fig. 6.13) is sightly 

greater than the value given by (6.88) which implies the 

optimum mechanism. If a more precise limit load is 

required, the problem may be solved by refining the mesh, 

for example, by assuming smaller elements, say li - 0.045 

(Fig. 6.14) and the optimum solution is obtained. 
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The strain distribution along the elements involved in the 

formation of the collapse mechanism, is shown in Fig. 6.15. 

The discussion about the strain distribution on cylindrical 

vesels will be given at the end of this section. 

Case 2: Cylindrical Vessels under Internal Pressure 

The analysis of cylindrical shells under uniform pressure 

has been thoroughly studied by Hodge (781, where various 

support conditions were considered. Although Hodge provides 

solutions for both sandwich and uniform shells, for the 

purposes of the present work only uniform shells will be 

considered. The shells are assumed to be open at the ends 

and the various end support conditions for the present 

numerical analysi 
as as 

follows: 

End Condition 1: Unconstrained Ends 

Such condition may be thought of as the shell being 

supported by elastic rings, which would allow the vessel to 

expand freely in the radial direction. The limit load for 

such a case is simply the membrane limit pressure given by 

(6.89) and the normalized solution become p/pL - 1. The 

deformation pattern consists of a uniform expansion with 

respect to the axis of revolution as shown in Fig. 6.16 for 

a particular shell geometry. 

The strain distribution within a particular element of the 

shell is shown in Fig. 6.17. 
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End Condition 2: Bottom Fully Constrained and Top Free 

Such problem (Fig. 6.18) has been analysed by Onat (701, by 

means of the exact yield surface for cylindrical shells (see 

Section 6.2), defined in terms membrane forces and bending 

moments. Onat also considers a compressive load applied, 

simultaneously with an internal pressure, at the top of the 

vessel, which for simplicity will be ignored here. 

The expression for the limit load given in [70] for the 

internal pressure alone is 

2 
Q 

-R+L2 6.91 
Y 

Equation (6.91) applied to this problem gives p/cy - 
0.050078 which compares very well with the result given in 

Fig. 6.19 of 0.050156. 

Fig. 6.20 show the strain distribution for N particular 

elements of the discretized shell. 

End Condition 3: Clamped Ends 

A complete analytical solution for the problem of 

cylindrical shells under internal or external pressure with 

both ends fully constrained (Fig. 6.21) has been given by 

Hodge [781. 
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The solution given in 1781 for the approximate rectangular 

yield surface (Fig.. 6.11) is 

h2 
R LZ 

6.92 
Y 

Hodge's lower bound solution implies a symmetric 

three-hinges mechanism and seems to be independent of the 

length of the cylindrical shell. Such a solution coincides 

with that obtained by applying the upper bound theorem to a 

similar mechanism and therefore may be thought of as an 

exact solution for short cylinders. However, due to the 

localized nature of the bending moment, for long thin 

cylindrical shells, failure may occur due to hinges forming 

near the ends, where. the bending moments are concentrated, 

and not as a membrane as Equation (6.92) seems to indicate. 

Nevertheless, the solution given by (6.92) seems to be 

reliable whatever the length of the vessel. 

Quite recently some numerical solutions for this problem 

have been given by Morelle and Hung (61] using Melan's 

theorem (lower bound) and Tresca's sandwich yield condition 

[78). Morelle [62] has also proposed an upper bound 

formulation for the same yield condition. The former paper 

claims to obtain the same limit pressure as in (78] with 8 

elements, whilst the convergence of the upper bound in (621 

seems to require as many elements as 20. In order to 

compare the solution of the present upper bound technique 

for such a problem, with those in (61], [78] and [62], the 

same problem was solved assuming two different element 

structures shown in Figs. 6.22 & 6.23. 
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It can be seen that both element structures yield the same 

solution and the exact limit pressure is obtained with only 

two elements (Fig. 6.22). The strain distribution is shown 

in Fig. 6.24 for a particular element. 

For all the cases involving 'cylindrical shells and axi- 

symmetric loading, the axial strain turned out to be zero as 

expected for such cases and only the hoop or circumferential 

strain distribution is plotted for some elements. It can be 

seen that for all the cases, the ortogonality condition of 

the difference between (c ) and {E2} and matrix (R), as 

discussed in Section 6.5 is exactly satisfied, ie, {c1} is 

coincident with {s2}. In the case of the shell with free 

ends, the strain distribution is not only coincident but 

also constant along the elements, as one would expect for 

such a uniform expansion. 

6.10.1.2 Conical Shells 

The analysis for such a shell will be carried out for the 

loading case of internal pressure and the end conditions 

considered are for the shell fully constrained or clamped 

(Fig. 6.25). Lower and upper bounds for this problem have 

been found by Biron and Chawla [92] using a numerical 

technique. Hung and Ransart (931 have also analysed the 

same problem via FEM and found what they called quasi-lower 

and upper bounds. Both papers have used non-linear 

programming and von Mises' sandwich yield condition. Quite 
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recently, Morelle (62] used an upper bound formulation to 

analyse this problem for sandwich shells and Tresca sandwich 

yield condition. His results consist of an upper bound 

value and the corresponding collapse mechanism for an 

element structure containing 40 elements. Ponter and Carter 

[94] have also used a numerical upper bound approach for the 

analysis of a similar problem, based on a strain 

formulation, where again upper bounds and mechanism of 

deformation are produced. The lower and upper bounds 

obtained by the different methods above are compared in 

Table 6.2 with the upper bound obtained using the present 

technique. The collapse mechanisms from (62] and (94] are 

directly compared in Fig. 6.26, with the mechanism yield 

from the current approach, which used a 10 element 

structure. Although examples such as this conical shell, 

seems to be mainly academic, it serves very well to 

demonstrate the reliability of the technique. In a sense it 

justifies the aims of such simplified methods, which are to 

obtain good solutions using as few elements as possible, 

therefore avoiding the cost and time required to solve 

problems involving shells with more complex geometries and 

loading systems. 

6.10.1.3 Spherical Caps 

The limit analysis of this classical example of\hell 

structure (Fig. 6.27), subjected to hydrostatic pressure, 

has been performed by several authors in the past. The 

solutions vary from the simple determination of upper and 
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lower bounds on the critical pressure to some more complete 

solutions where the associated stress and velocity fields 

are also provided. Onat and Prager's [741 analytical 

approach, for example, involves a complete four dimensional 

yield surface for thin uniform shells and the fundamental 

theorems given in (81], and provides the first crude bounds 

for such problems. 

