Role of Paxillin and Polyadenylate Binding

Protein-1 Complex in mRNA Trafficking

During Cell Migration

Thesis Submitted for the Degree of

Doctor of Philosophy
At the University of Leicester
by

Stuart Roy Parnham, MSc (Nottingham Trent)
Department of Biochemistry
University of Leicester

January 2010

Acknowledgements

I would like to begin with thanking my supervisors: Dr Jim Norman for always being able to put a positive attitude on a negative result and for being able to make me see things in that way, for this I will always be thankful even if it was for such a brief time. Dr Igor Barsukov for introducing me to NMR spectroscopy and for spending, what seemed like, endless hours of training in the fundamentals of NMR spectroscopy. Your calm attitude and 'Zen-like' demeanour in the face of angry opposition I will never forget, you were a friend and mentor and for this I thank you. Professor Gordon Roberts who finally ended up as my supervisor, thank you for being a great arbitrator and without whom I would not be in a position to submit this thesis. I would also like to thank Dr Mark Pfuhl, who was my research committee and the Biotechnology and Biological Sciences Research Council for funding this studentship.

I would like to offer a special thank you to Dr Fred Muskett whose help and advice on NMR spectroscopy, protein structure assignment and structural calculation helped me to advance when I was stalled. Your advice on the NMR chapters was greatly appreciated. Dr Alison Woods for being there for support and for supplying a majority of the protein constructs used in this research. Dr Mark Carr who was willing to read and critic the NMR chapters, for that I thank you.

My thanks go to all at the Henry Wellcome Laboratories for Structural Biology at the University of Leicester. To Paul, Lorna, Kirsty, Cat, Vaclav, Phil and Ojay, you have all been good friends and have made this research project such a pleasure to do.

Finally and as always my greatest thanks go to my wife Sarah and son Lewis who's kindest, support and understanding have never wavered throughout this project. I could not and would not have done any of this without them; you are the air that I breathe. To my parents, thank you for believing in me, my millstone is now gone.

Finally to all my friends and family that I have not mentioned, thank you.

Stuart Roy Parnham

Title: Role of Paxillin and Polyadenylate Binding Protein-1 Complex in mRNA Trafficking During Cell Migration

Abstract

Cellular migration is dependent upon the efficient formation of focal adhesions at the point where the cytoplasmic components engage the extracellular matrix via the integrin proteins. The leading edge of the migratory cell is also a site where proteins such as actin are synthesised. In order for these events to take place mRNA transcripts must be transported from the nucleus to the leading edge by a protein or protein:protein complexes that are capable of nucleo-cytoplasmic shuttling. For example paxillin is a scaffold protein that is a central component of focal adhesions and is capable of nucleo-cytoplasmic shuttling. Polyadenylate binding protein- 1 was found to be an abundant co-immunoprecipitant of paxillin in lamellipodium formations.

Using overlapping PABP-1 and paxillin constructs it was found that one of paxillins N terminal LD domains (LD1) interacted with PABP-1 RRM (RNA recognition motif) 1 and 2. The NMR derived structures of PABP-1 RRMs 1 and 2 in their unbound forms are presented within this report. Previous reports have indicated the presence of a paxillin binding subdomain within the PABP-1 RRM 1 domain. NMR titration data, using a synthetic paxillin LD1 peptide, revealed a binding interaction site within PABP-1 RRM 2 and not within the PABP-1 RRM 1 domain.

Also reported here are the structural details of the PABP-1 RRM 2/paxillin LD1 complex. The binding interaction appears to be in the fast exchange regime with an estimated Kd of $\sim 211 \mu \mathrm{M}$. Experimental evidence shows the binding to be electrostatically driven and confined to the four stranded antiparallel β-pleated sheet. The interaction site is shared with the polyadenylated tail of nascent mRNA transcripts. NMR titration data indicates a competition for this site to be biased toward mRNA. This linked with other experimental data, presented here, and would suggest a more complicated picture of binding to include multiple sites of contact.

Contents

Acknowledgements 0
Abstract 2
Contents 3
List of Figures 5
List of Tables 10
Abbreviations 11
1.0 Introduction 12
1.1 Cell Migration 12
1.2 Focal adhesions 15
1.3 Integrins 19
1.4 Talin interactions 21
1.4.1 Talin 21
1.4.2 Talin-vinculin complex 24
1.5 Focal Adhesion Kinase 27
1.5.1 FAK 27
1.5.2 FAK interactions 29
1.6 Paxillin 31
1.6.1 Integrin/Paxillin interactions 31
1.6.3 Paxillin LIM domains 34
1.6.4 Paxillin binding site (PBS) in paxillin binding proteins 36
1.6.5 Paxillin Phosphorylation 37
1.6.6 Focal adhesion components containing LIM domains 38
1.7 Cell polarity and mRNA localisation 39
1.8 PABP-1 in mRNA translational control 40
1.8.1 Domain structure of PABP-1 42
1.8.2 PABP-1 RRM1/2 Structural Characteristics 43
1.8.3 The characteristics of the PABP-1 C-terminus 46
1.9 Paxillin/PABP-1 interaction during cell migration events 47
1.10 Aims of the project 50
Chapter 2 Materials and methods 51
2.1 DNA Methods 51
2.1.1 PCR Reaction Protocol 51
2.1.2 Legation 52
2.1.3 PCR screen 53
2.2 Transformation protocol 53
2.3 Protein expression 54
2.3.1 Protein purification 55
2.4 Histidine tag removal 55
2.4.1 Tev Protease time course 55
2.3.3 Removal of the cleaved His-tag from the protein solution 56
2.5 Enzyme Linked ImmunoSorbent Assay (ELISA) 56
2.6 NMR Spectroscopy 58
2.7 Amino acid assignments 59
2.7.1 Amide backbone assignment 59
2.7.2 Amino acid side-chain assignments 60
2.7.3 NOE assignments 61
Chapter 3 PABP-1 RRM 2 62
3.1 Introduction 62
3.2 Results and Discussion 62
3.2.1 Enzyme Linked ImmunoSorbent Assay 62
3.2.2 PABP-1 full length and double RRM domain analysis 64
3.2.3 PABP-1 RRM 2 expression and binding data 68
3.2.4 PABP-1 RRM 2 sequence specific assignments 70
3.2.5 Side-chain assignments 73
3.2.6 PABP-1 RRM 2 NMR structure calculation 75
3.2.7 Description of secondary structure 78
3.2.8 Tertiary structure analysis 84
3.2.9 Comparison of NMR and Crystal structures 88
3.3 PABP-1 RRM 2 titration series 91
3.3.1 Paxillin LD1 titration 91
3.3.2 PABP-1 RRM 2 charge dependent binding 93
3.3.3 Filtered NOE experiments 98
3.3.4 PABP-1 RRM 2/paxillin LD1 docking 99
3.3.5 Poly(A) mRNA competition assay 101
3.4 Conclusion 105
Chapter 4 PABP-1 RRM 1 107
4.1 Introduction 107
4.2 Results and discussion 108
4.2.1 PABP-1 RRM 1 construct 108
4.2.2 Protein expression 109
4.2.3 PABP-1 RRM 1 sequence specific assignments 110
4.2.4 Side-chain assignments 112
4.3 PABP-1 RRM 1 structure 115
4.3.1 Description of Secondary structure. 118
4.3.2 Tertiary structure analysis 120
4.3.3 Structural comparisons 124
4.3.4 Paxillin LD1 titration 127
4.4 PABP-1 RRM1/2 tandem domain 130
4.4.1 RRM domain comparison 130
4.4.2 PABP-1 RRM1/2 NMR model 131
4.4.3 NMR based secondary structure model. 133
4.4.4 PABP-1 RRM1/2 paxillin LD1/2 interactions 135
4.5 Conclusion 136
Chapter 5 Conclusion 138
Appendix I 142
Appendix II 145
Appendix III 161
A3.1 PABP-1 RRM 1 chromatogram. 161
Reference: 176

List of Figures

Figure
Page Number

Figure 1.1 Migrating fibroblast 13
Figure 1.2 Components of cell-matrix adhesions 16
Figure 1.3 Depiction of out to in signalling through the focal adhesions 18
Figure 1.4 A-domain from the $\boldsymbol{\alpha}$-subunit of the integrin CRD 20
Figure 1.5 Crystal structure of the $\boldsymbol{\alpha} \boldsymbol{V} \beta 3$ integrin ectodomain complex 21
Figure 1.6 Talin domain structure 22
Figure 1.7 Crystal structures of the Talin FERM domain (F2/F3 lobes)
in their free and bound forms
Figure 1.8 Crystal structure of the talin rod IBS2 domain 24
Figure 1.9 Crystal structure of the vinculin head domain (1-285)
in complex with Talin rod VBS 1, 2 and $\mathbf{3}$ domains 26
Figure 1.10 Schematic representation of focal adhesion kinase 27
Figure 1.11 Schematic representation of focal adhesion kinase, Active
form of FAK's catalytic site
Figure 1.12 Active form of FAK's catalytic site 29
Figure 1.13 FAK FAT domain interaction site with paxillin LD2 and LD4 30
Figure 1.14 Graphical representation of the $\mathbf{6 8 k D a}$ protein $\boldsymbol{\alpha}$-Paxillin 32
Figure 1.15 Paxillin double zinc finger LIM domains 35
Figure 1.16 Sequence alignment of paxillin binding proteins 36
Figure 1.17 Eukaryotic initiation factor complex which facilitates
communication between the $\mathbf{5}^{\prime}$-CAP and $\mathbf{3}^{\prime}$-polyadenylated tail
Figure 1.18 Schematic diagram of PABP-1 42
Figure 1.19 Crystal structure of the PABP-1 RRM1/2 domain in
complex with a 11 ribonucleotide poly(A) tail
Figure 1.20 PABP-1 RRM 2 RNA interactions 44
Figure 1.21 PABP-1 RRM 1 and 2 domain sandwich interactions with the poly(A) tail of mRNA45

Figure 1.22 C-terminus region of PABP-1 displaying an
Figure 1.23 NIH 3T3 Fibroblast cells transfected with EGFP tagged paxillin α 48
Figure $1.24{ }^{15} \mathrm{~N}$ resolved HSQC spectra of PABP-1 RRM1/2 domains 49
Figure 2.1 AcTev Protease time course for a protein solution 56
Figure 3.1 SDS-PAGE gels used to identify target proteins 63
Figure 3.2 Graph of mean results obtained from triplicate ELISA results 65
Figure 3.3 A and B Illustrating the combined biochemical analysis 66
Figure 3.4 Illustrates the Protein-Protein binding map for the Paxillin/PABP-1 complex 67
Figure 3.5 SDS-PAGE gel of PABP-1 RRM 2 69
Figure 3.6 Graph of mean ELISA data for paxillin LD1 and 2 against PABP-1 RRM 2 70
Figure $3.7{ }^{1} \mathbf{H}{ }^{15} \mathrm{~N}$ edited HSQC spectrum for PABP-1 RRM 2 71
Figure 3.8 Selected strips from the triple-resonance spectra illustrating sequential connectivities for residues 102-105 of PABP-1 RRM 2 72
Figure $3.9{ }^{1} \mathrm{H}^{13} \mathrm{C}$ HSQC spectrum for PABP-1 RRM 2 73
Figure 3.10 Selected strips from the ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ resolved TOCSY spectra illustrating intra-residue side chain connectivities for $\mathbf{I 1 0 3}$ 74
Figure 3.11 Aromatic ${ }^{1} \mathrm{H}^{1} \mathrm{H}$-TOCSY and ${ }^{1} \mathrm{H}^{13} \mathrm{C}$ HSQC spectra to resolve the overlapped phenylalanine signals 75
Figure 3.12 Statistics on a residue per residue basis for the 20 lowest energy conformers representing the NMR structure of PABP-1 RRM 2 77
Figure 3.13 Superposition of 20 lowest energy converged structures for PABP-1 RRM 2 78
Figure 3.14 Selected strips from ${ }^{15} \mathrm{~N}$ edited NOESY spectrum connectivities for the $\boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{\mathbf{2}}, \boldsymbol{\beta}_{3}$ and $\boldsymbol{\beta}_{\mathbf{4}}$ strands for PABP-1 RRM 2 80
Figure 3.15 Selected strips from ${ }^{15} \mathrm{~N}$ edited NOESY-HSQC spectrum NOE connectivities for the helical regions of PABP-1 RRM 2 81
Figure 3.16 Illustrates the side-chain and structural characteristics for loop 3 of PABP-1 RRM 2 83

Figure 3.17 NOE constraints between the two helices of PABP-1 RRM 2

Figure 3.18 illustrates supporting NOE constraints for the $\boldsymbol{\beta}$-sheet of PABP-1 RRM 286

Figure 3.19 Electrostatic surface representation of PABP-1 RRM 2
Figure 3.20 Overlay of the mean NMR derived structure of PABP-1 RRM 2
with the crystal structure of PABP-1 RRM 2 in complex with RNA
Figure 3.21 Comparison of the RNA binding domains of PABP-1 RRM 2, hnRNPA1, HUD and Nucleolin90

Figure 3.22 Selected residues with chemical shift perturbations ${ }^{1} \mathrm{H}^{15} \mathrm{~N}$ HSQC spectrum of a 15N labelled PABP-1 RRM 2 titration with paxillin LD1 synthetic peptide92

Figure $3.23{ }^{1} \mathrm{H}^{15} \mathrm{~N}$ HSQC spectrum of a ${ }^{15} \mathrm{~N}$ labelled PABP-1 RRM 2 titration with 6 molar excess paxillin LD1 synthetic peptide at 100 mM and 20 mM NaCl93

Figure 3.24 Minimum chemical shift perturbations for paxillin LD1 titrated against PABP-1 RRM 2 at low and high NaCl concentrations95

Figure 3.25 Minimum chemical shift perturbations for paxillin LD1 titrated against PABP-1 RRM 2 residues F102, K129 and V13197

Figure $3.26{ }^{15} \mathrm{~N}{ }^{13} \mathrm{C}$ double filtered experiment for PABP-1 RRM 2 in complex with paxillin LD199

Figure 3.27 Coloured surface plot of PABP-1 RRM 2 with active and passive sites100

Figure 3.28 Structure of PABP-1 RRM 2 in complex with paxillin LD1 101
Figure 3.29 Minimum chemical shift perturbations for Poly(A) mRNA titrated against PABP-1 RRM 2

Figure 3.30 above ${ }^{1} \mathrm{H}^{15} \mathrm{~N}$ edited HSQC PABP-1 RRM 2/paxillin LD1 complex with poly (A) mRNA tail titrated in at $1: 0.5,1: 1$ and $1: 1.5$104
Figure $3.31{ }^{1} \mathrm{H}^{15} \mathrm{~N}$ edited HSQC spectra for PABP-1 RRM 2/poly (A) mRNA tail with paxillin LD1 titrated in at 1:1, 1:4 and 1:8 molar equivalents 105
Figure 4.1 Representation of the PABP-1 RRM 1 PCR primer design 108
Figure 4.2 2\% agarose gel of the PCR and enzyme digest products 109

Figure 4.3 Temperature dependent protein expression trials for

Figure $4.4{ }^{1} \mathrm{H}^{15} \mathrm{~N}$ HSQC spectrum of PABP-1 RRM 1
Figure 4.5 Selected strips from the triple-resonance spectra illustrating sequential connectivities for residues 102-105 of PABP-1 RRM 1112

Figure $4.6{ }^{1} \mathrm{H}^{13} \mathrm{C}$ HSQC spectrum side chain assignments for PABP-1 RRM 1113
Figure 4.7 Selected strips from the ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ resolved TOCSY spectra, intra-residue side chain connectivities for 148 of PABP-1 RRM 1 114
Figure 4.8 Statistics on a residue per residue basis for 20 lowest energy conformers representing PABP-1 RRM 1 117
Figure 4.9 Superposition of the 20 lowest energy converged structures for PABP-1 RRM 1 118
Figure 4.10 Selected strips from ${ }^{15} \mathrm{~N}$ edited NOESY spectrum the$\boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}, \boldsymbol{\beta}_{3}$ and $\boldsymbol{\beta}_{4}$ strands for PABP-1 RRM 1119
Figure 4.11 Selected strips from ${ }^{15} \mathrm{~N}$ edited NOESY HSQC spectrum with NOE connectivities for the helical regions of PABP-1 RRM 1 120
Figure 4.12 NOE connectivites of the hydrophobic pocket supported by the associated strip plots of ${ }^{13}$ C-NOESY spectra 122
Figure 4.13 NOE signals detected across the solvent exposed face of the $\boldsymbol{\beta}$-sheet 123
Figure 4.14 Structure of the flexible loop3 region of PABP-1 RRM 1
with associated strip plots of ${ }^{15} \mathrm{~N}$ NOSEY spectrum 124
Figure 4.15 Comparative electrostatic surface representations of PABP-1 RRM 1 and RRM 2 125
Figure 4.16 Comparison of PABP-1 RRM 1, PABP-1 RRM 1 crystal structure, PABP-1 RRM 2, hnRNPA1 RRM 1 and HUD RRM 1 126
Figure $4.17{ }^{1} H^{15} \mathrm{~N}$ HSQC spectrum for the titration of PABP-1 RRM 1 with paxillin LD1 at a 6 molar excess of the peptide 128
Figure 4.18 PABP-1 RRM1 PBS domain 129
Figure 4.19 Amino acid sequence homology and conservation between RRM domains of RNA interacting proteins 131
Figure 4.20 illustrates an overlay of three ${ }^{1} \mathrm{H}^{15} \mathrm{~N}$ HSQC spectra 132

Figure
Page Number

Figure 4.21 illustrates a HNCACB and CBCACONH spectra for PABP-1 RRM1/2132

Figure 4.22 Model of the PABP-1 RRM1/2 domain based upon derived chemical shift data of the single RRM domains134

Figure $4.23{ }^{1} \mathbf{H}^{15} \mathrm{~N}$ edited HSQC spectrum PABP-1 RRM1/2 paxillin LD1/2 titration 136

List of Tables

Tables Page NumberTable 2.1 Table of PCR primers for PABP-1 RRM 151
Table 2.2 Restriction Enzyme Protocol 52
Table 2.3 Ligation Protocol 52
Table 2.4 lists protein constructs expressed and their associated cell lines, purification method, yields and induction temperatures 54
Table 2.5 ELISA serial dilution ligand loading 57
Table 2.6 Table of NMR datasets commonly employed in amino acid protein assignments 58
Table 3.1 Solution Structure Determination of PABP-1 RRM 2 76
Table 3.2 PABP-1 RRM 2 amino acid residues showing NOE signals to the paxillin LD1 peptide 98
Table 4.1 Solution Structure Determination of PABP-1 RRM 1 116
List of Equations
Equation Page Number
Eq 3.1 Chemical shift perturbation scaling 94
Eq 3.2 Averaged resonance of free and bound populations 96
Eq 3.3 Calculated bound population 96

Abbreviations

ARIA	Ambiguous Restraints for Iterative Assignment
CANDID	Combined automated NOE assignment and structure
CCPN	Collaborative computer project for NMR
FPLC	Fast protein liquid chromatography
GST	Glutathione-S-transferase
HSQC	Heteronuclear single quantum coherence
JNK	Jun N-terminal Kinase
LB	Luria Bertani
MAPK	Mitogen-activated protein kinase
NH	Backbone amide group
NOE	Nuclear Overhauser effect
NOESY	Nuclear Overhauser effect spectroscopy
PABP-1	Polyadenylate binding protein 1
Poly(A)	Polyadenylate
r.m.s.d	Root mean squared deviation
TALOS	Torsion angle likelihood obtained from shift and sequence similarity
TOCSY	Total correlation spectroscopy
WATERGATE	Water suppression by gradient-tailored excitation
(P (Phi)	Amide nitrogen alpha carbon dihedral angle
$\boldsymbol{\Psi}($ Psi)	Alpha carbon carboxyl carbon dihedral angle

1.0 Introduction

1.1 Cell Migration

Cell migration plays a critical role in numerous biological processes which initiate from the very beginning of life. During embryogenesis, cellular migrations are crucial to the development of the organism; ranging from gastrulation to the development of the nervous system. In an adult organism, cell migration plays a dominant role in normal physiology as well as pathology. An inflammatory response, for example, invokes the migration of leukocytes to the locale of the insult; it is here that they mediate phagocytic and immune responses (8). Migration of fibroblasts and vascular endothelial cells is critical for wound healing. Cellular migration plays a crucial role in cancer cell metastasis where local tissue is invaded by malignant cancer cells breaking away from the primary tumour site. This movement is of great significance in cancer mortality. In vivo the cells break away from the main malignant mass and move through the extracellular matrix (ECM) by deforming or degrading the ECM and surrounding tissues and travel via the lymphatic or cardio vascular systems to set up secondary tumour sites $(9,10)$. Tumour cells have been classified into two classes; those that adopt an elongated conformation and those that are rounded, both of which are inter-convertible. However, it has been observed that particularly motile cancer cells are able to adopt a mixture of conformations based upon their intrinsic environments by extending protrusions into the ECM (11). Elongated movement (mesenchymal), such as that seen in melanoma cells, is driven by activation of the GTPase Rac and its association with the Rac guanine exchange factor (GEF) DOCK 3. Rounded cellular movements (amoeboid) make use of Rho-kinase signalling which inactivates Rac thereby suppressing mesenchymal movement (12).

A cell's initial response to a migratory stimulus is to organise key components of its cytoskeleton and extend protrusions with regards to the extra-cellular environment. Protrusions can be large broad 'sheet-like' structures called lamellipodia or 'spike-like' structures called filopodia both of which are driven by actin polymerisation. These structures are stabilised by adhering to the ECM via transmembrane receptors known as integrins. Cells are able to vary their adhesive properties by selectively expressing different integrins thereby modulating their specificity for external ligands (13). The ECM is linked to the actin cytoskeleton via the integrins through structures known as focal adhesions (FAs), (14). As the cells leading edge extends forward it must create new adhesion sites, produce contractile forces and orchestrate the detachment and disassembly of FAs at the rear of the cell. Each of these events must be carefully coordinated to generate optimum forward movement whilst maintaining the structural integrity of the actin cytoskeleton.

Actin filaments are intrinsically polarised by rapid growth at their 'plus' ends and slow growth at their 'minus' ends; it is this polarisation that is the driving force in membrane protrusion (14). Organisation of the filaments is dependent upon the type of cell and protrusion. The architecture of a migrating fibroblasts lamellipodium requires the actin
filaments to form a 'dendritic' network with branches forming off the parent filament. Actin polymerisation can be stimulated in many ways such as increasing the rate at which monomers are added, decreasing the rate of depolymerisation, and facilitating new filaments by branching thus creating new plus ends and increasing the need for actin monomers (10). Actin polymerisation is facilitated by the hydrolysis of ATP this creates a difference between the ATP-bound barbed end and the ADP bound pointed end. A balance between polymerisation and depolymerisation is attained thereby maintaining actin filament length however, addition of pure actin appears too slow to account for the speeds of cellular migration that have been documented. Actin binding proteins such as cofilin, profilin and WASP homology 2 (WH2) have been shown to bind directly to the actin filaments facilitating the rapid polymerisation and depolymerisation of actin (15).

Initiation of adhesion formation is linked with actin assembly in the lamellipodia which requires an activation of the Rho, Rac, Cdc42 and Arp2/3 pathways. Adhesions grow in size as they mature under the main body of the cell. One of the main triggers for maturation is an increase in the tensile force within the actin filaments (16). As the cell moves forward the focal adhesions under the main body progressively move rearward as the mature adhesions reduce in size. Disassembly occurs in the perinuclear region and is brought about by the decrease in tensile strength. This decrease is likely due to the inhibition of myosin and RhoA (17). However, detachment can be accomplished by actomyosin stress fiber contraction, which in turn requires Rho activity. It is critical that the destabilisation of adhesions occurs prior to detachment in order to prevent membrane damage from occurring and patches of the membrane being left behind on the ECM. Microtubules act in concert with the many occurring events to release the tensile forces through calpain-driven proteolysis and thereby destabilising adhesion components; this requires focal adhesion kinase activity. It has been theorised that microtubules may lend some assistance in the stimulation of adhesion formation, although indirectly, since microtubule polymerisation activates Rac activity (18). This is achieved through the addition of a microtubule tip binding protein (EB1) which recruits adenomatous polyposis coli (APC) to the tips of the microtubules. APC has been shown to interact with Rac-GEF and thereby concentrating Rac activity to the focal adhesions. APC has been shown to act as an antagonist to Rho which aids focal adhesion turnover (19).

1.2 Focal adhesions

Focal adhesion formation is critical not only for cellular migration but also to cell adhesion and extracellular matrix reorganisation (20). The integrins are the key cell surface receptors that mediate the cell's interaction with the extracellular matrix and thereby initiate adhesion. These receptors are heterodimeric transmembrane proteins that facilitate the link between the cell's actin cytoskeleton and the extracellular matrix. Integrins function as mechanotransducers and transform the mechanical forces exerted by the extracellular matrix and the cytoskeleton (3). The extracellular integrin domain binds extracellular ligands, while the short cytoplasmic tail of integrins are able to recruit components and signalling molecules to the focal adhesion site through carefully regulated phosphorylations (21); which facilitate the integrin's indirect connection to the actin cytoskeleton. Following adhesion, to the extracellular matrix, the integrins cluster which in turn promotes the localisation of intracellular signalling molecules (22). The clustering of the integrins allows their β domains to activate non-receptor kinases such as focal adhesion kinase (FAK) which increases local concentrations of tyrosine phosphorylated kinases (23). The integrin adhesome can be broken down further into three basic categories of proteins, which are recruited to cell matrix adhesion sites these are integrin binding proteins, adaptor proteins (that lack intrinsic enzymatic activity) and kinases/phosphatases (24). Talin and FAK are examples of proteins that are able to bind directly to the cytoplasmic tail of integrins. This is of course an over simplification of events that make up the integrin adhesome. This network consists, at least to date, of some 156 components that are linked and modified by ~ 690 interactions (25). The detailed description of these interactions is beyond the scope of this report and so it would be more efficient to give an overview of the functional make up of the adhesome. The focal adhesion network includes 25 adaptor proteins, 24 cytoskeletal proteins, 9 actin binding proteins, 10 serine/threonine protein kinases, 3 serine/threonine phosphatases, 9 tyrosine phosphatases, 8 tyrosine kinases, 8 GAPs, 8 Gefs, 5 GTPases and 32 other types of components (25).

Figure 1.2 A) Simplified diagram for the major components of focal adhesions. Shown above are the critical proteins and interactions that comprise a focal adhesion. These proteins and kinases provide a link between the short cytoplasmic tails of integrins and the actin cytoskeleton thereby making an intimate connection between the cell and the extracellular matrix. B) Components of cell-matrix adhesions. The actual adhesome comprises of ~ 156 components with ~ 690 interactions during cell migration, picture taken from (2).

FAK has been shown to be an important mediator of cell growth, cell proliferation, cell survival and cell migration. In each of these cases it has been seen that FAK is dysfunctional in cancer cells (26). FAK has been found to be significantly elevated in 100% of colonic lesions, 88% of breast tumours and has proven to be an early indicator of breast tumorigenesis (20). It has been seen that the linked activities of Src and FAK control changes in cell to cell and cell to matrix adhesions, cellular migration and invasion. Both Src and FAK have been associated with more aggressively invasive tumour phenotypes (27). FAK interacts with the cytoplasmic tales of β integrins via its N -terminal domain. In the meantime the carboxyl terminal domain contains binding sites for other focal adhesion proteins, such as talin and paxillin, which further aid in the recruitment of FAK to adhesion complexes (28). Talin and paxillin act together with FAK to facilitate a link between membrane bound integrins and the actin cytoskeleton; this is discussed in section 1.5.

Talin is an abundant cytoplasmic protein that helps complete the link between the β-integrins and the actin cytoskeleton as well as performing a pivotal role in the formation of focal
adhesions. Talin possesses binding sites for the β-integrin subunits, actin filaments and vinculin which provides an alternative mode of actin binding. Talin is composed of a 50 kDa head domain which contains the primary integrin binding site. The remainder of the protein contains a 220 kDa rod domain that contains a low-affinity integrin binding site, and is discussed in detail in section 1.4, as well as binding sites for vinculin and actin (29).

Vinculin is an adaptor protein that plays a key role in the regulation of focal adhesions stabilising focal adhesions and suppressing cell migration. Regulation is released by changes in concentration of inositol phospholipids. Activated vinculin is seen at the proximal edge of gliding or dissolving focal adhesions in migratory cells. In contrast, very little active vinculin was witnessed in the vicinity of stable or protruding adhesions (30). It is comprised of three major domains; an N -terminal head domain, a flexible proline-rich hinge region and a C terminal tail domain. The intra molecular interactions between the head and tail domains constrain vinculin to an inactive form thereby forcing it to locate exclusively to the cytoplasm. Upon its recruitment to the focal adhesions its structure is switched to its active conformation by its interaction with talin whereby its domains undergo a global conformational change, (section 1.4.2). This process is crucial to its further interaction with talin, α-actinin, ponsin, actin, phosphatidylinositol (4,5)-bisphosphate and paxillin (31-33).

Paxillin is an adaptor protein that is central and critical to focal adhesion complexes providing links to FAK, integrins, talin via vinculin, actin and microtubules $(34,35)$. Paxillin is a multidomain protein capable of nuclear-cytoplasmic shuttling that becomes localised at the leading edge of migratory cells (36). The N-terminal region contains five LD domains that have been found to be conserved amongst species. These leucine rich regions act as binding sites for focal adhesion proteins such as actopaxin, vinculin and FAK with their binding sites often overlapping ensuring recruitment of the proteins to the focal adhesions (37). The Cterminal region contains four double zinc fingers that facilitate paxillin's interaction with actin and microtubules (34). These LIM domains serve as binding sites for several structural and regulatory proteins including tubulin and tyrosine phosphatase (PTP-PEST) each providing important roles for the control of focal adhesion dynamics $(38,39)$.

Figure 1.3 Depiction of out to in signalling through the focal adhesions. FAK is a key component of the focal adhesion complex and is recruited by integrins during signalling. Through the recruitment of SFKs, paxillin and P13K, FAK is able to affect cell proliferation, cell surviva. This facilitates a link between integrins to the actin cytoskeleton via paxillin and its association with actopaxin and changes within the cytoskeleton gene expression cell migration and invasion via P13K (3).

Some of the more critical 'outside in' signalling pathways are illustrated in Figure 1.3. It can be seen from the diagram that FAK and paxillin are key components that facilitate the signalling cascade through phosphorylations. FAK activates the Src family of kinases (SFKs) and P13K which provides links for pathways leading to the restructuring of the cytoskeleton, gene expression, cell migration and tumour invasion (3). It is through the signalling down stream of P13K that affects the activation of Akt and the small GTPases Rac, Rho and Cdc42, that enables the restructuring of the actin cytoskeleton in migratory cells. FAK is able to bind to the Pix/GIT/paxillin complexes thereby promoting cell proliferation and cell survival. Recent studies have shown that upon FAK depletion in metastatic cells, phosphotyrosinecontaining proteins switch from focal adhesions to invadopodia via both spatial and temporal regulation of c-Src activity (26). While a majority of the migratory cell signalling is facilitated through FAK, the focal adhesion complex also provides a link to the actin cytoskeleton via paxillin's interaction with vinculin and actopaxin. Paxillin phosphorylation
contributes to the regulation of the Rho family of GTPases and therefore to the coordination of the cytoskeleton (40). Talin provides a more structural function with regards to cell migration by its ability to bind directly to actin and indirectly via its interaction with vinculin.

1.3 Integrins

Each integrin subunit consists of a large extracellular domain, a short transmembrane domain and a short cytoplasmic tail. The extracellular domain of integrins often binds to an extracellular matrix component, whilst the cytoplasmic domain is linked indirectly to actin filaments. Ligand binding to this extracellular domain brings about conformational changes leading to the clustering of integrins (22). This clustering is essential as it initiates intracellular signalling via protein tyrosine phosphorylation and activation of small GTPases and has been shown to induce changes in phospholipid biosynthesis (41). Invasion of prostate cancer cells can be ascribed to the reorganisation and clustering of $\alpha 2$ integrin subunits, resulting in the activation of the associated FAK/Src/paxillin/Rac/JNK pathway (42).

Cells are able to vary their adhesive properties by selectively expressing different integrins and modulating their specificity for external ligands (13). Integrins are heterodimers comprised of non-covalently linked 18α and 8β subunits which form 24 known $\alpha \beta$ glycoprotein units, dependent on cell type and cellular function. Two major subfamilies of integrins are used and are defined by β_{1} and α_{V} subunits. The β_{1} subunit pairs with at least 12 different α subunits in order to adhere to a variety of extracellular matrix components (43). From a structural perspective, the recombinant $\alpha \mathrm{A}$-domain of the α-subunit and has been shown to fold independently and has been extensively studied; the first structure was with a Mg^{2+} ion bound (1). The $\alpha \mathrm{A}$-domain is not unlike a GTPase domain in which a catalytic site at the apex is replaced by a conserved metal-ion-dependent adhesion site (MIDAS) occupied by a Mg^{2+} ion (1). The domain was found to adopt a classical α, β Rossmann fold with five parallel β-strands and one single anti-parallel β-strand at its core. These β-strands are surrounded on all sides by a series of seven α-helices, Figure 1.4 (44). The 'open' form is distinguished from the 'closed' form by the inward movement of the N -terminal $\alpha 1$ helix resulting in a two-turn downward shift of the C-terminal $\alpha 7$ helix (1).

Figure 1.4 A-domain from the α-subunit of the integrin CRD. At the core of the structure lies five parallel β-strands $\left(\beta_{1}, \beta_{2}, \beta_{4}, \beta_{5}, \beta_{6}\right)$ and one single anti-parallel β-strand $\left(\beta_{3}\right)$. A total of seven α-helices adorn the periphery of the β-sheet core. The Mg^{2+} ion was found bound at the apex of the structure (PDB entry 1 mlu).

The crystal structure of integrin $\alpha \mathrm{V} \beta 3$ is without a $\alpha \mathrm{A}$ domain. The $\alpha \mathrm{V}$ subunit consists of 4 domains; an N-terminal seven-bladed β-propeller, an Ig-like thigh domain and two large β sandwich domains (CALF1 and 2), Figure 1.5. The $\beta 3$ subunit has eight domains including an N-terminal cysteine rich Plexin-Semaphorin-Integrin (PSI) domain (1). The propeller and β A domains assemble into a 'head' structure which facilitates the formation of the $\alpha \beta$ heterodimer. Stability of the heterodimer maybe due to glycosylation sites within the propeller region of the $\alpha \mathrm{V}$ subunit (45). The integrin head structure sits on top of the α and β chains described as 'legs' formed of the thigh and CALF domains of the $\alpha \mathrm{V}$ subunit and the PSI domain of the $\beta 3$ subunit. A crystal structure of the $\alpha \mathrm{V} \beta 3$ domain in complex with a high affinity pentapeptide cilengitide (RGD), shows that RGD inserts into a crevice between the propeller and the β A domain. The RGD side chains exclusively contact the propeller and $\beta \mathrm{A}$ domain thus drawing these two domains closer together (46). The crystal structure of integrin $\alpha \mathrm{IIb} \beta 3$ illustrates an arrangement of domains similar to that seen for integrin $\alpha \mathrm{V} \beta 3$ (47). Negative stain electron microscopy with class averaging found three of the $\alpha \mathrm{IIb} \beta 3$ ectodomain constructs to be in a bent conformation. This conformation has been described as a low affinity integrin state which acts as a starting point for integrin extension. In the
extended conformation the α and β legs straighten at the knees and extend away from the headpiece (47). During cell migration the open head conformation engages extracellular ligands and the integrins along with their focal adhesion complexes are cycled under the cell toward the rear (16). The normal force exerted on the integrin as the rear of the cell pulls away from the ligand on the extracellular matrix stabilises the closed headpiece conformation with low affinity for extracellular ligands $(16,47)$. The integrin can then return to the low affinity bent conformation completing the integrin adhesion/detachment cycle (47).

Figure 1.5 Crystal structure of the $\alpha \mathrm{V} \beta 3$ integrin ectodomain complex. Illustrated is the seven bladed β-propeller region in yellow, the two calf domains are presented as β sheet sandwiches, in green, and the Ig like thigh domain, also in green. The ADMIDAS domain is occupied by a Ca^{+}. This stabilises the unliganded state of the integrin (PDB entry 1M1X) (1).

1.4 Talin interactions

1.4.1 Talin

Talin plays an important role in focal adhesion formation and cellular migration by making vital connections to the short cytoplasmic tails of integrin β subunits. Talin is also able to bind directly to the actin cytoskeleton as well as indirectly via its interactions with other actin binding proteins, such as vinculin, thus creating a stable bridge effect between the
extracellular matrix and intracellular cytoplasmic components (48). This bridge is facilitated through a specific ionic interaction between talin and the membrane-proximal helix of the β tail of integrins. Upon binding the integrin α / β salt bridge is disrupted thereby releasing the integrin heterodimer from its inactive state (49).

Figure 1.6 Talin domain structure. The 50 kDa talin head contains a FERM domain comprised of three sub-domains which provides a binding site for β-integrin. The rod domain comprises 62 predicted α-helices with 11 vinculin binding sites depicted in red. A second integrin binding site can be found in the rod domain IBS-2A and IBS2-B. The diagram was taken from (4).

Talin consists of a 50 kDa head domain, which contains the principal integrin binding site, and a 220 kDa rod domain (50). The head domain contains a FERM domain that is further divided into three sub-domains or lobes (F1-F3). Tryptic digests and the consequential binding studies have shown that the F3 lobe (residues 300-400) is capable of direct interactions with the integrin β-subunit (48). The crystal structure of this F2/F3 fragment illustrates that the F2 sub-domain consists of four α-helices and two short 3_{10} helices that are located in the loop connecting α-helices 2 and 3, Figure 1.7A. In contrast, the F3 sub-domain consists of two anti-parallel β sheets the first of four and the second of three. These are packed into a β sandwich which encloses the hydrophobic core with a single α-helix located at the C -terminus (51). The C-terminus of talin is predicted to contain 62 helices that are organised into bundles to form a rod like structure. The N -terminal region of the rod contains the first of 11 vinculin binding sites (VBS), (29). The C-terminal portion of the rod domain is comprised of a series of 5 helix bundles followed by a single C-terminal helix that forms an anti-parallel homodimer (52). This domain has recently been studied by NMR and crystallographic techniques and is referred to as a THATCH domain (talin/H1P1R/Sla2p actin tethering Cterminal homology) (29). Small angle X-ray scattering, combined with the crystallographic structure of the region and NMR data have shown this dimer to bind three actin monomers of the same actin filament but surprisingly it does not facilitate F-actin cross-linking, (29,52).

Figure 1.7 Crystal structures of the Talin FERM domain (F2/F3 lobes) in their free and bound forms. A) Crystal structure of the Talin FERM domain residues 195-400 (PDB data file 1MIX) illustrating the F2 and F3 lobes. B) Crystal structure of the F2/F3 lobes of the talin head in complex with the β integrin tail, integrin residues 735-743, these residues are linked to the N -terminal region of the talin FERM domain to form a chimera (PDB data file 1MIZ). The crystal structure shows the β integrin tail in close proximity to the loop connecting H3 and H4. It is worth noting that NMR solution data has illustrated a more intimate complex where the talin F3 lobe demonstrates chemical shift perturbations centred on the $\beta 5$ strand.

Initial binding studies employed NMR and a full length β_{3} integrin tail. The largest spectral changes were seen in residues $732-750$ of the $\beta 3$ integrin. Binding occurs through a hydrophobic dominant area and is centred on the FERM domain $\beta 5$ strand but also affects residues of the $\beta 6$ strand, the C-terminal portion of helix 5 and the $\beta 4-\beta 5$ loop (53). Interestingly, a second integrin binding site was found in the C-terminal rod domain of talin (54). A crystal structure of this site, residues 1974-2293, shows that it is comprised of a tandem pair of five helix bundles. The upper bundle is named IBS2-A and the lower bundle IBS2-B (Figure 1.8), (3). Pull down assays confirmed that this region interacts with β_{3} integrin tails and that it is critical that the entire module of this five helix bundle be intact for binding to occur (4). It has been suggested that the head domain converts the integrins into the high affinity state, while the rod domain contributes to the integrin clustering via this five helix bundle domain (54).