The problem for sandwich shells was solved by Hodge [89,95] 

who found much closer bounds. The need to develop simpler 

yield conditions soon became evident and Hodge (96] 

considered such an approach, which was followed later by the 

investigation of the bearing capacity of a spherical shell, 

assuming a variety of yield conditions carried out by Mroz 

and Xu [97]. The numerical method proposed by Biron and 

Chawla (92] was applied to similar problems using the von 

Mises sandwich shell yield criterion, where upper and lower 

bounds are obtained as results. As pointed out by Lee and 

Onat [98], in addition to bounds on the limit pressure, it 

is very important to have as much information as possible on 

the respective stress field and deformation patterns. In 

this sense, as stated previously, the present technique 

yields solutions which generate the velocity fields together 

with the critical pressure, since it is based on an upper 

bound formulation. The problems investigated for 
purposes 

of this thesis are related to clamped uniform shells, whose 

solutions may be easily compared with those in (781, when 

the limit pressures are plotted against the cap half angle 

a, which is defined in Fig. 6.27. Such a diagram is shown 

in Fig. 6.28. Two sets of spherical caps, geometries were 
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used for comparison (Fig. 6.28), ie, two typical values of 

the shell thinckness parameter H- h/4 R as defined in (78], 

for which the limit pressure curves are drawn in terms of 

the cap angle a. For large cap angles the solutions tend to 

the solution of a membrane shell. For some reason which 

could not be explained the results obtained here are 

coincident with those given in [78] for simply suported 

spherical caps as shown in Fig. 6.28. 

To complete the set of numerical examples on spherical caps, 

the solution of a cap with cutout closed by a rigid boss, 

free to move axially, as shown in Fig. 6.29, is presented. 

The limit load and deformation pattern is shown in Fig. 

6.30a. Figs. 30b, 30c show the strain distribution in the 

meridional and circumferential directions for a particular 

element. 

At this point, it is possible to make a direct comparison 

between the solutions for spherical elements obtained by 

using matrix (B] and matrix (RI as discussed in Sections 

(6.4 & 6.5). The solutions for a particular spherical cap 

using both matrices are shown in Figs. 6.31 & 6.32 together 

with the respective strain distributions for some elements 

of the discretized shell. It can be seen that for the 

solution obtained by using matrix (B] (Fig. 6.31), the value 

of the limit load is poor and the difference el - e2 is 

unacceptably large. However, when (R] is used, the limit 

load value compares well with that given by (781 and the 

strain difference is acceptable. When (B] is used only a 
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few elements near the clamped end are activated in the 

deformation pattern. All the others elements move as rigid 

bodies. It is worth noting that due to the fact that the 

general constraint Equation (6.57) was set arbitrarily equal 

to 1, for simplicity, to enforce the size of the mechanism, 

it will also control artificially the values of the strains 

distributed along the element. Therefore, the values 

appearing on the plots of the strain distributions are not 

actual values. 

6.10.1.4 Toroidal Shells 

To the author's knowledge, the only numerical solution for 

such'basic types of shell under internal pressure, considered 

individually, has been given by Drucker and Shield (75). 

The problem analysed in 1751 can be described as follows: 

consider a toroidal knuckle with one end clamped and the 

other bounded by a rigid plate(boss) as illustrated in Fig. 

6.33. 

The numerical geometric parameters used in [751 are given in 

Table 6.3, which will be also used here for comparison. 

Equations (6.93) and (6.94) represents Drucker and Shield 

solutions corresponding, respectively, to a lower and upper 

bound formulation. 

Q=L( 229 L+0.335) 

Y 

Q= (13.9 + 0.34) LR 

Y 

= 0.00159 (lower bound) 6.93 

= 0.00161 (upper bound) 6.94 
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which compare closely with each other. The current solution 

for the same problem is shown in Fig. 6.34, where an upper 

bound of p/oy - 0.00163 is obtained. 

Again the strain distribution for a particular element is 

shown in Figs. 6.35a & 6.35b. This last example completes 

the series of problems involving individual basic elements. 

in the next section, the technique will be applied to a 

shell composed of three of the basic elements. 

6.10.1.5 Torispherical Vessels 

Shakedown analyses of this type of pressure vessel, 

subjected to thermal cyclic loading in the presence of 

steady mechanical loads, is very likely to become one of the 

major tasks of the present research. Therefore, the prime 

objective of the technique in development here is not to 

solve limit analysis problems as such, although they may be 

assumed to be the simplest kind of problems this technique 

can be applied to, whenever the thermal loading is zero. 

However, solutions for such shakedown problems, described 

above, seem to be rarely available in the literature. In 

contrast, limit analysis solutions, which serve very well to 

test the applicability of this technique to more complex 

shells, may be really found for quite a number of types of 

vessels and loading conditions. In the particular case of 

torispherical vessels, for example, the limit analysis for 

the ASME standard torispherical vessel has been performed by 
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Shield and Drucker (761 and their bounds and collapse 

mechanism may be directly compared with those produced here. 

The bounds determined by Biron and Chawla [921 for clamped 

torispherical heads may also be used for comparison with the 

values calculated here. Quite recently, Ponter and Carter 

[941 have presented solutions for the shakedown problem on 

such vessels using a technique based on a deformation 

formulation for the Finite Element Approach. They 

considered two different types of geometric parameters for 

torispherical vessels, ie, the ASME standard vessels with a 

small torus and a non-standard vessel with a much larger 

knuckle. Their solutions, with the upper bounds and 

kinematic patterns, will also be used for direct comparison. 

The ASME Standard Torispherical Vessel 

The geometry of such a vessel is illustrated in Fig. 6.37a 

where the various geometric parameters are defined and the 

deformation pattern proposed by Shield and Drucker (76] is 

shown in Fig. 6.37b. For the particular example chosen in 

(76], it is claimed that the hinge circle labelled as A in 

Fig. 6.37b moves to the junction of the torus and cylinder 

when the thickness ratio h/D - 0.00058 with a value of p/ay 

- 0.02378E-02. The solutions obtained here may lead to a 

slightly different conclusion by analysing the mechanisms 

shown in Figs. 6.38a & 6.38b. It has been found that the 

location of the hinge A apparently does not change but the 

hinge angle at A becomes very small and an extra hinge forms 

at the junction torus-cylinder. This kinematic pattern 

seems to occur for small thickness ratio h/D as it can be 
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seen in Figs. 6.38a & 6.38b. Fig. 6.38 shows a sequence of 

solutions for various thickness ratios with the respective 

deformation mechanisms. In order to have a direct 

comparison with the bounds obtained by Shield and Drucker, 

upper bounds for various geometric parameters, determined by 

the present technique, are plotted on Fig. 6.39 where the 

variation of pD/2oyh with h/D given in [761 is shown. The 

solution, for a ASME standard torispherical vessel with a 

particular thickness, given by Ponter and Carter (941, is 

shown in Fig. 6.40 where the collapse mechanism is also 

illustrated. Such a solution can be directly compared with 

the solution given in Fig. 6.38b. 

Non-Standard Torispherical vessels 

Ponter and Carter (941 have also solved the problem of the 

non-standard torispherical vessel shown in Fig. 6.41a whose 

bound on the limit pressure and collapse mechanism is given 

in Fig. 6.41b. Such a case can be directly compared with 

the solution obtained here, which is shown in Fig. 6.42. It 

can be seen that the solutions compare closely, although the 

element structures are not the same. 