Figure 1.8 Crystal structure of the talin rod IBS2 domain. This Figure illustrates two rod domains in close proximity. IBS2-A domain is comprised of a 4 helix bundle (H47-50) residues 1974-2139, IBS2-B is composed of another 4 helix bundle (H53-56). Both parts of the domain are linked by an extended helix running down the spine of the domain. This extended helix was described as two helices making the two domains into five helix bundles (4), PDB entry 3dyj.

1.4.2 Talin-vinculin complex

The identification of talin's second integrin binding site illustrates its importance in order for functional focal adhesions to form around clustered integrins (54). Further to this is the identification of 11 vinculin binding sites (VBS), of which three functional sites have been investigated, located within the talin rod domain. Each VBS is capable of binding to the same location within the vinculin head domain (Figure 1.9A, B and C) $(33,55,56)$. The activity of VBS's is differentially regulated by the force exerted by actomyosin contraction.

Vinculin is a 116 kDa actin binding protein that consists of a globular head linked to a tail domain by a proline-rich region (30). A majority of the ligand-binding sites are masked by an intra-molecular interaction between the head and tail domains. A popular theory is that the vinculin molecule attains equilibrium between its active and inactive states. Structural studies on vinculin illustrate how the head/tail interaction inhibits the ligand-binding sites by steric
and allosteric mechanisms (57). On recruitment to cell to cell and cell to matrix adhesions, vinculin becomes activated and mediates numerous protein to protein interactions. These interactions regulate the links between F-actin and the adhesion/integrin protein families (58). The structure reveals a five domain auto-inhibited conformation in which the tail is grabbed in a pincer like manner by domains D1-D3. The vinculin tail makes two contacts with the head domain and one contact with the neck (58). Domain D1 packs against the tail to form the major interface with a binding affinity of $50-80 \mathrm{nM}$. The tail domain buries around $1300 \AA \AA^{\prime}$ of the head domain D1 $(29,58)$ by binding to helices 1 and 4 of the D1 domain. The second interface is on the opposite side to the D1 interface where the D3 domain is brought into close proximity with the vinculin tail (58). The third contact occurs between the bottom of the vinculin tail bundle and the top of the D4 domain, this interface includes main chain hydrogen bonding and a well defined salt bridge between Glu 775 and Arg 978 where the second domain is largely polar (58). Domain D1 of vinculin contains binding sites for talin and α actinin and is comprised of seven α-helices that are organised into two 4 helix bundles joined by a long common helix (Figure 1.9) similar to that seen in the talin IBS2 domains. The proline rich region between domain D 4 and the vinculin tail domain provides an interaction site for VASP, vinexin, ponsin and the Arp2/3 complex (30). In its autoinhibited state the proline rich domain of vinculin is obscured (30). A popular theory is that activation of vinculin occurs when two or more of its binding partners are in close proximity.

The head and tail domains of talin are able to interact with one another which inhibit vinculins interaction. It has been seen that Y377 of the F3 head domain docks into a hydrophobic pocket at one end of a five-helix C-terminal bundle. The flexible loop of the F3 domain interacts with a cluster of acidic residues located in the middle of helix 4. A competition exists between the β-integrin tail and talins rod domain for this F3 binding site $(59,60)$. Talins affinity for vinculin is increased by PIP2 which inhibits talin's head and tail domains from interacting (59). Talin's multi functional rod domain also provides an interaction site for vinculin which spans residues 482-655. This particular fragment is part of a five helix bundle where helices 2 to 5 form a right handed up and down four helix conformation. Helix 2 adopts an elongated conformation allowing it to connect to helix 1. A crystal structure of the vinculin head domain in complex with the talin rod (talin residues 482-636) reveals that the talin contacting helix (residues 605-636) is buried within the complex. The four helices of the vinculin head surround residues 605-636 from talin resulting in formation of a five helix bundle $(33,55,56)$. Physiological forces that are exerted on the talin rod domain by its
interaction with integrin and actin have been shown to cause a stretching effect within this domain. Recent studies have shown this stretching to increase vinculin binding thereby linking its recruitment to applied migrational forces (61).

Figure 1.9 Crystal structure of the vinculin head domain (1-258) in complex with talin rod VBS 1,2 and 3 peptides. A) Illustrates the crystal structure of the vinculin head domain in complex with the talin VBS1 peptide from the talin rod, residues 605-628, (PDB data file 1TO1). B) Illustrates the crystal structure of the vinculin head domain in complex with the second VBS site in the talin rod, residues 849-879, (PDB data file 1U6H). C) Illustrates the crystal structure of the vinculin head domain in complex with a third VBS domain from the talin rod, residues 1947-1970, (PDB data file 1XWJ).

1.5 Focal Adhesion Kinase

FAK - Focal Adhesion Kinase
FAT - Focal Adhesion Targeting
FERM - Four point one-Ezrin-Radixin Moesin homology

FRNK - FAK-related non-kinase

Figure 1.10 Schematic representation of focal adhesion kinase. The N-terminal region contains the FERM domain which provides for the integrin interaction of FAK. Cterminal to this separated by a flexible linker region is the kinase region of FAK followed by the proline rich region. The C-terminus of FAK contains the FAT domain which provides a binding interface for the focal adhesion proteins.

1.5.1 FAK

Focal adhesion kinase (FAK) is a non-receptor cytoplasmic tyrosine kinase that plays a key role in several different cellular processes through its scaffolding function (28). FAK consists of an N -terminal domain that interacts with membrane proteins such as platelet-derived growth factor receptors, epidermal growth factor receptors and integrins. This domain shows homology with ezrin, radixin and moesin families and is therefore termed the FERM domain, (62). The FERM domain acts in an inhibitory fashion with the centrally-located kinase domain. FERM domains are found in various cell migration signalling proteins and mediate interactions at the leading edge of the migratory cell via their binding partners. The FERM domain of FAK is connected to the kinase domain via a 60 -residue linker region. This linker region is particularly important as it contains a phosphorylation site of Y397 which is important for FAK functionality. Initially it was thought that this region was largely disordered. However, crystal structures have shown that the first ten residues of this linker region are bound to the cleft formed between the F1 and F3 lobes of the FERM domain. Larger truncations of FAK revealed this ordered region extends to L375 which encompasses the Src SH3 interaction site (63). The SH3 site, residues 368-375, interacts with the F3 lobe
while the phosphorylation site (Y397) packs against the F1 lobe (64). Following autophosphorylation of Y397, the linker region disengages from the F1 lobe which allows the recruitment of Src family kinases to the SH3 domain. The subsequent phosphorylation of Y576 and Y577 by Src family kinases enables the formation of an active signalling complex (65). The free F3 lobe is then allowed to interact with the cytoplasmic tails of integrin receptors (5).

Figure 1.11 FAK N-terminal FERM domain. A) Inactive form of the FERM domain. The FERM domain presents three distinctive lobes. The F3 lobe contains a protein interaction groove similar to that seen in the talin FERM domain. The linker region between the FERM domain and the kinase domain masks this protein interaction groove suggesting a regulatory function (PDB file 1mp8). B) Active form of FAK's catalytic site. The active phosphorylated FAK kinase adopts a conformation that is immune to FERM inhibition due to Y397 phosphorylation and subsequent recruitment of Src family kinases (PDB file 2J0L) (5).

The C-terminal domain has three proline rich regions and also a focal adhesion targeting (FAT) domain (66). This carboxyl FAT domain contains binding sites for paxillin and talin which cooperate with FAK to link the integrin receptors to the actin cytoskeleton. The FAT structure shows a well ordered domain spanning residues 921-1046 and is organised into a right-handed up-down four helix bundle. The helices are arranged in a straight anti-parallel conformation connected by short turns. This gives the bundle a highly compact and symmetrical appearance with an almost square cross section, Figure 1.12, (67).

Figure 1.12 Four helix bundle of the FAT domain. The well ordered FAT domain of focal adhesion kinase presents a four helix bundle arranged in an anti-parallel conformation. The helices are close together and linked by short turns which help provide a square appearance to the cross-sectional area of the bundle (PDB 1qvx).

1.5.2 FAK interactions

Activation of FAK requires the autophosphorylation of residue Y397; this has been shown to be temporally related to the clustering of the integrin receptors. Upon phosphorylation of Y397 the Arp2/3 complex is unable to interact with FAK thus removing FAKs influence on actin polymerisation (68). The clustering of integrin receptors induces a conformational change in the FAK that then alters the interaction of the FERM domain with the centrally located kinase domain of the FAK, Figure 1.11b (69). Tyrosine 397 provides a high affinity binding site for Src, following the phosphorylation of cellular Src and its recruitment cellular Src is then available to phosphorylate Y576/Y577 in the kinase domain of FAK, (23).

The FAT domain contains two hydrophobic patches (HP 1 and 2) each of which is formed at the interface of the two helices (Figure 1.13). It can be seen that several hydrophobic residues have their side chains exposed to the solvent, thereby extending the hydrophobic core of the bundle (67). HP 1 is comprised of the groove between α-helices 2 and 3, while HP 2 is located on the opposite side of the bundle and is formed by the N -terminal region of α-helix 1 and the C-terminal region of α-helix 4 (67). Closer inspection of the amino acid sequence has found that a paxillin binding site (PBS) is located within the HP 2 site. Modelling paxillin LD 2 in its helical conformation into the HP 1 site revealed an excellent fit in which five hydrophobic side chains (valines and leucines) from LD2 fit into the hydrophobic groove forming a five helix bundle (70). In addition to these residues three acidic residues, including D146, were shown to make critical salt bridges to the FAT domain. The paxillin LD 4 domain was found to be of a similar fit and mode of binding thus forming a final conformation of a six helix bundle (70). It has recently been found that the phosphorylation of S273 in paxillin LD4 leads to the destabilisation of the α-helix which leads to decreased binding affinity of FAK (71).

Figure 1.13 FAK FAT domain interaction site with paxillin LD2 and LD4. The modification of Y925 shown here A) allows for the minimal paxillin binding region of FAK to be exposed. B) Paxillin LD2 helix fits into the hydrophobic groove between helices 2 and 3 of the FAT domain of FAK (hydrophobic patch, HP, 1) (PDB file low8). C) Paxillin LD 4 helix binds in a similar fashion between helices 1 and 4 of the FAT domain of FAK or the HP 2 site (PDB file 1ow7).

FAK and Src function in a manner that enables them to activate one another. Src activity is increased by the opening of the closed auto-inhibited conformation of Src thus resulting in the increased auto-phosphorylation event (28) and the phosphorylation of FAK Y576/Y577 required for increased FAK activity.

Regulation of FAK occurs through several mechanisms such as a novel inhibitory protein known as FAK inhibitory protein (FIP200) and the FAK related non-kinase (FRNK). The Nterminal domain of FIP200 has been shown to associate with the kinase domain of FAK inhibiting its kinase activity and therefore inhibiting cell migration and proliferation (72). FRNK was found to be an inhibitor of FAK by interacting with the C-terminal proline rich regions and the FAT domain. Due to the low levels of FRNK within migratory cells it was determined that its inhibitory effect is important only at the early stages of cell adhesion to the extracellular matrix (73).

1.6 Paxillin

Paxillin is a 559 amino acid protein with a molecular weight of 68 kDa and was first described as a phosphotyrosine protein in Src transformed cells, (74). The first paxillin isoform to be identified was termed paxillin- α, two other variants have been identified as paxillin- β and paxillin- γ, (75). Paxillin α is abundant in most tissue types while studies have shown paxillin variants β and γ to be limited to cancerous tissues such as HeLa S3 epithelial carcinoma, K562 chronic myelogenous leukaemia cells, SW480 colorectal adenocarcinoma cells, A549 lung carcinoma cells and G361 melanoma cells (73). Both variants β and γ displayed an insert down-stream of the LD4 domain, between lysine 277 and phenylalanine 278. Paxillin- β has a 34 amino acid residue insert, whereas paxillin- γ has a 48 amino acid residue insert. Both inserts show little homology to one another and therefore are likely to have different modes of action. For example, paxillin- β displays a reduced affinity for vinculin but is able to bind FAK with similar affinity to that of paxillin- α. In contrast, paxillin- γ is unable to bind FAK, but retains its affinity for vinculin (34).

1.6.1 Integrin/Paxillin interactions

Paxillin plays a central role in focal adhesion complexes through its LD protein-protein interactions. Paxillin is able to associate with actin through its interaction with vinculin which is able to bind α-actin and F-actin (76). Actopaxin acts in a similar fashion to that of vinculin and provides a link to F-actin, spectrin and fimbrin (82). Actopaxin is composed of a pair of calponin-homology domains which are responsible for its interaction with the cytoskeletal components (34).

Figure 1.14 Graphical representation of the 68 kDa protein α-Paxillin. Many of paxillins binding partners are able to bind multiple LD domains as well as form important downstream signalling connections. α-paxillin is the most abundant in migratory cells while β and γ forms are present in cancerous cells.

Initially it was thought that paxillin was able to bind to integrin $\alpha_{1} \beta_{3}$ cytodomains, but the data were obtained using synthetic peptides and have not since been substantiated (77). However, paxillin can be recruited to $\alpha_{4} \beta_{1}$ integrins by binding to the cytodomain of the α_{4} subunit (78). The α_{4}-integrin-paxillin complex inhibits the formation of a stable lamellipodium at the leading edge of the migratory cell. When bound to the α_{4} integrin subunit, paxillin's LD4 domain is available to recruit the ADP-ribosylation factor GTPase-activating protein (ArfGAP) (78). This leads to a dramatic decrease in Arf activity and thus reduces Rac activity. The α_{4} integrin tail is phosphorylated at the leading edge of the migratory cell and
dephosphorylated at the sides and rear, (79). This leads to localised α_{4} integrin-paxillin interactions and promotes directional cell migration through the inhibition of Rac at the sides and rear of the cell, (80). Although pair wise interaction between the $\alpha 4$ integrin tails and paxillin is sufficient for normal Rac1 regulation it is the ternary complex that is essential for focused Cdc42 activity at the lamellipodial leading edge and therefore for directed cell movement (78).

1.6.2 Paxillin LD Domains

The most extensively researched and characterised domains within paxillin are the LD motifs, which are so termed as they contain leucine and aspartate residues. These domains were first identified as part of a study aimed at identifying the binding sites for vinculin and FAK (81). Subsequent sequence alignments revealed the binding sites for vinculin and FAK to share a leucine-rich motif that was found to be repeated within the N -terminus of paxillin. The consensus sequence 'LDXLLXXL' was proposed to be involved in multiple protein-protein interactions, $(35,81)$. The N -terminus of paxillin contains four highly conserved LD domains. However a fifth degenerate LD domain (LD3) was originally, omitted due to the lack of a conserved LD start, but has since been included (82). The LD domains of paxillin were originally modelled and suggested to fold as amphipathic α-helices with the leucines providing a hydrophobic interface on one side of the helix (83). This structural model has been confirmed experimentally as part of related studies, such as the FAT domain of FAK in complex with Paxillin LD2 (67).

There are a number of tyrosine and serine/threonine phosphorylation sites that are interspersed between the LD domains as well as potential SH3 binding domains (84). A phosphorylation modification site lies on the first turn of α-helix 1, residue Y118 is present with its side chain solvent exposed. Deletion mutagenesis studies implicated this site as being the minimal paxillin binding region following phosphorylation of this residue. Paxillin's interaction with FAK through its FAT domain is mediated by the LD2 and 4 domains of paxillin. Secondary structure predictions of these two leucine rich motifs have shown them to form α helices. Binding studies for two of the individual paxillin LD domains returned a Kd of $\sim 4 \mu \mathrm{M}$; larger fragments encompassing both the LD domains were found to bind 5-10 fold more tightly (67).

The LD domains clearly provide specific interaction sites to facilitate the interaction of paxillin with other proteins. LD1 links with actopaxin (85), ILK (86), vinculin (87) and the papillomavirus protein E6 (82). The LD domains also present an overlapping set of proteinprotein interaction sites for example, LD2 also provides an interface for vinculin, FAK and PYK2 (87). Similarly, the LD4 domain provides an interface for actopaxin, FAK, PYK2 and Arf-GAPs $(34,35)$. The Arf-GAP protein PKL (protein kinase linker) binds directly to LD4 and provides a link to a protein complex containing the PAK-interacting guanine nucleotide exchange factor (PIX), PAK and the adaptor protein Nck. These components act as mediators to Rho GTPase signalling (34). PAK and PIX both localise with paxillin at the base of the lamellipodia in Cdc42 and Rac mediated focal complexes. This association suggests that paxillin is required for the localisation of PAK and PIX to the paxillin-PKL-PIX-PAK-Nck complex $(34,35)$.

1.6.3 Paxillin LIM domains

Many critical focal adhesion proteins influence signalling pathways that control gene expression (88). Focal adhesion proteins are capable of nuclear-cytoplasmic shuttling, and many of the focal adhesion components enhance this behaviour through very distinctive LIM domains (Lin11-Isl1-Mec3); consisting of double zinc finger structures with very specific binding partners $(35,89)$. Zyxin was one of the first focal adhesion proteins found to undergo nuclear-cytoplasmic shuttling (90). Zyxin contains three C-terminal LIM domains and a leucine-rich nuclear export signal. The N-terminus has been shown to associate with the actin cytoskeleton influencing its assembly and organisation during cell migration (91). A binding partner of Zyxin is a cysteine-rich protein (CRP), these proteins are predominately located at focal adhesions as well as along actin filaments and the nucleus (92). CRPs are easily identified by the presence of two LIM domains which are followed by a glycine-rich repeat. CRP family members serve as scaffolds for the assembly of transcriptional complexes within the nucleus (88). Paxillin contains four C-terminal LIM domains that are arranged in tandem (93). Structural studies of the LIM domains of CRP have shown that each of the individual zinc fingers consisted of two anti-parallel β-strands which are separated by a tight β-turn (94). The two zinc fingers of each LIM domain pack tightly together due to hydrophobic interactions. At the C-terminus of the LIM domain is a short α-helix. The C-terminal LIM domain, Figure 1.15, is important in anchoring paxillin to the plasma membrane, and LIM 3 has been shown to be essential in maintaining the integrity of paxillins anchorage to the
leading edge of the migratory cell, with LIM 2 playing a supporting role (81). Furthermore, it has been shown that during cell migration events it is the phosphorylation of serine and threonine residues of LIM domains 2 and 3 that leads to the localisation of paxillin to focal adhesions (34), although the molecular significance of this, and the binding partners of paxillins LIM domains in regard of recruitment to focal adhesions remains unclear(35).

Figure 1.15 Paxillin double zinc finger LIM domains. The LIM domains are arranged in tandem with a structural conformation of two anti-parallel β-strands. Specific interactions target paxillin to the leading edge of the migratory cells via the cell actin cytoskeleton and microtubules. The interaction between paxillin and PTPPEST allows for Cas to be recruited to the focal adhesion complexes which eventually leads to focal adhesion complex disassembly.

Interestingly, LIM domains 3 and 4 are known to provide an interface for PTP-PEST (95) and it is the binding of PTP-PEST to LIM3/4 that is responsible for its transient targeting to the focal adhesions. PTP-PEST activity requires a phosphorylation event at Y31 and Y118 within paxillins N -terminus as well as ARF GAP PKL/GIT2 binding to paxillins LD4 domain. PTP-PEST is then able to regulate adhesion induced Rac signalling (96). This in turn facilitates the dephosphorylation of p130Cas which is important for the disassembly of focal adhesions towards the rear of the migratory cell (97). In addition to its well established influence with the actin filaments and focal adhesions, paxillin has also been shown to be bound to the microtubular cytoskeleton. A study employing a yeast two-hybrid screen showed that paxillin's LIM 2 and 3 domains interacted directly with α-tubulin (98). This association was confirmed by co-precipitation experiments which also indicated that paxillin can interact with γ-tubulin. It is likely that this interaction with γ-tubulin recruits paxillin to the microtubule organising centre (MTOC) in lymphoblast cells; although the potential
significance of this interaction and the role that paxillin plays at the MTOC is not known (99). Microinjection of LIM 2 and LIM 3 domains of paxillin into fibroblasts were found to localise specifically to focal adhesion sites replacing full length paxillin (38). This led to a decrease in microtubule catastrophes at this site. In adhesion free cytoplasm microtubules can grow for $4.9 \mu \mathrm{~m}$, on average, without catastrophes whereas at adhesion sites catastrophes occur after only $0.7 \mu \mathrm{~m}$ (38). According to the recent model paxillin serves as a docking site for the catastrophe factor, possibly through paxillins phosphotyrosine-containing domain within its amino-terminal domain. When a microtubule approaches an adhesion site a paxillin associated factor can trigger the microtubule to undergo a catastrophic event and depolymerise (38).

1.6.4 Paxillin binding site (PBS) in paxillin binding proteins

The first binding site for paxillin in an interacting protein was identified within the C-terminal region of vinculin (100). The binding interface on FAK was found to show a similar amino acid sequence (101); thus these similar interfaces were termed paxillin binding sites (PBS). The sequence alignment and the subsequent consensus sequence of paxillin binding partners are shown in Figure 1.16. Alignment of these sequences demonstrate that the PBS motifs are poorly conserved at the amino acid level compared to the LD domains of paxillin (36). However, structural predictions of these sites indicated that each of these PBS sequences forms an α-helical structure flanked by regions of random coil (102). It is suggested that it is the heterogeneity between the PBS motifs that forms the basis for their selective binding to particular paxillin LD domains (83). Woods et al 2005 identified two PBS like sequences within the N-terminal region of polyadenylate binding protein 1 (PABP-1); these are discussed in more detail within paragraph 1.9.

Putative PBS sequence

Vinculin	1025	KASDEVTRLAKEVA	1038
Actopaxin	273	KLNLEVTELETQFA	290
PABP1(PBS1)	17	DLHPDVTEAMLYEK	30
p95PKL(PBS2)	763	RIHVAVTEMAALFP	786
PABP1(PBS2)	345	EATKAVTEMNGRIV	358

Figure 1.16 Sequence alignment of paxillin binding proteins. Three of the main paxillin binding contributors contain areas of amino acid similarity within their paxillin interacting interfaces. These sequences produce the not so well conserved PBS consensus sequence.

1.6.5 Paxillin Phosphorylation

A large number of stimuli are known to induce tyrosine phosphorylation of paxillin (103). FAK along with its relatives are major components in the regulatory mechanisms of tyrosine phosphorylation of paxillin, $(104,105)$. This regulation in turn mediates a cycle of adhesion strengthening and weakening thereby delaying cellular retraction (106). A recent study has shown that the phosphorylation of paxillin at positions Y31 and Y118 substantially increases paxillin's affinity for FAK (107). Members of the Src family of kinases are also known to phosphorylate paxillin; indeed paxillin was originally purified from Src transformed fibroblast cells. Src activity is increased in the absence of its regulatory kinase Csk (C-terminal Src kinase), and this leads to increase the tyrosine phosphorylation of paxillin $(35,108)$. Equally important is the regulation of the dephosphorylation of paxillin in signalling pathways (103). PTP-PEST was identified as a 125 kDa protein with an N -terminal catalytic domain and a long proline rich C-terminal domain housing the PEST sequences, (109). Both paxillin and Hic-5 have been found to bind to this proline rich region of PTP-PEST (110). PTP-PEST is a cytoplasmic PTP that does not localise at the focal adhesion complexes which only permits its interaction with free paxillin, (103). PTP-PEST is able to regulate cell migration and spreading by decreasing Racl activity which may occur through the dephosphorylation of GIT2 thereby allowing the PTP-PEST to destabilise the GIT2/PIX/PAK complex (94).

The function of tyrosine phosphorylation is to create binding sites for SH2 domain containing signalling proteins. Tyrosine residues 31,118 and 182 in paxillin are found embedded in high affinity binding sites for the adaptor protein Crk. It is the phosphorylation of these sites that result in the recruitment of Crk and Crkl into complex with paxillin (77). Crk and Crkl are then able to associate via their SH3 domains with other signalling molecules such as DOCK180, (103). Paxillin has been shown to experience increased phosphorylation on serine residues when fibroblasts attach to fibronectin or when macrophages adhere to vitronectin (111). The phosphorylation events of paxillin in adhering cells are predominately mediated by PKC. The activation of PKC can also lead to ERK activation inducing the phosphorylation of paxillin, $(112,113)$.

1.6.6 Focal adhesion components containing LIM domains

Two other LIM domain-containing focal adhesion proteins that are capable of nucleocytoplasmic shuttling are members of the paxillin family, paxillin and hydrogen peroxide inducible clone-5 (Hic-5). Both paxillin and Hic-5 possess four C-terminal LIM domains and several N-terminal LD domains. Within focal adhesion sites they recruit and are recruited by signalling proteins such as focal adhesion kinase and play an important role in cell migration events, (84).

Hic-5 shows 57\% homology to paxillin and contains an N and C-terminal organisation of LD and LIM domains respectively (114). Hic-5 is found at focal adhesion sites where it is mobilised and accumulates on the actin stress fibers during cell migration, (115). Hic-5 facilitates the accumulation of NADP oxidase at the focal complexes via its recruitment of TRAF4 (85). NADP oxidase activity results in $\mathrm{H}_{2} \mathrm{O}_{2}$ production, which oxidises and inactivates PTP-PEST in the cytoplasm. This inactivation of PTP-PEST gives rise to increased Rac activation which in turn enhances cell motility (116). Extracellular signals such as those of oxidative stress are able to induce Hic-5 translocation from the cytoplasm to the nucleus in order to down regulate $\mathrm{H}_{2} \mathrm{O}_{2}$ production, (116).

Abelson non-receptor tyrosine kinase (Abl) is another protein commonly located within focal adhesion complexes and within the nucleus. This multifunctional protein contains multiple nuclear localisation and export motifs and has binding sites for both F-actin and DNA. Abl is recruited to cytoplasmic sites of integrin contact with the extracellular matrix where it facilitates phosphorylation of focal adhesion constituents such as paxillin, (117). This protein has been found to control actin assembly and cell surface ruffling when it is complexed with the protein Abelson-interactor-1, (118). Taken together these various interactions between paxillin and signalling kinases, actin binding proteins, integrin and tubulin support a role for paxillin as a multi-functional adapter. It can mediate the recruitment of substantial signalling moieties whilst trafficking between both actin and microtubule cytoskeletons. A mechanism for the regulation of cell motility that involves the nuclear-cytoplasmic shuttling of paxillin exists (85). Paxillin is able to interact with PABP-1 thus promoting the export of PABP-1
bound mRNA's (7). It is postulated that paxillin acts as a chaperone that directs the targeting of specific mRNA's to nascent focal adhesions (7).

1.7 Cell polarity and mRNA localisation

It is known that the focal adhesion structures perform a vital role as part of a complex array of proteins that act to maintain the polarity of the migratory cell. The establishment and maintenance of polarity during directional migration is mediated by both positive and negative feedback mechanisms. These mechanisms include integrins, phosphoinositides, cytoplasmic adaptor proteins and Rho family GTPases (21). One of the ways that a cell actively maintains its polarity is the transport of mRNAs to certain intracellular locations. Injection of localising mRNA into the cytoplasm of a cell revealed that the mRNA need not originate in the nucleus in order for it to localise properly in the cytoplasm (119). For example β-actin and all seven components of the Arp $2 / 3$ actin nucleation promoting complex are associated with cellular dynamics and motility at the cell's periphery (85). High concentrations of β-actin mRNA have been found at the leading edge of locomoting fibroblasts (120). In order to facilitate the transport of mRNAs to intracellular locations, protein complexes specifically capable of selectively binding mRNA transcripts are required. Paxillin and other adaptor proteins capable of interacting with cytoskeletal filaments and nucleo-cytoplasmic shuttling are ideal candidates for this purpose. Examination of spreading initiation centres (SICs) found a class of proteins, that specifically act to transport mRNAs as determined by nucleic acid staining, bound to talin and paxillin immunoprecipitants (121). The presence of these nucleo-cytoplasmic shuttling scaffold proteins, such as zyxin and CRP, at the leading edge of migratory cells and within the nucleus indicates a possible mode of action for mRNA delivery to cytoplasmic locations. rRNA probes confirmed the presence of ribosomes within the endoplasmic reticulum but also at the leading edge of the lamellipodia (121).

Asymmetric β-actin localisation is stimulated by extracellular signals that act via the Rho GTPase pathway. β-actin mRNA contains a localisation signal (zip code) that is located within the 3^{\prime} untranscribed region (UTR). It has been seen that Zip-code binding protein-1 (ZBP-1) recognises this localisation signal and remains with the nascent mRNA during its translocation from the nucleus to the cytoplasm (122). Within hippocampal cells ZBP-1 movement relies exclusively on microtubules, suggesting that β-actin mRNA can
simultaneously bind both microtubule based motors and myosins. It has been seen that the inhibition of dynein results in the loss of ASH-1 mRNA localisation (119). Interestingly it has been witnessed that mRNA transcripts which lack this localisation signal are also capable of the same movements but with reduced frequency and distance. Cytoskeletal dependent localisation of mRNA requires the mRNA to be anchored to the filaments and it is through depolymerisation of the actin filament, for example, that releases ZBP-1 from its cytoskeletal association (119).

A class of receptors called karyopherins are responsible for the nucleocytoplasmic transport of numerous proteins and certain classes of RNA. The small GTPase Ran controls the assembly of the karyopherin-cargo complex (123). When Ran-GDP binds to an importin in the cytoplasm, it triggers a release of the cargo similarly when Ran-GTP binds an exportin it facilitates the assembly of the exportin cargo complex (124). It has been seen that mRNA export into the cytoplasm can be via the Crm-1 or exportin-5 pathways. Indeed these pathways are also used to export micro-RNA (miRNA) transcripts in conjunction with a scaffold protein. An example of this is exportin- 5 that binds a miRNA transcript with its scaffold protein ILF-3 (125). In order for RNA to be transported via this pathway it must not contain a 5^{\prime} overhang. The common route of mRNA transport is via the Crm-1 pathway which again requires the RNA transcript to be part of a transport complex, for example miRNA with drosha/DGCR8 (126) and mRNA with PABP-1/paxillin (127). At least one of the cargo proteins must contain a nuclear export signal such as that found in paxillin, which has been seen to export via the Crm-1 pathway (127).

1.8 PABP-1 in mRNA translational control

Regulation of gene expression is more complicated in eukaryotic cells than in bacteria and is reliant upon the spatial and temporal separation of transcription and translation. For example, eukaryotic transcription is carried out from within the nucleus. Three types of RNA polymerases are employed; RNA polymerase I is located within the nucleoli where it transcribes the ribosomal RNA of $18 \mathrm{~S}, 5.8 \mathrm{~S}$ and 28 S ; ribosomal RNA are synthesised by RNA polymerase III which is found in the nucleoplasm; RNA polymerase II is also located in the nucleoplasm and is responsible for the precursors of mRNA $(128,129)$. Following transcription, the 5 ' triphosphate end of nascent RNA is conjugated with GTP, which is then methylated by s-adenosyl-methionine. This is commonly known as the CAP. The cap
provides a contribution to the stability of mRNAs by protecting the 5^{\prime}, end from phosphatases and nucleases. In addition to the 5^{\prime} 'cap most eukaryotic mRNAs contain a polyadenylate tail at their 3' end. Primary transcripts are cleaved by a specific endonuclease that recognises the sequence AUAAA. Following cleavage by the endonuclease a polyadenylate polymerase adds approximately 250 adenine residues to the 3^{\prime} end of the transcripts using ATP as a donor in this reaction $(130,131)$. The long polyadenylate tail collaborates with the 5 '-cap to protect the mRNA from digestion by nucleases and provides stability during its transport to the cytoplasm to engage with the translational machinery.

Figure 1.17 Eukaryotic initiation factor complex which facilitates communication between the 5^{\prime}-CAP and $\mathbf{3}^{\prime}$-polyadenylated tail. Formation of the initiation complex begins with the recognition of the 5^{\prime}-CAP by eIF4E. eIF4G acts as a scaffolding protein providing a bridge between eIF4E and the other eIF proteins. As can be expected for such a central protein it is also a site of regulation. PABP binds to eIF4G via its RRM 1 domain and brings the 3^{\prime}-polyadenylated tail into close proximity with the 5^{\prime}-CAP, thus facilitating communication and inducing the 'closed loop' formation of initiation.

From the point of mRNA translation and throughout its nuclear export, the poly(A) tail can be found in complex with multiple copies of a 71 kDa polyadenylate binding protein (PABP-1) (132). Each PABP-1 molecule binds to approximately 27 adenylate nucleotides thus forming
a head to tail repetitive pattern of PABP-1 that gives the poly(A) tail protection from RNase cleavage (133).

In addition to this role in promoting mRNA stability during transport PABP-1 plays an important role in translation initiation. Eukaryotic translation requires the assembly of a large multi-protein complex that promotes the circularisation of mRNA and thus allows the 5' CAP and 3 ' poly(A) tail to communicate $(134,135)$. The assembly of this circular complex is initiated by the recognition of the 5 , CAP by the eukaryotic initiation factor eIF4E. eIF4E then provides a binding site for the scaffold protein eIF4G which directs the 43S subunit of the ribosome to the 5 , CAP. eIF4G is then recruited by its proximity to eIF4E and this provides a platform for multiple protein-protein interactions including PABP-1, that lends to the circularisation and translational enhancement, Figure 1.17, (136).

1.8.1 Domain structure of PABP-1

Published PABP sequences contain four highly conserved RNA recognition motifs (RRMs), Figure 1.18, arranged in tandem (137). These are followed by a variable proline rich C terminus that is not as well conserved. Numerous studies have investigated the modular organisation of PABP and have shown that it is not essential for successful RNA binding to have all of the RRM domains present. For example, it was demonstrated that a polypeptide containing the two N-terminal RRMs (RRM1/2) binds specifically to polyadenylated RNA with an affinity close to that of wild type PABP $(138,139)$. Recent studies have shown that the RRM1/2 tandem domain also supports the interaction with eIF4G and polyadenylate binding protein interacting protein 1 (PAIP-1), albeit at a reduced affinity relative to wild type (140).

Figure 1.18 Schematic diagram of PABP-1. The diagram illustrates the RNA recognition motifs (RRMs) arranged in tandem at the N-terminal region of PABP-1. Indicated within RRMs 1 and 4 are the identified paxillin binding sub-domains that share similarities to those found in actopaxin. Also shown are the areas of binding for eIF4G and PAIP1.

1.8.2 PABP-1 RRM1/2 Structural Characteristics

A three dimensional crystal structure of PABP-1 RRM1/2 in complex with an 11-nucleotide poly(A) tail was determined, Figure 1.19 (6). The two structurally similar RRM domains consist of four β-strands and two α-helices that are connected by a nine residue domain linker (90-98). The two domains form a trough that binds poly (A) RNA to give an anti-parallel protein/RNA conformation. In general the floor of the trough is formed by two adjacent antiparallel β-sheets with the β-strands arranged in space in the order of S2-S3-S1-S4 (RRM 1)-S2'-S3'-S1'-S4'(RRM 2). The sides of the RNA-binding trough are formed by the S2-S3 loop of RRM 1, the inter-domain linker, S2'-S3' loop of RRM 2 and part of the inter-domain linker between RRM 2 and RRM 3. During the course of their study Deo et al found that in the absence of RNA the inter-domain linker between RRM 1 and 2 was unstructured, but was found to adopt an α-helix in the presence of RNA (6).

Figure 1.19 Crystal structure of the PABP-1 RRM1/2 domain in complex with a 11 ribonucleotide poly(A) tail. The diagram illustrates the RNA binding trough that is formed by the two domains. The RNA (orange) can be seen to be bound to the floor of the trough to form an anti-parallel conformation of protein and RNA. The floor of the trough is formed by the two β-sheets. The walls of the trough are formed by the S2 loop of RRM 1, the RRM inter-domain linker, S2' loop of RRM 2 and part of the interdomain linker between RRM 2 and RRM 3 (PDB data file 1CVJ).

PABP-1 RRM1/2 makes significant contacts with the RNA backbone which participates in a number of electrostatic interactions. These interactions include K104-Ade2, Y140-Ade3, Y14-Ade6, Y54-Ade8, Y56-Ade8 and R89-Ade8. The 2'hydroxyl groups interact with the protein suggesting that the interaction is weak (6).

The aliphatic region of K104 makes Van der waals contacts with the 3 'face of Ade2 while at the same time N105 accepts a hydrogen bond from the N6 atom of RNA, Figure 1.20A. The plane of F142 binds the 5^{\prime} face of Ade4 which in turn stacks with Ade5, Figure 1.20B. Below the 3^{\prime} face of Ade5 are the interaction sites for R94 and M85 which generate a fourth stacking layer. It is through a mixture of stacking interactions and the hydrogen bond donation from N6 that adenine is selected and guanine excluded. The interaction of N100 distinguishes purines from pyrimidines and S 127 aids in PABP-1 specificity for adenine.

Figure 1.20 PABP-1 RRM 2 RNA interactions. A. K104 engages Ade 2 in electrostatic interactions while N105 of PABP-1 RRM 2 is able to form a hydrogen bond with N6 of Ade2. B. F142 with its aromatic ring solvent exposed on the β_{3} strand of PABP-1 RRM 2 is able to form stacking interactions with Ade 4 of the poly (A) tail of mRNA, which in turn forms another stacking interaction with Ade 5.

In conjunction with the stacking interactions, the RNA ribose moieties appear to be sandwiched between the aromatic and aliphatic side chains of PABP-1 RRM1/2. Ade3 was found to be sandwiched between F102 and R179 and is specified by the interaction between

K104 and Ade2, Figure 1.21A. Similarly Ade6 is sandwiched between Y14 and R94 and is specified by the interactions of W86 and D88, Figure 1.21B (6).

Figure 1.21 PABP-1 RRM 1 and 2 domain sandwich interactions with the poly(A) tail of mRNA. A. F102 located on the β_{1} strand of PABP-1 RRM 2 forms a stacking interaction with Ade 3 of the mRNA and sandwiches it between R179 located within the PABP-1 RRM 2 and 3 linker region. B. Y14 located on the β_{1} strand of PABP-1 RRM 1 forms a stacking interaction with Ade 6 of the mRNA and sandwiches, in a similar fashion, between R94 located within the small helical region of the inter-domain linker between PABP-1 RRM 1 and 2.

Polypyrimidine tract binding protein (PTB) is an RNA binding protein that functions as a splice repressor and acts in a similar manner to PABP-1, in that the RNA interaction site lies across the β-sheet, with its RRM domains maintaining a similar structural topology. Unlike PABP-1, PTB shows specificity for poly (CU) sequences allowing it to compete with the essential splicing factor U2AF for the 3^{\prime} splice sites (141). Interestingly the RRM 1 domain of PTB interacts weakly with RNA, perhaps because the RRM 1 and 2 domains of PTB lack the hydrophobic interactions between the aromatic residues and the RNA bases that are key to the PABP-1/RNA interactions. PTB RRM3/4 domains provide a different functionality to that seen in PABP-1 (currently unknown) in that they bring two distantly located pyrimidine tracts to within $\sim 30 \AA \dot{\AA}$ and thus reduce the amount of RNA looping. It is this looping that prevents the assembly of spliceosomal components (141).

1.8.3 The characteristics of the PABP-1 C-terminus

The C-terminal portion of PABP-1 contains a 75 residue conserved region (PABC) which is homologous to a subset of the HECT-family E3 ubiquitin ligases (142). It has been seen that the adenomatous polyposis coli (APC) tumour suppressor specifically interacts with the Cterminal domain of PABP-1. Neither Ran-GTP nor importin- β was detected but subsequent treatment with RNase disrupted the interaction. These results would indicate that the interaction is mediated through the RNA itself providing an insight to PABP-1/RNA transcript specificity (143). In mammals, the PABC domain of PABP-1 enables the recruitment of several different translation factors to the mRNA poly-(A) tail, including PAIP-2 and Rna15p (144). A study employed NMR spectroscopy to investigate the PABC portion of PABP-1 and the residues involved in interactions with PAIP-2. NMR spectra obtained found that the 75 residue C -terminal domain is almost three quarters α-helical, containing a total of 5α-helices, with a hydrophobic core and compact globular structure (145). The α-helices are arranged in an arrowhead formation (Figure 1.22) with helix 1 forming the tip, and helices 2 and 4 forming the sides. Helix 3 crosses helices 2 and 4, forming a salt bridge between amino acids K35 and E42. Helix 5 is a long C-terminal helix that constitutes the shaft of the arrow (145). Following a titration with Paip-2, it was found that residues K35, V68 and M39, of the PABP C-terminus display the largest shifts upon Paip-2 binding, and that the molecular surface around the residues is disturbed by Paip-2 binding thus revealing a putative peptide binding site.

Figure 1.22 C-terminus region of PABP-1 displaying an arrowhead formation. Helix 1 forms the tip of the arrowhead with helices 2 and 4 forming the sides. Helix 3 crosses helices 2 and 4 and is held in position by a salt bridge between residues K35 and E42. Helix 5 forms the shaft of the arrowhead formation. At the centre of the 5 helices is a well maintained hydrophobic core giving the overall structure a globular appearance (PDB file 1I2T).

1.9 Paxillin/PABP-1 interaction during cell migration events

Biochemical studies focused upon identifying proteins that co-immunoprecipitate with paxillin were carried out (7). Pull-down assays using both paxillin α and β isoforms were used to isolate co-immunoprecipitants in conjunction with yeast two hybrid screens. In order to identify proteins that form stable complexes with paxillin; magnetic beads conjugated with anti-paxillin antibodies were used to separate the stable complexes. These complexes were separated by SDS-PAGE gel electrophoresis and the bands excised. These were then digested using trypsin and the resulting peptides analysed by matrix assisted laser desorption ionisation (MALDI) mass spectrometry. PABP-1 was identified as an abundant co-immunoprecipitant of paxillin. Saturation binding analysis using enzyme linked immunosorbent assays determined this association to have a K_{d} of $\sim 10 \mathrm{nM}$.

Treatment of migratory cells with leptomycin B resulted in the inhibition of the exportin 1 nuclear export pathway. Using florescence labelled paxillin and PABP-1 it was possible to observe the accumulation of these complexes within the nucleus of the cell thereby identifying the nuclear export pathway used. Further to this cell fractionation studies found that the bulk of paxillin/PABP-1 complexes were present within the dense endoplasmic reticulum. Using similar florescence labelled protein it was found that paxillin $\beta / \mathrm{PABP}-1$ complexes to be located at the leading edge of lamellipodia in migratory cells. These data suggest that paxillin is involved in the delivery of mRNA to the leading edge of the migratory cell (7).

Figure 1.23 NIH 3T3 Fibroblast cells transfected with EGFP tagged paxillin α. A) EGFP paxillin α was fixed and stained, it can be seen that paxillin α is predominately located at the leading edge of the migratory cell. B) The cells were then stained with anti-PABP-1 followed by a Texas-red conjugated secondary antibody; this clearly illustrates the co-localisation of PABP-1 at the leading edge of the cell. C and D) Following treatment with leptomycin the majority of paxillin and PABP-1 are retained in the nucleus of the fibroblast and cellular migration is severely diminished. Image taken from (7).

As mentioned earlier Woods et al 2005 identified PBS like sequences within the N-terminal region of PABP-1; the first (PBS1) within the RRM1 domain and the second (PBS2) within the RRM 4 domain. Two mutations were introduced into each of the PBS sites of PABP-1 the first within the RRM1 D21R and T22N; and the second within the RRM4 domain A349R and T351N. Florescence labelled mutants revealed that the intracellular distribution of PABP-1 PBS1 ${ }^{\text {RN }}$ showed very little difference from the wild type PABP-1. Approximately
40% of cellular PABP- $1 \mathrm{PBS}^{\mathrm{RN}}$ and PABP- $1 \mathrm{PBS} 1 / 2^{\mathrm{RN}}$ was located within the nucleus (127). Wound healing assays indicated that mutation of either PBS1 or PBS2 was insufficient to negate the binding of His-PABP-1. Cell migration was reduced by 40% with the PBS2 mutant whilst the PBS1 mutant, surprisingly, had little to no effect on migrational movements. The question remained, was the altered nucleocytoplasmic distribution of these mutants due to their inability to associate with paxillin? To answer this RNAi was used to suppress the cellular levels of paxillin. This resulted in the accumulation of PABP-1 within the nucleus, which was shown to be capable of shuttling upon addition of paxillin (127).

Initial binding experiments (7) found paxillin LD4 domain to be involved with the paxillin/PABP-1 interaction; paxillin constructs without this domain yielded no significant binding interactions. These binding data led to the theory that the paxillin LD4 was binding to the PABP-1 RRM 4 domain, given the reduction of migrational movements upon mutation of the PBS2 site. However, initial NMR titration data (not presented) revealed no chemical shift changes in the uniformly ${ }^{15} \mathrm{~N}$ labelled PABP-1 RRM 4 sample upon the addition of paxillin LD4. The titration was repeated with GST tagged paxillin LD constructs only to reveal identical results (not shown). As will be discussed in later chapters the paxillin/PABP1 interaction maybe more complicated than was first thought. Indeed the position of the PBS 1 site within the PABP-1 RRM1 domain is located on α-helix 1 far removed from the poly(A) mRNA interface. Disruption of this may lead to destabilisation of the α-helix but would not disturb the mRNA interface. It was curious that this mutation did not result in the reduction of cellular migration. It may have been the case that the disruption of the α-helix in PABP- 1 RRM1 was sufficient to render any possible internal interaction with PABP-1 RRM4 thus preventing total disruption of the paxillin/PABP-1 interaction. The success of the initial PABP-1 RRM1/2 NMR titration trials and the current crystal structure of this double domain in complex with poly (A) mRNA make this a tantalising area of research.

Figure $1.24{ }^{15} \mathrm{~N}$ resolved HSQC spectra of PABP-1 RRM1/2 domains. A) Illustrates a 6 Histidine tagged PABP-1 RRM1/2 domain in its free form. B) Illustrates a 6 Histidine tagged PABP-1 RRM1/2 domain following titration of paxillin LD1/2 domain at a $1: 1$ ratio. The circled HSQC signals illustrate the disappearance and movement of HSQC signals upon addition of the paxillin ligand. The spectra clearly demonstrates the feasibility of using NMR

1.10 Aims of the project

- To characterise the molecular interaction between paxillin and PABP-1.
- Use biochemical assays to identify the regions of paxillin that bind to PABP-1 (Chapter 3).
- To use NMR techniques to elucidate the structure of the PABP-1 RRM 2/paxillin LD1 complex.
- Identify the possible competition between paxillin LD1 and poly (A) mRNA for the binding interface.
- To use NMR spectroscopy to elucidate the structure of the PABP-1 RRM 1 and characterise the predicted PBS domain within PABP-1 RRM 1.
- To determine any possible inter-domain interactions between PABP-1 RRM 1 and 2 domains.
- Examine the effects of PABP-1 RRM $1 / 2$ tandem domain on paxillin binding.

Chapter 2 Materials and methods

2.1 DNA Methods

PABP-1 RRM 1 PCR primers were designed in accordance with the published nucleotide sequence accession number NW_002568. An NCO I restriction enzyme site was included into the forward primer of RRM 1; similarly a Kpn I site was designed into the reverse primer. The primers were designed to have similar GC content and melting points.

Table 2.1 Table of PCR primers for PABP-1 RRM 1

Primer	Primer Sequence	Melting temp	GC content
RRM1 Forward	5^{\prime}-CATGCCATGGGTATGAACCCCAGTGCCCCC -3'	$73^{\circ} \mathrm{C}$	63%
RRM1 Reverse	5^{\prime}-TGGTCTCAGCGTGATTAAGGTACCCTCGAGCGG-3'	$73^{\circ} \mathrm{C}$	58%

Lyophilised primers were re-hydrolysed to give a $200 \mu \mathrm{M}$ concentration; each primer was aliquoted to prevent contamination. A working stock concentration of $10 \mu \mathrm{M}$ was required for the PCR reaction.

2.1.1 PCR Reaction Protocol

Roche expand high fidelity PCR kit was used as described in table 3.2 with a primer concentration of 300 nM and a dNTP mix concentration of $10 \mu \mathrm{M}$. Reaction mixture A and mixture B were combined and overlaid with $25 \mu \mathrm{l}$ of mineral oil. The PCR conditions used are as follows:

One cycle of: Initial denaturation $95^{\circ} \mathrm{C} \quad 4$ minutes
Followed by 30 cycles of:

Denaturation	$94^{\circ} \mathrm{C}$	1 minute
Annealing	$55^{\circ} \mathrm{C}$	1 minute
Extension	$72^{\circ} \mathrm{C}$	1 minute

A further cycle of $72^{\circ} \mathrm{C}$ for 4 minutes was employed to use any left over primers.

2.1.2 Legation

The cloning vector used was pET-M11, supplied by Dr Alison Woods. To enable successful ligation into the vector the PCR product must have an over hang of nucleotides i.e. 'sticky ends'. In order to facilitate this PCR product and pET-M11 vector must undergo restriction enzyme digest with NCO I and Kpn I restriction enzymes. Both the PCR product and vector were cut using the reaction protocol set out in table 2.2 and incubated for 1 hour at $37^{\circ} \mathrm{C}$ shaking.

Table 2.2 Restriction Enzyme Protocol.

Sample	DNA Product	$\mathrm{dH}_{2} \mathrm{O}$	10 X NEB 1 buffer *	100 X BSA	Kpn-I	NCO-I
Neg control	None	$5 \mu \mathrm{l}$	$2 \mu \mathrm{l}$	$2 \mu \mathrm{l}$	$1 \mu \mathrm{l}$	$1 \mu \mathrm{l}$
PCR product	$10 \mu \mathrm{l}$	$5 \mu \mathrm{l}$	$2 \mu \mathrm{l}$	$2 \mu \mathrm{l}$	$1 \mu \mathrm{l}$	$1 \mu \mathrm{l}$
pET-M11	$10 \mu \mathrm{l}$	$5 \mu \mathrm{l}$	$2 \mu \mathrm{l}$	$2 \mu \mathrm{l}$	$1 \mu \mathrm{l}$	$1 \mu \mathrm{l}$

* NEB 1 buffer, supplied with Kpn-1 restriction enzymes, by New England Biolabs is universally adaptable to both restriction enzymes.

The DNA products were purified using a Gene Clean kit supplied by Bio101 Inc. Table 2.3 presents the consistently successful protocol for the T4 DNA ligase reaction.

Table 2.3 Ligation Protocol

Sample	Vector	Insert	$\mathrm{dH}_{2} \mathrm{O}$	2x Ligation buffer	Quick T4 DNA ligase
Neg cntl	$1 \mu \mathrm{l}$	None	$8 \mu \mathrm{l}$	$10 \mu \mathrm{l}$	$1 \mu \mathrm{l}$
1	$1 \mu \mathrm{l}$	$1 \mu \mathrm{l}$	$7 \mu \mathrm{l}$	$10 \mu \mathrm{l}$	$1 \mu \mathrm{l}$
2	$1 \mu \mathrm{l}$	3μ	$5 \mu \mathrm{l}$	$10 \mu \mathrm{l}$	$1 \mu \mathrm{l}$
3	$1 \mu \mathrm{l}$	$5 \mu \mathrm{l}$	$3 \mu \mathrm{l}$	$10 \mu \mathrm{l}$	$1 \mu \mathrm{l}$

The solution was vortex mixed for 5 seconds and incubated at room temperature for 5 minutes followed by a further incubation of 5 minutes on ice. The resultant DNA plasmid solution was stored at $-20^{\circ} \mathrm{C}$ until DNA sequencing has been carried out to confirm correct ligation of the target sequence.

2.1.3 PCR screen

Competent DH5 α cells were transformed using the newly ligated $\mathrm{pETM}-11$ vectors containing the DNA insert. The transformation protocol described in below was used to transform the competent $\mathrm{DH} 5 \alpha$ cells and the plates incubated overnight at $37^{\circ} \mathrm{C}$. The plates were then checked for successful transformation and positive colonies confirmed by PCR screen.

Each colony was removed from the plate and resuspended in nuclease free water. A PCR was carried out using the DNA primers to confirm the presence of the insert. Upon successful identification of the insert $10 \mu \mathrm{l}$ of the resuspended colony was used to inoculate 10 ml of enriched LB-broth. These were incubated overnight at $37^{\circ} \mathrm{C}$ in order to make minipreps of the cloned DNA insert and vector for DNA sequencing. DNA minipreps were made using a DNA miniprep kit supplied by Promega and using their protocol.

2.2 Transformation protocol

Transformation of competent E.Coli cells required the incubation of DNA with the competent bacterial cells. 10ng of recombinant DNA was introduced to BL21 DE3 competent cells and allowed to combine on ice for 20 minutes. The DNA solution was then heat shocked for 30 seconds at $40^{\circ} \mathrm{C}$ and allowed to equilibrate at room temperature for 10 minutes. The solution was added to 1 ml of pre-warmed $\left(37^{\circ} \mathrm{C}\right)$ enriched LB and incubated at $37^{\circ} \mathrm{C}$ for one hour.

The transformed cells were plated out on to kanamycin $(40 \mathrm{mg} / \mathrm{l})$ enriched agar plates by centrifuging the cell suspension for 10 seconds at low speed to pellet the transformed cells the LB decanted the pellet was resuspended with $150 \mu 1$ of fresh LB. The Kanamycin enriched plates were incubated at $37^{\circ} \mathrm{C}$ overnight, the plates were then checked the following day for growth, positive growth plates were sealed with parafilm and stored at $4^{\circ} \mathrm{C}$.

2.3 Protein expression

In order for the target protein to be labelled with ${ }^{15} \mathrm{~N}$ and ${ }^{13} \mathrm{C}$ it was necessary to express it in M9 minimal media (appendix I). Initially one colony was removed from the newly transformed plate and resuspended in $100 \mu \mathrm{LB}$ kanamycin ($40 \mathrm{mg} / \mathrm{l}$) this was then incubated at $37^{\circ} \mathrm{C}$ shaking until an optical density of 0.7 was achieved at an absorbance of 595 nm . This was then used to inoculate 1 ml of ${ }^{15} \mathrm{~N}$ enriched M9 media and incubated at $37^{\circ} \mathrm{C}$ until an O.D of 0.7 was reached. Once again this was used to further inoculate 5 ml of ${ }^{15} \mathrm{~N}$ enriched M9 media and incubated at $37^{\circ} \mathrm{C}$ until an O.D of 0.7 was obtained. The 5 ml cell suspension was then decanted into the pre-warmed $37^{\circ} \mathrm{C}{ }^{15} \mathrm{~N}$ enriched M9 media, and incubated at $37^{\circ} \mathrm{C}$ shaking until an optical density of $\sim 0.65-0.8$ was reached. The cells were then induced with 1 mM IPTG per 500 ml suspension, the cell suspension was induced overnight at $37^{\circ} \mathrm{C}$ shaking. Induction temperature trials were carried out in order to obtain optimum protein yields, as summarised in table 2.4.

Table 2.4 lists protein constructs expressed and their associated cell lines, purification method, yields and induction temperatures.

Protein Construct	Competent Cells	Purification Column	Average Protein Yield	Induction Temperature
Full length PABP-1	BL21 DE3	Nickel	$0.21 \mathrm{mg} / \mathrm{ml}$	$37^{\circ} \mathrm{C}$
PABP-1 RRM1/2	BL21 DE3	Nickel	$0.79 \mathrm{mg} / \mathrm{ml}$	$15^{\circ} \mathrm{C}$
PABP-1 RRM3/4	BL21 DE3	Nickel	$0.97 \mathrm{mg} / \mathrm{ml}$	$37^{\circ} \mathrm{C}$
PABP-1 RRM 1	BL21 DE3	Nickel	$1.4 \mathrm{mg} / \mathrm{ml}$	$15^{\circ} \mathrm{C}$
PABP-1 RRM 2	BL21 DE3	Nickel	$2.32 \mathrm{mg} / \mathrm{ml}$	$37^{\circ} \mathrm{C}$
PABP-1 RRM 4	BL21 DE3	Nickel	$1.96 \mathrm{mg} / \mathrm{ml}$	$37^{\circ} \mathrm{C}$
PABP-1 RRM1/2 R21, N23 PBS mutant	BL21 DE3	Nickel	$1.2 \mathrm{mg} / \mathrm{ml}$	$37^{\circ} \mathrm{C}$
Full length Paxillin	BL21	GST	$0.75 \mathrm{mg} / \mathrm{ml}$	$30^{\circ} \mathrm{C}$
Paxillin 55-313	BL21	GST	$0.16 \mathrm{mg} / \mathrm{ml}$	$15^{\circ} \mathrm{C}$
Paxillin N- terminus	BL21 \& DE3	GST	$0.43 \mathrm{mg} / \mathrm{ml}$	$37^{\circ} \mathrm{C}$
Paxillin LD1/2	BL21	Nickel	$0.89 \mathrm{mg} / \mathrm{ml}$	$15^{\circ} \mathrm{C}$

Paxillin LD1/2 pETM-20	BL21 DE3	Nickel	$1.2 \mathrm{mg} / \mathrm{ml}$	$15^{\circ} \mathrm{C}$
Paxillin LD3/4	BL21	Nickel	$0.98 \mathrm{mg} / \mathrm{ml}$	$37^{\circ} \mathrm{C}$
Paxillin LD 1	BL21 DE3	GST	$0.58 \mathrm{mg} / \mathrm{ml}$	$37^{\circ} \mathrm{C}$
Paxillin LD 2	BL21	GST	$0.46 \mathrm{mg} / \mathrm{ml}$	$37^{\circ} \mathrm{C}$
Paxillin LD 5	BL21	GST	$0.36 \mathrm{mg} / \mathrm{ml}$	$37^{\circ} \mathrm{C}$

2.3.1 Protein purification

The induced cell suspension was harvested by centrifugation at 5000 rpm for 8 minutes; and the resulting pellet was resuspended in 10 ml phosphate buffer A (appendix I) per flask. The cell suspension was treated with $10 \mu \mathrm{l}$ DNAse I, the cells were disrupted by French press and the resultant cytosol centrifuged at $18,000 \mathrm{rpm}$ for 30 minutes. The cytosol was passed down a 5 ml nickel charged metal chelate column, the column was then placed into an FPLC system and eluted on an increasing gradient of phosphate buffer B.

2.4 Histidine tag removal

The N-terminal six histidine tag facilitated the purification of the protein and was left attached to the protein during the course of the ELISA binding assays. However, for the purpose of determination of the native protein structure it was necessary to remove this N-terminal tag. The pETM-11 plasmid employs a Tev protease cleavage site to facilitate efficient removal of the His-tag.

Prior to the removal of the His-tag it was necessary to change the purified protein buffer from phosphate FPLC elution buffer to Tev protease buffer. A PD10 column was used to facilitate the buffer exchange, and 0.1 mM DTT was added to the eluted protein solution. The final protein concentration was determined by measuring the absorbance at 280 nm and using a theoretical extinction coefficient as determined Swiss-Prot database tools.

2.4.1 Tev Protease time course

To determine the efficiency of the AcTev protease a time course be carried out, Figure 2.1. This was performed on a protein sample diluted to $2 \mathrm{mg} / \mathrm{ml}$ at a volume of $25 \mu \mathrm{l}$, AcTev protease (supplied by Invitrogen) concentrations of 1, 2, 4 and 10units and left to incubate
overnight at room temperature. The time course was repeated on undiluted protein solution using 2 and 4units on a volume of $35 \mu \mathrm{l}$ at a concentration of $7.8 \mathrm{mg} / \mathrm{ml}$. It was decided that a AcTev protease concentration of 2 units was the optimum able to cleave 0.25 mg of target protein overnight at room temperature.

Figure 2.1 AcTev Protease time course for a protein solution. The Figure illustrates the a final protease time course performed on 0.25 g of protein with varying units of protease over a set period of time.

The cleaved His-tags were removed by passing the AcTev protease/protein solution through a 5 ml nickel charged metal chelate column, this was carried out after the buffer was changed to phosphate buffer.

2.5 Enzyme Linked ImmunoSorbent Assay (ELISA)

Each well of a Nunc Maxisorp 96 well plate was labelled with 100ng of full length His-tagged PABP-1. The plate was then incubated overnight at $4^{\circ} \mathrm{C}$.

Full length GST-tagged paxillin was to be used as a positive control and purified GST as a negative control with a GST-tagged paxillin construct as the test subject. A serial dilution of the protein to be analysed was used.

The wells of the plate were initially washed twice with $1 x$ xBS 0.1% Tween pH 7.4 . The wells were then loaded with the GST labelled protein ligands, according to table 2.5 below, and incubated at $4^{\circ} \mathrm{C}$ for one hour.

Table 2.5 ELISA serial dilution ligand loading.

	GST negative control		Full length Paxillin		Paxillin 55-313	
Well No.	1	2	3	4	5	6
A	90 nM					
B	45 nM					
C	22.5 nM					
D	11.25 nM					
E	5.6 nM					
F	2.8 nM					
G	1.4 nM					
H	$1 \times$ PBS	$1 \times P B S$	$1 \times P B S$	$1 \times$ xBS	$1 \times P B S$	$1 \times P B S$

Anti GST-HRP primary antibody (supplied by Dr Alison Woods) was used in order to avoid the need of an additional secondary antibody step. The ELISA plate was washed three times with 1xPBS 0.1% Tween pH 7.4. Anti GST-HRP antibody was diluted 1:1000 with 1xPBS 0.1% Tween $\mathrm{pH} 7.41 \%$ BSA and $50 \mu \mathrm{l}$ loaded into each well. The plate was then incubated at $4^{\circ} \mathrm{C}$ for 45 minutes.

Excess antibody was removed by washing the plate four times with 1XPBS 0.1% Tween pH 7.4. In order to elucidate a colorimetric change the antibody was treated with 15 mg ONPG dissolved in 12 ml citrate phosphate buffer and $1.25 \mu \mathrm{l}$ hydrogen peroxide. $50 \mu \mathrm{l}$ of this solution was loaded into each well and allowed to develop over 10 minutes at room temperature. Once the colour change had reached a moderate intensity the reaction was stopped by the addition of $50 \mu 14 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$.

The absorbance of the reaction was measured using a plate reading spectrometer at a wavelength of 490 nm . After the initial ELISA was performed only one change was made to the protocol which was the starting concentration of the paxillin ligands. A starting concentration of 300 nM and subsequent serial dilution from that point was used for each ELISA.

2.6 NMR Spectroscopy

NMR spectra were typically obtained from 350μ protein samples of $\sim 1.2 \mathrm{mM}$ PABP-1 RRMs 1 and 2 in $20 \mathrm{mM} \mathrm{Na}_{2} \mathrm{HPO}_{4}, 100 \mathrm{mM} \mathrm{NaCl}, 2 \mathrm{mM}$ DTT pH6.5 but also containing either 90% $\mathrm{H}_{2} \mathrm{O} / 10 \% \mathrm{D}_{2} \mathrm{O}$ or $100 \% \mathrm{D}_{2} \mathrm{O}$ where appropriate and at a temperature of $30^{\circ} \mathrm{C}$. NMR 2D and 3D datasets for the sequential assignment of PABP-1 RRM 2 protein backbone were collected on a Bruker 600 MHz spectrometer, protein side-chain datasets were performed using a Bruker 600 MHz spectrometer with cryoplatform. All 3D NOESY experiments were carried out using a Bruker 800 MHz spectrometer with cryoplatform. Table 2.6 lists the NMR experiments employed for the structural determination of PABP-1 RRM domains in their unbound states, the 3D datasets were collected over a 90 hour period.

Table 2.6 Table of NMR datasets commonly employed in amino acid protein assignments.

	NMR Experiment	References
Backbone Assignments	${ }^{15} \mathrm{~N}$ HSQC	(146)
	CBCACONH	(147)
	HNCACB	$(147,148)$
	HBHACONH	(149)
	HBHANH	(149)
Side-chain Assignments	HNCO	(150)
	${ }^{13} \mathrm{C}$ HSCACO	(151)
	$[\mathrm{H}] \mathrm{CCH}-\mathrm{TOCSY}$	(152)
	$\mathrm{H}[\mathrm{C}] \mathrm{CH}-\mathrm{TOCSY}$	$(153,154)$
	${ }^{13} \mathrm{C} \mathrm{NOESY} \mathrm{HSQC}$	$(153,154)$
	${ }^{13} \mathrm{C} \mathrm{NOESY} \mathrm{(aromatics)}$	(155)
	${ }^{15} \mathrm{~N}$ NOESY	(155)
		$(156,157)$

The details of the experimental NMR datasets will be discussed in more detail within each protein domain chapter. Experimental parameters differed from protein to protein and were optimised to each particular protein construct (appendix 2). The WATERGATE method was employed in order to suppress the water signal for the duration of the experiment where needed (158).

Each NMR dataset was Fourier transformed using Bruker TOPSPIN edition 1.2, it can be assumed that linear prediction was not used to enhance spectral resolution unless stated in the respective protein chapters. Amino acid assignment was performed using CCPN (Computer Collaborative Project for NMR) assignment software (159).

2.7 Amino acid assignments

2.7.1 Amide backbone assignment

The principal process behind the sequential assignment of backbone resonances was first described by Wuthrich and co-workers (160). The initial premise makes use of $\mathrm{H}^{\mathrm{N}} \mathrm{H}^{\alpha}$ scalar couplings in order to establish sets of spin systems based upon a protein of given residues with distinct backbone based spin systems.

Amino acid assignment was performed using CCPN (Computer Collaborative Project for NMR) assignment software (159). The software assigns a resonance to each signal in a spin system. A processed and UCSF converted ${ }^{1} \mathrm{H}^{15} \mathrm{~N}$ HSQC spectrum was imported into the project. The H^{N} signals of the HSQC were picked, the additional signal pairs from the glutamines were not included, and a resonance assigned to each spin system.

The HSQC signals are used to navigate and identify their reciprocal signals in the HNCACB and $\mathrm{CBCA}(\mathrm{CO}) \mathrm{NH}$. The $\mathrm{C} \alpha$ and $\mathrm{C} \beta$ signals, within the 3 D experiments, were confirmed by their random coil chemical shift index (161). The intra-residue signals were identified by the HNCACB experiment and the inter-residue (i-1) signals by the $\mathrm{CBCA}(\mathrm{CO}) \mathrm{NH}$. Each of the $\mathrm{C} \alpha$ and $\mathrm{C} \beta$ signals were propagated to their relative H^{N} signals in the HSQC spectrum via its assigned resonance. The $\mathrm{C} \alpha$ and $\mathrm{C} \beta$ signals in both spectra are labelled as i or i-1 respectively. Sequence specific assignment of these spin systems is carried out by the identification of the amino acid and its neighbour (i-1). The chemical shift index of amino
acids can result in ambiguous assignment of amide backbone residues. For this reason unambiguous residues such as alanine, glycine, serine and threonine are used as start points for the ordering of the spin systems within the protein sequence. Using this regime it is relatively simple to identify and assign regions of the amide backbone.

In order to simplify and expedite the identification and assignment of backbone residues an addition to the CCPN software was created. A python macro, written by Dr Igor Barsukov, for simulated annealing was used to provide an energy term based on the i and i-1 scalar coupling. To ensure correct assignment of backbone residues, chemical shifts for both $\mathrm{C} \alpha$ and $\mathrm{C} \beta$ inter and intra residues were confirmed by comparing to published random coil NMR chemical shifts of common amino acids (161). Any high energy bonds can be attributed to poor centring of the picked signals and incorrect labelling of inter and intra $\mathrm{C} \alpha$ and $\mathrm{C} \beta$ signals. Carbonyl carbons are assigned using the HNCO and $\mathrm{HN}(\mathrm{CA}) \mathrm{CO}$ spectra, interresidue connectivity can also be determined using these spectra. The $\mathrm{C} \alpha$ and $\mathrm{C} \beta$ protons are assigned using the $\mathrm{HBHA}(\mathrm{CO}) \mathrm{NH}$ and HBHANH, this is accomplished by navigating to the spectral planes from the chemical shift data from the assigned backbone residues.

2.7.2 Amino acid side-chain assignments

The assignment of the amino acid side chains was not as straight forward as that of the backbone. $\mathrm{A}^{1} \mathrm{H}^{13} \mathrm{C}$ HSQC was used to assign the methyl regions of the side chains. Carbon edited TOCSY and proton edited TOCSY were collected and used to find the methyl components of the side chains.

Using the $\mathrm{C} \alpha$ and $\mathrm{C} \beta$ chemical shifts, obtained from the backbone assignments, the additional residue peaks can be found in each TOCSY experiment. From these cross peaks it is possible to identify the proton and carbon chemical shift coordinates. These can then be used to identify the correct side chain atom in the carbon edited HSQC spectrum. Once this has been identified it is possible to select that signal and navigate from there to the carbon and proton TOCSY spectra. Confirmation of the correct side chain atom can be confirmed from the TOCSY spectra as it will contain the cross peak signals for the other atoms within that side chain spin system.

2.7.3 NOE assignments

An NOE or Nuclear Overhauser Effect spectrum will give signals from pairs of hydrogen atoms that close together, less than $5 \AA$, in space even though they may not be close together in sequence determined by the cross-relaxation between the two spin systems. These spectra are important in NMR as they derive the distance constraints that will give the data for the secondary and tertiary structures. For the purpose of protein structure determination, within this project, three types of NOESY spectra are collected ${ }^{13} \mathrm{C}$ edited NOESY-HSQC for the aliphatic region and one for the aromatic region and a ${ }^{15} \mathrm{~N}$ edited NOESY spectrum. The NOE experiments that were carried out on PABP-1 RRM 1 and 2 were performed on 90% $\mathrm{H}_{2} \mathrm{O}$ and $10 \% \mathrm{D}_{2} \mathrm{O}$.

NOE correlations are not restricted to sequential interactions but also occur between nonsequential residues. NOE data for a residue is laid out in strips and the NOE signals picked for each side chain and amide atom. With the various planes of the spectra laid out in strips the intra-residue NOE signals are assigned and the inter-residue signals were left unassigned. Structural calculations with the CYANA/CANDID calculation protocol (162) will give rise to the assignment of inter-residues and produce an output so that the inter-residue NOE assignments can be checked, structural refinements are discussed as part of the NMR chapters (chapters 3 and 4). The aromatic protons of phenylalanine, tyrosine, histidine and tryptophan residues are reliant on intra-residue NOE correlations for their assignments; this is due to the fact that they are not scalar-coupled to the rest of the side chain. NOE signals to the aromatic region can become overlapped dependent on the amount of aromatic residues with that protein to resolve these signals a 2D NOESY spectrum can be performed on a $100 \% \mathrm{D}_{2} \mathrm{O}$ unlabelled sample, chapter 3.

Chapter 3 PABP-1 RRM 2

3.1 Introduction

PABP-1 RRM 2 is the second domain of four tandemly arranged RNA recognition motifs. Recently, the crystal structure of the PABP-1 RRM1/2 in complex with RNA has been determined (142). RRM 2 plays a critical role in the stabilisation of the PABP-1-poly (A) mRNA complex which makes the identification of a paxillin interaction site even more interesting with regards to mRNA transport. The structure of the PABP-1 RRM 2 domain in its unbound state has not been determined. Structural comparisons between the NMR derived structure in its unbound state and the crystal structure of RRM 2 in its bound state were carried out to determine whether there is a conformational change on binding mRNA. Structural features of the domain are presented and discussed. The structure of this domain in its unbound state is important if our understanding of the function of the PABP-1 RRM 2paxillin LD1 complex is to be determined.

3.2 Results and Discussion

3.2.1 Enzyme Linked ImmunoSorbent Assay

In order to better characterise the interaction of paxillin with PABP-1 it was decided that a map of paxillin/PABP-1 interactions was needed. This map of interactions would also serve to focus structural efforts. As previously described mutations within the PBS 1 and 2 sites of PABP-1, in RRM1 and RRM4 respectively, were found to abolish paxillin binding, thereby compromising cell migration (127). However, the structural effects of these mutations were unknown. It maybe possible that the mutations within the PBS sites destabilised the structure of PABP-1 RRM1 or 4 thereby negating paxillin binding or PABP-1 binding to polyadenylated tails of mRNA transcripts. A structural approach based upon biochemical
interaction site mapping would lead to more accurate creation of mutants that would inhibit paxillin binding but not mRNA binding.

The interactions between various paxillin and PABP-1 polypeptides was therefore analysed using an enzyme linked immunosorbent assay (ELISA). Paxillin LD domain constructs and PABP-1 RRM domain constructs were supplied by Dr Alison Woods. Paxillin constructs were generated to include a GST N-terminal tag and PABP-1 constructs with a six histidine N -terminal tag; a complete list of these constructs is given in table 2.4.

Figure 3.1 illustrates strips of SDS-PAGE gels used to identify target proteins. The protein bands displayed for the truncated PABP-1 proteins all contain a six histidine residue tag at their N-terminus. All paxillin proteins were GST-fusion proteins; as the GST was to be used as a negative control this has been included within this figure.

Table 2.4 (page 56) presents the cells lines and purification method used for each of these protein constructs. PABP-1 constructs were purified using a nickel column and yielded a high protein concentration (Figure 3.1); full length PABP-1 contained two lower molecular weight contaminants which were removed following ion exchange column purification (Figure 3.1). Paxillin constructs were purified by glutathione-agarose column chromatography. GST-tagged protein constructs were suspended in batch overnight at $4^{\circ} \mathrm{C}$ with the glutathione-agarose, which was then washed thoroughly before elution of bound protein. This method produced a good protein yield although SDS-PAGE gels showed the presence of additional bands. Gel filtration was employed as a further purification step, but resulted in an almost total loss of target protein. After great discussion it was decided to proceed following an additional ion exchange purification step. Although the GST-paxillin constructs still contained additional bands, the biochemical results remained constant and
reproducible. Figure 3.1 is composed of strips taken from different SDS-PAGE gels and combined for ease of illustration.

For the ELISA experiments, PABP-1 constructs were bound to the wells of a 96 well microtiter plate using a fixed optimised quantity of protein (100ng); GST-paxillin constructs were then added in varying concentrations. An anti GST-HRP primary antibody was used to detect any paxillin/PABP-1 interaction by colorimetric change upon addition of ONPG; this was measured at a wavelength of 490 nm (method description can be found on page 56). The ELISA experimental protocol was optimised with full length PABP-1 and full length paxillin as positive controls and GST as a negative control. The assay was initially performed with a maximum paxillin protein concentration of 90 nM , but this was optimised to 300 nM to produce the desired amount of detectable signal. Binding at each protein concentration was assayed in triplicate, and each set of experiments was performed in triplicate; the results are presented as a mean \pm standard error.

3.2.2 PABP-1 full length and double RRM domain analysis

Previous studies $(7,127)$ showed that full length PABP-1 binds to full length paxillin with a K_{d} of $\sim 10 \mathrm{nM}$. Therefore, binding of paxillin to PABP-1 was used as a positive control for all ELISA experiments. Full length GST-paxillin was expressed and purified using a glutathione column but this resulted in an impure product. After repeated attempts to improve expression levels and improve product purity it was decided to use an existing GST-paxillin stock that had been expressed and purified by Dr Alison Woods. The results presented in Figure 3.2 are the mean of the absorbance readings at 490 nm . Initially ELISA experiments with full length paxillin and PABP-1 were carried out to determine the paxillin concentration that resulted in maximum binding. The higher the protein concentration the more the results varied making it difficult to reproduce. For this reason it was decided that a maximum GST-paxillin concentration of 300 nM would provide a reproducible binding result that could be used to identify paxillin/PABP-1 interaction sites.

Figure 3.2 Graph of mean results obtained from triplicate ELISA assays for full length paxillin against full length PABP-1. As can be seen, saturable binding with the GSTpaxillin has not been reached. However, full length paxillin against full length PABP-1 was employed as a positive control and GST as a negative control for further subsequent assays.

PABP-1 tandem RRM domains $1 / 2$ and $3 / 4$ were both found to bind full length paxillin (Figure 3.3A). Given the difficulties in expressing and purifying the paxillin 55-313 construct it was decided that further binding studies would generate a better understanding if they were carried out using individual PABP-1 RRM and paxillin LD domains. The interaction between paxillin and PABP-1 was thought to be centred on the N -terminal domains of each protein. To test this hypothesis, binding of GST-paxillin to the C-terminal region of PABP-1 (constructs 533-633 and 370-633) was analysed. Both constructs were found to bind full length paxillin. A positive binding event was witnessed for paxillin LD5 to the PABP-1 370-633 construct,
but not to the PABP-1 533-633 construct. This result indicates a possible paxillin binding site may exist between residues 370 and 533 of the C-terminal region of PABP-1.

Figure 3.3 A and B Illustrating the combined biochemical analysis results for the individual PABP-1 domains against paxillin LD domains. The Figure illustrates binding of paxillin constructs $(300 \mathrm{nM})$ to $\mathrm{PABP}-1$ constructs. The results shown here represent the calculated mean from the triplicate assays. The error bars represent the standard error of the mean calculated from the standard deviations.

B Mean ELISA Results for Multiple Paxillin and PABP-1 Constructs

The individual PABP-1 RRM domains were analysed in order to establish an accurate map of paxillin LD domain binding sites within the N-terminal region of PABP-1. The PABP-1 RRM1 domain bound both paxillin LD1 and LD2 domains, but not the LD5 domain (Figure 3.3B). Similar results were obtained for the RRM2 domain, although LD1 appeared to bind more strongly than LD2. By contrast, although the RRM4 domain bound to full-length paxillin, it showed little or no binding to any of the three paxillin LD domains tested.

The tandem PABP-1 RRM1/2 domain construct was also analysed for paxillin LD1 binding and gave a similar result to that obtained with the PABP-1 RRM2 construct. However, the PABP-1 RRM4 domain gave a positive binding result with full length paxillin (Figure 3.3B). Given the heterogeneous nature of some of the paxillin constructs these results can only be used as a guide. The fact that the PABP-1 RRM4 domain bound to full length paxillin but not to any of the N-terminal paxillin constructs could indicate that there may be another possible site of interaction within the C-terminal region of paxillin.

Paxillin 326-559
Figure 3.4 Illustrates the Protein-Protein binding map for the Paxillin/PABP-1 complex. The diagram summarises the various constructs of PABP-1 and their potential interactions within paxillin. The diagram aims to present a possible interaction map of the two proteins by incorporating the biochemical data presented above. Many interactions were ambiguous and as a result were omitted from this early model.

Initial expectations were that the PABP-1/paxillin interactions would be limited to the RRM and LD domains. However, the ELISA results suggest a more complicated picture. It would appear from the results that the binding interaction may involve the C-termini of both proteins as well as the RRM and LD domains (Figure 3.4).

To summarise, it was found that paxillin LD1 bound to the PABP-1 RRM1/2 double domain but also to PABP-1 RRM 1 and RRM 2. Although paxillin LD1 appears to bind to both RRMs 1 and 2, it might be that it binds primarily to PABP-1 RRM 2 but that the site overlaps with PABP-1 RRM 1 via the inter-domain linker. In the introduction, the functionality of the RRM1/2 inter-domain linker in mRNA binding was discussed. The flexibility of this linker may well be involved in the paxillin LD1 interaction which would suggest that paxillin and the poly (A) tail of mRNAs may compete for binding to PABP-1. This is a provocative theory and so it was decided to follow this line of investigation.