Finally, the problems of clamped torispherical heads, 

numerically analysed by Biron and Chawla [92] (Fig. 6.43), 

may be considered. The bounds in (92] are plotted against 

the ratio crown-radius/knuckle-radius (Fig. 6.44) covering a 

wide range of geometries, including the head of a ASME 

standard vessel for a thickness h-0.04. The bounds 

obtained here are also plotted in Fig. 6.44 and the solution 
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for some particular cases are shown in Fig. 6.45. 

6.10.2 Cyclic Thermal Stress Problems (Shakedown Analysis) 

The problems considered here involve only two types of 

vessels subjected to cyclic thermal loading in the presence 

of steady internal pressure. Such vessels are: cylindrical 

and torispherical vessels(ASME heads). The thermal cyclic 

loading is identical to that used by Bree(40,41], ie high 

temperature gradient varying linearly through the thickness 

of the vessel. Due to a lack of time it was not possible to 

include an extra subroutine in the Code CONRE which could 

generate cost coefficients for thermal loading problems. 

However, since the problems solved here are identical to 

those solved by Ponter and Carter (94], their cost 

coefficients could be directly used, for the cost functions 

which define the problem to be solved are also identical. 

The only requirement in this case is to maintain the same 

geometric parameters, end conditions, and discretized 

element structure. The flexibility of the computer code 

CONRE was once again tested and only a simple interface 

program was necessary to read the cost coefficients 

provided. 

6.10.2.1 Cylindrical Vessels 

The cylindrical vessel considered is fully constrainted at 

one end and closed by a rigid plate at the other. This 
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problem is identical to that analysed by Bree (40,41] when a 

bi-dimensional state of stress is considered. The solutions 

for several levels of cyclic thermal loading are shown in 

Fig. 6.46 where a direct comparison with the solutions given 

by Ponter and Carter [94] may also be made. The Bree type 

diagram obtained in [94] is shown in Fig. 6.47. The same 

problem was also analysed for temperature dependent yield 

stresses with the solutions and Bree diagram, for such 

cases, shown in Fig. 6.48 and Fig. 6.49 respectively. 

6.10.2.2 Torispherical Vessels 

A torispherical vessel geometrically identical to that shown 

in Fig. 6.38b, subjected to the same loading conditions of 

the previous case, was considered for the shakedown 

analysis. The solutions produced by Ponter and Carter (94] 

and those obtained here are shown in Fig. 6.50 where a 

direct comparison can be made. it may be noticed that the 

value of the limit load obtained for zero thermal load is 

slightly higher than that given in Fig. 6.38b, which shows 

just how important the element structure is for obtaining 

good solutions. The Bree type diagram given in (94] is 

shown is Fig. 6.51. It is worth mentioning that the bounds 

separating the regions of ratchetting and reversed 

plasticity in Fig. 6.47, Fig. 6.49 and Fig. 6.51 were 

obtained using the extended upper bound theorem presented in 

Chapter 2. 
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REFERENCE TYPE OF P Y FORMULATION 
LOWER 

92 BOUND 0.050432 

92 
UPPER 
BOUND 0.05324 
LOWER 

93 BOUND Q049624 

UPPER 
93 BOUND 0.054064 

UPPER 
62 BOUND 0.048168 

94 UPPER 0.0518 BOUND 
PRESENT UPPER 
TECHNIQUE BOUND 0.052114 

TABLE 6.2 

GEOMETRIC 
PARAMETER VALUE 

a 60° 

RI/L 0.06 

D/L 1.06 

RI /ro 6/47 

ro/L 0.47 

h/ RI 1/30 

h/L 0.002 

TABLE 6.3- GEOMETRIC PARAMETER FOR 
THE TOROIDAL SHELL IN [75] 
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Fig. 6.6 - SCHEMATIC DISPLACEMENT OF A GENERIC 
ELEMENT UNDER INTERNAL PRESSURE 

Fig, 6.7- SCHEMATIC DISPLACEMENT OF A GENERIC 
ELEMENT SUBJECTED TO A RING LOAD 
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Fig. 6.8 - HINGE ROTATION 
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CHAPTER 7 

CONCLUSIONS AND PROPOSALS FOR FUTURE WORK 

7.1 Conclusions 

The present research project has contributed to a better 

understanding of several aspects of the shakedown behaviour 

of shell structures. The following are the contributions 

and achievements of the present work: 

- The review presented in Chapter 2 contributes by 

recounting most of the shakedown and ratchetting 

concepts, extended theorems, and their application with 

emphasis on the extended upper bound proposed in 

[36,371. 

- By using the extended upper bound theorem the structural 

and material behaviour of structures operating above the 

limit of reversed plasticity was analysed. The 

dependence of shakedown behaviour on the type of 

structure was demonstrated by the analysis of two cases. 

The first, °'two-bar structure, showed no incremental 

deformation (ratchetting) up to plastic collapse 

assuming perfectly plastic behaviour. When cyclic 

hardening was considered in the calculations, the 

results obtained showed ratchet limit to be greater than 

the limit load. 
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The second example was the case of the cylindrical vessel 

with a thickness discontinuity subjected to cyclic internal 

pressure. A bound defining the ratchet limit was 

constructed by means of the same extended upper bound. It 

was shown that, for extreme cases when the Stress 

Concentration Factor (SCF) is very high, failure may 

theoretically occur due to incremental deformation for small 

constant mechanical load in the case of perfectly plastic 

material. In the case when cyclic hardening was included, 

the global collapse always prevails and the vessel fails as 

a membrane when the limit load is reached. In both cases 

the problem of low cyclic fatigue has to be considered. 

- Assessments of structural behaviour at stress 

concentrations due to mechanical load. 

The overall conclusions for these calculations are as 

follows: The influence of the SCF on the performance of 

structures subjected to cyclic mechanical load has been 

investigated with the conclusion that the SCF plays a role 

in the way structures deform within the shakedown limits, 

where plastic strains which are small could be ratified. In 

addition, the dependence of the shakedown limit on the SCF 

was also confirmed. When the value of the SCF is high, the 

reversed plasticity shakedown limit is reduced and a higher 

transient residual strain is obtained at a given load level. 

However, when the analysis was performed beyond the 

shakedown limit it was found that the SCF has very little 

influence on the ratchet limit. In such cases, the analysis 
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and design may be performed to prevent incremental growth 

but not reversed plasticity and the structure would be 

allowed to operate subjected to stress amplitudes &a > 2vy. 

Thus, the problem to be analysed is likely to be one of low 

cycle fatigue or alternatively, the parameter which governs 

structure reliability may be the limit load. 

-A simplified technique was used to evaluate the 

shakedown bounds for thermal loading problems in 

cylindrical vessels. The technique was able to predict 

results obtained by Karadeniz and Ponter [511 using a 

Finite Element analysis technique, and also to extend 

the analysis to include multiple loadings. A graphical 

form of presenting the results allows an easy assessment 

of the regions of differing modes of deformation and 

this approach has considerable appeal for design 

purposes. The effects of the temperature on the yield 

stress of the material were also explored with a 

considerable change on vessel behaviour. 