3.2.3 PABP-1 RRM 2 expression and binding data

Homology sequence modelling found the PABP-1 RRM 2 domain to span from G99 to S175 inclusive, and construct boundaries were therefore set at D90 to E182 in order to fully encompass this domain. The PABP-1 RRM 2 constructs in pETM-11 vectors, which were designed to attach an N-terminal six histidine tag, were prepared and supplied by Dr Alison Woods. Expression induction temperatures were as described in Chapter 3 and the protein appeared to be stable for long periods of time. Figure 3.5 illustrates an SDS-PAGE gel of PABP-1 RRM 2 displaying the high level of protein purification. This Figure is an example of the typical level of purity following protein expression and purification by a nickel charged metal chelate column. Lanes 5 and 6 both show strong protein bands for the RRM 2 protein at around 14.2 kDa protein marker, but they also show the presence of two minor additional proteins at ~ 36 and $\sim 60 \mathrm{kDa}$ respectively. These contaminants were removed following the cleavage of the N -terminal tag and a subsequent purification step. The molecular weight of PABP-1 RRM 2 without its N-terminal tag is 11.3 kDa . Typical levels of protein yields following cleavage of the N -terminal 6 -histidine tag and associated buffer exchanges were $\sim 22 \mathrm{mg}$ of protein per litre of M9 media.

Figure 3.5 SDS-PAGE gel of PABP-1 RRM 2. Lane 3 displays whole cell lysate fraction of RRM 2 following induction and mechanical cell disruption. Lane 4 Cell lysate following centrifugation to remove cellular debris. Lanes 5-9 Purified RRM 2 FPLC fractions.

As already discussed enzyme linked immunosorbent assays (ELISA) were employed in an attempt to determine a map of the binding interactions between paxillin LD domains and PABP-1 RRM domains. However, the labile nature of paxillin meant that determination of binding affinity was unreliable. Figure 3.6 illustrates a graph depicting the mean of the ELISA data for paxillin LD1 and LD2 against PABP-1 RRM2. Full length PABP-1 and full length paxillin were used as a positive control (although they produced inconsistent data between experiments) while GST was used as a negative control. Figure 3.6 indicates that
there maybe positive binding between paxillin LD1 and PABP-1 RRM 2. However, paxillin LD2 bound less well, and at the same level detected with all PABP-1 RRM constructs tested.

Figure 3.6 Graph of mean ELISA data for paxillin LD1 and LD2 against PABP-1
RRM 2. It would appear that a possible positive binding interaction can be seen for paxillin LD1. The weak interaction between paxillin LD2 and PABP-1 RRM 2 was considered a negative result as it was present in all PABP-1 RRM domains analysed.

3.2.4 PABP-1 RRM 2 sequence specific assignments

Sequence specific assignments were carried out using CCPN software using the method described in Chapter 2. Figure 3.7 illustrates an ${ }^{15} \mathrm{~N}$ resolved HSQC spectrum displaying the backbone NH signals and side chain NH_{2} group signals. The HNCACB and $\mathrm{CBCA}(\mathrm{CO}) \mathrm{NH}$ spectra (Figure 3.8a) show excellent signal intensity and very few artefacts. Both spectra were collected over a 72 hour period and their high quality was due to the size of the protein
and the relatively high protein concentration. Indeed, it can be seen in this example that the signals in the HNCACB spectrum show both i and $i-1$ signals. The i-1 sequential assignments were confirmed using the $\mathrm{CBCA}(\mathrm{CO}) \mathrm{NH}$ spectrum. Sequential assignment of the carbonyl carbons were facilitated by collecting HNCO and $\mathrm{HN}(\mathrm{CA}) \mathrm{CO}$ spectra. The connectivity of the amide sequential assignments was confirmed using the HNCO and $\mathrm{HN}(\mathrm{CA}) \mathrm{CO}$ spectral data. The HNCO spectrum produced $\mathrm{i}-1$ while the $\mathrm{HN}(\mathrm{CA}) \mathrm{CO}$ provided data to the intraresidue. All of the expected signals were observed even in the less sensitive experiments.

Backbone NH, $\mathrm{C} \alpha$ and $\mathrm{C} \beta$ residue assignments were 98% complete. $\mathrm{C} \alpha$ and $\mathrm{C} \beta$ protons were assigned using HBHA(CO)NH and HBHANH spectra (Figure 3.8b). Both experiments gave a good signal to noise ratio with no spectral overlap. As $\mathrm{H} \alpha$ and $\mathrm{H} \beta$ were of opposite phase in the HBHANH spectrum assignment was relatively straight forward. Inter-residue assignments to the $\mathrm{H} \alpha$ and $\mathrm{H} \beta$ protons were carried out using strip plots such as those seen in Figure 3.8b.

Figure $3.7{ }^{1} \mathbf{H}{ }^{15} \mathbf{N}$ edited HSQC spectrum for PABP-1 RRM 2. Backbone NH assignments and side chain NH_{2} groups. Sequential numbering is that of human PABP-1 SwissProt accession number P11940 with additional N-terminal 88Gly and 89Ala aq remnants of the cloning process included.

Figure 3.8 Selected strips from the triple-resonance spectra illustrating sequential connectivities for residues 102-105 of PABP-1 RRM 2. A. Superposition of CBCA(CO)NH and HNCACB spectra. Positive contour level of CBCA(CO)NH are shown in dark green $\left(\mathrm{CB}_{\mathrm{i}-1} \mathrm{~N}_{\mathrm{i}} \mathrm{HN}_{\mathrm{i}}\right.$ and $\mathrm{CA}_{\mathrm{i}-1} \mathrm{~N}_{\mathrm{i}} \mathrm{HN}_{\mathrm{i}}$ correlations); positive contour level of HNCACB are shown in red $\left(\mathrm{CA}_{\mathrm{i}} \mathrm{N}_{\mathrm{i}} \mathrm{HN}_{\mathrm{i}}\right.$ correlations), negative contour level of HNCACB are shown in blue $\left(\mathrm{CB}_{\mathrm{i}} \mathrm{N}_{\mathrm{i}} \mathrm{HN}_{\mathrm{i}}\right.$ correlations). Sequential connectivities are represented by horizontal lines.
B. Superposition of $\mathrm{HBHA}(\mathrm{CO}) \mathrm{NH}$ and HBHANH spectra. Positive contour level of $\mathrm{HBHA}(\mathrm{CO}) \mathrm{NH}$ are shown in purple $\left(\mathrm{HB}_{\mathrm{i}-1} \mathrm{~N}_{\mathrm{i}} \mathrm{HN}_{\mathrm{i}}\right.$ and $\mathrm{HA}_{\mathrm{i}-1} \mathrm{~N}_{\mathrm{i}} \mathrm{HN}_{\mathrm{i}}$ correlations); positive contour level of HBHANH are shown in pink $\left(\mathrm{HA}_{\mathrm{i}} \mathrm{N}_{\mathrm{i}} \mathrm{HN}_{\mathrm{i}}\right.$ correlations), negative contour level of HBHANH are shown in dark green $\left(\mathrm{HB}_{\mathrm{i}} \mathrm{N}_{\mathrm{i}} \mathrm{HN}_{\mathrm{i}}\right.$ correlations). Sequential connectivities are

3.2.5 Side-chain assignments

All side chain assignments were performed in a progressive manner building on to the already assigned amide backbone and $\mathrm{C} \alpha$ and $\mathrm{C} \beta$ assignments. Figure 3.9 illustrates a ${ }^{1} \mathrm{H}{ }^{13} \mathrm{C}$ resolved HSQC spectrum displaying expanded C_{α} and methyl regions. Spectral overlap was experienced within the centre region of the spectrum. Signals to the side chains located within this region were resolved using the $[\mathrm{H}] \mathrm{CCH}-\mathrm{TOCSY}$ and $\mathrm{H}[\mathrm{C}] \mathrm{CH}-\mathrm{TOCSY}$ spectra, described assignment protocol chapter 2. Figure 3.10B illustrates selected strips from the ${ }^{1} \mathrm{H}$ ${ }^{13} \mathrm{C}$ resolved TOCSY spectrum for I103. Strip plots were used to identify the other side chain carbon and proton resonances within that residue. The corresponding signal in the ${ }^{13} \mathrm{C}$-HSQC spectrum was then identified and another strip plot created. The $\mathrm{H} \gamma_{1}$ strip is a good example were the two protons are overlapped and could not be readily resolved and therefore were assigned as ambiguous.

Figure $3.9{ }^{1} \mathbf{H}{ }^{13} \mathbf{C}$ HSQC spectrum for PABP-1 RRM 2. The spectrum is well resolved with minimal spectral overlap of signals. Side chain residues were assigned in this spectrum via ${ }^{1} \mathrm{H}$-TOCSY and ${ }^{13} \mathrm{C}$-TOCSY spectra.

Figure 3.10 Selected strips from the ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ resolved TOCSY spectra illustrating intra-residue side chain connectivities for I103. A. Side-chain carbon atom positions, shown as red signals, for I103. The carbon signals can be seen within each spectral plane. B. Side-chain protons, shown as blue signals, for I103. Each proton signal can be seen in each strip-plot.

Assignment of the aromatic side-chains proved to be more difficult. The PABP-1 RRM 2 domain contains seven phenylalanines which resulted in spectral overlap of the aromatic ${ }^{1} \mathrm{H}$
${ }^{13} \mathrm{C}$ HSQC and ${ }^{13} \mathrm{C}$ NOESY spectra. In order to resolve these overlapped signals a high resolution 2D ${ }^{1} \mathrm{H}$ TOCSY was performed in $\mathrm{D}_{2} \mathrm{O}$ and correlated with a ${ }^{13} \mathrm{C}$-HSQC of the aromatic region, Figure 3.11. The $\mathrm{C} \beta \mathrm{H} \beta$ chemical shift of each phenylalanine were previously determined, the $\mathrm{H} \beta$ chemical shift is visible within the $\mathrm{H} \delta$ aromatic $2 \mathrm{D}{ }^{1} \mathrm{H}$ TOCSY and so could be used to identify that particular residue. Although the use of these experiments was successful in resolving the overlapped signals it was found that not all of the $\mathrm{C} \zeta \mathrm{H} \zeta$ atoms could be identified.

Figure 3.11 Aromatic ${ }^{1} \mathrm{H}{ }^{1} \mathrm{H}$-TOCSY and ${ }^{1} \mathrm{H}^{13} \mathrm{C}$ HSQC spectra to resolve the overlapped phenylalanine signals. The top spectrum illustrates a $2 \mathrm{D}-\mathrm{TOCSY}$ spectrum of the aromatic region illustrating the $\mathrm{H}_{\delta}, \mathrm{H}_{\varepsilon}$ and H_{ζ} spin systems. The identified spin systems are correlated to the ${ }^{13} \mathrm{C}$ HSQC aromatic spectrum (bottom) by dotted lines. This spectrum illustrates the carbon atom assignments for the identified ring spin systems. Not all $\mathrm{C} \zeta$ atoms were identified.

3.2.6 PABP-1 RRM 2 NMR structure calculation

Initial structural calculations were performed using CYANA/CANDID protocol version 2.1 for the determination of unique assignments of NOE derived data. Dihedral constraints generated by TALOS were also included in the calculations. Initial calculations derived a folded structure with 86% of NOE signals assigned using a chemical shift tolerance for ${ }^{1} \mathrm{H}$ 0.03 and 0.3 for both ${ }^{15} \mathrm{~N}$ and ${ }^{13} \mathrm{C}$. Unassigned NOE signals were examined to ensure there were no systematic errors. They were then examined to determine whether they were from another residue that had not been assigned by the calculation protocol. The NOE data was then refined by referring to the structure and used to generate constraint tables for ARIA1.2 where the final structural water refinements took place. Structural refinements took into account any raised NOE energies that were highlighted as part of the ARIA output by cross referring to the group of signals or angle constraints and correcting the violating constraint. Table 3.1 lists the final restraints generated from 20 lowest energy water refined structures derived from 100 random start structures.

Table 3.1 Solution Structure Determination of PABP-1 RRM 2
Experimental restraints
Restraints
Unique 2171

Intraresidue 722
Sequential 476
Short range $(1<[i-j]<5) \quad 328$
Long range ($[\mathrm{i}-\mathrm{j}]>4$) 645
φ / ψ dihedral angles $^{\mathrm{a}} \quad 156$
Energies (Kcal mol $\left.{ }^{-1}\right)^{b}$
Total -3508.85 ± 114.81
Van Der Waals $\quad-850.50 \pm 15.40$
NOE 96.60 ± 0.0027
RMS deviations ${ }^{\text {b }}$
$\operatorname{NOEs}(\AA)$ (no violations $>0.5 \AA$) 0.028 ± 0.0085
Dihedral restraints $\left({ }^{\circ}\right) \quad 0.58 \pm 0.011$
Bonds (\AA)
0.0038 ± 0.00015
Angles $\left({ }^{\circ}\right) \quad 0.51 \pm 0.019$
Impropers (${ }^{\circ}$) $\quad 1.66 \pm 0.13$
Ramachandran map analysis ${ }^{\text {c }}$
Allowed regions 84.4\%
Additional allowed regions $\quad 14.5 \%$
Generously allowed regions 0.5%
Disallowed regions 0.6%
Pairwise rms difference (\AA)
Residues 90-182 (heavy atom) 1.151
$2^{\text {nd }}$ Structure Residues 90-182 (backbone) 0.503

[^0]

Figure 3.12 Statistics on a residue per residue basis for the 20 lowest energy conformers representing the NMR structure of PABP-1 RRM 2. A. Depicts the average local RMSD for the backbone in black and the side chain in grey. B. Illustrates the number of NOE constraints per residue with the intra-residue NOE constraints shown by red bars.

The final water refined lowest energy conformers shown in Figure 3.13, were analysed by Procheck-NMR (163). Figure 3.13 show the global fold to be $\beta_{1} \alpha_{1} \beta_{2} \beta_{3} \alpha_{2} \beta_{4}$, which is seen in other RRM domain containing proteins. Figure 3.12(B) illustrates the RMSD analysis on a residue by residue basis for the amide backbone (black) and the side-chain (grey). High local RMSD values can be seen at the N and C-termini ranging from 5-15 \AA owing to limited NOE data to those regions. A rise in RMSD values can be seen between V130 and G139 this indicates that this region maybe mobile. Figure 3.12(B) illustrates the number of NOE constraints on a residue by residue basis. It can be seen that low numbers of NOE constraints is accompanied by a rise in RMSD values as can be seen in Figures 3.12(A) and 3.12(B) for the N and C -termini.

Figure 3.13 Superposition of 20 lowest energy converged structures for PABP-1 RRM 2. A. Overlay of structures following a water refinement step from ARIA. B. Secondary structure depiction yielding a four stranded anti-parallel β-sheet with two α helices crossing over the β-sheet on one side. A small anti-parallel β-sheet is seen as part of the loop between the C -terminus of helix- 2 and the N -terminus of the β_{4}-strand.

3.2.7 Description of secondary structure

Proteins with regions of secondary structure display distinctive patterns of inter-residue NOEs. For example an α-helix is characterised by strong $\mathrm{HN}(\mathrm{i}) / \mathrm{HN}(\mathrm{i}-1)$ and $\mathrm{HN}(\mathrm{i}) / \mathrm{HA}(\mathrm{i})$,
weak/medium $\mathrm{HN}(\mathrm{i}) / \mathrm{HA}(\mathrm{i}-1)$, weak/medium $\mathrm{HN}(\mathrm{i}) / \mathrm{HA}(\mathrm{i}-3), \mathrm{HN}(\mathrm{i}) / \mathrm{HA}(\mathrm{i}-4)$ and $\mathrm{HA}(\mathrm{i}) / \mathrm{HB}(\mathrm{i}-$ 3), (160). A 3_{10} helix shows a similar pattern but with only $\mathrm{HN}(\mathrm{i}) / \mathrm{HA}(1-2), \mathrm{HN}(\mathrm{i}) / \mathrm{HA}(\mathrm{i}-3)$ and $\mathrm{HA}(\mathrm{i}) / \mathrm{HB}(\mathrm{i}-2)$. A β-sheet will typically give an NOE pattern between $\mathrm{HN} / \mathrm{H} \alpha_{(\mathrm{i}, \mathrm{j})}$ and $\mathrm{H} \alpha / \mathrm{HN}_{(\mathrm{i}, \mathrm{j})}$ on adjacent strands.

After structure calculations the secondary structure NOE data was checked against the expected NOE patterns. Long range NOE signals that are indicative of an anti-parallel β sheet were identified between residues I101-K104, L126-K129, Y140-F146 and R166-V170. The NOE data from these residues has been summarised in Figure 3.14(D) with supporting ${ }^{15} \mathrm{~N}$-NOESY-HSQC strip plots. These constraints determine the order and alignment of the β strands. NOE data from β strands 1, 2 and 4 gave NOE signals to Y140 thus extending the β strand by one residue in comparison to the other 4 residue strands. N159 presents NOE signals from the C-terminus of helix 2 to F169 on the β_{4}-strand suggesting that these two residues are close in space and that the C-terminus of helix 2 is within $6 \AA$ of the β_{4}-strand.

NOE's to the residues in helix 1 give a typical NOE pattern of an α-helix. Figures 3.15a and b both display the NOE pattern described above for an α-helix, with strong NOE signals to $\mathrm{HN}(\mathrm{i}) / \mathrm{HA}(\mathrm{i})$ and weak/medium signals to $\mathrm{HN}(\mathrm{i}) / \mathrm{HA}(\mathrm{i}-3) \mathrm{HN}(\mathrm{i}) / \mathrm{HA}(\mathrm{i}-4)$ and $\mathrm{HA}(\mathrm{i}) / \mathrm{HB}(\mathrm{i}-3)$. A commonly witnessed aspect of this helix is that three residues on the C-terminus of helix 1 gave an NOE pattern of $\mathrm{HN}(\mathrm{i}) / \mathrm{HA}(\mathrm{i}-2)$ and $\mathrm{HA}(\mathrm{i}) / \mathrm{HB}(\mathrm{i}-2)$ indicative of a 3.10 helix, see Figure 3.15 a . This distinctive feature of helix 1 was not seen in the helix 2 . The C-terminal region of helix 1 has two phenylalanines both of which may cause the helix to extend through hydrophobic interactions with the hydrophobic core. In contrast to this, helix 2 has no aromatic residues or other residues that may disrupt the α-helix.

NOE data provides supporting evidence that a small β-sheet is formed between the C terminus of helix-2 and the β_{4}-strand of the main β-sheet (Figure 3.13). NOE evidence for loop between helix2 and the β_{4}-strand suggests a formation of a second small β-sheet M161L163 of S_{1} and N164 and D165 of S_{2}. The turn itself is a tight turn giving a NOE pattern similar to that of a 3_{10} helix $\mathrm{HA}(\mathrm{i}) / \mathrm{HB}(\mathrm{i}-2)$ suggesting that the two sides of the loop are in close proximity with one another. The NOE data suggests that L163 on the S_{1}-strand may form a hydrogen bond with R166 on the β_{4}-strand causing the sides of the loop to pinch together. Figure 3.13b illustrates that the S_{2}-strand is separated from the β_{4} strand of the main β-sheet by a short random coil region. The presence of this second small β-sheet appears to
be a common feature in RRM binding proteins, although there is no tangible evidence to suggest that it is involved with RNA binding.

Figure 3.14 Selected strips from ${ }^{15} \mathrm{~N}$ edited NOESY spectrum connectivities for the $\boldsymbol{\beta}_{\mathbf{1}}, \boldsymbol{\beta}_{\mathbf{2}}, \boldsymbol{\beta}_{\mathbf{3}}$ and $\boldsymbol{\beta}_{\mathbf{4}}$ strands for PABP-1 RRM 2. A. ${ }^{15} \mathrm{~N}$ edited NOESY-HSQC spectra with NOE connectivities for residues F102 and F142 of β_{1} and β_{3} strands respectively. B. ${ }^{15} \mathrm{~N}$ edited NOESY HSQC spectra with NOE connectivities for residues K104 on β_{1} strand, F169 and V170 of the β_{4} strand with the cross connectivities which form part of the anti-parallel β-sheet. $\mathbf{C} .{ }^{15} \mathrm{~N}$ edited NOESY HSQC spectra with NOE connectivities for residues K129 on the β_{2} strand and F142 on the β_{4} strand. D. Schematic illustration of the four stranded anti-parallel β-sheet of PABP-1 RRM 2, uniquely assigned NOEs that determined the ordering and alignment of the β strands are displayed as arrows.

Figure 3.15 Selected strips from ${ }^{15} \mathrm{~N}$ edited NOESY-HSQC spectrum NOE connectivities for the helical regions of PABP-1 RRM 2. A. Strip plot of a ${ }^{15} \mathrm{~N}$ edited NOESY-HSQC illustrating an NOE pattern that is indicative of an α-helix. The strip plot illustrates $\mathrm{HN}_{\mathrm{i} \pm 3}$ for residues N112-F119 and $\mathrm{HN}_{\mathrm{i} \pm 2}$ for S120-F122, weak/medium NOE for A114 HA and V116 HA HB of helical region 1 of PABP-1 RRM 2. B. Strip plot of a ${ }^{15} \mathrm{~N}$ edited NOESY HSQC spectrum illustrating an α-helical NOE pattern. The strip plot illustrates $\mathrm{HN}_{\mathrm{i}-3}$ for residues E149-A154 a similar pattern maybe present but many of the signals are overlapped. Weak/medium NOE signals were also seen for E149 HA and HB, R153 HA, I155 HA and A154 HB of the α-helix 2.

One feature of PABP-1 RRM 2 is the loop (loop3) between the β_{2} and β_{3}-strands. This loop is shows medium range NOE's giving it a β-strand appearance (similar to that of the S -sheet) Figure 3.16(A). The turn of loop3 itself demonstrates NOE's to i-2 indicating that it is a tight turn, Figure 3.16(B). The loop appears to be conserved within the RRM domains of RNA interacting proteins; other loops within the PABP-1 RRM 2 domain do not show the same characteristics. The loop structure maintains its tight architecture by making polar contacts within itself. Residues N135 and D133 show multiple NOE connections and polar contacts may form, Figure 3.16(B). These contacts result in bringing the sides of the loop together making it a tight turn at the end. E134 projects outward from the turn of loop3 making it accessible to RNA ligands. Although the study by Deo et al 1999 did not identify E134 as an active component in PABPs interaction with the poly (A) mRNA tail, the RNA titration performed later in this chapter shows a weak interaction for E134 with the RNA ligand. It can be seen in Figure 3.16(A) that Y140 is bent away from the β-strand (β_{3}) as NOE signals were observed between residues in loop3 and Y140. Y140 is of particular biological importance as it is central to the stacking interactions with RNA. Multiple NOE signals were seen from K138 and the residues of loop3 indicating that its orientation is across the loop. NOE signals from the side chain regions of K138 to the aromatic ring of Y140 and K138s orientation lends further evidence to supports this feature.

The structure of PABP-1 RRM 2 shows the two helices packed against the hydrophobic core that is presented on the rear of the β strands. The C-terminal hydrophobic residue F122 of helix 1 projects inward toward A154 on helix 2, NOE signals, Figure 3.17(A), were detected between F122 and A150, A151 and A154 indicating the presence of hydrophobic interactions between the two helices. The hydrophobic interaction between A152 and A154 of helix 2 with F122 and I125 of helix 1 facilitates the close proximity of the two helices. This is further supported by the possible polar contacts between N124 and E146. The hydrophobic core has a central phenylalanine (F145) located on the β_{3}-strand. Figure 3.17(B) illustrates the NOE signals across the β-sheet and to α-helix 2 from F145. The α-helices pack against the hydrophobic residues, located on the rear of the β-sheet, to form an integral part of the hydrophobic core itself. Hydrophobic residues (V168 and V170) on the β_{4}-strand appear somewhat removed from the hydrophobic cluster but are able to make hydrophobic interactions with I155 on helix 2 and F119 on helix 1. NOE data from the aromatic ring of F119 to V168 and V170 indicate that it is bent toward the N-terminus of the helix and toward the β_{4}-strand.

B

Figure 3.16 Illustrates the side-chain and structural characteristics for loop 3 of PABP-1 RRM 2. These Figures depict the NOE connections between residues of loop 3. A. NOE signals of the residues at the base of the loop and NOE's detected to Y140 indicates that it is bent away from the β-strand. B. Short range NOE's were witnessed in the tight turn of loop3. Many of these NOE's originate from the NH of N135 that appears to act as an anchor.

Figure 3.17 NOE constraints between the two helices of PABP-1 RRM 2. A. Hydrophobic interactions exist between the two helices which move them into close proximity to one another. NOE data presented in the selected strips support the connectivities demonstrated on the structure. B. The C-terminus of helix one and the Nterminus of helix two appear close together forming an arrow-head like appearance. Central to this is F145 making numerous NOE connectivities as illustrated by the selected strips of the ${ }^{13} \mathrm{C}$-NOESY spectra for the aliphatic (green signals) and aromatic regions of F145 (blue signals).

The hydrophobic core that is formed between the two helices and the β-sheet is well maintained however, there are still hydrophobic residues that are present on the other side of the solvent exposed face of the β-sheet. The NOE data suggests the presence of possible hydrogen bonds and Van der Waals interactions that exist to help maintain their solvent exposure. Figure $3.18(\mathrm{~A})$ illustrates NOE signals from V131 located toward the C-terminus of the β_{2}-strand. NOE data suggests that V131 plays a key role by forming Van der Waals interactions with Y140 and K138. As mentioned earlier NOE data shows that the aromatic ring of Y140 is bent away from the β-sheet suggesting possible Van der Waals interactions with K104 on β_{1}, calculated Van der Waals interactions were based on the 20 lowest energy water refined structures and outputted from MolMol (164).

Three phenylalanines are present on the surface of the β-sheet with their aromatic rings exposed. As mentioned in chapter 2 the obtained NOE data was used to calculate possible hydrogen bonds and Van der Waals interactions; hydrogen bonds were not measured directly but calculated from the 20 lowest energy water refined structures. Figure 3.18(B) illustrates the NOE signal data seen for the centrally located F102 which is extensively involved in RNA binding (6). The position of the aromatic ring suggests that a Van der Waals interaction may exist between H δ protons of residues of F102 and F142. NOE signals across the β-sheet indicate that key hydrogen bonds between K129 and F142, G171 and F102, F169 and K104 form. To reinforce this interaction between the strands Van der Waals interactions were predicted between K104 on the β_{1} strand and V168 on β_{4}, K104 also presents a possible Van der Waals interaction to the aromatic ring on F102 and Y140.

F102

Figure 3.18 illustrates supporting NOE constraints for the $\boldsymbol{\beta}$-sheet of PABP-1 RRM 2. A. NOE constraints for V131, it can be seen that this residue presents key NOE signals which suggests K138 is in close proximity with Y140 suggesting possible Van der Waals interactions between Y140 and K138. B. Demonstrates the key phenylalanine (F102) which plays an important role in maintaining the hydrophobicity of the β-sheet. As can be seen NOE signals were witnessed to F169 and F142 as well as Y140 allowing for interactions with the poly(A) tail of mRNA.

Figure 3.19 Electrostatic surface representation of PABP-1 RRM 2. The two Figures illustrate a surface view of PABP-1 RRM 2 coloured according to its electrostatic potential. The left Figure shows an area of significant positive charge across the surface of the β-sheet with the lightly coloured phenylalanines interspersed throughout the sheet. The right hand Figure, rotated 90°, illustrates the α-helical side of PABP-1 RRM 2 with negatively charged residues in red and neutral residues in white.

Figure 3.19 shows a depiction of the electrostatic surface charge for PABP-1 RRM 2 the charge was determined using molmol based on the mean of 20 lowest energy water refined conformers. As can be seen the left Figure shows the positive charge that is present across the β-sheet. Dispersed across the β-sheet are the aromatic rings of F102, Y140, F142, H144 and F169, and have all been shown to provide stacking interactions with the purine rings of the polyadenylated tail of PABP-1 RRM 2 (6). In contrast to this positively charged surface is a largely neutral surface on the α-helical side of PABP-1 RRM 2. Helix 2 presents two positively charged residues (R151 and K156) and three negatively charged residues (E49, 152 and 156) that project outward away from the rest of the structure. A distinct positive patch is seen on the electrostatic surface of PABP-1 RRM 2, see Figure 3.19, for helix 2. These may possibly make an important contribution to further protein-protein interactions such as PABP1 s interaction with the eIF complex.
3.2.9 Comparison of NMR and Crystal structures

Figure 3.20 illustrates an overlay of the mean NMR derived structure of PABP-1 RRM 2 with the crystal structure of PABP-1 RRM 2 in complex with RNA (6). The NMR derived structure (pink) and the crystal structure (light blue) overlay with very few differences, the main differences exist in the helices. B. Overlay of the aromatic rings on the solvent exposed face of PABP-1 RRM 2, crystal structure in complex with poly (A) RNA (red), NMR structure unbound (yellow).

The crystallographic structure of PABP-1 RRM $1 / 2$ in complex with a polyadenylated tail of mRNA has been solved (6). Figure 3.20 shows a direct comparison between the NMR structure of PABP-1 RRM 2 in its unbound state with the crystal structure of PABP-1 RRM in complex with RNA. The two structures overlay very well with very few deviations indicating that the NMR structure displays very little conformational changes between the free and bound conformations. The notable differences lay with the aromatic residues of the β-sheet. F142 illustrates that in the unbound state it is rotated in the opposite direction, NOE data to the aromatic ring supports this orientation of the aromatic ring. Deo et al 1999 showed that the linker region between PABP-1 RRM 1 and 2, residues 90-98, was random coil in the absence of RNA. This would account for the differences witnessed in the N -terminus of NMR derived structure produced in this project which was in the absence of RNA. NOE data to both the helices of the NMR structure indicate that they are half a turn longer than those seen in the crystal structure. The differences in the β-strands maybe due to free and the bound state of PABP-1 RRM 2 however, the deviations seen are not particularly large.

A direct comparison between the PABP-1 RRM 2 and the RRM domains of hnRNPA1, HUD and Nucleolin is presented in Figure 3.21. As can be seen all structures demonstrate identical secondary structure characteristics in the form of $\beta_{1} \alpha_{1} \beta_{2} \beta_{3} \alpha_{2} \beta_{4}$. Each of the RRM domains also display the $S_{1} S_{2}$-strands located at the C-terminus of α-helix 2. Similarly, the RRM 2 domains of HUD and nucleolin both contain a loop3 similar to that seen in PABP-1 RRM 2. Interestingly, this loop is not as exaggerated in the RRM 1 domains of hnRNPA1, HUD and nucleolin.

In addition to the secondary structure similarities the RRM 2 domains of nucleolin and HUD show similar modes of RNA interaction. For example, nucleolins interaction with RNA involves stacking interactions between the aromatic rings of Y140- β_{3} and Y169- β_{4} and hydrophobic interactions with two exposed Leucine residues, L103- β_{1} and L128- β_{2} (165). These interactions provide similar anti-parallel conformation of protein and RNA as seen for PABP-1 RRM 2. HUD indicates that hydrophobic and aromatic interactions between the exposed aromatic rings of F170- β_{3} and F202- β_{4} and RNA allow for a similar conformation of RNA and protein as seen for PABP-1 RRM 2 and nucleolin (166). Deo et al 1999 reported stacking interactions within the PABP-1 RRM 1 and 2 domains. The RRM 1 domain of hnRNPA1 displays similar stacking interactions as those seen in the RRM 1 domain of PABP-1 between the aromatic rings of Y13- β_{1} and F56- β_{3} (167).

Figure 3.21 Comparison of the RNA binding domains of PABP-1 RRM 2, hnRNPA1, HUD and Nucleolin. This Figure illustrates the similarity between the RRM domains of different proteins. As was found for the structure of PABP-1 RRM 2 the RRM fold consists of $\beta_{1} \alpha_{1} \beta_{2} \beta_{3} \alpha_{2} \beta_{4}$, this fold was also seen for the three protein

3.3 PABP-1 RRM 2 titration series

Biochemical results identified paxillin LD1 as a potential binding partner for PABP-1 RRM 2. With the structure of PABP-1 RRM 2 in its unbound state now known, a better understanding of their relationship can be obtained by NMR titration assays. Following a titration event by recording NMR spectra will enable the interacting residues to be identified by their chemical shift changes caused by the difference in the magnetic environment of the free and bound states. For these assays a synthetic paxillin LD 1 peptide was manufactured, supplied by Dr John Keyte, University of Nottingham. A synthetic peptide was used for the titration experiments as it was of high purity and had no additional residues attached as a result of protease cleavage. The peptide itself was fourteen residues in length and consists of the following amino acid sequence DDLDALLADLESTT, the colored residues indicate the LD domain.

3.3.1 Paxillin LD1 titration

A ${ }^{15} \mathrm{~N}$ labelled PABP-1 RRM 2 protein sample was prepared and its pH measured, it was important to make every effort to maintain the pH in order to prevent unwanted changes in HSQC signals due to an alteration in pH . An ${ }^{15} \mathrm{~N}$ HSQC spectrum was recorded at each of the following ratios of protein to peptide concentrations $1: 1,1: 1.5,1: 2,1: 3,1: 4$ and $1: 6$. The pH of the protein solution was adjusted back to the starting pH , in this case pH 6.5 , after each addition of the peptide.

The chemical shift perturbations that were witnessed, Figure 3.22, appeared to be residue specific as no further resonances changed upon increased molar excess of paxillin LD1 peptide. The resonances that were perturbed during the titration continued to move as the concentration of peptide was increased. This indicates that the observed resonances were the population weighted average of the resonances in the free and bound states that is, the system was in fast exchange on the NMR timescale which is consistent with weak binding. The titration did produce changes in signals for a number of residues that were located at the flexible termini of PABP-1 RRM 2 for example G99 and G171, these may contact the peptide transiently due to the flexible nature of the termini. Upon inspection of the affected residues and their position on the NMR elucidated PABP-1 RRM 2 structure it was found that a binding interface exists across the β-sheet of PABP-1 RRM 2. Indeed, the interaction site shares a number of residues that are involved in poly (A) RNA binding specifically K138, Y140 and F142.

Figure 3.22 Selected residues with chemical shift perturbations ${ }^{1} H{ }^{15} \mathrm{~N}$ HSQC spectrum of a 15 N labelled PABP-1 RRM 2 titration with paxillin LD1 synthetic peptide. A. The titration was performed at a molar excess of $1: 1$ (blue), 1:2(teal), 1:3(purple), $1: 4$ (brown) and 1:6(dark blue) paxillin LD1 peptide. The start position of the titration is labelled with the residue type and number (pink signal). This titration was

3.3.2 PABP-1 RRM 2 charge dependent binding

Analysis of PABP-1 RRM 2 residues that show chemical shift perturbations indicated that there were charged residues that complement those on the peptide and maybe involved in the formation of salt bridges. Analysis of these affected residues with the elucidated PABP-1 RRM 2 structure revealed that the interaction site is located across the solvent exposed face of the β-sheet. The presence of charged residues on the β-sheet of PABP-1 RRM 2 would suggest that the interaction of paxillin LD1 maybe electrostatically driven. Trials were performed on PABP-1 RRM 2 to establish the lowest NaCl concentration the protein can be placed in before precipitation occurs; this was found to be $\sim 20 \mathrm{mM}$.

Figure $3.23{ }^{1} \mathrm{H}^{15} \mathrm{~N}$ HSQC spectrum of a ${ }^{15} \mathrm{~N}$ labelled PABP-1 RRM 2 titration with paxillin LD1 synthetic peptide at 100 mM and $20 \mathrm{mM} \mathbf{N a C l}$. Six step titration series was repeated at 100 mM NaCl (Figures on the left), and 20 mM NaCl concentration (Figures on the right), the start position for each titration is labelled with the associated residue number.

The titration in 3.3.1 was carefully reproduced at 100 mM NaCl and again at 20 mM NaCl . Figure 3.23 illustrates the results of these titrations performed with identical conditions. An increase in chemical shift perturbations was observed at 20 mM NaCl for each of the affected residues of the original titration series. These could be a direct result of changes in Kd or of changes in chemical shift perturbations. These chemical shift perturbations were calculated on a residue by residue basis and mapped graphically, Figure 3.24. The number of residues that display chemical shift differences from that of the free protein does not alter between NaCl concentrations moreover the amount of shift witnessed is greater at 20 mM NaCl . The increase in chemical shift perturbations may indicate that the interaction is indeed electrostatically driven and by reducing the NaCl content increases the number of salt bridges formed between the positive charges of the protein and the negatively charged residues of the peptide thereby increasing the strength of the binding interaction.

$$
\min \Delta \delta=\min \left[\left({ }^{\mathrm{HN}} \Delta_{\mathrm{ppm}}\right)+\left({ }^{\mathrm{N}} \Delta_{\mathrm{ppm}} \alpha_{\mathrm{N}}\right)^{2}\right]^{1 / 2}
$$

The chemical shifts shown in Figures 3.24 a and b and Figure 3.25 a have been scaled relative to their ppm scales. For example nitrogen ranges from $\sim 99-135$ and proton ranges from ~ 10 6 ppm therefore the measurements have been scaled down to minimise any over emphasis that may occur due to the difference in spectral width ranges. A scaling factor was introduced to account for these chemical shift differences in backbone ${ }^{15} \mathrm{~N}$ relative to ${ }^{1} \mathrm{H}$, a α_{N} value of 0.14 was applied to all residues with exception to Glycine where α_{N} value of 0.2 was applied (168). The glycine residues are scaled differently due to their restricted nitrogen chemical shift range in comparison to the other amino acid residues. In equation 3.1 the ${ }^{\mathrm{HN}} \Delta_{\mathrm{ppm}}$ and ${ }^{\mathrm{N}} \Delta_{\mathrm{ppm}}$ values are the chemical shift changes observed in both the proton and nitrogen dimensions throughout the titration.

Figure 3.24 Minimum chemical shift perturbations for paxillin LD1 titrated against PABP-1 RRM 2 at low and high $\mathbf{N a C l}$ concentrations. A graphical representation of a titration at 100 mM NaCl shown in RED and 20 mM NaCl shown in GREEN. The nitrogen and proton chemical shifts have been calculated using the minimum chemical shift protocol: $\min \Delta \delta=\min \left[\left({ }^{\mathrm{HN}} \Delta_{\mathrm{ppm}}\right)+\left({ }^{\mathrm{N}} \Delta_{\mathrm{ppm}} \alpha_{\mathrm{N}}\right)^{2}\right]^{1 / 2}$ where the ${ }^{\mathrm{HN}} \Delta_{\mathrm{ppm}}$ and ${ }^{\mathrm{N}} \Delta_{\mathrm{ppm}}$ are the ${ }^{1} \mathrm{H}_{\mathrm{HN}}$ and ${ }^{15} \mathrm{~N}_{\mathrm{NH}}$ chemical shift changes respectively. A scaling factor was introduced to account for spectral

The chemical shift perturbation data for PABP-1 RRM 2/paxillin LD1 complex illustrates a specific binding event with a defined binding interface on the β-sheet. This data when combined with the filtered NOE data, described in paragraph 3.3.3, presented residues that were specific to paxillin LD1 binding. Figure 3.25A illustrates the binding of three of these residues which display well characterised chemical shift perturbations. Unfortunately it was not possible to reach the point of saturation in the titration series due to precipitation thereby making the determination of Kd difficult. The titration results illustrate the binding of paxillin LD1 to the RNA interaction site of PABP-1 RRM2 domain. When the on/off rate of exchange is faster than that of the NMR experiment then an average is detected by the system it can be said that this is in fast exchange. With each molar edition of paxillin it can be seen that the ${ }^{1} \mathrm{H}^{15} \mathrm{~N}$ signals of the selected residues appear to move so the interaction is in the fast exchange regime. The position of the averaged resonance (v_{obs}) is weighted by the fractional populations of the free $\left(P_{f}\right)$ and bound $\left(P_{b}\right)$ states.

$$
v_{\mathrm{obs}}=\mathrm{P}_{\mathrm{f}} v_{\mathrm{f}}+\mathrm{P}_{\mathrm{b}} v_{\mathrm{b}}
$$

The bound population can be calculated using equation 3.3.

$$
P b=\frac{M t+L t+K d-\sqrt{(M t+L t+K d)^{2}-4 M t L t}}{2 L t}
$$

For a titration in which the ligand (Lt) is added to the protein (Mt) the plotted difference between the observed and the free chemical shifts (Δv) against the ligand concentration then the chemical shift reaches a constant value at saturating concentrations of the ligand (Figure 3.25B residue I110). For weakly bound complexes, such as this, not every protein molecule will be bound when the concentrations of protein and ligand are equal. Therefore the observed protein resonance keeps moving until every protein molecule is bound $\left(\mathrm{P}_{\mathrm{b}}=1\right)$. Figure 3.25 b illustrates a fitted curve using a Kd value of $2.11 \times 10^{-3} \mathrm{M}$.

Figure 3.25 Minimum chemical shift perturbations for paxillin LD1 titrated against PABP-1 RRM 2 residues F102, K129 and V131. A. Graphical representation of a titration at 20 mM NaCl shown in F102 (green), K129 (red) and V131 (blue). The nitrogen and proton chemical shifts have been calculated using the minimum chemical shift protocol: $\min \Delta \delta=\min \left[\left({ }^{\mathrm{HN}} \Delta_{\mathrm{ppm}}\right)+\left({ }^{\mathrm{N}} \Delta_{\mathrm{ppm}} \alpha_{\mathrm{N}}\right)^{2}\right]^{1 / 2}$ where the ${ }^{\mathrm{HN}} \Delta_{\mathrm{ppm}}$ and ${ }^{\mathrm{N}} \Delta_{\mathrm{ppm}}$ are the ${ }^{1} \mathrm{H}_{\mathrm{HN}}$ and ${ }^{15} \mathrm{~N}_{\mathrm{NH}}$ chemical shift changes respectively. A scaling factor was introduced to account for spectral width differences in backbone ${ }^{15} \mathrm{~N}$ relative to ${ }^{1} \mathrm{H}$, a α_{N} value of 0.14 was applied to all residues with exception to Glycine where α_{N} value of 0.2 was applied. B. Change in protein chemical shift with change in ligand concentration. The curves were calculated using $\mathrm{Mt}=1 \mathrm{mM}, \mathrm{Lt}=0-6 \mathrm{mM}, \Delta \delta= \pm 0.15 \mathrm{ppm}$ and $\mathrm{Kd}=2.11 \times 10^{-3} \mathrm{M}$. Theoretical values were used to determine the fit of a binding curve to the data.

Theoretical and Experimentally Determined Chemical Shift Change for PABP-1 RRM2/Paxillin LD1 Complex in Fast Exchange

3.3.3 Filtered NOE experiments

A filtered NOE experiment was adapted from a published pulse sequence (169). Gradients were adapted to provide adequate water suppression and filters for a $\mathrm{H}_{2} \mathrm{O}$ based sample (Dr Igor Barsukov unpublished). Figure 3.26 illustrates the effectiveness of the filter, due to the weakness of the binding of paxillin LD1 a six molar excess was used for the filtered experiments. NOE signals were seen from previously identified contacting residues to the unlabeled paxillin LD1 peptide. Table 3.2 lists the contacting residues that display NOE connections to the peptide.

Table 3.2 PABP-1 RRM 2 amino acid residues showing NOE signals to the paxillin LD1 peptide

PABP-1 RRM2 Residues	PABP-1 RRM 2 protein to peptide NOEs ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOEs
95 K	$\mathrm{H} \delta \mathrm{H} \varepsilon \mathrm{H} \gamma$
102 F	$\mathrm{H} \beta \mathrm{H} \delta \mathrm{H} \varepsilon$
129 K	$\mathrm{H} \beta \mathrm{H} \delta \mathrm{H} \varepsilon \mathrm{H} \gamma$
131 V	$\mathrm{H} \gamma 1 \mathrm{H} \gamma 2$
138 K	$\mathrm{H} \delta \mathrm{H} \varepsilon \mathrm{H} \gamma$
140 Y	$\mathrm{H} \beta 2 \mathrm{H} \beta 3 \mathrm{H} \delta$
142 F	$\mathrm{H} \delta 1$
173 F	$\mathrm{H} \beta \mathrm{H} \delta 1$

177 K	$\mathrm{H} \delta \mathrm{H} \varepsilon \mathrm{H} \gamma$

The paxillin LD1 synthetic peptide amino acid sequence displays a high degree of symmetry, DDLDALLADLESTT, making assignment of specific NOE signals difficult. To resolve this issue 2D TOCSY and NOESY experiments were performed on the peptide in its bound and unbound states. It was possible to only make ambiguous NOE assignments from a specific protein residue to either all of the leucine or aspartate residues of the peptide. It was possible to identify a specific NOE to the glutamate of the peptide thereby tethering the peptide to a specific protein residue in this case K177.

Figure $3.26{ }^{15} \mathrm{~N}{ }^{13} \mathrm{C}$ double filtered experiment for PABP-1 RRM 2 in complex with paxillin LD1. Paxillin LD1 was titrated in at 6 molar excess with filters applied to both the ${ }^{15} \mathrm{~N}$ and ${ }^{13} \mathrm{C}$ channels. Spectral strips 1-3 show the aliphatic region of Y140 with NOE connectivity from the protein to the peptide in strip plot 3. The aromatic region of Y140 in strip plot 4 displays NOE connectivities to a $\mathrm{H} \delta$ leucine of paxillin LD1, given the number of leucines within this peptide unique assignments were not possible.

3.3.4 PABP-1 RRM 2/paxillin LD1 docking

The filtered NOE signals obtained on the complex in 20 mM NaCl were ambiguous. Unique NOE assignments to D11 and T14 of the peptide made it possible to tether the ligand at one end. The peptide was docked to the PABP-1 RRM 2 using HADDOCK (High Ambiguity Driven protein-protein Docking), (170). The filtered NOE data presented in table 3.2 was used to determine AIR (Ambiguous Interaction Restraints) constraints of the active site in order to define the binding interface by mapping it onto the established PABP-1 RRM 2 structure PDB file (Figure 3.23). It was found that this produced a very small interface and so chemical shift perturbation data from the 20 mM NaCl titration series, see Figure 3.27, was used to extend this interface. The passive site was then determined as those residues that indicated less significant chemical shift perturbations and were solvent accessible ($>50 \%$) neighbours of the residues of the active site.

Figure 3.27 Coloured surface plot of PABP-1 RRM 2 with active and passive sites. AIR constraints were generated using information obtained from filtered NMR NOESY spectra and chemical shift perturbation data obtained from paxillin LD1 titration. Passive site residues were based on, the neighbouring residues of the AIR constraint active site, chemical shift perturbation data and $>50 \%$ solvent accessibility.

The HADDOCK protocol generates a number of clustered structures that are grouped mainly through which conformations energetically favourable, other factors such as the number of structures are included within that particular cluster, the Buried Surface Area measurement and per-residue interaction energy analyses all must be considered when analysing the cluster that best fits the data. In the case of this complex, consideration was given to which cluster of
structures resulted in a favourable energies and surface area measurements but also which cluster best satisfied the filtered NOE data and chemical shift perturbation data. Figure 3.28 illustrates a secondary structure of the PABP-1 RRM2/paxillin LD1 complex and is the most energetically favourable model. The leucine residues of paxillin LD1 interact with the solvent exposed hydrophobic residues on the β-sheet of PABP-1 RRM2 forming a hydrophobic core. A number of charged aspartate residues on the peptide are able to form a number of salt bridges thereby promoting paxillins interaction with this site.

Figure 3.28 Structure of PABP-1 RRM 2 in complex with paxillin LD1. A. Paxillin LD1 synthetic peptide docked across the β-sheet of PABP-1 RRM 2. B. PABP-1 RRM 2 residues demonstrating NOE signals to the paxillin LD1 peptide are shown as blue sidechains. The position of paxillin LD1 side-chains (in purple) satisfies NOE and chemical shift perturbation data.

3.3.5 Poly(A) mRNA competition assay

The results on the PABP-1 RRM 2/paxillin LD1 complex have accurately identified the binding interface for paxillin LD1. This site is located across the β sheet which has been previously identified as the RNA binding interface. The predominant question is whether or not paxillin LD1 shares the site with the RNA or whether it competes for the site? To answer this, a manufactured 6'mer polyadenylate RNA oligonucleotide was created, supplied by Dharmacon Inc. Multiple molecules of PABP-1 bind to the polyadenylate tail of nascent mRNA to form a repeating unit, for this reason only a short polyadenylate tail was ordered to ensure only a single molecule of PABP-1 RRM 2 binds.

The weak binding nature of paxillin LD1 to PABP-1 RRM 2 made the investigation of a possible competition between poly(A) mRNA and paxillin LD1 difficult. All titrations were performed on the same day at pH 6.5 and a temperature of 303 K . A ${ }^{1} \mathrm{H}{ }^{15} \mathrm{~N}$ HSQC titration was performed on PABP-1 RRM 2. The first titration was performed for poly(A) mRNA (6'mer oligonucleotide) against RRM 2 at $1: 0.5,1: 1$ and $1: 1.5$ molar equivalents of RNA (Figure 3.29). This titration was extended to 2 molar equivalents of RNA but the residue specific HSQC signals did not display any further shifts indicating that saturation had occurred at around 1.5 mM poly $(\mathrm{A}) \mathrm{mRNA}$. The second titration was performed for paxillin LD1 against RRM 2 at 1:1, 1:4 and 1:6 molar equivalents of LD1 peptide. With the data generated for these two individual complexes an established titration pattern for both RNA and LD1 is known. However, due to the weak binding nature of paxillin LD1 it was not possible to reach a point of saturation therefore a concentration of 6 molar excess was chosen which was known not to cause protein precipitation.

The competition assay was first performed on the PABP-1 RRM 2-paxillin LD1 complex at 1:6 molar equivalents of LD1. RNA was titrated against the PABP-1 RRM 2-paxillin LD1 complex at a ratio of $1: 0.25(\operatorname{poly}(A) m R N A), 1: 0.5,1: 1$ and $1: 1.5$ the results of which can be seen in Figure 3.30. The next titration series was performed on PABP-1 RRM 2-poly(A) RNA complex at 1:1.5 molar equivalents of RNA to form the initial complex. Paxillin LD1 was titrated in at 1:1, 1:4 and 1:6 molar equivalents, the results of which can be seen on Figure 3.31.

When poly(A) mRNA was titrated into the established PABP-1 RRM 2-paxillin LD1 complex significant chemical shift movement away from the PABP-1-paxillin complex was seen,

Figure 3.30. Further additions of the RNA resulted in a majority of the PABP-1 RRM2paxillin LD1 complexes being replaced by PABP-1 RRM 2-poly(A) mRNA complexes.

Figure 3.29 Minimum chemical shift perturbations for Poly(A) mRNA titrated against PABP-1 RRM 2. A graphical representation of a titration at 1.5 molar excess of poly(A) mRNA shown in RED. The nitrogen and proton chemical shifts have been calculated using the minimum chemical shift protocol: min $\Delta \delta=\mathrm{min}$ $\left[\left({ }^{\mathrm{HN}} \Delta_{\mathrm{ppm}}\right)+\left({ }^{\mathrm{N}} \Delta_{\mathrm{ppm}} \alpha_{\mathrm{N}}\right)^{2}\right]^{1 / 2}$ where the ${ }^{\mathrm{HN}} \Delta_{\mathrm{ppm}}$ and ${ }^{\mathrm{N}} \Delta_{\mathrm{ppm}}$ are the ${ }^{1} \mathrm{H}_{\mathrm{HN}}$ and ${ }^{15} \mathrm{~N}_{\mathrm{NH}}$ chemical shift changes respectively. A scaling factor was introduced to account for spectral width differences in backbone ${ }^{15} \mathrm{~N}$ relative to ${ }^{1} \mathrm{H}$, a α_{N} value of 0.14 was applied to all residues with exception to Glycine where α_{N} value of 0.2 was applied.

The competition assay was repeated this time starting with a preformed PABP-1 RRM 2poly(A) RNA complex it required 6 molar equivalents of the paxillin LD1 peptide in order for a significant disruption of the complex to occur. In contrast to the ${ }^{15} \mathrm{~N}$ HSQC (Figure 3.30) the ${ }^{15} \mathrm{~N}$ HSQC (Figure 3.31) for this assay revealed a mixture of PABP-1 RRM 2-paxillin LD1 and PABP-1 RRM 2-poly (A) RNA complexes present. These data would suggest that although poly(A) mRNA has a higher affinity for this binding site paxillin LD1 is still able to interact across the β-sheet of PABP-1 RRM 2, albeit in a weak almost transient way. Of course it can not be excluded that the shifts observed upon addition of the peptide to the protein-RNA complex reflect a secondary binding site for the peptide.

Figure 3.30 above ${ }^{1} \mathrm{H}^{15} \mathrm{~N}$ edited HSQC PABP-1 RRM 2/paxillin LD1 complex with poly (A) mRNA tail titrated in at1:6:0.25, 1:6:0.5, 1:6:1 and 1:6:1.5. RRM2/LD1 complex was the starting point at a protein:peptide concentration of $1: 6$ and is marked, first point RNA titration was 0.25 molar equivalents. Second point RNA titration was 0.5 molar equivalents, third point RNA titration was 1.0 molar equivalents, and a final point of 1.5 molar equivalents. Expanded regions illustrating F102, F169 and V131 of PABP-1 RRM 2, titrated RNA in complex. Start and target end points show additional signals these correspond to overlaid spectra of individual protein:peptide and protein:poly(A)mRNA titrations to ensure accuarate referencing of spectra.

Figure $3.31{ }^{1} \mathrm{H}^{15} \mathrm{~N}$ edited HSQC spectra for PABP-1 RRM 2/poly (A) mRNA tail with paxillin LD1 titrated in at 1:1, 1:4 and 1:6 molar equivalents. A. RRM2/RNA starting point is $1: 1.5$ molar equivalents. The first LD 1 titration point was $1: 1.5: 1$ molar equivalents, second titration point was 1:1.5:4 molar equivalents. The third LD1 titration point was 1:1.5:6 molar equivalents. Expanded regions for residues F102, F169 and V131 of PABP-1 RRM 2, F102 and F169 were found to bind mRNA directly (6) whilst V131 appears to be unique to paxillin LD1 interaction. Start and target end points show additional signals these correspond to overlaid spectra of individual protein:peptide and protein:poly(A)mRNA titrations to ensure accurate referencing of spectra.

3.4 Conclusion

The elucidated structure gave a typical RRM domain conformation of $\beta_{1} \alpha_{1} \beta_{2} \beta_{3} \alpha_{2} \beta_{4}$. This fold is similar to those seen in Nucleolin, HNRNP and HUD. The two α-helices are packed against the four stranded anti-parallel β-sheet. A hydrophobic core is located between the α helices and the β-sheet. F145 is centrally located within the hydrophobic core providing multiple NOE signals to the β-strands and the α-helices. Hydrophobic interactions between the helices facilitate their close proximity allowing for possible polar interactions between the helices and the β-sheet. NOE data indicates that several positive residues extend outward away from the helix 2 , in general helix 2 displays a positive charge when compared to helix 1 . The NMR derived unbound structure revealed the F102, F142 and F169 are present on the β sheet. The experimental data demonstrated that their aromatic rings extend outward away from the face of the β-sheet providing a hydrophobic interface for possible ligand binding. The NOE data was used to predict hydrogen and Van der waals interactions, based upon residue distance, which further support the structure. PABP-1 RRM 2 structure presents a mobile loop between the β_{2} and β_{3}-strands. This loop also appears in other RNA binding proteins making it a common feature for RRM domains. Dispersed across the surface of the β-sheet and β-hairpins are positive charged residues. It is the hydrophobic and charged residues that are involved in the stacking interactions in RNA binding to PABP-1. These residues also compliment the largely hydrophobic and electronegative characteristics of
paxillins LD 1 domain unlike those residues of the proposed binding site. Indeed closer inspection of the PABP-1 RRM2 amino acid sequence revealed that it bears no similarity to the PBS motif identified in other paxillin binding partners. It is not to say that the proposed PBS motif be discounted it merely does not play a functional role within this particular protein domain. Moreover this finding further complicates the identification of paxillin's binding partners.

The biochemical data presented at the beginning of this chapter have shown the PABP$1 /$ paxillin interaction to be much more complicated. The evidence indicated that an interaction site existed for paxillin within PABP-1 RRM2 domain but also within the PAPB-1 RRM1. The absence of a conserved PBS motif within PABP-1 RRM2 is surprising and further complicates the characterisation of paxillins binding partners with the knowledge that paxillin is able to bind to sites that are devoid of this motif. The C-terminal region of PABP-1 was able to bind both LD2 and LD5 domains of paxillin. Similarly the C-terminal region of paxillin gave a positive indication of binding to PABP-1's RRM4 domain.

NMR titration results with a synthetic paxillin LD1 peptide revealed residue specific chemical shift perturbations. The further addition of paxillin LD1 peptide resulted in increased chemical shift perturbations but did not induce changes in the HSQC signals from any additional residues. A titration performed at low NaCl concentrations on PABP-1 RRM 2 resulted in increased chemical shift perturbations. These data confirmed that the complex maybe electrostatically driven. Filtered NOE experiments gave NOE data from the protein to the peptide this data was supported by the assignment of the protein in its bound state. Further NOE data was collected on the peptide itself allowing for the successful docking of the peptide to PABP-1 RRM 2 using HADDOCK. The binding interaction appears to be in the fast exchange regime with a calculated $\mathrm{Kd} \sim 2.11 \mathrm{mM}$. The weak binding nature of this complex would indicate the necessity of further sites of paxillin interaction along the length of PABP-1.

Some of the residues involved in the binding of paxillin LD1 were also involved in the binding of the poly (A) mRNA tail. This finding naturally presents the question of competition for the binding interface or a cooperative binding. The NMR competition assay revealed that both paxillin LD1 and the poly (A) mRNA tail compete for the binding interface on PABP-1 RRM 2. Although the RNA binds to PABP-1 RRM 2 with greater affinity,
paxillin LD1 was able to push the RNA oligonucleotide out of the binding interface upon addition of six molar equivalents of the peptide paxillin LD1. Similarly the RNA was able to completely push the peptide out of its binding site with only a 1:1.5 molar excess of RNA. The PABP- $1 / \mathrm{mRNA}$ crystal structure presented by Deo et al, (142), illustrated the specificity of PABP-1 for the poly(A) tail of mRNA. The competition data would indicate that the competition for this active binding site is biased toward polyadenylated mRNA. However it would be interesting to examine the effect on cell migration by mutating of the specific residues involved with paxillin binding. The weak interaction of this complex, as previously mentioned, would indicate the presence of additional binding sites therefore if this particular site was a primary interaction site then cell migration would be greatly reduced.

Chapter 4 PABP-1 RRM 1

4.1 Introduction

PABP-1 RRM 1 provides a binding interface for the poly-adenylated tail of nascent mRNA and is an active proponent involved in PABPs interaction with eIF4G. The mRNA tail was shown to specifically interact with the RRM 1 domain residues Y14, Y54, Y56 and R89. Residues M85 of PABP-1 RRM 1 and R94 from an inter-domain linker of PABP-1 RRM1/2 and are involved with stacking interactions with Ade-5 of an 11 'mer poly(A) mRNA. Woods et al 2005 identified one such domain, bearing similarity with the PBS domain of actopaxin, within the N-terminus of PABP-1 RRM 1 residues D17-K30. Woods et al 2005 performed mutational assays on this region, D21-R21 and T23-N23. Their results indicated that a reduction in cell migration occurred when this mutant was introduced into migratory fibroblasts (Chapter 1).

The ELISA results in Chapter 3 identified a binding site for paxillin LD1 peptide within the PABP-1 RRM 1 domain, although the binding affinity was less than that seen in the RRM2/LD1 interaction. Given the roles played by the RRM 1 domain in its interaction with eIF4G and mRNA, it is considered a biologically important domain. To further investigate this interaction RRM1 was expressed and labelled with both ${ }^{15} \mathrm{~N}$ and ${ }^{13} \mathrm{C}$.

4.2 Results and discussion

4.2.1 PABP-1 RRM 1 construct

PCR primers were designed to encompass the RRM 1 domain. The GC-content of both the forward and reverse PCR primers was kept similar to one another. Figure 4.1 is a representation of the RRM1 PCR primers; the primers contain an NCO-I restriction enzyme site in the forward primer and a KPN-I site in the reverse primer upstream from the 'stop' codon.

Forward primer

Reverse primer
5'- TGG TCT CAG CGT GAT TAA GGT ACC CTC GAG CGG-3'

Figure 4.1 Representation of the PABP-1 RRM 1 PCR primer design. The forward primer was extended in order to facilitate the removal of a second NCO-I site located downstream from the start codon. The engineered restriction enzyme sites are shown in red and the start and stop codons identified.

PABP-1 RRM1 nucleotide sequence was analysed using the New England Biolab restriction enzyme cutter (www.neb.com). The results showed that an NCO-I site was located downstream of the start codon and would have resulted in the removal of the first 10 N terminal amino acid residues. The forward primer shown in Figure 4.1 was extended to include this NCO-I site and introduce a point mutation thus removing the site but maintaining the nucleotide sequence of the amino acid.

Figure 4.2 2\% agarose gel of the PCR and enzyme digest products. A. PABP-1 RRM 1 PCR products (303bp) were purified by 2% agarose gel and the products treated with NCO-I/KPN-I restriction enzymes. B. Reduction in fragment size following the enzyme digest to give the PCR product adhesive ends prior to ligation.

4.2.2 Protein expression

Competent BL21 DE3 cells were transformed using the RRM1 constructs and expressed. Cell cultures were induced at an optical density of 0.7 and a temperature of $37^{\circ} \mathrm{C}$. Protein expression concentrations were very low at this temperature even at varying inductions times. Figures 4.3a, b and c shows the FPLC traces for PABP-1 RRM 1 expression trial using 500 ml enriched media cultures at varying induction temperatures. The FPLC traces clearly demonstrate the improvement of protein expression at lower induction temperatures. An optimum induction temperature of $15^{\circ} \mathrm{C}$ was found to provide the maximum protein yield for PABP-1 RRM 1 in M9 minimal media.

Figure 4.3 Temperature dependent protein expression trials for PABP-1 RRM 1. A. FPLC trace for an overnight induction at $37^{\circ} \mathrm{C}$ in 0.51 of M9 media. B. FPLC trace for an overnight induction at $25^{\circ} \mathrm{C}$ in 0.51 of M9 media. C. FPLC trace for an overnight induction at $15^{\circ} \mathrm{C}$ in 0.51 of M9 media. D. PABP-1 RRM 1 protein bands following an overnight induction at $15^{\circ} \mathrm{C}$. Lane 2 the uninduced whole cell fraction, lane 3 lysate fraction following cell lysis and lane 4 lysate flow-through following purification. Lanes 5 through 10 PABP-1 RRM 1 FPLC fractions.

4.2.3 PABP-1 RRM 1 sequence specific assignments

Sequence specific assignments were carried out using CCPN software. Figure 4.4 illustrates an ${ }^{15} \mathrm{~N}$ resolved HSQC spectrum displaying the backbone NH signals and side chain NH_{2} group signals. The HNCACB and $\mathrm{CBCA}(\mathrm{CO}) \mathrm{NH}$ spectra (Figure 4.5A) show excellent signal intensity and very few artefacts. Both spectra were collected over a 72 hour period and their high quality was due to the size of the protein and the relatively high protein concentration. Indeed, it can be seen in this example that the signals in the HNCACB spectrum show both i and i-1 signals. The i-1 sequential assignments were confirmed using the $\mathrm{CBCA}(\mathrm{CO}) \mathrm{NH}$ spectrum. Sequential assignment of the carbonyl carbons were facilitated
by collecting HNCO and $\mathrm{HN}(\mathrm{CA}) \mathrm{CO}$ spectra. The connectivity of the amide sequential assignments was confirmed using the HNCO and $\mathrm{HN}(\mathrm{CA}) \mathrm{CO}$ spectral data (Figure 4.5B). The HNCO spectrum produced $\mathrm{i}-1$ while the $\mathrm{HN}(\mathrm{CA}) \mathrm{CO}$ provided data to the intra-residue. All of the expected signals were observed even in the less sensitive experiments.

Backbone NH, $\mathrm{C} \alpha$ and $\mathrm{C} \beta$ residue assignments were 96% complete with no detectable signals to the three C -terminal residues. $\mathrm{C} \alpha$ and $\mathrm{C} \beta$ protons were assigned using $\mathrm{HBHA}(\mathrm{CO}) \mathrm{NH}$ and HBHANH spectra. Both experiments gave a good signal to noise ratio with no spectral overlap. As $\mathrm{H} \alpha$ and $\mathrm{H} \beta$ were of opposite phase in the HBHANH spectrum, assignment was relatively straight forward.

Figure $4.4{ }^{1} \mathrm{H}^{15} \mathrm{~N}$ HSQC spectrum of $\mathbf{P A B P}-1$ RRM 1. The spectrum shows a pure sample with no proteolysis, signals show good dispersion that is indicative of a folded protein. Sequential numbering is that of human PABP-1 SwissProt accession number P11940.

Figure 4.5 Selected strips from the triple-resonance spectra illustrating sequential connectivities for residues $\mathbf{1 0 2 - 1 0 5}$ of PABP-1 RRM 1. A. Superposition of CBCA(CO)NH and HNCACB spectra. Positive contour level of CBCA(CO)NH are shown in dark green $\left(\mathrm{CB}_{\mathrm{i}-1} \mathrm{~N}_{\mathrm{i}} \mathrm{HN}_{\mathrm{i}}\right.$ and $\mathrm{CA}_{\mathrm{i}-1} \mathrm{~N}_{\mathrm{i}} \mathrm{HN}_{\mathrm{i}}$ correlations); positive contour level of HNCACB are shown in red $\left(\mathrm{CA}_{\mathrm{i}} \mathrm{N}_{\mathrm{i}} \mathrm{HN}_{\mathrm{i}}\right.$ correlations), negative contour level of HNCACB are shown in blue $\left(\mathrm{CB}_{\mathrm{i}} \mathrm{N}_{\mathrm{i}} \mathrm{HN}_{\mathrm{i}}\right.$ correlations). Sequential connectivities are represented by horizontal lines. B. Superposition of HNCO and HNCACO spectra. Positive contour level of HNCO shown in blue $\left(\mathrm{CO}_{\mathrm{i}-1} \mathrm{~N}_{\mathrm{i}} \mathrm{HN}_{\mathrm{i}}\right.$ correlations); positive contour level of HNCACO are shown in light green $\left(\mathrm{CA}_{\mathrm{i}} \mathrm{CO}_{\mathrm{i}} \mathrm{N}_{\mathrm{i}} \mathrm{HN}_{\mathrm{i}}\right.$ correlations). Sequential connectivities are represented by horizontal lines.

4.2.4 Side-chain assignments

All side chain assignments were performed in a logical and progressive manner building on to the already assigned amide backbone. Assignments to the C_{β} and its accompanying protons were carried out in a similar manner as PABP-1 RRM 2 (chapter 3) thus providing a bridge
between the amide backbone and side chain assignments. Figure 4.6 illustrates a ${ }^{1} \mathrm{H}{ }^{13} \mathrm{C}$ resolved HSQC spectrum displaying expanded C_{α} and methyl regions. Signals to the side chains located within overlapped regions were resolved using the [H]CCH-TOCSY and $\mathrm{H}[\mathrm{C}] \mathrm{CH}-\mathrm{TOCSY}$ spectra. Figure 4.7B illustrates selected strips from the ${ }^{1} \mathrm{H}$ resolved TOCSY spectrum for I48. The $\mathrm{H} \gamma_{1}$ strip is a good example were the two protons are resolved and their assignments given.

Figure $4.6{ }^{1} \mathrm{H}{ }^{13} \mathrm{C}$ HSQC spectrum side chain assignments for PABP-1 RRM 1. The spectrum is well resolved with minimal spectral overlap of signals. Side chain residues were assigned in this spectrum via ${ }^{1} \mathrm{H}$-TOCSY and ${ }^{13} \mathrm{C}$-TOCSY spectra.

Figure 4.7 Selected strips from the ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ resolved TOCSY spectra, intraresidue side chain connectivities for $\mathbf{I 4 8}$ of PABP-1 RRM 1. A. Side-chain carbon atom positions, shown as red signals, for I48. The carbon signals can be seen within each plane. B. Side-chain carbon protons, shown as blue signals, for I48, each resolved proton signal can be seen in each strip.

4.3 PABP-1 RRM 1 structure

Initial structural calculations were performed using CYANA/CANDID protocol version 2.1 for the determination of unique assignments of NOE derived data. Dihedral constraints generated by TALOS were also included in the calculations. Initial calculations derived a folded structure with 89% of NOE signals assigned using a chemical shift tolerance for ${ }^{1} \mathrm{H}$ 0.03 and 0.3 for both ${ }^{15} \mathrm{~N}$ and ${ }^{13} \mathrm{C}$. Unassigned NOE signals were examined to ensure there were no systematic errors. They were then examined to determine whether they were from another residue that had not been assigned by the calculation protocol. The NOE data was then refined by referring to the structure and used to generate constraint tables for ARIA1.2 where the final structural water refinements took place. Structural refinements took into account any raised NOE energies that were highlighted as part of the ARIA output by cross referring to the group of signals or angle constraints and correcting the violating constraint. Table 7.1 lists the final restraints generated from 20 lowest energy water refined structures derived from 100 random start structures.

The final water refined lowest energy conformers, Figure 4.9, were analysed by ProcheckNMR (163). Figures 4.8 and 4.9 show the global fold to be $\beta_{1} \alpha_{1} \beta_{2} \beta_{3} \alpha_{2} \beta_{4}$, this type of fold is seen in other RRM domain proteins which will be discussed later in the chapter. Figure 4.8(A) illustrates the RMSD analysis on a residue by residue basis for the amide backbone (black) and the side-chain (grey). High local RMSD values can be seen at the N and C termini ranging from 2-5 \AA as expected. A rise in RMSD values can be seen between V43 and S52 this would indicate a certain amount of dynamic motion within the loop 3 region. Figure 4.8(B) illustrates the number of NOE constraints on a residue by residue basis. It can be seen that low NOE constraints is accompanied by a rise in RMSD values as can be seen for the N and C-termini

Table 4.1 Solution Structure Determination of PABP-1 RRM 1

Experimental restraints	
Restraints	
Unique NOEs	1817
Intraresidue	771
Sequential	367
Medium range ($1<[\mathrm{i}-\mathrm{j}]<4$)	183
Long range ($[\mathrm{i}-\mathrm{j}]>5$)	496
φ / ψ dihedral angles ${ }^{\text {a }}$	108
Energies ($\left.\mathrm{Kcal} \mathrm{mol}^{-1}\right)^{\text {b }}$	Mean \pm S.D
Total	-2948.58 ± 72.97
Van Der Waals	-741.88 ± 8.99
NOE	70.20 ± 0.0023
RMS deviations ${ }^{\text {b }}$	
NOEs (\AA) (no violations > $0.5 \AA$)	0.028 ± 0.0023
Dihedral restraints $\left({ }^{\circ}\right)\left(\right.$ no violations $>5^{\circ}$)	0.62
Bonds (\AA)	0.0043 ± 0.00016
Angles (${ }^{\circ}$)	0.54 ± 0.021
Impropers (${ }^{\circ}$)	1.44 ± 0.093
Ramachandran map analysis ${ }^{\text {c }}$	
Allowed regions	86.3\%
Additional allowed regions	13.5\%
Generously allowed regions	0.2\%
Disallowed regions	0.0\%
Pairwise rms difference (\AA) ${ }^{\text {d }}$	
Residues 11-88 (heavy atom)	1.100
$2{ }^{\text {nd }}$ Structure residues 11-88 (backbone)	0.503

[^1]A

B

Figure 4.8 Statistics on a residue per residue basis for 20 lowest energy conformers representing PABP-1 RRM 1. A. Average local RMSD for the backbone and side-chain residues. B. Total number of NOE restraints shown as green bars and the intra-residue NOE restraints shown as green bars. These analysis were performed using Procheck NMR.

Figure 4.9 Superposition of the 20 lowest energy converged structures for PABP-1 RRM 1. A. A good convergence of structures however; the loop 3 region demonstrates a less stringent superposition. B. Cartoon representation of the water refined secondary structure for PABP-1 RRM 1. The structure depicts two α-helices crossing over a four stranded anti-parallel β-sheet resulting in a $\beta_{1} \alpha_{1} \beta_{2} \beta_{3} \alpha_{2} \beta_{4}$ fold similar to that seen in the PABP-1 RRM 2 structure.

4.3.1 Description of Secondary structure

Long range NOE signals that are indicative of an anti-parallel β-sheet were identified between residues S13-G17, L39-R42, A56-F60 and R84-M86. Figure 4.10 illustrates an example of the NOE connectivities that were detected by a ${ }^{15} \mathrm{~N}$ edited NOESY-HSQC spectrum across the β-sheet. A β-sheet will typically give an NOE pattern between $\mathrm{HN} / \mathrm{H} \alpha_{(i, \mathrm{j})}$ and $\mathrm{H} \alpha / \mathrm{HN}\left(\mathrm{i}_{(\mathrm{i}, \mathrm{j}}\right.$ on adjacent strands. These constraints determine the order and alignment of the β-strands. NOE data between L14 on the β_{1}-strand and M86 and Y57 on the β_{4} and β_{3}-strands respectively indicates that a kink in the sheet maybe present this is further supported by the ${ }^{13} \mathrm{C}$ NOE data.

NOE's to the residues in helix 1 give a typical NOE pattern for an α-helix. Figures 4.10(A) and (B) both display the NOE pattern for an α-helix, with strong NOE signals to $\mathrm{HN}(\mathrm{i}) / \mathrm{HA}_{(\mathrm{i})}$ and weak/medium signals to $\mathrm{HN}(\mathrm{i}) / \mathrm{HA}_{(\mathrm{i}-3)} \mathrm{HN}(\mathrm{i}) / \mathrm{HA}_{(\mathrm{i}-4)}$ and $\mathrm{HA}(\mathrm{i}) / \mathrm{HB}_{(\mathrm{i}-3)}$ as indicated. A commonly witnessed aspect of this helix is that three residues on the C -terminus of the helical
region 1 gave an NOE pattern of $\mathrm{HN}(\mathrm{i}) / \mathrm{HA}_{(\mathrm{i}-2)}$ and $\mathrm{HA}(\mathrm{i}) / \mathrm{HB}_{(\mathrm{i}-2)}$ indicative of a 3.10 helix, Figure 4.10(A). This distinctive feature of helix 1 was not seen in helix 2. Helix 1 shows a significant bend at the C-terminal of the helix caused by P34. P34 is positioned at the Cterminus of the helix and causes an expansion of the last turn of the α-helix. In contrast to this helix 2 has no aromatic residues or other residues that may disrupt the α-helix.

Figure 4.10 Selected strips from ${ }^{15} \mathrm{~N}$ edited NOESY spectrum the $\boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}, \boldsymbol{\beta}_{3}$ and $\boldsymbol{\beta}_{4}$ strands for PABP-1 RRM 1. A. ${ }^{15} \mathrm{~N}$ edited NOESY-HSQC spectra with NOE connectivities for residues Y15, V16 and V58 of β_{1} and β_{3} strands respectively. B. NOE connectivities for residues I41 and R42 on β_{2} strand, and N59 on the β_{3} strand with the cross connectivities which form the antiparallel β-sheet. C. NOE connectivities for residues I85 and M86 on the β_{3} strand and G17 on the β_{1} strand. D. Four stranded anti-parallel β-sheet of PABP-1 RRM 1, uniquely assigned NOEs that were used to elucidate the ordering and alignment of the β strands are displayed as arrows.

Figure 4.11 Selected strips from ${ }^{15} \mathrm{~N}$ edited NOESY HSQC spectrum with NOE connectivities for the helical regions of PABP-1 RRM 1. A. Strip plot of a ${ }^{15} \mathrm{~N}$ edited NOESY HSQC with an NOE pattern that is indicative of an α-helix; strong $H N_{i} H A_{i}$, weak/medium $\mathrm{HN}_{\mathrm{i}} \mathrm{HA}_{\mathrm{i}-3}, \mathrm{HN}_{\mathrm{i}} \mathrm{HA}_{\mathrm{i}-4}$ and $\mathrm{HA}_{\mathrm{i}} \mathrm{HB}_{\mathrm{i}-3}$ for the helical region 1 of PABP-1 RRM 1. The α-helix is broken by the presence of a proline residue at its C-terminus. B. Strip plot of a ${ }^{15} \mathrm{~N}$ edited NOESY HSQC spectrum illustrating an α-helical NOE pattern; weak/medium NOE signals were seen throughout this second helical region.

4.3.2 Tertiary structure analysis

The anti-parallel β-pleated sheet does not show exposed hydrophobic residues across its β strands which are seen in other protein-protein binding RRM domains. The hydrophobic residues are buried and form an intact pocket on the adjacent side of the four stranded β-sheet. This hydrophobic pocket is further maintained by the interaction of the hydrophobic residues of the sheet with the hydrophobic residues on the two α-helices, Figure 4.12. A total of nine hydrophobic residues across the β-strands form the base of the hydrophobic pocket, β_{2}-strand contains buried residues I34, I41 and V43 whereas the β_{3}-strand hydrophobic residues are A56, V58 and F60, Figure 4.12. The N-terminal and C-terminal β-strands are home to the outlying hydrophobic residues, L14 V83 and I85 respectively, that project inward toward the
pocket. The two α-helices are packed against the β-sheet by hydrophobic interactions. Residues T24 and F32 of helix 1 project inward toward the pocket, similarly residues A69 and L70 of helix 2 are also arranged in a similar manner.

F32 appears to play a pivotal role forming hydrophobic interactions with A66, A69 and L70 of helix 2. NOE data for this residue and those hydrophobic residues within the hydrophobic pocket reveal hydrophobic interactions with the β-strands. F60 located on the β_{3}-strand is central making numerous hydrophobic interactions to the sheet and to the C-terminus of helix 1 and the N-terminus of helix 2. Y29 of helix 1 projects away from the helix and is angled downward toward the β_{2}-strand bringing into close proximity to the β_{2}-strand giving it a certain amount of protection. This feature is reminiscent of that seen between Y116 of helix 1 and I126 of the β_{2}-strand in the PABP-1 RRM 2 structure, presented in Chapter 4. NOE signals were seen between I38 and I41 on the β_{2}-strand and Y29 thus supporting its conformation. Further NOE signals were witnessed between I38 and I41 and V58 on the $\beta_{3}{ }^{-}$ strand and F32 on helix 1; thus providing the evidence for the packing of the helices against the β-sheet.

The PABP-1 RRM 1β-sheet contains no solvent exposed hydrophobic residues that were seen in the PABP-1 RRM 2 structure. It is also noticeable that there are not as many charged residues on the surface of the β-sheet. There are however, three tyrosine residues that are involved specifically in stacking interactions with the poly(A)-tail of RNA. NOE data indicates that Y15 is bent away from the β_{1}-strand toward Y55 at the same time it is rotated toward Y57 on the β_{3}-strand by Van der Waals interactions with Y57, Figure 4.13. Figure 4.13a shows a twist in the C-terminus of the β_{3}-strand. The NOE data suggests that L39 may form a hydrogen bond with N59 this would cause the β-strand to twist toward the β_{2}-strand. NOE signals between Q61 and L39 suggest a further hydrogen bond may form between Q61, located at the apex of loop4 between the β_{3}-strand and helix2, and P37 at the apex of loop 2 linking helix1 with the β_{2}-strand. This interaction would cause the C-terminus of the β_{3} strand to twist more dramatically which is seen in Figure 4.13a. The bend in the N-terminus of the β_{1}-strand maybe caused by hydrophobic interactions between L14 and both A66 and L70 on helix 2. The NOE data indicates that L14 is anchored by possible hydrogen bonds with V58 and Van der waals interactions with both V58 and F60 drawing L14 inward. In opposition to this is the way that Y15 is bent away from the β-strand creating a prominent bend in the β-strand with L14 at its apex.