- The tests performed on portal frames at 400°C confirmed 

the non-ratchetting material property of the SS316 at 

this temperature, as well as its capability of cyclic 

hardening. A theoretical analysis of such a portal 

frame was made by means of the extended upper bound 

theorem and as a result a Bree type diagram was 

constructed. This diagram was used as a reference for 

the analysis of the experimental results which were 
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presented as contours of states of constant plastic 

deformations which were reached after some transient 

during the first few cycles. An interesting feature of 

these contours was the way states of constant plastic 

deformation were reached for small mechanical loads. In 

contrast with the behaviour of the frames carrying large 

mechanical loads, the deformation tended to accumulate 

towards a stable state in the direction opposite to the 

direction of the mechanical load. It seemed that for 

the frame loaded with aP-4 Kg a neutral sort of 

behaviour was reached without any noticeable plastic 

deformation. Such behaviour could not be predicted by 

the theory used but for 6/SL < 2.5 the theory gave a 

very good estimate of the ratchet limit. An attempt was 

made to predict theoretically the stable state of 

constant deformation in excess of the shakedown limit. 

A simplified calculation was used to estimate the total 

extent of the hinges along the bars of the frame and the 

transient plastic deformation was calculated using the 

method proposed by Mendelson [23]. Theoretical contours 

were then obtained for a transient deformation of u 

4mm and for two different strain hardening parameters 

obtained, respectively, from the cyclic stress-strain 

curve contructed by Ponter and Karadeniz [36,37] with 

k-7 (Fig. 5.5), and from the monotonic stress-strain 

curve in Fig. 5.30 with k- 22.5. Although both curves 

are conservative when compared with the contour obtained 

experimentally, the contour corresponding to the cyclic 

stress-strain curve [36,37] is much closer to the 

experimental one and therefore less conservative. 
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- The general technique developed for the shakedown 

analysis of pressure vessels is probably the major 

contribution of this research, in the sense that it will 

possibly be able to accomodate all the aspects of the 

shakedown problem studied here. The primary aim of the 

technique which is to solve thermal cyclic loading 

problems for axisymmetric shells has been achieved and 

the technique is already able to cope with a wide range 

of loading problems and differing types of pressure 

vessels. The basis of the technique was to reduce the 

shakedown problem to a minimization problem which could 

be solved as a Linear Programming problem. This could 

be achieved only by developing a method for obtaining a 

consistent relationship between the displacement field 

the kinematically admissible strain field and the 

plastic strain field assumed. By means of a Galerkin- 

type technique, the difference between the two 

representations of the strain, ie the strain in terms of 

nodal displacements and in terms of plastic multipliers, 

was minimized and a general and consistent relationship 

between displacement and strain fields was obtained. 

Such a relationship has been able to produce good 

solutions when compared with known solutions for all the 

cases analysed in this thesis, although, as pointed out 

in the next Section, it still can be improved by using a 

better displacement field. 
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7.2 Proposals for Future Work 

The current state of development of the Finite Element 

technique proposed in this research programme is still 

incomplete and is capable of considerable development. The 

technique still needs to go through several important stages 

of optimization which will increase the reliability of the 

solutions. In addition, the inclusion of a variety of types 

of shell elements will greatly increase its potential as a 

tool for the shakedown analysis of axi-symmetric shells. 

For the immediate future the technique needs to be 

implemented with the following developments: 

- The inclusion of a variety of additional practical 

thermal loading cases among the ones already considered 

in this thesis. 

- The inclusion of a wider range of axi-symmetrical shell 

elements. 

- The use of a better displacement field which would allow 

the inclusion of bending curvature within the element. 

At the moment the displacement field within the elements 

is assumed to be interpolated by linear functions with 

the meridional and circumferencial strains being 

described in terms of 3 nodal quantities only. By 

assuming an intermediate node within the element, a 

compatible displacement field of the second order 

involving a fourth quantity would, perhaps, be a better 

approximation for the actual displacement field. Such a 
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choice of displacement field would lead to a similar 

orthogonality condition for the meridional strain 

difference. This would result in a orthogonality 

condition for both the circumferential and meridional 
46, 

strain to an arbitrary linear function. Such condition 

would be much stronger than the condition presently 

obtained for the strain difference in the meridional 

direction which is zero in the mean within the element. 

- The use of a better yield surface such as the 12X's 

obtained from the composition of the Tresca and von 

Mises yield surface as shown in Fig. 7.1. 

- The generalization of the technique to cope with 

multiple loading. 

In a long term the technique could perhaps be extended to 

analyse asymmetric shells and therefore complete the range 

of shell structures it is potentially able to analyse. 
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APPENDIX A 

A. 1 The Calculations for Cylindrical Pressure Vessels with 

Variable Thickness 

The details of the loading and geometry for this problem are 

given in Chapter 3 and the purpose of this appendix is to 

provide some details of the calculations involved. 

ELASTIC SOLUTIONS 

Elastic solutions for thin cylindrical shells are easily 

available from (57] and [58] and the equations of the edge 

forces obtained for this particular problem are quoted 

directly in Chapter 3. 

MOMENT AND HOOP FORCE DISTRIBUTIONS 

The distributions of bending moments and hoop forces due to 

the edge forces (H, M) for a particular cylinder (a-4, p-200) 

are shown in Figs. Al and A2. Only the distributions in the 

thinner cylinder are illustrated. 

The superposition of the membrane hoop forces and the hoop 

forces due to H and m is shown in Fig A3. It can be seen 

that global collapse (or membrane failure) is more likely to 

happen at the section where the hoop stress due to edge 

forces is maximum. It is assumed in this analysis, however, 
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that this maximum hoop force can be neglected in comparison 

with the membrane hoop force. The global collapse bound is 

then very easily determinated. 

GLOBAL COLLAPSE 

The loading condition for a global collapse to occur for a 

Tresca yield condition is represented in Fig. 3.12. If the 

effect of the edge forces is neglected, the membrane hoop 

forces can be calculated by 

Ný =N (Ap/2) + Nm(p) Al 

which gives 

2+ pR A2 

The hoop stress is then 

ApR 
Qý + pR A3 

For the global collapse bound the following expression is 

obtained 

ApR 
+ pR = Cr 

2T Ty A4 

in terms of Ap and p. The same equation can be written as a 

function of nondimensional parameters 

P 
+2P 1 AS 

LL 
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THE UPPER BOUND THEOREM 

Equation 3.11 represents the upper bound theorem which will 

be applied to the mechanism shown in Fig. 3.13. Such an 

equation was divided into three terms which can be 

calculated as follows: 

DETERMINATION OF THE TERMS 

Term I (j ad eil dV) 

Qii d eil = Qx dcc+a; d cc =a dc + Q; x0=a de (constant) A6 

The assumed element is shown schematically in Fig. A4. 

fad e°dV = 21tRaTQyde 
A7 

Term II (f pdü dS) 

du = ade AS 

Jpdü dS = padE f dS = palTR2dE A9 

Term III (f cý(z, 
t)d Eid dV) 

aAp(z, Odec A10 a (z, t)deil =a d's+ aAp ýk< 
x 

(maximum when A (z, t) is maximum positive) 
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dV = 21rRadz 

TQy =+A 

T 
a (z, t)d Eid = 21rRade f aAp(z, t)dz A12 

0x 

Equation 3.11 becomes 

2nRaTdca = palR2de + 2iRade 
laAP(z, 

t)dz A13 
Y0X 

or 

where 

STRESS DISTRIBUTION 

All 

A14 

T 
A=fa (z, t)dz A15 

0 

Assuming a linear stress distribution through the thickness 

of the vessel, the stress diagram is shown in Fig. AS. The 

shaded area corresponds to the value of A. 