Figure 4.12 NOE connectivites of the hydrophobic pocket supported by the associated strip plots of ${ }^{13}$ C-NOESY spectra. A. NOE signals detected between the hydrophobic residues of the α-helices. F32 of helix 1 extends across the gap between the two helices and plays a pivotal role in maintaining the integrity of the hydrophobic pocket. The extended conformation of the Cterminus of helix 1 can be seen and its close proximity to helix 2 is confirmed by NOE data. B. The packing of the helices against the β-sheet is supported by the presence of hydrophobic interactions between the hydrophobic core and the hydrophobic residues within the helices. C. Connectivity between outlying hydrophobic residues on the β_{2}-strand and helix 1 . Y29 on helix 1 projects away from the helix at a downward angle toward the β_{2}-strand. The selected ${ }^{13} \mathrm{C}$ NOSEY spectrum strips support the position and angle of the aromatic ring, reciprocal NOE signals further supported this arrangement. D. Hydrophobic core located between the two helices and the β-sheet supported by ${ }^{15} \mathrm{~N}$ and ${ }^{13} \mathrm{C}$ NOE data.

Figure 4.13 NOE signals detected across the solvent exposed face of the $\boldsymbol{\beta}$-sheet. A. The β_{3}-strand indicates a twist at its C-terminus supported by NOE constraint data and hydrogen bond calculations. Y15 is bent away from the β_{1}-strand toward Y55. B. NOE signals suggest possible Van der Waals interactions between Y15 and Y57 causing Y15 to span the $\beta_{1}-\beta_{3}$ gap. In return Y55 is rotated away from Y15 toward the flexible loop3 region.

Loop 3, Figure 4.14a and b, is involved in the base stacking interactions of poly (A) mRNA binding to PABP-1 RRM1/2. Crystallographic studies of PABP/RNA complex revealed that Ade7 of the poly (A) mRNA is sandwiched between two copies of L53 and D46 located on loop3 of PABP-1 RRM 1. The structure of the loop appears to be dynamic showing a high degree of motility thus allowing it to make contact with RNA. This loop region differs from that seen in PABP-1 RRM 2 in that it is positively charged by three arginine residues. The NOE data indicates that R50 lies across the loop so that it is orientated parallel to R45, Figure 4.14a. From the NOE data it was predicted that a hydrogen bond may form between R45 and R50 and also between R50 and D46 suggesting the sides of the loop to pinch together. In contrast to R50, R51 projects outward away from the loop. The NOE data suggests that R51 is in close proximity to D 22 of loop1 and maybe able to form a salt bridge. The loop itself has two hydrophobic residues that project outward at the apex of the turn. Potential hydrogen bonds may form between D46 and I48 and T49, salt bridges may also form between D46 and the HN groups of I48 and T49.

Figure 4.14 Structure of the flexible loop3 region of PABP-1 RRM 1 with associated strip plots of ${ }^{15} \mathbf{N}$ NOSEY spectrum. Loop3 of PABP-1 RRM 1 displays a much different architecture than that seen for loop3 of PABP-1 RRM 2. The Figures show that this region is very positively charged with two hydrophobic residues that project outward at the apex of the turn. NOE data indicates that R45 and R50, located on opposite sides of the loop, extend parallel to one another. In contrast R51 projects away from the loop itself where the NOE data suggests it makes a salt bridge (indicated by a blue dashed line) with D22 of loop1.

4.3.3 Structural comparisons

The electrostatic surface representation of PABP-1 RRM 1 shows a balance of charges when compared to PABP-1 RRM 2. Figure 4.15a displays the electrostatic surface representation of the β-sheet. The surface of PABP-1 RRM 2β-sheet gave a patch of positively charged residues and solvent exposed phenylalanines which complimented the negatively charged hydrophobic paxillin LD1 peptide. In contrast to this PABP-1 RRM 1 displays a more neutral surface with no exposed hydrophobic residues. A unique feature of PABP-1 RRM 1 compared with PABP-1 RRM 2 is the positive charge that is present on the flexible loop3 region created by R42, R45, R50 and R51. This may provide additional support for electronegative ligands such as mRNA and paxillin LD domains.

Figure 4.15 Comparative electrostatic surface representations of PABP-1 RRM 1 and RRM 2. A. The electrostatic solvent exposed surface of the β-sheet, positive charges are blue, negative are red and neutral are white. The aromatic rings (white) of Y15, Y55 and Y57 can be clearly seen in the centre of the β-sheet. The positive charge of R42 located at the start of loop3 can be seen to the right of the structure. B. The electrostatic surface charge of the helical side of PABP-1 RRM 1. The positive charges of R45 and R50 can be seen at the bottom left of the Figure. C. The electrostatic surface charge of the β-sheet of PABP-1 RRM 2. In contrast to PABP-1 RRM 1 the β-sheet displays a positively charged surface and also presents solvent exposed phenylalanines

Figure 4.16 Comparason of PABP-1 RRM 1 (top left), PABP-1 RRM 1 crystal structure (top centre), PABP-1 RRM 2 (top right), hnRNPA1 RRM 1 (bottom left) and HUD RRM 1(bottom right). The NMR derived structure of PABP-1 RRM 1 displays very few differences when compared to the crystal structure. The NMR derived PABP-1 RRM 1 structure was determined in its unbound state and shows more flexibility in its β-strands than the crystal structure which was determined in complex with poly(A) RNA. The two NMR derived structures presented in this project display secondary structures that show a high level of homology. Indeed all of the secondary structures presented here display similar secondary structure characteristics. The presence of the flexible loop3 region is a feature that is present in a majority of RRM domain containing proteins. This might indicate that it is important to the stable interaction with RNA.

The NMR derived structure of PABP-1 RRM 1 presented in this chapter was elucidated in its unbound state. A comparison of secondary structure characteristics between the NMR derived and crystal structures of PABP-1 RRM 1 reveal very few differences. As mentioned in previous chapters the crystal structure of PABP-1 RRM1/2 (6) was elucidated in complex with poly(A) RNA and may explain the differences across the β-sheet. The orientations of Y55 and Y57 are a result of RNA stacking interactions which are evident in the crystal structure. The NMR derived structure generates NOE constraints which suggest that in their unbound states the tyrosine residues adopt a different conformation. Indeed, the degree of secondary structure homology between RRM domains of other proteins is worth noting. Both HUD (166) and hnRNPA1 show the now familiar $\beta_{1} \alpha_{1} \beta_{2} \beta_{3} \alpha_{2} \beta_{4}$ fold. The hnRNPA1 (167) protein loop3 region is less prominent and packs against the rest of the protein compared to the other RRM domains. The secondary structures of PABP-1 RRM 1 and RRM 2 presented in this project show a high degree of homology. The β-sheet of PABP- 1 RRM 1 appears to be a lot less ordered than that of PABP-1 RRM 2. Indeed, the face of the β-sheet of PABP-1 RRM 2 compliments that of the paxillin LD1 domain thus facilitating its interaction. The solvent exposed face of PABP-1 RRM 1β-sheet does not show the same degree of positive charge or exposed hydrophobic residues.

4.3.4 Paxillin LD1 titration

The biochemical assays reported in chapter 3 indicated a positive result for the binding interaction of PABP-1 RRM 1 with paxillin LD1. The ELISA results showed that, compared to PABP-1 RRM 2, the binding was of a reduced affinity. Based on these data this interaction was investigated using the same techniques as those described in chapter 3.

Figure 4.17a (above) ${ }^{1} \mathrm{H}^{15} \mathrm{~N}$ HSQC spectrum for the titration of PABP-1 RRM 1with paxillin LD1 at a 6 molar excess of the peptide. The titration revealed no chemical shift perturbations, there were no shifts or reduction in signal intensities witnessed. Figure 4.17b (below) ${ }^{1} \mathrm{H}{ }^{15} \mathrm{~N}$ HSQC spectrum for the titration of a GST labelled paxillin LD1 peptide at a ratio of $\mathbf{1 : 1}$. The spectrum illustrates chemical shift perturbations indicating that the binding seen in the biochemical assays was induced by the linker region between paxillin LD1 and the GST-tag.

The ${ }^{1} \mathrm{H}^{15} \mathrm{~N}$ HSQC spectrum in Figure 4.17a represents the paxillin LD 1 titration performed on the RRM 1 domain of PABP-1. The spectrum clearly demonstrates that no binding interaction was present between the synthetic peptide paxillin LD1 and RRM 1. In light of the ELISA data in chapter 3, this result was somewhat unexpected given the presence of a PBS motif within PABP-1 RRM1. Figure 4.18 illustrates the location of the PBS site within PABP-1 RRM1. The region extends to include helix 1 and the loop region from the β_{1}-strand and helix 1 . NOE data indicates that the 5 hydrophobic residues within the region, L19, P21, V23, A26 and L28, are buried forming interaction between themselves and the hydrophobic core. The initial titration was performed at a 100 mM NaCl concentration, in an effort to induce the binding witnessed in the ELISA assays the titration was repeated at 20 mM NaCl concentration. The results were the same as those seen in Figure 4.17a, (not shown). It was curious as to why the ELISA results indicated a binding interaction where none was identified by NMR. The paxillin LD 1 synthetic peptide was 6 residues shorter than that used in the ELISA assays. In order to investigate whether a longer construct would bind it was decided to use a paxillin LD1/2 double domain construct.

Figure 4.18 PABP-1 RRM1 PBS domain. Paxillin binding sub-domain highlighted in red. Residues V23, T24 and E25 show sequence homology to the PBS domains identified in actopaxin and vinculin. Hydrophobic residues within this region appear buried and inaccessible to the solvent. NOE data indicates hydrophobic interactions between V23 and other hydrophobic residues within helix 1.

Initially a GST fusion construct was used, this however proved to be labile and it was difficult to remove the GST-tag and maintain a pure sample. It was found that once the GST-tag was removed and the sample purified by gel filtration the resultant protein yield was minimal. The paxillin LD $1 / 2$ construct was moved into a pETM-30 vector (supplied by Dr Alison Woods) with an N-terminal His-tag, thus facilitating a more efficient purification method.

Despite the increase in protein yield there were still stability issues, therefore a fresh batch of paxillin LD1/2 protein was required. A titration series was performed using the double LD domain. The subsequent HSQC signals for PABP-1 RRM 1 did not indicate any chemical shift changes upon increasing additions of paxillin LD1/2 (results not shown).

A titration was performed on PABP-1 RRM 1 with the His-tag removed but using the GST fusion protein that was employed for the ELISA assays. Figure 4.17b clearly shows that an interaction is present when GST fusion paxillin LD 1 is titrated in. As part of the ELISA assay a GST negative control was used, the control protein was generated from a pGEX2TK vector. The GST-tag was removed using thrombin protease and purified by ion exchange column. The linker region, LVPRGSRRASV, appears to make weak binding interactions across the $\beta-\beta$ loop regions. Only three PABP-1 RRM1 residues displayed noteworthy chemical shift perturbations V43, L53 and K81, none of which are located within the PBS motif of PABP-1 RRM1. These data may account for the positive result observed during the course of the ELISA assay.

4.4 PABP-1 RRM1/2 tandem domain

The crystal structure showed that the linker between the two domains forms a helix when bound to the poly (A) tail and supports this interaction. The biochemical results presented in chapter 3 indicated a greater binding affinity for PABP-1 RRM1/2 in complex with wild type paxillin. It would be interesting to see whether a paxillin LD1 titration of PABP-1 RRM1/2 would induce further chemical shift perturbations and whether the affected residues reside within the linker domain. It would also be interesting to determine whether these two RRM domains interact with one another in their unbound states.

4.4.1 RRM domain comparison

The NMR solution structures of PABP-1 RRM 1 and 2 in their native states show the same fold as that seen for other RRM domain proteins $\beta_{1} \alpha_{1} \beta_{2} \beta_{3} \alpha_{2} \beta_{4}$. The sequence specific alignments in Figure 4.19 show a consensus sequence of $\mathrm{SKGFG}^{\mathrm{F}} \mathrm{Y}_{\mathrm{V}}^{\mathrm{I}}$ showing a sequence similarity $>50 \%$ across the RRM domains.

Figure 4.19 Amino acid sequence homology and conservation between RRM domains of RNA interacting proteins. The multiple sequence alignment of RRM domains displayed is from human form proteins of PABP-1, nucleolin, HUD and hnRNPA1. Residues with conserved sequence similarity in five or more domains are highlighted in yellow with $>60 \%$ sequence similarity. The main consensus sequence SKGFG ${ }_{\mathrm{Y}}^{\mathrm{F}} \mathrm{I}$, the ' $\%$ ' symbol denotes either an F or a Y residue and the '!' symbol denotes either an I or a V residue. The alignment was prepared using ClustalW and ESPript.cgi (http://npsa-pbil.ibcp.fr/cgi-bin/align clustalw.pl).

4.4.2 PABP-1 RRM1/2 NMR model

The ${ }^{15} \mathrm{~N}$ resolved HSQC spectrum of PABP-1 RRM1/2 was overlaid with the ${ }^{15} \mathrm{~N}$ resolved HSQC spectra of both PABP-1 RRM 1 and 2, Figure 4.20. The HSQC spectra overlaid with minimal differences in signal positions however there was spectral overlap of the PABP-1 RRM1/2 HSQC. The absence of chemical shift perturbations in the PABP-1 RRM1/2 HSQC spectrum illustrates that the two RRM domains do not interact with one another in their free states. The chemical shift maps for the two single RRM domains were used for the sequential assignments of PABP-1 RRM1/2. Unlike the NMR elucidated structures presented in this thesis the HNCACB and CBCACONH spectra of PABP-1 RRM1/2 were used to confirm the sequential assignments of the two single RRM domains. The sequential assignments of the two single domains were comparable to the HNCACB and CBCACONH spectra of PABP-1 RRM1/2, Figure 4.21. The signals appeared weaker in the inter-domain linker region which would indicate that it is largely unstructured. Due to spectral overlap and the strength of the amide backbone experiments there were only 2 residues within the inter-domain linker region that were left unassigned.

Figure 4.20 illustrates an overlay of three ${ }^{1} \mathrm{H}^{15} \mathrm{~N}$ HSQC spectra. The Figure illustrates an ${ }^{15} \mathrm{~N}$ resolved HSQC spectrum for PABP-1 RRM1/2, shown as red HSQC signals. This spectrum is overlaid with a ${ }^{15} \mathrm{~N}$ resolved HSQC spectrum for PABP-1 RRM 2 (blue signals) and a ${ }^{15} \mathrm{~N}$ resolved HSQC spectrum for PABP-1 RRM 1 (green signals). The two single domain RRM spectra overlay with PABP-1 RRM1/2 with minimal chemical shift difference in the signals. This would indicate that there is very little interaction between the two domains.

Figure 4.21 illustrates a HNCACB and CBCACONH spectra for PABP-1 RRM1/2. The above spectra displays inter and intra-residue signals for the RRM1 domain of PABP-1 RRM1/2. The inter-residue connections are indicated. The RRM 2 domain displayed a lot more spectral overlap than was witnessed for this particular part of the spectrum.

The strength of the amide backbone experiments made the confirmation of sequential assignments difficult from the C-terminus of the RRM 1 domain onwards. Despite this over 87% of the assignments were confirmed which was ideal to gain a model of the tandem RRM domains. In order to elucidate the structure of PABP-1 RRM1/2 domain more sensitive experiments would be needed designed for larger proteins.

4.4.3 NMR based secondary structure model

In order to incorporate all of the structural data that has been established for the two single domains a ${ }^{15} \mathrm{~N}$ resolved NOESY HSQC and a ${ }^{13} \mathrm{C}$ resolved HSQC NOESY spectra were collected. In order to improve the sensitivity of the ${ }^{13} \mathrm{C}$ HSQC NOESY the protein was placed in $100 \% \mathrm{D}_{2} \mathrm{O}$. Once again the spectra were used to confirm the NOE assignments of the two single RRM domains. Both NOESY spectra were analysed for NOE signals across the flexible inter-domain linker region.

The CANDID/CYANA protocol was used to create a model of the PABP-1 RRM1/2 domain based on the chemical shift data obtained from the structures presented in chapters 3 and earlier in this chapter. Intra-residue H^{N} NOE signals, taken from the two NMR elucidated RRM structures, were rigorously checked against ${ }^{1} \mathrm{H}{ }^{15} \mathrm{~N}$ edited NOESY HSQC spectrum. Very few differences in the chemical shift data were witnessed between the single RRM domains and the double domain. Sequential NOE signals were used to generate the secondary structure model of the two RRM domains.

The model of the two domains, Figure 4.22, illustrates the typical $\beta_{1} \alpha_{1} \beta_{2} \beta_{3} \alpha_{2} \beta_{4}$ for both domains connected by the inter-domain linker region, residues $88-98$. Due to the size of the double RRM domain

Figure 4.22 Model of the PABP-1 RRM1/2 domain based upon derived chemical shift data of the single RRM domains. A) The model of the tandem RRM domain was a result of the CANDID/CYANA structural calculation protocol. This structural representation was based on raw chemical shift data from the refined PABP-1 RRM 1 and 2 domains. B) The inter-domain linker region, residues $90-98$, appears to be largely unstructured. Refinement of chemical shift data was not performed following initial attainment of the PABP-1 RRM1/2 model.

B

4.4.4 PABP-1 RRM1/2 paxillin LD1/2 interactions

As already mentioned in chapter 1 Deo et al established that the two domains work together to support the binding interaction of the poly (A)-tail of mRNA. They found that the interdomain linker region between PABP-1 RRM 1 and 2 forms a helical conformation when bound to the RNA. During the course of this project it has been established that this interdomain linker region is largely random coil in its free state. This finding was confirmed by the NOE data as there were no long range NOE signals seen between the two domains or to the inter-domain linker region. More over the NOE signals for the inter-domain linker region were mainly intra-residue and sequential inter-residue indicative of a random conformation. This inter-domain linker region may form interactions with an extended paxillin construct that includes both LD 1 and LD 2 domains. This construct had failed to produce any chemical shift changes in PABP-1 RRM1 however, PABP-1 RRM2 showed chemical shift perturbations within the N -terminal region that included several residues of the linker region.

Evidence has already been presented in chapter 3 supporting the PABP-1 RRM 2 paxillin LD1 complex. Chapter 3 also presented evidence for a binding site for paxillin LD1 within the PABP-1 RRM 1 domain. This result was found to be a false positive due to an interaction between the GST linker region of the paxillin LD1 construct and PABP-1 RRM 1. However Deo et al did show that the PABP-1 RRM1/2 domain increased the binding affinity of the poly (A)-tail of mRNA. Using the same premise it would be interesting to determine whether an increase in the number of affected residues could be brought about by the binding of paxillin LD1/2 to PABP-1 RRM1/2.

A titration was performed using fresh paxillin $\mathrm{LD} 1 / 2$ at a protein to ligand ratio of 1:1. It was found that upon further additions of paxillin a large amount of precipitation occurred within the sample. Chemical shift perturbations were witnessed and localised to the PABP-1 RRM2 domain, there were no additional chemical shift perturbations to the linker region or PABP-1 RRM1 domain, Figure 4.23. This finding is consistent with what has been reported so far. The linker region plays a vital role in mRNA binding by forming a helix indicating that paxillins interaction may start within the PABP-1 RRM2 domain and not interfere with PABP-1 RRM1/2 domain mRNA complex formation. The weak binding of paxillin LD1/2 domain would also indicate that the PABP- $1 / \mathrm{mRNA}$ complex formation maybe the primary interaction.

Figure $4.23{ }^{1} \mathbf{H}^{15} \mathrm{~N}$ edited HSQC spectrum PABP-1 RRM1/2 paxillin LD1/2 titration. The titration was performed at a $1: 1$ ratio, further additions suffered heavy precipitation. Analysis of the chemical shift perturbations revealed them to be localised to the RRM2 domain only. Top left panel illustrates a blown up region with RRM2 signals identified, slight differences were seen upon addition of the paxillin construct which were attributable to a slight increase in pH

4.5 Conclusion

NMR experiments were used to elucidate the structure of PABP-1 RRM 1. The structure revealed a typical RRM domain fold seen in other RRM domains from proteins such as hnRNPA1, Nucleolin and HUD. The structure produced a $\beta_{1} \alpha_{1} \beta_{2} \beta_{3} \alpha_{2} \beta_{4}$ fold with the helices stacked against the rear of the β-sheet. A hydrophobic core is present between the β-sheet and α-helices which is maintained by a number of hydrophobic, Van der Waals and hydrogen bonds across the β-sheet and between the helices. The secondary structure revealed a high degree of homology to that of PABP-1 RRM 2. However, the solvent exposed face of the β sheet of PABP-1 RRM 1 is not as well ordered as that seen for PABP-1 RRM 2. Loop3 of PABP-1 RRM 1 is positively charged by the presence of four arginine residues this is in contrast to the other RRM domain containing proteins. Indeed, the loop3 region of PABP-1

RRM 2 is more negatively charged by comparison. Secondary structure comparisons show that PABP-1 RRM 1 is comparable to those RRM domains presented by HUD and hnRNPA1.

Titration studies with paxillin LD1 induced no chemical shift perturbations despite the positive binding results seen in chapter 4. A paxillin LD1/2 construct was employed and the titration studies repeated to see if binding could be induced in PABP-1 RRM 1. After repeated attempts with the NaCl concentration reduced to try and induce binding yielded in no chemical shift changes in ${ }^{1} \mathrm{H}{ }^{15} \mathrm{~N}$ HSQC spectral signals. It can only be concluded that paxillin LD1 binding does not take place in PABP-1 RRM 1 domain. This does not however, explain the reported binding seen in chapter 4. To try and repeat the conditions used in the ELISA biochemical assay a GST-fusion construct of paxillin LD1 was employed in the titration experiments with PABP-1 RRM 1. Chemical shift perturbation of ${ }^{1} \mathrm{H}{ }^{15} \mathrm{~N}$ HSQC spectral signals was witnessed. It can be concluded from these data that there exists a binding site for PABP-1 RRM 1/paxillin LD1 within the linker between the GST fusion tag and the protein.

In its unbound form the PABP-1 RRM1/2 inter-domain linker region is unstructured. Triple resonance NMR data gathered on the double domain enabled the assignments of NOE signals within the linker region. However, there were no NOE signals between the two domains or across the linker region that would indicate the presence of structure. The absence of interdomain NOE signals was not surprising given that both PABP-1 RRM1 and RRM2 HSQC spectra overlay the RRM1/2 spectrum, Figure 4.20 , with minimal differences indicating the absence of domain-domain interactions. The addition of paxillin LD1/2 to PABP-1 RRM1/2 failed to induce any further chemical shift perturbations than have already been reported. All changes in chemical shifts were found to be localised to the RRM2 domain. Biochemical data would suggest an interaction exists between paxillin and PABP-1 however, NMR data clearly shows that there are no interactions between the paxillin LD1/2 and PABP-1 RRM1. It maybe suggested that the interactions witnessed in the biochemical assays were transient or the fact that the RRM1 domain on its own was able to establish interactions with the LIM domains. Further investigations into the PABP-1/paxillin interaction are needed if the exact nature of this complex is to be understood.

Chapter 5 Conclusion

It was originally thought that the PAPB-1-paxillin interaction was limited to the RRM-LD domains. Sequence alignment studies of PABP-1 against other paxillin binding partners revealed the presence of two PBS sequences (100) both located within the N-terminal RRM domains, the first within RRM1 and the second within RRM4. Mutagenesis studies revealed that disruption of these sites reduced cell migration events and that both sites operated independently of one another, (127). The biochemical data obtained during the course of this investigation have shown this to be a much more complicated interaction. The evidence indicated that an interaction site existed for paxillin within PABP-1 RRM2 domain but also within the PAPB-1 RRM1. The absence of a conserved PBS motif within PABP-1 RRM2 is surprising and further complicates the characterisation of paxillins binding partners with the knowledge that paxillin is able to bind to sites that are devoid of this motif. The C-terminal region of PABP-1 was able to bind both LD2 and LD5 domains of paxillin. Similarly the Cterminal region of paxillin gave a positive indication of binding to PABP-1's RRM4 domain. GST pull down assays of paxillin in migratory fibroblasts and their subsequent analyses suggested a stronger interaction than was observed for PABP-1's individual domains $(7,127)$. This would suggest that the two proteins are intertwined and that no one site provides a strong interaction more over the strength of paxillin binding is a combination of the interaction sites.

The NMR structure of PABP-1 RRM2 yielded a structure with a $\beta_{1} \alpha_{1} \beta_{2} \beta_{3} \alpha_{2} \beta_{4}$ fold that is reminiscent of other RNA binding protein RRM domains such as HUD and nucleolin. The two α-helices form a V-shape on one side of four stranded β-pleated sheet. The front face of the β-sheet has three phenylalanine residues which have their aromatic rings exposed to the solvent, a fourth phenylalanine residue is present but has its aromatic ring buried within the aromatic core. In addition to this there are several positively charged residues dispersed across the face of the β-sheet with their side chains solvent exposed. The flexible loop region between β_{2} and the β_{3}-strands, a common feature in RNA binding proteins, has been shown to make contact with polyadenylate tail of mRNA but not to interact with paxillin.

A synthetic peptide of paxillin LD1 domain was used to perform NMR based titration experiments against PABP-1 RRM2. The results of the titration showed that the chemical shift perturbations witnessed were specific even at 6 molar excesses of paxillin LD1 peptide. It appears that the interaction is weak binding, calculated to be 2.11 mM at 20 mM NaCl , and
to be in the fast exchange regime. This provides evidence to support the idea that paxillin's affinity of binding with PABP-1 is a sum of its individual interactions. Chemical shift perturbations highlighted several positively charged residues on the solvent exposed face of the β-sheet. This data would indicate that the binding interaction could be electrostatically driven. The idea that the PABP-1-paxillin interaction is more complicated than was first theorised is supported by the experimental titration data. Structural data on the complex show contacting residues that are unique to the PABP-1 RRM2/paxillin LD1 complex such as V131, F142 and K129. However the two PABP-1 ligands, paxillin and poly (A) mRNA, share some contacting residues, particularly F169, F102 and Y140. The crystal structure of PABP1 RRM1/2 in complex with an 11-nucleotide poly(A) mRNA tail (6) show that the two domains form a trough that binds poly(A) mRNA to give an anti-parallel protein/RNA conformation. The floor of the trough is formed by two adjacent anti-parallel β-sheets with the β-strands; the sides of the RNA-binding trough formed by the S2-S3 loop of RRM 1, the inter-domain linker, S2'-S3' loop of RRM 2 and part of the inter-domain linker between RRM 2 and RRM 3. With the RNA interaction site spanning both PABP-1 RRM1 and 2 domains and paxillin binding to one specific RRM domain then this suggests a competition for that site may exist. Data did show that mRNA is able to bind with greater affinity to PABP-1 RRM 2 and force paxillin LD1 out of the binding interface. Paxillin LD1 in turn was not able to completely remove all of the PABP-1/poly (A) mRNA complexes and resulted in a mixture of species to be present in the solution even at greater molar excess of the peptide. This suggests that paxillin may overlap with the mRNA to form a sandwich holding the mRNA in place during transport out of the nucleus. The weak binding nature of the PABP-1 RRM2/paxillin LD1 complex also suggests that it occurs after the primary interaction elsewhere between the proteins. An ideal candidate for this, and a candidate for further investigation, would be the interaction between paxillin's LIM domains and PABP-1 RRM4. Mutational studies performed by Woods et al on PABP-1 RRM4 suggested that mRNA translocation by paxillin was negated and cellular migration halted.

The NMR structure of PABP-1 RRM 1 in its unbound form yielded a similar fold to that seen in PABP-1 RRM 2. The four anti-parallel arranged β-strands presented a different appearance of solvent exposed residues compared to PABP-1 RRM 2. The surface of the β-sheet did not contain any solvent exposed phenylalanine residues. A single phenylalanine residue was present with its aromatic ring buried in the hydrophobic core, a feature that is shared with PABP-1 RRM 2. Three tyrosine residues, located on β_{1} and β_{3}-strands, are solvent exposed
and have been implicated in stacking interactions with mRNA, (142). The α-helices position themselves on one side of the β-sheet in a similar manner as that seen for PABP-1 RRM 2 , making hydrophobic interactions with the hydrophobic core. This suggests that the mRNA maybe bound to the PABP-1 RRM1 domain more tightly than to the RRM2 domain thereby allowing paxillin LD1 to occupy part of the mRNA binding site. To confirm a detailed titration series could be performed for PABP-1 RRM1 and RRM2 with mRNA in order to establish binding kinetics for the individual domains.

NMR titration experiments were carried out using the paxillin LD 1 peptide and the same sodium chloride concentrations that were used for PABP-1 RRM 2. No chemical shift perturbations were seen. Every effort was made to reproduce the result that was witnessed during the course of the ELISA binding assays. A larger paxillin fragment was used that encompassed both LD1 and LD 2 domains this too failed to induce any chemical shift perturbations. When this construct was titrated into PABP-1 RRM1/2 only chemical shift perturbations that were specific to the PABP-1 RRM 2 domain were witnessed. The site of the PBS sequence was located within the N-terminus of helix 1 ; many of the side chains within this region were buried and inaccessible. These data would suggest that the identified PBS site (127) is not involved in paxillin binding to PABP-1.

The linker region between the two RRM domains forms an α-helical formation when in contact with poly(A) mRNA(6). It was initially thought that the linker may provide further binding sites for paxillin in light of its weak interaction with PABP-1 RRM 2. However, further investigation failed to yield any additional chemical shift changes in the PABP-1 RRM1/2 domain spectra. The conformational changes experienced in PABP-1 RRM1/2 linker region upon RNA binding is not limited to just PABP-1 but is also witnessed in nucleolin and HUD RNA binding proteins. The formation of the helix in the linker region between RRM1 and 2 domains would increase PABP-1's affinity for mRNA but may also contribute to paxillin's weak interaction with the RRM2 domain. Of course the conformational change may also prevent paxillin from interacting with the PABP-1 RRM 2 domain when in the presence of full length protein:protein:RNA complexes.

It would be necessary to collect more detailed NMR data for the peptide in both its bound and unbound states. This would facilitate a more accurate structure of the PABP-1 RRM 2/paxillin LD1 complex. A more accurate determination of the binding constant would also
be necessary, this maybe obtained through techniques such as ITC or Biocore. In order to better study the importance of the PABP-1 RRM 2/paxillin LD1 complex it would be beneficial to create functional mutants that were capable of negating the paxillin LD1 interaction but were able to maintain mRNA binding. These mutants would then be used in cell migration assays to determine whether this site was a major contributor in paxillin binding or whether paxillins involvement as a scaffold protein is dependent on multiple sites of interaction. Continued structural research into the other sites of interaction would be required and necessary if an accurate mode of interaction be established.

The most interesting aspects revealed in this report are the absence of the PBS motifs in PABP-1 RRM2 and other paxillin interaction sites within PABP-1, as identified by the ELISA assays. This further complicates identification of paxillin's interaction partners. The identification of LIM domain binding to PABP-1 RRM4 is an interesting find and warrants further investigation. There is more and more evidence being produced that implicate zinc finger binding to RNA $(171,172)$. This may provide clues to one of the more interesting questions as to how actin mRNA constructs are selected for transport to the lamellipodia. It is widely known that PABP- 1 specifically binds to the polyadenylated tail of nascent mRNA and it does this arbitrarily. Therefore it maybe paxillin that selects for actin mRNA via its zinc finger LIM domains. The exact mode of action would likely be that PABP-1 binds to the poly(A) tail, providing the mRNA protection from enzymatic digestion, paxillin then identifies the mRNA transcript and binds the PABP-1 to form the export complex. Release of the mRNA at the lamellipodia is likely facilitated through phosphorylation of paxillin. Confirmation of this model would require extensive structural, molecular and cellular investigations but would yield a clear picture into the model. Once the model has been confirmed studies into metastatic cancer models can be performed.

Appendix I

M9 Media

Solution A

$\mathrm{Na}_{2} \mathrm{HPO}_{4}$ anh	$14.6 \mathrm{~g}\left(27.6 \mathrm{~g}\right.$ of $\left.7 \mathrm{H}_{2} \mathrm{O}\right)$
$\mathrm{KH}_{2} \mathrm{PO}_{4}$ anh	5.4 g
$\mathrm{NH}_{4} \mathrm{Cl}$	1.0 g (for ${ }^{15} \mathrm{~N}$ and ${ }^{13} \mathrm{C}$ labelled samples the ammonium phosphate was
replaced with $1 \mathrm{~g} / 1$	$\left({ }^{15} \mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} 99 \%$ Cambridge Isotope Laboratories)
pH 7.2	

Solution A was autoclaved and allowed to cool before solution B was added aseptically

Solution B should be filter sterilised and not autoclaved

Glucose	4 g (for ${ }^{13} \mathrm{C}$ labelled samples glucose was replaced with $2 \mathrm{~g} / 1 \mathrm{U}-{ }^{13} \mathrm{C}_{6} 99 \%+$
Cambridge Isotope Laboratories)	
MgSO_{4}	240 mg
Thiamine Hydrochloride	20 mg
$5 \mathrm{~g} / 1 \mathrm{MNSO}_{4}$	0.5 ml
$37.5 \mathrm{~g} / \mathrm{lCaCl}_{2}$	0.5 ml
$1 \mathrm{~g} / \mathrm{FeCl}_{2}$	0.5 ml
Amplicillin	200 mg
Kanamycin	$40 \mathrm{mg} / 1$

LB

Tryptone $\quad 10 \mathrm{~g}$
$\begin{array}{lrr}\text { Yeast } & 5 \mathrm{~g} & \\ \mathrm{NaCl} & 10 \mathrm{~g} & \mathrm{pH} 7.0\end{array}$
Note: for agar plates add 7.5 g agar

Nickel Column Buffers

Phosphate Stock buffer 1		
$20 \mathrm{mM} \mathrm{Na}_{2} \mathrm{HPO}_{4}$	$2.84 \mathrm{~g} / 1$	
500 mM NaCl	$29.2 \mathrm{~g} / 1$	
20 mM Imidazole	$1.36 \mathrm{~g} / 1$	pH 7.5
Elution Buffer 2		
$20 \mathrm{mM} \mathrm{Na}_{2} \mathrm{HPO}_{4}$	$2.84 \mathrm{~g} / 1$	
$500 \mathrm{mM} \mathrm{NaCl}^{500 \mathrm{mM} \mathrm{Imidazole}}$	$29.2 \mathrm{~g} / 1$	
	$34.0 \mathrm{~g} / 1$	pH 7.5

AcTEV Protease Buffer

Stocks
1M Tris
pH 8.0
10 mM EDTA

To make the working buffer 2 ml of each was added to 36 ml of $\mathrm{dH}_{2} \mathrm{O}$ to give 50 mM Tris, 0.5 mM EDTA.

Phosphate buffer

$20 \mathrm{mM} \mathrm{Na}_{2} \mathrm{HPO}_{4}$	$2.84 \mathrm{~g} / \mathrm{l}$	
100 mM NaCl	$5.84 \mathrm{~g} / \mathrm{l}$	pH 6.5
Made up to 11 with $\mathrm{dH}_{2} \mathrm{O}$		

10X phosphate buffered saline (PBS)

$\mathrm{Na}_{2} \mathrm{HPO}_{4}$	$14.4 \mathrm{~g} / \mathrm{l}$	
$\mathrm{KH}_{2} \mathrm{PO}_{4}$	$2.40 \mathrm{~g} / \mathrm{l}$	
NaCl	$80.0 \mathrm{~g} / \mathrm{l}$	
KCl	$2.00 \mathrm{~g} / 1$	pH 7.0

Citrate phosphate buffer

Phosphate buffer:
$0.2 \mathrm{M} \mathrm{Na}_{2} \mathrm{HPO}_{4}$
$14.2 \mathrm{~g} / 500 \mathrm{ml}$

Citrate buffer:
100 mM Citric acid $\quad 10.6 \mathrm{~g} / 500 \mathrm{ml}$

Citrate phosphate buffer:
49.7 ml phosphate buffer
48.3 ml citrate buffer.

Appendix II

Tabie Az. 1 Detais of experimental datasets used tor PABP-1 RRM2.

Experiment Type	Acquisition Parameters (ms)			Field/mixing time
	F3	F2	F1	
Backbone assignments	$1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 714$			
${ }^{15} \mathrm{~N}$ resolved HSQC		$\begin{gathered} \mathrm{H}, \\ \tau \mathrm{aq}=106.5 \end{gathered}$	$\begin{gathered} { }^{5} \mathrm{~N}, \\ \tau_{\mathrm{aq}}=79.3 \end{gathered}$	600 MHz
HNCACB and CBCA(CO)NH	$\begin{gathered} { }^{\mathrm{I}} \mathrm{H}, \\ \tau_{\mathrm{aq}}=106.5 \end{gathered}$	$\begin{gathered} { }^{15} \mathrm{~N} \\ \tau \mathrm{caq}=19.8 \end{gathered}$	$\begin{gathered} { }^{13} \mathrm{C}, \\ \tau \mathrm{aq}=4.9 \end{gathered}$	600 MHz

HNCO	$\begin{gathered} { }^{\mathrm{I}} \mathrm{H}, \\ \tau \mathrm{aq}=106.5 \end{gathered}$	$\begin{gathered} { }^{15} \mathrm{~N}, \\ \tau \mathrm{aq}=22.0 \end{gathered}$	$\begin{gathered} { }^{13} \mathrm{C}, \\ \tau \mathrm{aq}=11.4 \end{gathered}$	600 MHz
Side-chain assignments	1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/4			
HBHA(CO)NH	$\begin{gathered} \mathrm{H}, \\ \tau \mathrm{aq}=106.5 \end{gathered}$	$\begin{gathered} { }^{15} \mathrm{~N}, \\ \tau \mathrm{aq}=22.0 \end{gathered}$	$\begin{gathered} { }^{\mathrm{T}} \mathrm{H}, \\ \tau \mathrm{aq}=15.1 \end{gathered}$	600 MHz
${ }^{13} \mathrm{C}$ resolved HSQC		$\begin{gathered} { }^{\mathrm{I}} \mathrm{H} \\ \tau \mathrm{aq}=97.5 \end{gathered}$	$\begin{gathered} { }^{13} \mathrm{C} \\ \tau \mathrm{taq}=13.3 \end{gathered}$	800 MHz
[H]CCH TOCSY	${ }^{\mathrm{I}} \mathrm{H}$, $\tau_{\mathrm{aq}}=97.5$	$\begin{gathered} { }^{13} \mathrm{C}, \\ \tau \mathrm{cqq}=9.3 \end{gathered}$	$\begin{gathered} { }^{13} \mathrm{C} \\ \tau \mathrm{zaq}=9.3 \end{gathered}$	800 MHz TOCSY mix time $=18 \mathrm{~ms}$
H[C]CH TOCSY	$\begin{gathered} { }^{\mathrm{I}} \mathrm{H}, \\ \tau \mathrm{aq}=97.5 \end{gathered}$	$\begin{gathered} { }^{13} \mathrm{C}, \\ \tau \mathrm{aq}=9.3 \end{gathered}$	$\begin{gathered} { }^{\mathrm{I}} \mathrm{H}, \\ \tau \mathrm{aq}=26.1 \end{gathered}$	800 MHz TOCSY mix time $=18 \mathrm{~ms}$
NOE assignments				
${ }^{13} \mathrm{C}$ resolved NOESY-HSQC	$\begin{gathered} { }^{\mathrm{T}} \mathrm{H}, \\ \tau \mathrm{aq}=90.8 \end{gathered}$	$\tau \mathrm{aq}=8.0$	$\begin{gathered} \mathrm{H}, \\ \tau \mathrm{aq}=27.3 \end{gathered}$	800MHz NOESY mix time $=120 \mathrm{~ms}$
${ }^{15} \mathrm{~N}$ resolved NOESY-HSQC	$\begin{gathered} { }^{\mathrm{I}} \mathrm{H}, \\ \tau \mathrm{aq}=102.3 \end{gathered}$	$\begin{gathered} { }^{15} \mathrm{~N} \\ \tau \mathrm{aq}=19.3 \end{gathered}$	$\begin{gathered} { }^{\mathrm{I}} \mathrm{H}, \\ \tau \mathrm{aq}=19.8 \end{gathered}$	800 MHz NOESY mix time $=150 \mathrm{~ms}$
Aromatic ring assignments				
${ }^{13} \mathrm{C}$ resolved HSQC (aromatic)		$\begin{gathered} { }^{\mathrm{T}} \mathrm{H}, \\ \tau \mathrm{aq}=102.3 \end{gathered}$	$\begin{gathered} { }^{3} \mathrm{C} \\ \tau \mathrm{aq}=12.8 \end{gathered}$	800 MHz
${ }^{13} \mathrm{C}$ resolved NOESY-HSQC (aromatic)	$\begin{gathered} { }^{\mathrm{I}} \mathrm{H}, \\ \tau \mathrm{aq}=102.3 \end{gathered}$	$\begin{gathered} { }^{13} \mathrm{C} \\ \tau \mathrm{aq}=6.7 \end{gathered}$	$\begin{gathered} { }^{\mathrm{I}} \mathrm{H}, \\ \tau \mathrm{aq}=21.5 \end{gathered}$	800 MHz NOESY mix time $=120 \mathrm{~ms}$

$\boldsymbol{\tau} \mathbf{a q}=$ approximate acquisition time in ms for that particular dimension.

Chemical Shift Ambiguity Code Definitions

Codes Definition

1 Unique
2 Ambiguity of geminal atoms or geminal methyl proton groups

3 Aromatic atoms on opposite sides of the ring (e.g. Tyr HE1 and HE2 protons)

4 Intraresidue ambiguities (e.g. Lys HG and HD protons)

5 Interresidue ambiguities (Lys 12 vs. Lys 27)
9 Ambiguous, specific ambiguity not defined

Atom Residue
shift Seq Residue Atom Atom Shift/ Error/ Ambiguity assign code Label Name Type ppm ppm Code
$\left.\begin{array}{lllllllllllllllll}1 & 3 & \text { ASP } & \text { CA } & \text { C } & 52.317 & 0.036 & 1 & & 17 & 6 & \text { LEU } & \text { CD1 } & \text { C } & 25.135 & 0.068 & 2 \\ 2 & 3 & \text { ASP } & \text { CB } & \text { C } & 41.497 & 0.033 & 1 & & 18 & 6 & \text { LEU } & \text { CD2 } & \text { C } & 23.258 & 0.063 & 2 \\ 3 & 3 & \text { ASP } & \text { H } & \text { H } & 8.17 & 0.003 & 1 & & 19 & 6 & \text { LEU } & \text { CG } & \text { C } & 27.000 & 0.007 & 1 \\ 4 & 3 & \text { ASP } & \text { HA } & \text { H } & 4.779 & 0.002 & 1 & 20 & 6 & \text { LEU } & \text { H } & \text { H } & 7.758 & 0.005 & 1 & \\ 5 & 3 & \text { ASP } & \text { HB2 } & \text { H } & 2.579 & 0.003 & 1 & 21 & 6 & \text { LEU } & \text { HA } & \text { H } & 4.242 & 0.002 & 1 \\ 6 & 3 & \text { ASP } & \text { HB3 } & \text { H } & 2.704 & 0.005 & 1 & 22 & 6 & \text { LEU } & \text { HB2 } & \text { H } & 1.537 & 0.005 & 1 \\ 7 & 3 & \text { ASP } & \text { N } & \text { N } & 123.844 & 0.000 & 1 & 23 & 6 & \text { LEU } & \text { HB3 } & \text { H } & 1.626 & 0.001 & 1 \\ 8 & 5 & \text { SER } & \text { CA } & \text { C } & 59.754 & 0.012 & 1 & 24 & 6 & \text { LEU } & \text { HD11 } & \text { H } & 0.876 & 0.004 & 2 \\ 9 & 5 & \text { SER } & \text { CB } & \text { C } & 63.544 & 0.102 & 1 & 25 & 6 & \text { LEU } & \text { HD12 } & \text { H } & 0.876 & 0.004 & 2 \\ 10 & 5 & \text { SER } & \text { H } & \text { H } & 8.447 & 0.001 & 1 & 26 & 6 & \text { LEU } & \text { HD13 } & \text { H } & 0.876 & 0.004 & 2 \\ 11 & 5 & \text { SER } & \text { HA } & \text { H } & 4.244 & 0.002 & 1 & 27 & 6 & \text { LEU } & \text { HD21 } & \text { H } & 0.779 & 0.003 & 2 \\ 12 & 5 & \text { SER } & \text { HB2 } & \text { H } & 3.834 & 0.003 & 1 & 28 & 6 & \text { LEU } & \text { HD22 } & \text { H } & 0.779 & 0.003 & 2 \\ 13 & 5 & \text { SER } & \text { HB3 } & \text { H } & 3.834 & 0.003 & 1 & 29 & 6 & \text { LEU } & \text { HD23 } & \text { H } & 0.779 & 0.003 & 2 \\ 14 & 5 & \text { SER } & \text { N } & \text { N } & 115.115 & 0.000 & 1 & 30 & 6 & \text { LEU } & \text { HG } & \text { H } & 1.535 & 0.001 & 1 \\ 15 & 6 & \text { LEU } & \text { CA } & \text { C } & 55.446 & 0.017 & 1 & 31 & 6 & \text { LEU } & \text { N } & \text { N } & 122.673 & 0.000 & 1\end{array}\right]$

33	7	ARG	CB	C	30.6610 .02	1
34	7	ARG	CD	C	43.3410 .007	1
35	7	ARG	CG	C	27.1150 .0	1
36	7	ARG	H	H	7.8300 .014	1
37	7	ARG	HA	H	4.1850 .003	1
38	7	ARG	HB2	H	1.6970 .003	1
39	7	ARG	HB3	H	1.7850 .002	1
40	7	ARG	HD2	H	3.1030 .006	1
41	7	ARG	HD3	H	3.1030 .006	1
42	7	ARG	HG2	H	1.5270 .005	1
43	7	ARG	HG3	H	1.5270 .005	1
44	7	ARG	N	N	120.4990 .000	1
45	8	LYS	CA	C	56.3980 .057	1
46	8	LYS	CB	C	33.0010 .056	1
47	8	LYS	CD	C	28.9490 .031	1
48	8	LYS	CE	C	42.1760 .050	1
49	8	LYS	CG	C	24.8030 .032	1
50	8	LYS	H	H	8.1040 .000	1
51	8	LYS	HA	H	4.2770 .002	1
52	8	LYS	HB2	H	1.6820 .007	1
53	8	LYS	HB3	H	1.7960 .007	1
54	8	LYS	HD2	H	1.6070 .005	1
55	8	LYS	HD3	H	1.6070 .005	1
56	8	LYS	HE2	H	2.9000 .007	1
57	8	LYS	HE3	H	2.9000 .007	1
58	8	LYS	HG2	H	1.3390 .011	1
59	8	LYS	HG3	H	1.3900 .005	1
60	8	LYS	N	N	121.7280 .000	1
61	9	SER	CA	C	58.5860 .017	1
62	9	SER	CB	C	63.9670 .026	1
63	9	SER	H	H	8.2180 .000	
64	9	SER	HA	H	4.4080 .003	1
65	9	SER	HB2	H	3.8380 .009	1
66	9	SER	HB3	H	3.8380 .009	1
67	9	SER	N	N	116.3450 .000	1
68	10	GLY	CA	C	45.6020 .000	1
69	10	GLY	H	H	8.4370 .000	1
70	10	GLY	HA2	H	4.0160 .000	01
71	10	GLY	HA3	H	4.0160 .000	01
72	10	GLY	N	N	110.8020 .000	0

73	11	VAL	CA	C	62.964	0.008	1
74	11	VAL	CB	C	32.623	0.005	1
75	11	VAL	CG1	C	20.063	0.008	1
76	11	VAL	CG2	C	21.445	0.017	1
77	11	VAL	H	H	7.784	0.001	1
78	11	VAL	HA	H	4.147	0.001	1
79	11	VAL	HB	H	2.153	0.001	1
80	11	VAL	HG11	H	0.934	0.010	1
81	11	VAL	HG12	H	0.934	0.010	1
82	11	VAL	HG13	H	0.934	0.010	1
83	11	VAL	HG21	H	0.961	0.007	1
84	11	VAL	HG22	H	0.961	0.007	1
85	11	VAL	HG23	H	0.961	0.007	1
86	11	VAL	N	N	117.404	0.000	1
87	12	GLY	CA	C	45.608	0.000	1
88	12	GLY	H	H	8.544	0.000	1
89	12	GLY	HA2	H	3.955	0.000	1
90	12	GLY	HA3	H	3.955	0.000	1
91	12	GLY	N	N	109.827	0.000	1
109	14	ILE	HB	H	1.853	0.001	1
14	14	ILE	HD11	H	0.457	0.002	1
105	13	ASN	CA	C	53.513	0.007	1
93	14	14	ASN	HD12	H	0.457	0.002

113	14	ILE	HG12	H	1.180	0.003	1	153	17	LYS	HD3	H	1.521	0.001	1
114	14	ILE	HG13	H	1.229	0.001	1	154	17	LYS	HE2	H	2.545	0.003	1
115	14	ILE	HG21	H	0.866	0.001	1	155	17	LYS	HE3	H	2.545	0.003	1
116	14	ILE	HG22	H	0.866	0.001	1	156	17	LYS	HG2	H	1.296	0.008	1
117	14	ILE	HG23	H	0.866	0.001	1	157	17	LYS	HG3	H	1.296	0.008	1
118	14	ILE	$\mathrm{N} \quad \mathrm{N}$	N	118.218	0.000	1	158	17	LYS	N	N	123.507	0.000	1
119	15	PHE	CA	C	54.951	0.036	1	159	18	ASN	CA	C	54.005	0.012	1
120	15	PHE	CB	C	42.927	0.014	1	160	18	ASN	CB	C	37.932	0.012	1
121	15	PHE	H	H	8.855	0.002	1	161	18	ASN	H	H	8.436	0.004	1
122	15	PHE	HA	H	5.332	0.001	1	162	18	ASN	HA	H	4.435	0.001	1
123	15	PHE	HB2	H	2.740	0.001	1	163	18	ASN	HB2	H	2.777	0.002	1
124	15	PHE	HB3	H	2.937	0.004	1	164	18	ASN	HB3	H	3.728	0.001	1
125	15	PHE	N	N	121.864	40.000	1	165	18	ASN	HD21	H	6.959	0.002	1
126	16	ILE	CA	C	59.328	0.021	1	166	18	ASN	HD22	H	8.122	0.001	1
127	16	ILE	CB	C	41.678	0.020	1	167	18	ASN	N	N	117.091	0.000	1
128	16	ILE	CD1	C	16.697	0.004	1	168	18	ASN	ND2	N	112.3	0.000	1
129	16	ILE	CG1	C	29.306	0.008	1	169	19	LEU	CA	C	53.747	0.016	1
130	16	ILE	CG2	C	19.619	0.007	1	170	19	LEU	CB	C	43.735	0.015	1
131	16	ILE	H H	H	8.3590	0.0011		171	19	LEU	CD1	C	25.624	40.022	21
132	16	ILE	HA	H	5.152	0.002	1	172	19	LEU	CD2	C	24.170	00.030	- 1
133	16	ILE	HB	H	1.222	0.005	1	173	19	LEU	CG	C	26.574	0.040	1
134	16	ILE	HD11	H	0.300	0.002	1	174	19	LEU	H	H	7.857	0.001	
135	16	ILE	HD12	H	0.300	0.002	1	175	19	LEU	HA	H	4.064	0.003	1
136	16	ILE	HD13	H	0.300	0.002	1	176	19	LEU	HB2	H	1.096	0.001	1
137	16	ILE	HG12	H	0.771	0.001	1	177	19	LEU	HB3	H	1.252	0.003	1
138	16	ILE	HG13	H	0.771	0.001	1	178	19	LEU	HD11	H	0.549	0.002	2
139	16	ILE	HG21	H	0.758	0.002	1	179	19	LEU	HD12	H	0.549	9.002	2
140	16	ILE	HG22	H	0.758	0.002	1	180	19	LEU	HD13	H	0.549	0.002	2
141	16	ILE	HG23	H	0.758	0.002	1	181	19	LEU	HD21	H	0.680	0.004	1
142	16	ILE	N N	N	123.095	0.000	1	182	19	LEU	HD22	H	0.680	0.004	4
143	17	LYS	CA	C	54.876	0.012	1	183	19	LEU	HD23	H	0.680	0.004	4
144	17	LYS	CB	C	36.521	0.015	1	184	19	LEU	HG	H	1.347	0.003	1
145	17	LYS	CD	C	29.630	0.021	1	185	19	LEU	N	N	115.878	80.000	1
146	17	LYS	CE	C	41.725	0.018	1	186	20	ASP	CA	C	54.879	0.014	1
147	17	LYS	CG	C	25.524	0.012	1	187	20	ASP	CB	C	43.679	0.010	1
148	17	LYS	H	H	9.179	0.002	1	188	20	ASP	H	H	8.6410	0.005	1
149	17	LYS	HA	H	4.922	0.002	1	189	20	ASP	HA	H	4.322	0.001	1
150	17	LYS	HB2	H	1.757	0.002	1	190	20	ASP	HB2	H	2.768	0.001	1
151	17	LYS	HB3	H	1.888	0.002	1	191	20	ASP	HB3	H	2.388	0.001	1
152	17	LYS	HD2	H	1.521	0.001	1	192	20	ASP	N	N	123.570	0.000	1

193	21	LYS	CA	C	59.167	70.020	1	233	24	ASP	CA	C	51.446	0.021	1
194	21	LYS	CB	C	32.144	0.015	1	234	24	ASP	CB	C	42.257	0.018	1
195	21	LYS	CD	C	29.281	10.019	1	235	24	ASP	H	H	7.613	0.001	
196	21	LYS	CE	C	42.248	0.018	1	236	24	ASP	HA	H	4.748	0.001	1
197	21	LYS	CG	C	24.634	40.000	1	237	24	ASP	HB2	H	2.705	0.002	1
198	21	LYS	H	H	8.665	0.003	1	238	24	ASP	HB3	H	3.144	0.005	1
199	21	LYS	HA	H	3.927	0.002	1	239	24	ASP	N	N	128.723	0.000	1
200	21	LYS	HB2	H	1.899	0.004	1	240	25	ASN	CA	C	57.079	0.008	
201	21	LYS	HB3	H	1.899	0.004	1	241	25	ASN	CB	C	37.788	0.013	3
202	21	LYS	HD2	H	1.680	0.004	1	242	25	ASN	H	H	8.288	0.002	1
203	21	LYS	HD3	H	1.680	0.004	1	243	25	ASN	HA	H	4.140	0.003	1
204	21	LYS	HE2	H	2.985	0.002	1	244	25	ASN	HB2	H	2.788	0.002	
205	21	LYS	HE3	H	2.985	0.002	1	245	25	ASN	HB3	H	2.788	0.002	
206	21	LYS	HG2	H	1.394	40.004	1	246	25	ASN	HD21	H	6.902	0.000	
207	21	LYS	HG3	H	1.394	0.004	1	247	25	ASN	HD22	H	7.473	0.002	
208	21	LYS	N	N	125.426	0.000	1	248	25	ASN	N	N	117.12	0.000	1
209	22	SER	CA	C	59.685	50.019	1	249	25	ASN	ND2	N	110.51	0.000	
210	22	SER	CB	C	63.710	0.040	1	250	26	LYS	CA	C	59.132	0.027	7
211	22	SER	H	H	8.445	0.000	1	251	26	LYS	CB	C	31.939	0.046	
212	22	SER	HA	H	4.243	0.002	1	252	26	LYS	CD	C	28.671	0.074	
213	22	SER	HB2	H	3.831	0.001	1	253	26	LYS	CE	C	42.263	0.000	1
214	22	SER	HB3	H	3.898	0.005	1	254	26	LYS	CG	C	24.769	0.017	7
215	22	SER	N	N	113.823	30.000	1	255	26	LYS	H	H	7.724	0.004	1
216	23	ILE	CA	C	61.672	0.004	1	256	26	LYS	HA	H	4.017	0.002	1
217	23	ILE	CB	C	35.821	0.005	1	257	26	LYS	HB2	H	1.814	0.004	4
218	23	ILE	CD1	C	11.802	0.005	1	258	26	LYS	HB3	H	1.899	0.004	4
219	23	ILE	CG1	C	27.604	0.054	1	259	26	LYS	HD2	H	1.587	0.007	7
220	23	ILE	CG2	C	17.217	70.006	1	260	26	LYS	HD3	H	1.587	0.007	7
221	23	ILE	H	H	7.4600	0.0011		261	26	LYS	HE2	H	2.993	0.007	7
222	23	ILE	HA	H	3.784	0.001	1	262	26	LYS	HE3	H	2.993	0.007	7
223	23	ILE	HB	H	2.033	0.001	1	263	26	LYS	HG2	H	1.400	0.005	
224	23	ILE	HD11	H	0.707	0.004	1	264	26	LYS	HG3	H	1.400	0.005	5
225	23	ILE	HD12	H	0.707	0.004	1	265	26	LYS	N	N	120.252	0.000	1
226	23	ILE	HD13	H	0.707	0.004	1	266	27	ALA	CA	C	54.903	0.008	
227	23	ILE	HG12	H	1.246	0.003	1	267	27	ALA	CB	C	18.902	0.006	6
228	23	ILE	HG13	H	1.429	0.004	1	268	27	ALA	H	H	8.086	0.000	1
229	23	ILE	HG21	H	0.836	0.004	1	269	27	ALA	HA	H	4.297	0.001	
230	23	ILE	HG22	H	0.836	0.004	1	270	27	ALA	HB1	H	1.599	0.001	
231	23	ILE	HG23	H	0.836	0.004	1	271	27	ALA	HB2	H	1.599	0.001	
232	23	ILE	N	N	123.919	0.000	1	272	27	ALA	HB3	H	1.599	0.001	

273	27	ALA	N	N	121.7510 .000	1	313	31	THR	CG2	C	21.3030 .008	
274	28	LEU	CA	C	58.4760 .046	1	314	31	THR	H	H	7.9070 .001	
275	28	LEU	CB	C	42.0880 .010	1	315	31	THR	HA	H	3.8430 .001	1
276	28	LEU	CD1	C	25.9460 .042	1	316	31	THR	HB	H	4.2390 .001	1
277	28	LEU	CD2	C	24.7190 .004	1	317	31	THR	HG21	H	0.7230 .001	1
278	28	LEU	H	H	$8.506 \quad 0.001 \quad 1$		318	31	THR	HG22	H	0.7230 .001	1
279	28	LEU	HA	H	3.9600 .003	1	319	31	THR	HG23	H	0.7230 .001	1
280	28	LEU	HB2	H	1.3320 .005	1	320	31	THR	N	N	115.6340 .000	1
281	28	LEU	HB3	H	1.7850 .002	1	321	32	PHE	CA	C	61.4530 .000	1
282	28	LEU	HD11	H	0.5740 .003	1	322	32	PHE	CB	C	39.6340 .008	1
283	28	LEU	HD12	H	0.5740 .003	1	323	32	PHE	CD1	C	132.1610 .000	3
284	28	LEU	HD13	H	0.5740 .003	1	324	32	PHE	CD2	C	132.1610 .000	3
285	28	LEU	HD21	H	0.7190 .005	1	325	32	PHE	CE1	C	131.0670 .000	3
286	28	LEU	HD22	H	0.7190 .005	1	326	32	PHE	CE2	C	131.0670 .000	3
287	28	LEU	HD23	H	0.7190 .005	1	327	32	PHE	CZ	C	128.5750 .000	1
288	28	LEU	N	N	121.0540 .000	1	328	32	PHE	H	H	$8.040 \quad 0.003$	1
289	29	TYR	CA	C	62.2130 .037	1	329	32	PHE	HA	H	$4.624 \quad 0.002$	1
290	29	TYR	CB	C	38.4670 .014	1	330	32	PHE	HB2	H	2.7810 .001	1
291	29	TYR	CD1	C	133.4060 .000	3	331	32	PHE	HB3	H	3.4410 .003	1
292	29	TYR	CD2	C	133.4060 .000	3	332	32	PHE	HD1	H	7.6330 .000	3
293	29	TYR	CE1	C	118.3300 .000	3	333	32	PHE	HD2	H	7.6330 .000	3
294	29	TYR	CE2	C	118.3300 .000	3	334	32	PHE	HE1	H	6.9720 .000	3
295	29	TYR	H	H	8.2860 .000		335	32	PHE	HE2	H	6.9720 .000	3
296	29	TYR	HA	H	3.8020 .001	1	336	32	PHE	HZ	H	$6.920 \quad 0.000$	1
297	29	TYR	HB2	H	3.0930 .004	1	337	32	PHE	N	N	116.2720 .000	1
298	29	TYR	HB3	H	3.2960 .002	1	338	33	SER	CA	C	61.2620 .003	1
299	29	TYR	HD1	H	7.0740 .000	3	339	33	SER	CB	C	62.3370 .016	1
300	29	TYR	HD2	H	7.0740 .000	3	340	33	SER	H	H	8.5110 .001	
301	29	TYR	HE1	H	6.7640 .000	3	341	33	SER	HA	H	4.1970 .001	1
302	29	TYR	HE2	H	6.7840 .001	3	342	33	SER	HB2	H	3.4630 .001	1
303	29	TYR	N	N	121.4240 .000	1	343	33	SER	HB3	H	3.8040 .001	1
304	30	ASP	CA	C	57.5600 .006	1	344	33	SER	N	N	117.9680 .000	1
305	30	ASP	CB	C	40.1250 .015	1	345	34	ALA	CA	C	53.5810 .012	1
306	30	ASP	H	H	8.9790 .0001		346	34	ALA	CB	C	18.4110 .012	1
307	30	ASP	HA	H	4.2960 .001	1	347	34	ALA	H	H	7.0610 .000	1
308	30	ASP	HB2	H	2.6750 .001	1	348	34	ALA	HA	H	3.8840 .002	1
309	30	ASP	HB3	H	2.7850 .001	1	349	34	ALA	HB1	H	0.7010 .002	1
310	30	ASP	N	N	120.3250 .000	1	350	34	ALA	HB2	H	0.7010 .002	1
311	31	THR	CA	C	66.5110 .005	1	351	34	ALA	HB3	H	0.7010 .002	1
312	31	THR	CB	C	69.0270 .014	1	352	34	ALA	N	N	121.4340 .000	1

353	35	PHE	CA	C	59.153	0.003	1	393	38	ILE	HD11	H	0.241	0.002	1
354	35	PHE	CB	C	39.213	0.017	1	394	38	ILE	HD12	H	0.241	0.002	1
355	35	PHE	CD1	C	131.372	720.000	3	395	38	ILE	HD13	H	0.241	0.002	1
356	35	PHE	CD2	C	131.372	720.000	3	396	38	ILE	HG12	H	0.005	0.002	1
357	35	PHE	CE1	C	131.438	380.000	3	397	38	ILE	HG13	H	0.005	0.002	1
358	35	PHE	CE2	C	131.438	380.000	3	398	38	ILE	HG21	H	0.567	0.000	1
359	35	PHE	CZ	C	129.536	60.000	1	399	38	ILE	HG22	H	0.567	0.000	1
360	35	PHE	H	H	7.3940	0.001	1	400	38	ILE	HG23	H	0.567	0.000	1
361	35	PHE	HA	H	4.315	0.001	1	401	38	ILE	N	N	127.716	0.000	1
362	35	PHE	HB2	H	2.833	0.002	1	402	39	LEU	CA	C	56.215	0.011	1
363	35	PHE	HB3	H	3.171	0.002	1	403	39	LEU	CB	C	42.230	0.011	1
364	35	PHE	HD1	H	7.426	0.000	3	404	39	LEU	CD1	C	22.263	30.004	4
365	35	PHE	HD2	H	7.426	0.000	3	405	39	LEU	CD2	C	25.656	60.0	21
366	35	PHE	HE1	H	7.043	0.000	3	406	39	LEU	CG	C	27.170	0.029	1
367	35	PHE	HE2	H	7.043	0.000	3	407	39	LEU	H	H	9.148	001	1
368	35	PHE	HZ	H	7.097	0.000	1	408	39	LEU	HA	H	4.310	0.001	1
369	35	PHE	N	N	112.981	10.000	1	409	39	LEU	HB2	H	1.390	0.002	1
370	36	GLY	CA	C	44.690	00.026	1	410	39	LEU	HB3	H	1.390	0.002	1
371	36	GLY	H	H	7.283	0.001	1	411	39	LEU	HD11	H	0.746	0.003	3
372	36	GLY	HA2	H	3.871	0.001	1	412	39	LEU	HD12	H	0.746	0.003	3
373	36	GLY	HA3	H	4.164	0.003	1	413	39	LEU	HD13	H	0.746	0.003	3
374	36	GLY	N	N	104.274	40.000	1	414	39	LEU	HD21	H	0.618	0.006	6
375	37	ASN	CA	C	53.865	0.003	1	415	39	LEU	HD22	H	0.618	0.006	6
376	37	ASN	CB	C	38.591	0.005	1	416	39	LEU	HD23	H	0.618	0.006	
377	37	ASN	H	H	8.362	0.000	1	417	39	LEU	HG	H	1.333	0.005	1
378	37	ASN	HA	H	4.720	0.003	1	418	39	LEU	N	N	128.188	0.000	1
379	37	ASN	HB2	H	2.795	0.001	1	419	40	SER	CA	C	57.828	0.006	1
380	37	ASN	HB3	H	2.795	0.001	1	420	40	SER	CB	C	64.662	0.010	1
381	37	ASN	HD21	H	6.858	0.000	1	421	40	SER	H	H	7.430	0.001	1
382	37	ASN	HD22	H	7.846	0.000	1	422	40	SER	HA	H	4.555	0.001	1
383	37	ASN	N	N	115.916	60.000	1	423	40	SER	HB2	H	3.748	0.000	1
384	37	ASN	ND2	N	113.289	0.000	1	424	40	SER	HB3	H	3.802	0.001	1
385	38	ILE	CA	C	62.206	0.003	1	425	40	SER	N	N	110.477	0.000	1
386	38	ILE	CB	C	39.614	0.006	1	426	41	CYS	CA	C	57.102	0.005	1
387	38	ILE	CD1	C	14.086	0.006	1	427	41	CYS	CB	C	30.177	0.020	1
388	38	ILE	CG1	C	28.842	0.009	1	428	41	CYS	H	H	8.414	0.000	1
389	38	ILE	CG2	C	17.878	0.004	1	429	41	CYS	HA	H	4.975	0.002	1
390	38	ILE	$\mathrm{H} \quad \mathrm{H}$	H	8.7280	0.0011		430	41	CYS	HB2	H	2.910	0.004	1
391	38	ILE	HA	H	3.875	0.002	1	431	41	CYS	HB3	H	2.910	0.004	1
392	38	ILE	HB	H	1.622	0.001	1	432	41	CYS	N	N	119.322	0.000	1

433	42	LYS	CA	C	55.924	0.010	1	473	44	VAL	HG21	H	0.874	0.00
434	42	LYS	CB	C	36.416	0.018	1	474	44	VAL	HG22	H	0.874	0.001
435	42	LYS	CD	C	29.229	0.008	1	475	44	VAL	HG23	H	0.874	0.001
436	42	LYS	CE	C	42.196	0.031	1	476	44	VAL	N	N	129.460	0.000
437	42	LYS	CG	C	24.379	0.033	1	477	45	CYS	CA	C	57.231	0.011
438	42	LYS	H	H	8.511	0.001		478	45	CYS	CB	C	31.632	0.008
439	42	LYS	HA	H	4.520	0.002	1	479	45	CYS	H	H	8.3100	0.000
440	42	LYS	HB2	H	1.717	0.004	1	480	45	CYS	HA	H	5.061	0.002
441	42	LYS	HB3	H	1.643	0.002	1	481	45	CYS	HB2	H	2.768	0.003
442	42	LYS	HD2	H	1.562	0.002	1	482	45	CYS	HB3	H	2.768	0.003
443	42	LYS	HD3	H	1.562	0.002	1	483	45	CYS	N	N	123.824	0.000
444	42	LYS	HE2	H	2.895	0.008	1	484	46	ASP	CA	C	52.871	0.008
445	42	LYS	HE3	H	2.895	0.008	1	485	46	ASP	CB	C	41.959	0.016
446	42	LYS	HG2	H	1.256	0.001	1	486	46	ASP	H	H	8.686	001
447	42	LYS	HG3	H	1.256	0.001	1	487	46	ASP	HA	H	4.758	0.001
448	42	LYS	N	N	121.482	0.000	1	488	46	ASP	HB2	H	2.609	0.003
449	43	VAL	CA	C	62.465	0.004	1	489	46	ASP	HB3	H	3.177	0.005
450	43	VAL	CB	C	33.262	0.009	1	490	46	ASP	N	N	123.320	0.000
451	43	VAL	CG1	C	21.222	20.010	1	491	47	GLU	CA	C	59.063	0.012
452	43	VAL	CG2	C	22.503	30.012	1	492	47	GLU	CB	C	28.729	0.051
453	43	VAL	H	H	8.406	0.001	1	493	47	GLU	CG	C	35.789	0.043
454	43	VAL	HA	H	4.014	0.002	1	494	47	GLU	H	H	9.334	0.003
455	43	VAL	HB	H	1.787	0.001	1	495	47	GLU	HA	H	4.107	0.001
456	43	VAL	HG11	H	0.781	0.008	1	496	47	GLU	HB2	H	1.986	0.001
457	43	VAL	HG12	H	0.781	0.008	1	497	47	GLU	HB3	H	2.035	0.009
458	43	VAL	HG13	H	0.781	0.008	1	498	47	GLU	HG2	H	2.226	0.003
459	43	VAL	HG21	H	0.689	0.006	1	499	47	GLU	HG3	H	2.269	0.003
460	43	VAL	HG22	H	0.689	0.006	1	500	47	GLU	N	N	119.827	70.000
461	43	VAL	HG23	H	0.689	0.006	1	501	48	ASN	CA	C	53.328	0.012
462	43	VAL	N	N	123.936	60.000	1	502	48	ASN	CB	C	39.479	0.016
463	44	VAL	CA	C	63.984	0.011	1	503	48	ASN	H	H	8.5590	0.001
464	44	VAL	CB	C	31.123	0.017	1	504	48	ASN	HA	H	4.851	0.002
465	44	VAL	CG1	C	21.150	00.006	1	505	48	ASN	HB2	H	2.722	0.002
466	44	VAL	CG2	C	22.295	50.032	1	506	48	ASN	HB3	H	2.892	0.002
467	44	VAL	H	H	8.590	0.0011	1	507	48	ASN	HD21	H	6.912	0.001
468	44	VAL	HA	H	3.810	0.002	1	508	48	ASN	HD22	H	7.794	0.001
469	44	VAL	HB	H	1.194	0.003	1	509	48	ASN	N	N	117.034	0.000
470	44	VAL	HG11	H	0.828	0.004	1	510	48	ASN	ND2	N	115.164	40.000
471	44	VAL	HG12	H	0.828	0.004	1	511	49	GLY	CA	C	44.208	0.041
472	44	VAL	HG13	H	0.828	0.004	1	512	49	GLY	H	H	7.9590	0.004

513	49	GLY	HA2	H	3.790	0.002	1	553	53	TYR	HD2	H	6.780	0.000	103
514	49	GLY	HA3	H	4.389	0.002	1	554	53	TYR	N	N	114.269	0.000	
515	49	GLY	N	N	108.726	60.000	1	555	54	GLY	CA	C	45.419	0.018	8
516	50	SER	CA	C	58.542	0.025	1	556	54	GLY	H	H	8.924	0.001	1
517	50	SER	CB	C	63.832	0.022	1	557	54	GLY	HA2	H	4.386	0.007	
518	50	SER	H	H	8.5970	$0.012 \quad 1$		558	54	GLY	HA3	H	3.745	0.000	
519	50	SER	HA	H	4.582	0.001	1	559	54	GLY	N	N	105.750	0.000	1
520	50	SER	HB2	H	3.699	0.001	1	560	55	PHE	CA	C	56.130	0.006	
521	50	SER	HB3	H	4.003	0.001	1	561	55	PHE	CB	C	43.717	0.048	1
522	50	SER	N	N	115.102	0.000	1	562	55	PHE	CD1	C	131.585	0.000	0
523	51	LYS	CA	C	56.098	0.016	1	563	55	PHE	CD2	C	131.585	0.000	
524	51	LYS	CB	C	32.529	0.023	1	564	55	PHE	CE1	C	131.565	0.000	
525	51	LYS	CD	C	28.846	0.014	1	565	55	PHE	CE2	C	131.565	50.000	
526	51	LYS	CE	C	41.700	0.023	1	566	55	PHE	H	H	8.681	001	1
527	51	LYS	CG	C	25.146	0.027	1	567	55	PHE	HA	H	5.498	0.001	1
528	51	LYS	H	H	9.2250	0.0031	1	568	55	PHE	HB2	H	3.071	0.002	2
529	51	LYS	HA	H	4.442	0.002	1	569	55	PHE	HB3	H	2.676	0.002	2
530	51	LYS	HB2	H	1.242	0.004	1	570	55	PHE	HD1	H	6.974	0.000	0
531	51	LYS	HB3	H	2.021	0.002	1	571	55	PHE	HD2	H	6.974	0.000	0
532	51	LYS	HD2	H	1.613	0.005	1	572	55	PHE	HE1	H	7.132	0.000	
533	51	LYS	HD3	H	1.613	0.005	1	573	55	PHE	HE2	H	7.132	0.000	3
534	51	LYS	HE2	H	3.012	0.002	1	574	55	PHE	N	N	115.890	0.000	1
535	51	LYS	HE3	H	3.012	0.002	1	575	56	VAL	CA	C	61.691	0.018	8
536	51	LYS	HG2	H	1.350	0.004	1	576	56	VAL	CB	C	34.582	0.012	
537	51	LYS	HG3	H	1.350	0.004	1	577	56	VAL	CG1	C	21.256	0.010	
538	51	LYS	N	N	124.811	10.000	1	578	56	VAL	CG2	C	21.809	0.008	
539	52	GLY	CA	C	45.727	70.064	1	579	56	VAL	H	H	8.064	0.003	1
540	52	GLY	H	H	9.211	0.000	1	580	56	VAL	HA	H	3.989	0.002	2
541	52	GLY	HA2	H	3.800	0.003	1	581	56	VAL	HB	H	1.212	0.001	1
542	52	GLY	HA3	H	4.145	0.003	1	582	56	VAL	HG11	H	-0.136	0.002	
543	52	GLY	N	N	107.804	40.000	1	583	56	VAL	HG12	H	-0.136	0.002	
544	53	TYR	CA	C	55.030	0.064	1	584	56	VAL	HG13	H	-0.136	0.002	
545	53	TYR	CB	C	40.889	0.026	1	585	56	VAL	HG21	H	0.207	0.003	
546	53	TYR	CD1	C	133.69	030.000	3	586	56	VAL	HG22	H	0.207	0.003	
547	53	TYR	CD2	C	133.69	030.000	3	587	56	VAL	HG23	H	0.207	0.003	
548	53	TYR	H	H	7.294	0.0011		588	56	VAL	N	N	119.873	0.000	1
549	53	TYR	HA	H	5.307	0.002	1	589	57	HIS	CA	C	53.102	0.018	1
550	53	TYR	HB2	H	3.057	0.002	1	590	57	HIS	CB	C	31.344	0.020	1
551	53	TYR	HB3	H	3.153	0.001	1	591	57	HIS	CD2	C	137.752	0.000	
552	53	TYR	HD1	H	6.806	0.000	3	592	57	HIS	CE1	C	120.032	0.000	

593	57	HIS	H	H	8.6390 .00	
594	57	HIS	HA	H	5.1660 .002	1
5	57	HIS	HB2	H	2.9180 .002	1
596	57	HIS	HB3	H	3.1110 .00	1
597	57	HIS	H	H	7.6590 .000	1
8	57	H	HE1	H	6.8030 .000	1
599	57	HIS	N	N	126.4790 .000	1
0	58	PH	CA	C	58.6280 .015	1
601	58	PH	CB	C	41.5910 .020	1
2	58	PHE	CD1	C	132.1110 .000	3
603	58	PHE	CD2	C	132	3
	58	PH	E1	C	131.4270 .000	3
605	58	PH	CE2	C	131.4270 .000	3
	58	PH	CZ	C	129.4220 .000	1
607	58	PH	H	H	9.1390 .003	1
	58	PH	HA	H	5.0050 .002	1
609	58	PH	HB2	H	3.2480 .001	1
610	58	PH	HB	H	3.4020 .002	1
611	58	PH	HD	H	7.0430 .001	3
612	58	PH	HD	H	7.0430 .00	3
613	58	PH	HE	H	7.1950 .000	3
614	58	PH	HE2	H	7.1950 .000	3
615	58	PH	HZ	H	7.5310 .003	1
616	58	PH	N	N	124.6880 .000	1
61	59	GL	CA	C	58.8220 .000	1
61	59	GL	CB	C	31.1850 .020	1
619	59	GL	CG	C	36.6470 .050	1
620	59	GL	H	H	8.4430 .001	1
621	59	GL	HA	H	3.9480 .003	1
622	59	GLU	HB2	H	1.9850 .004	1
623	59	GLU	HB3	H	2.3630 .008	1
624	59	GLU	HG2	H	2.3220 .011	1
625	59	GLU	HG3	H	2.3220 .011	1
626	59	GLU	N	N	118.7260 .000	1
627	60	THR	CA	C	58.4950 .010	1
628	60	THR	CB	C	72.1320 .000	1
629	60	THR	CG2	C	21.8260 .013	1
630	60	THR	H	H	7.8590 .000	1
631	60	THR	HA	H	4.8300 .003	1

63	60	THR	HG21	H	1.262	0.00	
	60	TH	HG22	H	. 262	0.00	
635	60	TH	HG23	H	. 262	0.002	
636	60		N	N	103	0.000	1
7	61	GLN	CA	C	8.08	0.005	1
638	61	G	CB	C	28.5	0.0	1
639	61	GLN	CG	C	33.26	0.02	1
640	61	GLN	H	H	8.79	. 002	
641	61	GLN	HA	H	3.957	0.002	1
642	61	GLN	HB2	H	2.080	0.005	1
643	61	GLN	HB3	H	1.938	0.002	1
644	61	GLN	HE21	H	6.930	0.000	
645	61	GLN	HE22	H	7.874	0.000	
646	61	GLN	HG2	H	2.362	0.00	
647	61	GLN	HG3	H	2.362	0.00	
6	61	GLN	N	N	121.	8.000	1
9	61	GLN	NE2	N	2	0	
650	62	GL	CA	C	60.134	0.009	1
651	62	U	CB	C	28.84	0.034	1
652	62	G	CG	C	36.696	0.0	1
653	62	GLU	H	H	8.793	0.000	1
65	62	G	HA	H	3.891	0.001	1
655	62	GL	HB2	H	1.880	0.001	
65	62	G	HB3	H	2.047	0.007	
657	62	GL	HG2	H	2.255	0.005	
658	62	GLU	HG3	H	2.255	0.005	
9	62	GLU	N	N	118.	0.000	1
660	63	AL	CA	C	54.960	0.014	
661	63	ALA	CB	C	20.130	0.010	1
662	63	ALA	H	H	7.443	001	1
663	63	ALA	HA	H	3.700	0.002	1
66	63	AL	HB1	H	0.888	0.00	
665	63	ALA	HB2	H	0.888	0.001	
666	63	ALA	HB3	H	0.888	0.00	
667	63	ALA	N	N	121.8	0.000	1
668	64	ALA	CA	C	54.98	0.012	
669	64	ALA	CB	C	18.193	0.012	1
670	64	ALA	H	H	6.508	0.001	1
671	64	ALA	HA	H	3.572	0.001	1
	64	LA	1	H	. 429		