RATCHETTING BOUND ABOVE REVERSE PLASTICITY 

The upper bound theorem can now only be applied to Vs, where 

the stresses lie below the shakedown limit. The extreme 

stresses of and a2 are expressed by 
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a1=A+ BT/2 A16 

QZ =-A+BT/2 Qy A17 

where 

A= 
AP 

;B= 
12M(p/2) 

and A< BT/2 A18 
T 

Applying the upper bound to Vs gives 

Qt=ER A19 
Y2 

where 
z2 + z3 A20 

A'2 (z2a2 + Z, Qy) A21 

BT A+ 
2 A22 

Zz =B3B 

Substituting the values of A20, A21 and A22 into A19 gives 

(2Q + BT - 2A) R 
A2 - ABT + 

2T 
+ a2 

Q=y _pR+ 
1_() A23 

Y 2B 22B 

which in terms of nondimensional groups becomes 

12f 2(a) 

[AP/PL 
- (3f 

2(ac) - 9f2(a) 4ý 
- (1-6f2(a) )ý A24 

LL 
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EQUILIBRIUM EQUATIONS FOR PERFECTLY PLASTIC MATERIALS 

Figs. (A6a, b) represent the stresses distribution diagram 

assuming first c2 < oy. The thickness of the elastic region 

can be related to the total thickness as 

t= kT 

where k-constant. 

A25 

Equilibrium of the axial forces is satisfied by equation 

Nx =jd F1 +F A26 

From Figs. A6a, b) it can be seen that 

dFi = QX dS = (A + Bz)dS A27 

vy(T-t)=Qy(1-k)T A28 

Introducing this into A26 gives 

NX=AfdS+Bj dS+F A29 

rewriting 

N-F 
Ax 

s A30 

where 
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S=1xt= kT A31 

The equilibrium of the edge moment with the moment due to 

the internal forces is expressed by 

M= f zdFl +Mp A32 

Here Mp is a plastic moment given by Figs. (A6a, b) 

P=Fx zp ; zp = T/2 A33 

Equation A32 becomes 

or 

then 

M= f (A+Bz) zdS+F2 A34 

M=A f)/ +B f z2 dS+F2 A35 

B_ 2M 
21 

FT 
Where I= i2 

A36 

As the plastic zone constitutes a small zone of the vessel, 

it is assumed that the edge moment M and the axial force Nx 

remain unchanged. 

ßT2f2(a)Ap DR MX= 4; Nxs A37 
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RATCHETTING BOUND ABOVE REVERSE PLASTICITY 

Using the procedure previously presented , the upper bound 

theorem is applied to Vs in Figs. (3.19a, b, c) with the 

initial assumption that A< BT/2. 

Equation A38 is then obtained 

s 

at+ 
A2 - ABt + +Qy 2 A38 

y2 2B 

where 

A= 
ApR - 4F 

;B_ 
2M 

21 
FT 

qS- kT A39 

3 
F =a (1-k)T ;I= 

12 
;t= kT A40 

Equation A38 can be rewritten in terms of nondimensional 

paramenters as 

_ _i 
1e k3 22 

PL 12r 42 
- 1-k)1 

1 

k2 

[: 
- kf2+ 4ý P 

Lf2 PL .1 

+1 
[18(-T1-k) 

f2 _ 
3(1-k) (1 + 2f2) + 

(1k k) 
- 2J p- A41 

L 

- 
(1-k) 19(1-k) 

- 
6(1-k) 

; 
(1-k) 

- 41 
kLk k2 k1 

The extreme stresses are now 
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Q1 = a1= A+ Bt/2 A42 

a2 =A- Bt/2 >-a A43 

From A42 it can be seen that al - ay - constant. 

Substituting the values of A and B into this equation gives 

n- 2(3-2k) 
A44 

PL - (k + 6f2 (at) ) 

In the limit for 1a21 - Qy, as shown in Fig. (3.18c), a new 

plastic zone will start developing. From this relationship 

Equation A45 is obtained 

r k3 +-3(1-k) 
PL L3 t'2(a ) A45 

Equations A44 and A45 must be satisfied simultaneously to 

define the limit point where the new plastic zone starts. 

Hence 

2(3-2k) 
= 

k2 + 3(1-k) 
k+ 6f2 3f2 A46 

which gives 

k2 + (6f2-3)k - (6f2-3) -0 A47 

Solving this equation 

(6f2-3) + (6f2-3) 7-475f 
2-3) A48 kL a2 

that is the value of k(-t/T) when c2 - vy. Equations A41 
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and A44 define part of the ratcheting curve in the range kL 

<ký1. Prescribing k in this range, the values of AP/PL 

are found by using Equation A44. The values of p/pL are 

then calculated by introducing k and AP/PL into A41. 

When the new plastic zone (VF2) is formed (Figs. 3.20a, b) a 

new equilibrium must be established. For the elastic/ 

perfectly plastic material the extreme stresses cl and o2 

will now remain constant and equal to ay (Equations A49, 

A50). 

Q1 A+ 2 
=Q A49 

Y 

QZ A_ 2 =_a A50 
y 

It can be seen that A-0 and it is only necessary to 

determinate B. Using the procedure previously presented the 

expression below is obtained 

4 M( p/2) - [a (1-k2)T2 + N2] 
8- A51 4vl 

y 

Equation A49 or A50 can be used to calculate Ap/p. 

Bt 
Qy =2 

which gives 

A52 

8 (42 
2 

- 312 p+ 3-k 2=0 
A53 

PL 
) 

Solving the equation 
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p_ 2 
(6f2) f3- 3(3-k' 

for kL > k> 0 
. A54 

The upper bound theorem can now be applied in the range kL ý 

k>0 to complete the ratchetting curve by prescribing the 

values of k. 

Qt. 2R 
y A55 

From Fig. 3.20a, b an expression for A is obtained 

B A56 

The upper bound gives 

k3 

PL 6t' (a)-3 2-3(1-k2) A57 
2 4PL, pL 

From Equation A48 

(6f-3)2 + 4(6f-3) >o 22 A58 

or 

f2(a) 0.5 
A59 

Therefore, for vessels with f2 < 0.5 no kL can be found. 

Analysing a vessel with this geometry (a- 4) may possibly 

demonstrate that the extreme stress c2 starts decreasing as 

the plastic zone advances (Fig. A7). Then the limiting 

condition to define the range of this part of the curve is 
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now a2 - 0. From this condition 

Ar) 
= 

2(1-k)(k-3) 
PL (k-6f2) A60 

which must be satisfied simultaneously with 

(previously defined) A44 

to give 

k= -(6f2-6) ±f 2- + 4(12f2-6) 
A61 

z2 

Equations A41 and A44 can still be used since nothing has 

changed but the range of validity of k that now is kZ ýkS 

1. 

For k< kZ, a2 >0 and the problem lies in the range where 

A> Bt/2 (Fig. A8). 

The upper bound theorem gives 

=1-1 
AP 

PL 2 pL A62 

This equation can also be used for vessels whose geometry 

leads to A> Bt/2 from the begining of the load history. 
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APPENDIX B 

DISPLACEMENT AND STRAIN FIELDS FOR AXI-SYMMETRIC SHELLS 

DISCRETIZED INTO FINITE ELEMENTS 

The displacement field for 

structure will be described 

in the outward horizontal d 

vertical direction U(s) as 

displacements are assumed 

functions in terms of nodal 

an element i of such a type of 

in terms of global displacements 

irection W(s) and in the downward 

shown in Fig. 6.3. Such global 

to be interpolated by linear 

values as 

U(s) = Ui + 
ii (Ui+i - U1) 

81 

W(s) = (1 
- 

Vii) Wi + R. Wi+i B2 

in a matrix form, the vectors representing the total 

displacement field and the rigid body translation may be 

respectively written as 

{ue(s)} 
U(S) 

) 
{U 

Ui 

00. B3 

The global displacement field can be written in a matrix 

form, in terms of a nodal values vector 

Ui Ui+=-Ui 

fu }-; fu 
n' - Wi B4 

0 Wi+i 
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and a matrix of shape functions 

Is_ 00 

B 

as follows 
Uil U(s) Ui [s/Li 00 Ui+1- 

fus(s)}= + Wi B6 

W(s) 00 (1_s/ý"i) s/zi 
I 

Wi+1 

The local displacement field is obtained by simple trans- 

formation as 

{ue(s, 4 )} _ [T] {Ue(s)} B7 

where 

{ue(s, 4)} 
u(s, $) 

' B8 
w(s, o) 

which gives 

sin s 
sink cos " Ri cos Ui}l-Ui 

s Wi B 

cos Li cos sin " Ri sin $ wi; 
l 

In a matrix form it becomes 
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{ue(s)} = {uo} + [H(s)] {Un} a10 

The strain field is obtained from such a local displacement 

field, without the rigid body motion vector (uo), by means 

of (2.5) and as stated in Chapter 2, it will be defined only 

by the meridional and circumferential strains, with no 

curvature involved. In the case of thin shells of 

revolution, Equation (2.5) is given by, for example, 

Timoshenko and Krieger (77] which in terms of nodal values 

is I 

c (s, e) 
d1 

ý ds R1 

{e(54)} _ [H] {uni 

lCe(S, 4)f Ctc 1 
R 2Rz 

Matrix [B) in Equation (6.10) is defined as 

d 
ds 

[B] = 

cot 
R2 

1 
R1 

1 
R2 

[H] 

which gives rise to 

sin 

EB] 

0 

0 

R2 (1 - 2,1 sin 

when (H] is given by (B10). 
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APPENDIX C 

AVERAGING THE NODAL CONSISTENT RELATIONSHIP BETWEEN 

THE GLOBAL DISPLACEMENTS WFS AND THE PLASTIC MULTIPLIERS X'S 

The consistent displacement formulation proposed in Chapter 

6 gives rise to a relationship between nodal values of W's 

and X's for each element. Consequently, two of such 

relationship for each node is produced since adjacent 

elements share one node as illustrated in Fig. Cl. In order 

to obtain a single nodal relation and therefore a continuous 

displacement field, the average of the two equations corres- 

ponding to the adjacent elements was adopted. 

From Equation (6.41) and Fig. C1 the consistent relation- 

ships for such adjacent elements can be written as 

Element i-1 

L11 L12 ... Lis Lip Lie ... 112 1 

W L21 L22 ... 
L26 L27 L28 ... 

L212 
i-1 

W 
1 

L31 
1 

L32 
... 

i-1 
L36 

i-1 
L37 

i-i 
L38 

... 
i-1 

L31 cl 

i 

i 
ý6 

Element i 
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U -U L L L Li """ i+l 1 11 12 16 """ 17 is 112 

- I I i L I L i L Wi '21 '22 26 """ '27 29 """ 212 C2 

W L I i L L I Li 
x6 

i+l '31 '32 36 """ 37 ''38 """ 312 
i+l 

ý 
1 

x +1 

A single general equation representing a single relationship 

between W's and X's for a node i can thus be written from 

(Cl) and (C2) as 

6 

W=1f 
[L' -iXi-1+ (Li-1 + Li Xi + Li ýi+iý 

t C3 J i2t k=G1 3k k 3k+6 2k k 2k+6 
'k 

which involves plastic multipliers from three nodes i-l, i 

and i+l. In a matrix form such single relationships for all 

the nodes can be written as 

W1 0 ... 

Wi 2 L31 ... 

WK 2xLN 1. 
31 

... 0 2xL2 2xL 2xL? ... 2xLi i t 
1 z1 7 12 l 

L )""" (L +L (L )L Li """ it ý7 21 lt2 2t 27 12 

2xLN 1 2xLN t. 
".. 2xLN 1 0 ... 0 

36 37 212 

Xi, 
i+1 

xi+1 

C4 
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or 

Thus 

1 le i-1 w ... 
L 
w 

L 
w 

w 
i = Li ... W Li w 6 

" " l6 : i 
j1 N 

WN LW Lw 

Ä6 
i+j x1 

i+i 
6 

{w1} = [L, w) 
1 for k=1,6 

k 

ýi+l 
k 

C5 

C6 
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O ý+, i-i . _, i 

FIG. Cl GENERIC ADJACENT ELEMENTS 
SHARING NODE i 
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APPENDIX D 

THE GENERAL CONSTRAINT EQUATION AND THE COST FUNCTION 

IN TERMS OF PLASTIC MULTIPLIERS 

The General Constraint Equation 

Equation (6.64), representing the external work due to the 

internal pressure, can be rearranged in terms of nodal 

contributions as shown below 
NE 

WE = 21rp [IFWUI(i)Ui + IFWU(i)](Ui+l-Ui) + 

D1 NN 
I [IFWIP1(i-1) + IFWI(i)]Wi} 

i=t 
Such an equation needs to be introduced to the Linear 

Programming, as a general constraint equation, in terms of 

plastic multipliers, according to condition (6.41) assumed 

in Chapter (6). The nodal displacement components (Ui+l - 

Ui) and Wi appearing in (Dl) may be directly substituted in 

terms of plastic multipliers by means of (C2) in Appendix C. 

The nodal axial displacement Ui, however, is given by the 

end conditions and the first line of matrix (C2) in Appendix 

C for any node i as follows: 
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Notre 

1 U2-U1 - P1 (a) 

2 U3-U2 m f2(X) 

i-1 Ui-Ui-1 Pi_1(a) 

Node 

i Ui. 
t-Ui a Pi (1) 

i«1 Ui+2-Ui; 
i 

- f1; 
L(A) 

N-1 UN-UN-1 - tN-t(X) 

L (Ui+1-Ui) Ui-U1 - F(A ) 
i=t ký1 

for U1 prescribed 

D2 

N-1 N-1 

i4i(Ui, l-U i 
UN-Ui = kirk 

for UN prescribed 

D3 

If Equation (D3) is adopted, the axial displacements Ui's 

can then be written in terms of X's by means of matrix 

(6.41) as 

N D4 
Ui =- [Lik+6+Lik]{Xk} for k-1,6 

The general constraint Equation (Dl) is then given by the 

contribution of the three displacement components Ui' Ui+l 

Ui and Wi, which are all functions of nodal X's. 

The Cost Function 

In Chapter 6, the cost function for a particular element i 

and a yield stress independent of the temperature was given 

by Equation (6.60) to be integrated over the hinge and 

element volumes. 
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where 12 is given by 

6 

I2 =ý[ if QiJ(tk)] dcijitk)dV D5 
k=1 

Hinge 

and will be discussed later in this Appendix. Assuming the 

Tresca yield condition (Fig. 6.4) and that Xk(s) may be 

interpolated in terms of nodal values 

7ti(s) xi 
k+ 

-ixik +l fork = 1,6 
D6 

the integral over the element volume for a particular Ak(s) 

may be written 

V [JJ 
- ci j (tk)] {Ni 

j 
}k{Ak(a) }dV 

h/ ý'i li D7 
2n lz c 

-Qe (t ) dy{N }j r(s) {1 
- 

S)Xids + fr(s) Ai+ids 

_h/t 
ij ij k iý k[o 911 k0 £i k 

where dV - 2nr(s)dyds. 

The integral ti of the cost function for an element i 

becomes thus, 

6 h/2 {ajj_ajjtk]dY{Njj}k [F1x 
= 2it 

f$+ F2 '] t 
D8 

k= i JI 
J 

where 

£i 
F1 =f r(s) (1- )ds D9 

oi 
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2, i 
F2 =J r(s) ds D10 

0 

When the assemblage of the elements is performed the total 

integral becomes the sum of the contribution of each 

individual element to give 

TI1 = 2n 
{ J/z 

[ajj_ajtk]dY{Njj}k [Fx 
+ FXl] 1 D11 

i1 k=1 h/2 

which in terms of nodal contributions becomes 

6 

TIi = 211 11 {f2rC 
/ 

Ij-Q1 j 
(tk)J dy{Nij} 

i=i k=i h/2 Lk 

[F1 1+ F2] 
k 

lk D12 

The second integral 12 in (6.60) is performed over the 

volume of a hinge and perhaps can be described as the 

difference between the energy dissipation during the 

formation of such a hinge and the external work produced by 

the thermal stresses due to the hinge rotation. For an 

axi-symmetric shell 12 can be split in two parts to give 

I2 =1 {a'_t )]dcdV +V 
[crca Qe(tk)jds6dV 

D13 

where dV - 2nridsdy. 

Let Fig. 6.8 represent a nodal hinge circle for al taxi- 

symmetric shell, at the intersection of two generic 

elements. Details of such a hinge is shown in Fig. Dl. For 

small values of the angle ei, ds - rc ei. It may be seen 

from rig. Dl that the length of the fibres at nodal points, 

initially the same as the neutral line, has varied linearly 
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with the formation of the hinge. It can also be seen that 

the layers above the neutral line are in compression whilst 

those below it are in tension. Considering a general fibre 

at a distance y from the neutral line (Fig. Dl), the 

meridional strain may be determined by 

dr: _ 
(ds+Mds) -ds D14 

ds 

where ds + Ads - (rc + y)ei. Thus, 

(rc+y)01 - rce D15 
deb _ rc 0i 

or 

dce = 
r' 

= di D16 
c 

The uniform circumferential strain is given by 

dc0 = Wi/ri D17 

Equation (D13) may now be written as 

h/2 j' ,. Y8 
h/2 "j 

12 = 21rri 
{f{ 

ve-ol(tk) 
] 

da 
dsdy + da ! 1c1e-Qe 

(tk) I deody 
} D18 

-h/2 
L 

-h/2 
J 

Assuming ds as very small the second term on the right hand 

side can be neglected. Thus 

I 2nr 
h/Z 
j c-Qe { tk ygidy 

} D19 
LJ 

-h/7. 
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Note that when the thermal stress is zero, (D19) becomes 

identical to the term representing the energy dissipation 

during the formation of a hinge for o+ = oy, ie, 

12= 2nria 4291 D20 

(G. 601 
The cost function, Equation (IV$), may now be written as 

NN 6 h/s h/2 
Is 2rtil 

ý1-h/f z 

{aj_Jtk]dYNjJ1k 
AkIk + ri f [(c-am(tk)ydyO, l ýD21 

-h/s 

where 

i-i 
+i Ak [F1 F2]k D22 
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Fig. DI - HINGE CIRCLE 
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APPENDIX E 

GOVERNING EQUATIONS FOR THE DIFFERENT MODES OF BEHAVIOUR 

0 
OF PORTAL FRAMES AT 400 C SUBJECTED TO SIMULATED THERMAL 

CYCLIC LOADING AND CONSTANT MECHANICAL LOAD 

Before determining the required equations some definitions 

must be made which will be used through the whole set of 

calculations. These definitions are the following: 

a) Moment Required to Form a Plastic Hinge(ML) 

The definition of 
a lastic hinge is easily available in the 

literature [13,14,15,16] within the classical theory of 

plasticity and associate4with it there is the definition of 

plastic moment which will be widely used in this section. 

Stress distributions for both perfectly plastic and 

isotropic material models on a retangular cross section are 

illustrated by Figs. Ela, b, c and Figs. E2a, b, c. The 

definition of the plastic moment for the isotropic hardening 

model is the moment which yields a stress distribution 

diagram of equal area as that corresponding to the plastic 

moment of a perfectly plastic material model. 

The value of the plastic moment is then 

Q bt2 
ML El 
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b) The Collapse Mechanical Load 

The collapse mechanical load will be assumed as the load 

necessary to produce plastic hinges at the nodes B, C and D 

of the portal frame. The collapse mechanism is shown in 

Fig. E3. 

The collapse load is then given by PL - 3*ML/L 

c) The Magnitude of 6 to Form a Plastic Hinge 

The expressions for the elastic moments due to the cyclic 

load in Table (5.1) show that the maximum moment occurs at 

node B where the first plastic hinge will form. When that 

happens the moment at node B will be equal to the plastic 

moment previously defined which as function of PL is given 

by ML - PLL/3. Equating the value of ML in terms of PL to 

the expression obtained from Table (5.1) for the elastic 

moment at node B, gives: 

LPL 
12 EI 

3= 11aL 

Hence, 

E2 
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6 11 9" 
p 

E3 
L 36 EI L 

With these values defined one can now start the 

determination of the governing equations for the different 

modes of response of the structure corresponding to the 

different regions shown in Fig. 5.17. 

Fully Elastic Behaviour(Region E in Fig. 5.17) 

The elastic boundary is defined by two bounds which depend 

on the combination of the loads. The bending moment 

receives contributions from both the mechanical and cyclic 

thermal loads. For the structure to behave elastically the 

stress due to the total bending moment needs to be, at the 

most, equal to the yield stress of the material at any time 

of the cycle. The equality will provide bounds beyond which 

some sort of plasticity will occur in the structure. The 

bounds which will confine the elastic region are defined by 

two modes of behaviour at the limit of elasticity. 

- limit of elasticity is reached at node B where the 

moment due to the cyclic thermal load prevails upon the 

moment due to the mechanical load 

- limit of elasticity is reached at node D where a high 

mechanical load imposes a reverse situation 

The general condition for the elastic behaviour of a 

structure with rectangular cross section subjected to 
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bending moments is 

6Mi 

a btýýýY E4 

where oy is the yield stress, Mi is the bending moment at a 

generic cross section i. Then, 

3Mi av bt2 
M 

E5 
<-= 24L 

If the elastic limit is reached at node B the first elastic 

bound can be determined by substituting into Equation (ES) 

the expressions for the moment at node B due to the 

mechanical and cyclic loads obtained from Table (5.1). This 

bound in terms of non-dimensional quantities is given by 

15 P6_2 E6 
22 PL+SL 3 

The second bound is obtained likewise by assuming similar 

conditions at node D to give 

15 P+3d. 2 E7 11 PL 46L3 

These two bounds constitute the boundary for a fully elastic 

response of the portal frame. 

Elastic Shakedown Region(Region S in Fig. 5.17) 

Any operating point outside this boundary and inside the 

shakedown region S will still lead the structure to a fully 

325 



elastic behaviour after the accumulation of some transient 

plastic deformation during the first few cycles. Different 

operating points in the shakedown region will only produce 

yielding in different parts of the portal frame. The 

boundary for this region is the one used in present design 

codes which is obtained by the strict use of the shakedown 

concept. The boundary, in fact, is composed of two bounds; 

one separating the shakedown region S from the reversed 

plasticity region F and the other separating it from the 

ratchetting region R. The shakedown/reversed plasticity 

bound is defined by value of the cyclic thermal load 

necessary to form a hinge at node B, ie SA/SL - 1. The S/R 

bound will be obtained by applying the upper bound shakedown 

theorem (Equation 2.50) to an incremental mechanism 

consisting of plastic hinges at nodes B, C and D, likewise 

the collapse mechanism shown in Fig. E3. The upper bound 

theorem will then give : 

3ML 0=P. L. B + IMBIIOI ~ IMCII0I + IMDIIe1 E8 

From Table (5.1) the expressions for the moments can be 

substituted into (E8) to give 

3ML P. L ' 124 
EI 

116A 
E9 

which in terms of non-dimensional parameters becomes: 

1=P=ýa Eio 3 dL L 

These two bounds can now be plotted on a Bree type diagram 
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in terms of the non-dimensional parameter to define the 

classical shakedown boundary currently used for designing 

structures under such conditions of mechanical and cyclic 

thermal loading. 

Reversed Plasticity(Region F in Fig. 5.17) 

The region of reversed plasticity F will be defined by a 

safe estimate of bounds which separate a state of zero 

strain growth of the structure under complete reversed 

loading and that state of incremental growth when the 

structure operates in ratchetting region R. For a safe 

prediction of the boundary between the r and R cyclic 

hardening must be taken into account and the extended upper 

bound theorem proposed by Ponter and Karadeniz [36,37) will 

be used for its determination. In the case of the portal 

frame under analysis here, the moment at any section of the 

structure when the operating point is outside the elastic 

region, is given by: 

M*=Mp+M+MR Ell 

where MP and Mb are the elastic solutions in Table (5.1). 

For any operating point in the region of reversed plasticity 

F, the moment due to SA will be greater than ML at some part 

of the structure. Assuming that wherever it occurs that 

region will behave as a plastic hinge and that 

Mp + MR =0 E12 
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gives rise to Ma = ML in VF (hinge) and the application of 

the extended upper bound theorem becomes restricted to the 

remainder of the structure (Vs). Hence, Equation (ElO) is 

valid until the plastic moment ML is exceeded somewhere in 

the frame. This first occurs at node B for EA/SL =1 which 

taken into Equation (E10) gives 

P1 
PL 3 E13 

Applying the extended upper bound theorem to the remainder 

of the structure (Fig. 5.9) and assuming an incremental 

collapse mechanism as shown in Fig. E4 with no contribution 

from node B to the energy dissipation gives: 

2 MLG =PL. e + IMcI IeI + MDIBI E14 

and hence 

1 °23 
PL 

`2äL E15 

Similarly, Equation (E16) will be valid until the plastic 

moment ML is reached again somewhere else in the structure. 

The way the frame actually behaves with the increase of load 

is by having the plastic hinge spreading along the bars AB 

or BC from node B and ML will therefore be exceeded first in 

the cross sections adjacent to it. It is still a reasonable 

approximation to assume that this will occur next, at node D 

instead. The moment at node D due to the cyclic load will 

be equal to the plastic moment for 
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a4 
aL -3 E16 

which subtituting into (E16) gives P/PL- 2/9. The extended 

upper bound theorem can again be applied to the remainder of 

the structure (Fig. 5.10) with its corresponding incremental 

mechanism shown in Fig. E5 where no contribution to the work 

is given by nodes B and D. The new bound is given by: 

ML9 = P. L. 9 + IMCIIB) 

and hence 

1= 3P 
1ä 

LL 

E17 

E18 

completing thöugh the boundaries in the Bree type diagram 

which separate the several regions of different modes of 

behaviour of the portal frame. 
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(a) (b) (c) (d) 

FIG: El - STRESS DISTRIBUTION (Perfectly Plastic Material Model) 
(a) CROSS SECTION (b) AT LIMIT OF ELASTICITY 
(c) HINGE IN FORMATION (d) AT PLASTIC MOMENT(Hinge Formed) 

(a) (b) (c) (d) 

FIG E2 - STRESS DISTRIBUTION (Isotropic Hardening Model) 
(a) CROSS SECTION (b) AT LIMIT OF ELASTICITY) 

(c) HINGE IN FORMATION (d) AT PLASTIC MOMENT(Hings Formed) 
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B 

bA V bA 

B' 

Plastic hinge formed 
during collapse 

o Hinge 

C c' 

FIG. E4 INCREMENTAL COLLAPSE MECHANISM FOR THE . REMAINDER OF THE PORTAL FRAME AFTER THE 
FORMATION OF A HINGE AT NODE B 
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Plastic hinge formed 
during collapse 

o Hinge 

6A bA 

FIG. E5 INCREMENTAL COLLAPSE MECHANISM 
REMAINDER OF THE PORTAL FRAME 
FORMATION OF HINGES AT NODES B 
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