673	64	ALA	HB2	H	1.429	0.002	1	713	68	ILE	HA	H	3.142	0.003	1
674	64	ALA	HB3	H	1.429	0.002	1	714	68	ILE	HB	H	1.655	0.003	1
675	64	ALA	N	N	117.725	0.000	1	715	68	ILE	HD11	H	0.687	0.002	1
676	65	GLU	CA	C	59.132	0.019	1	716	68	ILE	HD12	H	0.687	0.002	1
677	65	GLU	CB	C	29.022	0.004	1	717	68	ILE	HD13	H	0.687	0.002	2
678	65	GLU	CG	C	36.529	0.008	1	718	68	ILE	HG12	H	0.461	0.002	2
679	65	GLU	H	H	8.139	0.000		719	68	ILE	HG13	H	0.461	0.002	1
680	65	GLU	HA	H	3.787	0.001	1	720	68	ILE	HG21	H	0.818	0.008	
681	65	GLU	HB2	H	1.990	0.004	1	721	68	ILE	HG22	H	0.818	0.008	1
682	65	GLU	HB3	H	1.990	0.004	1	722	68	ILE	HG23	H	0.818	0.008	1
683	65	GLU	HG2	H	2.392	0.002	1	723	68	ILE	N	N	117.448	0.000	1
684	65	GLU	HG3	H	2.392	0.002	1	724	69	GLU	CA	C	59.232	0.006	1
685	65	GLU	N	N	115.078	0.000	1	725	69	GLU	CB	C	29.871	0.034	4
686	66	ARG	CA	C	59.053	0.018	1	726	69	GLU	CG	C	36.115	0.098	8
687	66	ARG	CB	C	30.661	0.034	1	727	69	GLU	H	H	7.710	0.000	1
688	66	ARG	CD	C	43.740	0.011	1	728	69	GLU	HA	H	3.862	0.002	1
689	66	ARG	CG	C	28.015	0.020	1	729	69	GLU	HB2	H	2.006	0.012	
690	66	ARG	H	H	7.889	0.004	1	730	69	GLU	HB3	H	2.066	0.005	
691	66	ARG	HA	H	3.976	0.001	1	731	69	GLU	HG2	H	2.293	0.004	
692	66	ARG	HB2	H	1.831	0.004	1	732	69	GLU	HG3	H	2.293	0.004	
693	66	ARG	HB3	H	1.983	0.005	1	733	69	GLU	N	N	117.850	0.000	0
694	66	ARG	HD2	H	3.320	0.005	1	734	70	LYS	CA	C	56.555	0.081	1
695	66	ARG	HD3	H	3.320	0.005	1	735	70	LYS	CB	C	33.178	0.022	1
696	66	ARG	HG2	H	1.676	0.004	1	736	70	LYS	CD	C	28.919	0.000	1
697	66	ARG	HG3	H	1.676	0.004	1	737	70	LYS	CE	C	41.938	0.000	1
698	66	ARG	N	N	120.433	0.000	1	738	70	LYS	CG	C	24.676	0.000	1
699	67	ALA	CA	C	54.554	0.011	1	739	70	LYS	H	H	7.910	0.000	1
700	67	ALA	CB	C	19.337	0.008	1	740	70	LYS	HA	H	4.224	0.001	1
701	67	ALA	H	H	7.836	0.001		741	70	LYS	HB2	H	1.710	0.001	
702	67	ALA	HA	H	2.299	0.004	1	742	70	LYS	HB3	H	1.710	0.001	1
703	67	ALA	HB1	H	1.230	0.000	1	743	70	LYS	HD2	H	1.601	0.000	0
704	67	ALA	HB2	H	1.230	0.000	1	744	70	LYS	HD3	H	1.601	0.000	0
705	67	ALA	HB3	H	1.230	0.000	1	745	70	LYS	HE2	H	2.961	0.000	
706	67	ALA	N	N	121.564	0.000	1	746	70	LYS	HE3	H	2.975	0.007	1
707	68	ILE	CA	C	65.915	0.007	1	747	70	LYS	HG2	H	1.371	0.000	0
708	68	ILE	CB	C	38.873	0.013	1	748	70	LYS	HG3	H	1.371	0.000	0
709	68	ILE	CD1	C	14.511	0.008	1	749	70	LYS	N	N	114.338	0.000	1
710	68	ILE	CG1	C	29.961	0.009	1	750	71	MET	CA	C	53.784	0.021	
711	68	ILE	CG2	C	17.210	0.049	1	751	71	MET	CB	C	32.454	0.080	
712	68	ILE	H	H	7.8940.	. 0041		752	71	MET	CE	C	16.032	0.000	

753	71	MET	CG	C	32.892	20.029	1	793	75	LEU	HB2	H	1.618	0.002	1
754	71	MET	H	H	7.926	0.003	1	794	75	LEU	HB3	H	1.253	0.002	1
755	71	MET	HA	H	4.792	0.002	1	795	75	LEU	HD11	H	0.789	0.003	3
756	71	MET	HB2	H	2.121	0.000	1	796	75	LEU	HD12	H	0.789	0.003	
757	71	MET	HB3	H	2.121	0.000	1	797	75	LEU	HD13	H	0.789	0.003	
758	71	MET	HG2	H	2.219	0.004	1	798	75	LEU	HD21	H	0.661	0.004	
759	71	MET	HG3	H	2.219	0.004	1	799	75	LEU	HD22	H	0.661	0.004	
760	71	MET	N	N	112.284	40.000	1	800	75	LEU	HD23	H	0.661	0.004	1
761	72	ASN	CA	C	56.748	0.023	1	801	75	LEU	HG	H	1.494	0.002	1
762	72	ASN	CB	C	38.410	0.011	1	802	75	LEU	N	N	120.585	0.000	1
763	72	ASN	H	H	7.953	0.001	1	803	76	LEU	CA	C	54.558	0.000	1
764	72	ASN	HA	H	4.325	0.002	1	804	76	LEU	CB	C	43.850	0.015	1
765	72	ASN	HB2	H	2.926	0.002	1	805	76	LEU	CD1	C	24.601	0.000	1
766	72	ASN	HB3	H	3.075	0.002	1	806	76	LEU	CD2	C	24.162	0.007	1
767	72	ASN	HD21	H	6.780	0.000	1	807	76	LEU	CG	C	27.361	0.024	1
768	72	ASN	HD22	H	7.646	0.000	1	808	76	LEU	H	H	8.713	001	1
769	72	ASN	N	N	116.361	10.000	1	809	76	LEU	HA	H	4.537	0.002	1
770	72	ASN	ND2	N	113.456	60.000	1	810	76	LEU	HB2	H	1.287	0.002	1
771	73	GLY	CA	C	45.922	0.021	1	811	76	LEU	HB3	H	1.692	0.002	1
772	73	GLY	H	H	8.891	0.000	1	812	76	LEU	HD11	H	0.799	0.008	
773	73	GLY	HA2	H	3.533	0.003	1	813	76	LEU	HD12	H	0.799	0.008	8
774	73	GLY	HA3	H	4.152	0.005	1	814	76	LEU	HD13	H	0.799	0.008	8
775	73	GLY	N	N	117.240	00.000	1	815	76	LEU	HD2 1	H	0.832	0.001	
776	74	MET	CA	C	54.169	0.030	1	816	76	LEU	HD22	H	0.832	0.001	1
777	74	MET	CB	C	33.029	0.023	1	817	76	LEU	HD23	H	0.832	0.001	1
778	74	MET	CG	C	33.015	5.068	1	818	76	LEU	HG	H	1.439	0.002	1
779	74	MET	H	H	7.778	0.004	1	819	76	LEU	N	N	126.468	0.000	1
780	74	MET	HA	H	4.490	0.000	1	820	77	ASN	CA	C	54.987	0.014	1
781	74	MET	HB2	H	1.951	0.003	1	821	77	ASN	CB	C	36.330	0.021	1
782	74	MET	HB3	H	2.128	0.003	1	822	77	ASN	H	H	9.378	0.003	1
783	74	MET	HG2	H	2.346	0.002	1	823	77	ASN	HA	H	4.124	0.001	1
784	74	MET	HG3	H	2.819	0.001	1	824	77	ASN	HB2	H	2.645	0.001	1
785	74	MET	N	N	120.003	30.000	1	825	77	ASN	HB3	H	2.949	0.004	1
786	75	LEU	CA	C	54.639	0.031	1	826	77	ASN	HD21	H	6.644	0.000	1
787	75	LEU	CB	C	42.724	0.015	1	827	77	ASN	HD22	H	7.557	0.000	1
788	75	LEU	CD1	C	23.952	20.032	1	828	77	ASN	N	N	126.839	0.000	1
789	75	LEU	CD2	C	24.886	60.050	1	829	77	ASN	ND2	N	110.740	00.000	1
790	75	LEU	CG	C	27.231	0.053	1	830	78	ASP	CA	C	56.174	0.005	1
791	75	LEU	H	H	8.0110	0.003	1	831	78	ASP	CB	C	40.308	0.030	1
792	75	LEU	HA	H	4.507	0.006	1	832	78	ASP	H	H	8.4970	0.000	1

833	78	ASP	HA	H	4.191	0.002	1
834	78	ASP	HB2	H	2.757	0.002	1
835	78	ASP	HB3	H	2.867	0.002	1
836	78	ASP	N	N	110.440	0.000	1
837	79	ARG	CA	C	54.775	0.016	1
838	79	ARG	CB	C	33.111	0.034	1
839	79	ARG	CD	C	43.386	0.029	1
840	79	ARG	CG	C	27.228	0.014	1
841	79	ARG	H	H	7.545	0.003	1
842	79	ARG	HA	H	4.563	0.001	1
843	79	ARG	HB2	H	1.758	0.003	1
844	79	ARG	HB3	H	1.867	0.002	1
845	79	ARG	HD2	H	3.066	0.006	1
846	79	ARG	HD3	H	3.066	0.006	1
847	79	ARG	HG2	H	1.620	0.002	1
848	79	ARG	HG3	H	1.620	0.002	1
849	79	ARG	N	N	119.023	0.000	1
850	80	LYS	CA	C	56.511	0.008	1
851	80	LYS	CB	C	32.636	0.010	1
870	81	VAL	H	H	8.606	0.002	1
871	81	VAL	HA	H	4.685	0.004	1
872	81	VAL	HB	H	2.117	0.002	1
852	80	LYS	CD	C	29.581	0.051	1
865	81	81	VAL	CB	C	33.714	0.003

873	81	VAL	HG11	H	0.943	0.004	1
874	81	VAL	HG12	H	0.943	0.004	1
875	81	VAL	HG13	H	0.943	0.004	1
876	81	VAL	HG21	H	0.965	0.001	1
877	81	VAL	HG22	H	0.965	0.001	1
878	81	VAL	HG23	H	0.965	0.001	1
879	81	VAL	N	N	123.334	0.000	1
880	82	PHE	CA	C	55.746	0.017	1
881	82	PHE	CB	C	41.183	0.018	1
882	82	PHE	CD1	C	132.089	0.000	3
883	82	PHE	CD2	C	132.089	0.000	3
884	82	PHE	CE1	C	131.327	0.000	3
885	82	PHE	CE2	C	131.327	0.000	3
886	82	PHE	H	H	8.005	0.001	1
887	82	PHE	HA	H	5.194	0.003	1
888	82	PHE	HB2	H	2.986	0.006	1
889	82	PHE	HB3	H	2.888	0.002	1
990	82	PHE	HD1	H	7.196	0.000	3
909	84	GLY	CA	C	44.884	0.043	1
904	84	GLY	H	H	7.954	0.001	1
905	83	83	GLY	HA2	H	3.550	0.005

913	84	GLY	N	N	111.2290 .000	1	953	87	LYS	HD2	H	1.248	0.003	1
914	85	ARG	CA	C	55.8000 .015	1	954	87	LYS	HD3	H	1.248	0.003	3
915	85	ARG	CB	C	31.4260 .029	1	955	87	LYS	HE2	H	2.889	0.006	1
916	85	ARG	CD	C	43.2870 .025	1	956	87	LYS	HE3	H	2.889	0.006	1
917	85	ARG	CG	C	27.8020 .039	1	957	87	LYS	HG2	H	1.246	0.005	
918	85	ARG	H	H	$8.520 \quad 0.003$	1	958	87	LYS	HG3	H	1.246	0.005	5
919	85	ARG	HA	H	$4.577 \quad 0.002$	1	959	87	LYS	N	N	125.164	0.000	1
920	85	ARG	HB2	H	1.7410 .002	1	960	88	SER	CA	C	58.093	0.018	1
921	85	ARG	HB3	H	1.8680 .005	1	961	88	SER	CB	C	64.124	0.019	1
922	85	ARG	HD2	H	3.1710 .007	1	962	88	SER	H	H	8.134	0.000	1
923	85	ARG	HD3	H	3.1710 .007	1	963	88	SER	HA	H	4.254	0.001	1
924	85	ARG	HG2	H	1.6110 .008	1	964	88	SER	HB2	H	3.750	0.002	1
925	85	ARG	HG3	H	1.6110 .008	1	965	88	SER	HB3	H	3.750	0.002	2
926	85	ARG	N	N	118.6350 .000	1	966	88	SER	N	N	117.424	0.000	1
927	86	PHE	CA	C	57.8550 .000	1	967	89	ARG	CA	C	56.683	0.039	
928	86	PHE	CB	C	40.3910 .011	1	968	89	ARG	CB	C	30.760	0.000	
929	86	PHE	CD1	C	132.1190 .000	3	969	89	ARG	CD	C	43.289	0.000	
930	86	PHE	CD2	C	132.1190 .000	3	970	89	ARG	CG	C	27.068	0.000	
931	86	PHE	CE1	C	130.5630 .000	3	971	89	ARG	H	H	8.395	0.000	1
932	86	PHE	CE2	C	130.5630 .000	3	972	89	ARG	HA	H	4.169	0.002	2
933	86	PHE	CZ	C	130.0620 .000	1	973	89	ARG	HB2	H	1.708	0.000	
934	86	PHE	H	H	$8.369 \quad 0.000 \quad 1$		974	89	ARG	HB3	H	1.781	0.000	
935	86	PHE	HA	H	4.6020 .000	1	975	89	ARG	HD2	H	3.112	0.000	
936	86	PHE	HB2	H	2.9280 .003	1	976	89	ARG	HD3	H	3.112	0.000	
937	86	PHE	HB3	H	2.9280 .003	1	977	89	ARG	HG2	H	1.544	0.000	
938	86	PHE	HD1	H	7.0160 .000	3	978	89	ARG	HG3	H	1.544	0.000	
939	86	PHE	HD2	H	7.0160 .000	3	979	89	ARG	N	N	122.999	0.000	0
940	86	PHE	HE1	H	7.1900 .000	3	980	90	LYS	CA	C	56.705	0.042	
941	86	PHE	HE2	H	7.1900 .000	3	981	90	LYS	CB	C	32.849	0.003	1
942	86	PHE	HZ	H	7.1040 .000	1	982	90	LYS	CD	C	28.867	0.000	1
943	86	PHE	N	N	122.1530 .000	1	983	90	LYS	CE	C	42.147	0.015	1
944	87	LYS	CA	C	56.0230 .046	1	984	90	LYS	CG	C	24.649	0.000	1
945	87	LYS	CB	C	33.5180 .014	1	985	90	LYS	H	H	8.252	0.004	1
946	87	LYS	CD	C	29.3360 .000	1	986	90	LYS	HA	H	4.171	0.003	1
947	87	LYS	CE	C	42.0580 .033	1	987	90	LYS	HB2	H	1.667	0.007	7
948	87	LYS	CG	C	24.6910 .054	1	988	90	LYS	HB3	H	1.775	0.000	
949	87	LYS	H	H	8.1570 .000		989	90	LYS	HD2	H	1.610	0.006	6
950	87	LYS	HA	H	4.1740 .006	1	990	90	LYS	HD3	H	1.610	0.006	6
951	87	LYS	HB2	H	$1.520 \quad 0.007$	1	991	90	LYS	HE2	H	2.914	0.004	1
952	87	LYS	HB3	H	1.6350 .004	1	992	90	LYS	HE3	H	2.914	0.004	

993	90	LYS	HG2	H	1.3420 .005	1	1033	95	GLU	CB	C	31.1760 .053	1
994	90	LYS	HG3	H	1.3420 .005	1	1034	95	GLU	CG	C	36.7800 .007	7
995	90	LYS	N	N	121.5640 .000	1	1035	95	GLU	H	H	7.8080 .030	1
996	91	GLU	CA	C	57.1030 .035	1	1036	95	GLU	HA	H	$4.021 \quad 0.007$	1
997	91	GLU	CB	C	30.1910 .023	1	1037	95	GLU	HB2	H	1.8320 .000	1
998	91	GLU	CG	C	36.4030 .020	1	1038	95	GLU	HB3	H	1.9780 .004	1
999	91	GLU	H	H	8.2400 .0111	1	1039	95	GLU	HG2	H	2.1510 .005	1
1000	91	GLU	HA	H	$4.142 \quad 0.007$	1	1040	95	GLU	HG3	H	2.1510 .005	1
1001	91	GLU	HB2	H	1.8840 .002	1	1041	95	GLU	N	N	125.1720 .000	1
1002	91	GLU	HB3	H	1.9840 .012	1							
1003	91	GLU	HG2	H	2.1910 .004	1							
1004	91	GLU	HG3	H	$2.191 \quad 0.004$	1							
1005	91	GLU	N	N	121.3570 .000	1							
1006	92	ARG	CA	C	56.4170 .025	1							
1007	92	ARG	CB	C	30.6380 .061	1							
1008	92	ARG	CG	C	43.2980 .000	1							
1009	92	ARG	H	H	$8.150 \quad 0.004$	1							
1010	92	ARG	HA	H	4.1900 .002	1							
1011	92	ARG	HB2	H	$1.700 \quad 0.000$	1							
1012	92	ARG	HB3	H	1.7870 .002	1							
1013	92	ARG	HG2	H	$3.114 \quad 0.000$	1							
1014	92	ARG	N	N	120.0470 .000	1							
1015	93	GLU	CA	C	56.6380 .068	1							
1016	93	GLU	CB	C	30.1440 .044	1							
1017	93	GLU	CG	C	36.4600 .000	1							
1018	93	GLU	H	H	$8.280 \quad 0.000 \quad 1$								
1019	93	GLU	HA	H	$4.175 \quad 0.003$	1							
1020	93	GLU	HB2	H	1.8850 .004	1							
1021	93	GLU	HB3	H	2.0090 .000	1							
1022	93	GLU	HG2	H	2.1960 .000	1							
1023	93	GLU	N	N	121.1950 .000	1							
1024	94	ALA	CA	C	52.3910 .020	1							
1025	94	ALA	CB	C	19.4740 .018	1							
1026	94	ALA	H	H	$8.0520 .001 \quad 1$								
1027	94	ALA	HA	H	$4.261 \quad 0.002$	1							
1028	94	ALA	HB1	H	1.3280 .007	1							
1029	94	ALA	HB2	H	$1.328 \quad 0.007$	1							
1030	94	ALA	HB3	H	1.3280 .007	1							
1031	94	ALA	N	N	124.2340 .000	1							
1032	95	GLU	CA	C	58.0850 .032	1							

Appendix III

A3.1 PABP-1 RRM 1 chromatogram

Figure A3.1 illustrates the chromatogram results of the forward and reverse sequencing of PABP-1 RRM 1.
5^{\prime}
ATGAACCCCAGTGCCCCCAGCTACCCAATGGCCTCGCTCTACGTGGGGGACCTCC ACCCCGACGTGACCGAGGCGATGCTCTACGAGAAGTTCAGCCCGGCCGGGCCCA TCCTCTCCATCCGGGTCTGCAGGGACATGATCACCCGCCGCTCCTTGGGCTACGC GTATGTGAACTTCCAGCAGCCGGCGGACGCGGAGCGTGCTTTGGACACCATGAAT TTTGATGTTATAAAGGGCAAGCCAGTACGCATCATGTGGTCTCAGCGT 3' 3'

ACGCTGAGACCACATGATGCGTACTGGCTTGCCCTTTATAACATCAAAATTCATG GTGTCCAAAGCACGCTCCGCGTCCGCCGGCTGCTGGAAGTTCACATACGCGTAGC CCAAGGAGCGGCGGGTGATCATGTCCCTGCAGACCCGGATGGAGAGGATGGGCC CGGCCGGGCTGAACTTCTCGTAGAGCATCGCCTCGGTCACGTCGGGGTGGAGGTC CCCCACGTAGAGCGAGGCCATTGGGTAGCTGGGGGCACTGGGGTTCAT 5'

Figure A3.1 illustrates the sequencing results for PABP-1 RRM 1. The above Figures show the forward and reverse sequencing results with 5^{\prime} and 3^{\prime} vector sequencing removed. The bottom two Figures illustrate the chromatograms of the sequencing results. These chromatograms show that there was no ambiguity in the sequencing results or single point polymorphisms.

NMR spectral data was collected from RRM 1 samples at a protein concentration of $\sim 1.0 \mathrm{mM}$ in a volume of $350 \mu \mathrm{l}$ with a $\mathrm{H}_{2} \mathrm{O} / \mathrm{D}_{2} \mathrm{O}$ concentration of $90 \% / 10 \%$ respectively. As mentioned above all spectra were collected at 298 K using an 800 MHz Bruker Avance spectrometer with cryo-platform for the NOESY experiments. All other experiments were performed on a 600 MHz Bruker Avance spectrometer or a 600 MHz Bruker Avance ultra shielded spectrometer with cryo-platform. Table A3.1 displays the datasets collected for the amino acid assignment of PABP-1 RRM 1 and includes acquisition times and mixing times.

Table A3.1 Table of experimental datasets used for PABP-1 RRM1.

Experiment Type	Acquisition Parameters (ms)			Comments
	F3	F2	F1	
Backbone assignments ${ }^{15} \mathrm{~N}$ resolved HSQC (aliphatic)	$1 / 1 / 1 / 1$			
HNCACB	$\begin{aligned} & { }^{\mathrm{T}} \mathrm{H}, \\ & \tau \mathrm{aq}=122.2 \end{aligned}$	$\begin{aligned} & { }^{15} \mathrm{~N}, \\ & \tau \mathrm{aq}=23.9 \end{aligned}$	$\begin{aligned} & { }^{{ }^{13}} \mathrm{C}, \\ & \tau \mathrm{aq}=8.9 \end{aligned}$	Field 600 MHz
CBCACONH	$\begin{aligned} & { }^{\mathrm{T}} \mathrm{H}, \\ & \tau \mathrm{aq}=122.2 \end{aligned}$	$\begin{aligned} & { }^{15} \mathrm{~N}, \\ & \tau \mathrm{aq}=23.9 \end{aligned}$	$\begin{aligned} & { }^{13} \mathrm{C}, \\ & \tau \mathrm{aq}=8.9 \end{aligned}$	Field 600 MHz
HNCO	$\begin{aligned} & { }^{\mathrm{T}} \mathrm{H}, \\ & \tau \mathrm{aq}=122.2 \end{aligned}$	$\begin{aligned} & { }^{15} \mathrm{~N}, \\ & \tau \mathrm{aq}=26.5 \end{aligned}$	$\begin{aligned} & { }^{23} \mathrm{C}, \\ & \tau \mathrm{aq}=15.1 \end{aligned}$	Field 600 MHz
HBHACONH	$\begin{aligned} & { }^{\mathrm{T}} \mathrm{H}, \\ & \tau \mathrm{aq}=122.2 \end{aligned}$	$\begin{aligned} & { }^{15} \mathrm{~N}, \\ & \tau \mathrm{aq}=24.3 \end{aligned}$	$\begin{aligned} & { }^{1} \mathrm{H}, \\ & \tau \mathrm{aq}=23.8 \end{aligned}$	Field 600 MHz
Side-chain assignments				
$\begin{aligned} & { }^{13} \mathrm{C} \text { resolved HSQC (aliphatic) } \\ & { }^{13} \mathrm{C} \text { resolved HSQC (aromatic) } \end{aligned}$		$\begin{aligned} & { }^{1} \mathrm{H}, \\ & \tau \mathrm{aq}=111.5 \end{aligned}$	$\begin{aligned} & { }^{3} \mathrm{C}, \\ & \tau \mathrm{aq}=5.7 \end{aligned}$	Field 600 MHz
[H]CCH TOCSY	$\begin{aligned} & { }^{\mathrm{T}} \mathrm{H}, \\ & \tau \mathrm{aq}=97.6 \end{aligned}$	$\begin{aligned} & { }^{13} \mathrm{C}, \\ & \tau \mathrm{aq}=8.3 \end{aligned}$	$\begin{aligned} & { }^{13} \mathrm{C}, \\ & \tau \mathrm{aq}=10.1 \end{aligned}$	Field 600 MHz cryo TOCSY mix time $=38 \mathrm{~ms}$
H[C]CH TOCSY	$\begin{aligned} & { }^{\mathrm{T}} \mathrm{H}, \\ & \tau \mathrm{aq}=97.6 \end{aligned}$	$\begin{aligned} & { }^{13} \mathrm{C}, \\ & \tau \mathrm{aq}=8.3 \end{aligned}$	$\begin{aligned} & { }^{1} \mathrm{H}, \\ & \tau \mathrm{aq}=30.5 \end{aligned}$	Field 600MHz cryo TOCSY mix time $=38 \mathrm{~ms}$
NOE assignments				
${ }^{13} \mathrm{C}$ resolved NOESY	$\begin{aligned} & { }^{1} \mathrm{H}, \\ & \tau \mathrm{aq}=76.2 \end{aligned}$	$\begin{aligned} & { }^{13} \mathrm{C}, \\ & \tau \mathrm{aq}=5.6 \end{aligned}$	$\begin{aligned} & { }^{\mathrm{T}} \mathrm{H}, \\ & \tau \mathrm{aq}=14.3 \end{aligned}$	Field 800 MHz
${ }^{13} \mathrm{C}$ resolved NOESY aromatics	${ }^{1} \mathrm{H}$, $\tau \mathrm{aq}=$	$\begin{aligned} & { }^{13} \mathrm{C}, \\ & \tau \mathrm{aq}= \end{aligned}$	$\begin{aligned} & { }^{1} \mathrm{H}, \\ & \tau \mathrm{aq}= \end{aligned}$	Field 800 MHz NOESY mix time $=120 \mathrm{~ms}$
${ }^{15} \mathrm{~N}$ resolved NOESY	${ }^{1} \mathrm{H}$, $\tau \mathrm{aq}=$	$\begin{aligned} & { }^{15} \mathrm{~N}, \\ & \tau \mathrm{aq}= \end{aligned}$	$\begin{aligned} & { }^{1} \mathrm{H}, \\ & \tau \mathrm{aq}= \end{aligned}$	Field 800 MHz $\begin{array}{ll} \text { NOESY } & \text { mix } \\ \text { time }=120 \mathrm{~ms} & \end{array}$

$\boldsymbol{\tau} \mathbf{a q}=$ approximate acquisition time in ms for that particular dimension.

A3.2

Chemical Shift Ambiguity Code Definitions

Codes Definition

1 Unique
2 Ambiguity of geminal atoms or geminal methyl proton groups
3 Aromatic atoms on opposite sides of the ring (e.g. Tyr HE1 and HE2 protons)

4 Intraresidue ambiguities (e.g. Lys HG and HD protons)

5 Interresidue ambiguities (Lys 12 vs. Lys 27)
$9 \quad$ Ambiguous, specific ambiguity not defined

Atom Residue
shift Seq Residue Atom Atom Shift/ Error/ Ambiguity
assign code Label Name Type ppm ppm Code

27	14	LEU	CG	C	25.9160 .031	1	67	16	VAL	HG23	H	0.705	50.005	
28	14	LEU	H	H	9.0330 .005		68	16	VAL	N	N	128.323	30.000	1
29	14	LEU	HA	H	4.8360 .007	1	69	17	GLY	CA	C	43.359	0.035	1
30	14	LEU	HB2	H	1.0460 .006	1	70	17	GLY	H	H	9.130	0.004	1
31	14	LEU	HB3	H	1.4670 .008	1	71	17	GLY	HA2	H	4.614	0.293	1
32	14	LEU	HD11	H	-0.005 0.009	1	72	17	GLY	HA3	H	3.695	0.439	1
33	14	LEU	HD12	H	-0.005 0.009	1	73	17	GLY	N	N	112.413	30.000	1
34	14	LEU	HD13	H	-0.005 0.009	1	74	18	ASP	CA	C	55.241	0.053	1
35	14	LEU	HD21	H	$0.012 \quad 0.015$	1	75	18	ASP	CB	C	38.989	0.022	1
36	14	LEU	HD22	H	$0.012 \quad 0.015$	1	76	18	ASP	H	H	8.2030	0.007	1
37	14	LEU	HD23	H	$0.012 \quad 0.015$	1	77	18	ASP	HA	H	4.184	0.005	1
38	14	LEU	HG	H	0.6190 .007	1	78	18	ASP	HB2	H	2.961	0.008	1
39	14	LEU	N	N	125.1590 .000	1	79	18	ASP	HB3	H	3.133	0.010	1
40	15	TYR	CA	C	56.6940 .011	1	80	18	ASP	N	N	114.045	0.000	1
41	15	TYR	CB	C	39.8330 .000	1	81	19	LEU	CA	C	53.840	0.100	1
42	15	TYR	CD1	C	133.0650 .016	3	82	19	LEU	CB	C	43.369	0.043	1
43	15	TYR	CD2	C	133.0650 .016	3	83	19	LEU	CD1	C	26.524	40.020	1
44	15	TYR	CE1	C	117.8040 .074	3	84	19	LEU	CD2	C	23.929	0.037	1
45	15	TYR	CE2	C	117.8040 .074	3	85	19	LEU	CG	C	26.507	0.059	1
46	15	TYR	H	H	9.0270 .003		86	19	LEU	H	H	8.012	0.002	1
47	15	TYR	HA	H	4.5670 .008	1	87	19	LEU	HA	H	4.074	0.010	1
48	15	TYR	HB2	H	2.6450 .009	1	88	19	LEU	HB2	H	1.002	0.006	1
49	15	TYR	HB3	H	2.6450 .009	1	89	19	LEU	HB3	H	1.072	0.012	1
50	15	TYR	HD1	H	6.7020 .002	3	90	19	LEU	HD11	H	0.456	60.005	5
51	15	TYR	HD2	H	6.7040 .004	3	91	19	LEU	HD12	H	0.456	0.005	5
52	15	TYR	HE1	H	6.1530 .004	3	92	19	LEU	HD13	H	0.456	60.005	5
53	15	TYR	HE2	H	6.1540 .002	3	93	19	LEU	HD21	H	0.630	0.007	7
54	15	TYR	N	N	124.6760 .000	1	94	19	LEU	HD22	H	0.630	0.007	
55	16	VAL	CA	C	60.8190 .024	1	95	19	LEU	HD23	H	0.630	0.007	7
56	16	VAL	CB	C	32.7460 .041	1	96	19	LEU	HG	H	1.307	0.006	1
57	16	VAL	CG1	C	21.1010 .049	1	97	19	LEU	N	N	114.660	0.000	1
58	16	VAL	CG2	C	22.1480 .036	1	98	20	HIS	CA	C	56.424	0.038	1
59	16	VAL	H	H	8.4870 .006		99	20	HIS	CB	C	32.125	0.023	1
60	16	VAL	HA	H	$4.359 \quad 0.007$	1	100	20	HIS	CE1	C	118.154	540.007	1
61	16	VAL	HB	H	1.5510 .006	1	101	20	HIS	H	H	9.2150	0.004	1
62	16	VAL	HG11	H	$0.440 \quad 0.007$	1	102	20	HIS	HA	H	4.238	0.009	1
63	16	VAL	HG12	H	0.4400 .007	1	103	20	HIS	HB2	H	2.809	0.013	1
64	16	VAL	HG13	H	$0.440 \quad 0.007$	1	104	20	HIS	HB3	H	3.008	0.009	1
65	16	VAL	HG21	H	0.7050 .005	1	105	20	HIS	HE1	H	7.135	0.002	1
66	16	VAL	HG22	H	0.7050 .005	1	106	20	HIS	N	N	125.922	0.000	1

107	21	PRO	CA	C	65.150	0.044	1	146	24	THR	HG2		H	840.	. 007
108	21	PRO	CB	C	32.096	0.032	1	1							
109	21	PRO	CD	C	50.745	0.038	1	147	24	THR	HG2	23	H 1.2	2840.	0.007
110	21	PRO	CG	C	27.419	0.026	1	1							
111	21	PRO	HA	H	4.120	0.009	1	148	24	THR	N	N	118.320	0.000	1
112	21	PRO	HB2	H	2.199	0.013	1	149	25	GLU	CA	C	62.228	0.039	9
113	21	PRO	HB3	H	1.822	0.011	1	150	25	GLU	CB	C	28.382	0.033	31
114	21	PRO	HD2	H	2.056	0.006	1	151	25	GLU	CG	C	38.950	0.025	51
115	21	PRO	HD3	H	3.331	0.005	1	152	25	GLU	H	H	9.906	0.003	1
116	21	PRO	HG2	H	1.721	0.006	1	153	25	GLU	HA	H	3.548	0.007	1
117	21	PRO	HG3	H	1.721	0.006	1	154	25	GLU	HB2	H	2.165	0.006	6
118	22	ASP	CA	C	54.572	0.084	1	155	25	GLU	HB3	H	1.772	0.009	9
119	22	ASP	CB	C	40.333	0.051	1	156	25	GLU	HG2	H	2.747	0.007	7
120	22	ASP	H H	H	11.007	0.003	1	157	25	GLU	HG3	H	2.079	0.007	7
121	22	ASP	HA	H	4.723	0.012	1	158	25	GLU	N	N	121.137	0.000	1
122	22	ASP	HB2	H	2.637	0.014	1	159	26	ALA	CA	C	55.292	0.083	31
123	22	ASP	HB3	H	2.819	0.009	1	160	26	ALA	CB	C	18.388	0.058	81
124	22	ASP	N N	N	120.694	0.000	1	161	26	ALA	HA	H	4.128	0.008	1
125	23	VAL	CA	C	64.601	10.058	1	162	26	ALA	HB1	H	1.359	0.008	81
126	23	VAL	CB	C	30.844	0.058	1	163	26	ALA	HB2	H	1.359	0.008	8
127	23	VAL	CG1	C	22.19	10.072	1	164	26	ALA	HB3	H	1.359	0.008	81
128	23	VAL	CG2	C	24.14	490.039	1	165	27	MET	CA	C	58.963	0.027	71
129	23	VAL	H H	H	7.794	0.002	1	166	27	MET	CB	C	33.658	0.123	31
130	23	VAL	HA	H	4.139	0.005	1	167	27	MET	CG	C	32.511	0.121	11
131	23	VAL	HB	H	2.063	0.009	1	168	27	MET	H	H	7.471	0.006	
132	23	VAL	HG11	H	0.824	40.009	1	169	27	MET	HA	H	4.083	0.009	1
133	23	VAL	HG12	H	0.824	0.009	1	170	27	MET	HB2	H	2.176	0.006	6
134	23	VAL	HG13	H	0.824	40.009	1	171	27	MET	HB3	H	2.033	0.012	2
135	23	VAL	HG21	H	1.049	0.005	1	172	27	MET	HG2	H	2.630	0.008	8
136	23	VAL	HG22	H	1.049	0.005	1	173	27	MET	HG3	H	2.630	0.008	8
137	23	VAL	HG23	H	1.049	0.005	1	174	27	MET	N	N	117.950	0.000	1
138	23	VAL	N N	N	119.82	40.000	1	175	28	LEU	CA	C	57.670	0.022	1
139	24	THR	CA	C	59.616	60.022	1	176	28	LEU	CB	C	42.071	0.035	1
140	24	THR	CB	C	72.652	0.000	1	177	28	LEU	CD1	C	26.531	0.030	0
141	24	THR	CG2	C	22.122	20.046	1	178	28	LEU	CD2	C	22.768	0.013	3
142	24	THR	H H	H	7.450	0.011	1	179	28	LEU	CG	C	26.446	0.101	1
143	24	THR	HA	H	4.383	0.006	1	180	28	LEU	H	H	7.7990	0.005	1
144	24	THR	HB	H	4.711	0.006	1	181	28	LEU	HA	H	4.036	0.006	1
145	24	THR	HG21	1	H 1.2	$284 \quad 0.0$	007	182	28	LEU	HB2	H	1.101	0.009	1
1								183	28	LEU	HB3	H	2.048	0.012	

184	28	LEU	HD11	H	0.354	40.006	1	224	31	LYS	HB2	H	1.597	0.011	1
185	28	LEU	HD12	H	0.354	40.006	1	225	31	LYS	HB3	H	1.672	0.032	1
186	28	LEU	HD13	H	0.354	40.006	1	226	31	LYS	HD2	H	1.287	0.008	1
187	28	LEU	HD21	H	0.672	20.010	1	227	31	LYS	HD3	H	1.419	0.008	1
188	28	LEU	HD22	H	0.672	20.010	1	228	31	LYS	HE2	H	2.473	0.008	1
189	28	LEU	HD23	H	0.672	20.010	1	229	31	LYS	HE3	H	2.571	0.011	1
190	28	LEU	HG	H	1.562	0.011	1	230	31	LYS	HG2	H	0.533	0.015	1
191	28	LEU	N	N	119.585	50.000	1	231	31	LYS	HG3	H	0.533	0.015	1
192	29	TYR	CA	C	63.329	0.018	1	232	31	LYS	N	N	116.166	0.000	1
193	29	TYR	CB	C	38.282	0.041	1	233	32	PHE	CA	C	61.180	0.160	1
194	29	TYR	CD1	C	133.45	570.018	3	234	32	PHE	CB	C	40.190	0.037	1
195	29	TYR	CD2	C	133.448	480.000	3	235	32	PHE	CD1	C	131.772	0.030	3
196	29	TYR	CE1	C	118.311	10.007	3	236	32	PHE	CD2	C	131.772	0.030	3
197	29	TYR	CE2	C	118.311	10.007	3	237	32	PHE	CE1	C	133.03	0.039	9
198	29	TYR	H	H	8.972	0.017	1	238	32	PHE	CE2	C	133.03	0.039	3
199	29	TYR	HA	H	3.677	0.007	1	239	32	PHE	CZ	C	128.79	0.028	1
200	29	TYR	HB2	H	2.989	0.024	1	240	32	PHE	H	H	8.306	0.013	1
201	29	TYR	HB3	H	3.071	0.024	1	241	32	PHE	HA	H	4.341	0.010	1
202	29	TYR	HD1	H	6.919	0.009	3	242	32	PHE	HB2	H	2.596	0.008	1
203	29	TYR	HD2	H	6.924	0.003	3	243	32	PHE	HB3	H	3.055	0.008	1
204	29	TYR	HE1	H	6.703	0.003	3	244	32	PHE	HD1	H	7.392	0.007	3
205	29	TYR	HE2	H	6.703	0.003	3	245	32	PHE	HD2	H	7.392	0.007	3
206	29	TYR	N	N	122.761	0.000	1	246	32	PHE	HE1	H	6.933	0.008	3
207	30	GLU	CA	C	59.536	60.024	1	247	32	PHE	HE2	H	6.931	0.007	3
208	30	GLU	CB	C	29.653	0.026	1	248	32	PHE	HZ	H	7.023	0.008	1
209	30	GLU	CG	C	36.414	40.041	1	249	32	PHE	N	N	111.895	0.000	1
210	30	GLU	H	H	7.814	0.002	1	250	33	SER	CA	C	63.109	0.000	1
211	30	GLU	HA	H	3.867	0.005	1	251	33	SER	H	H	8.200	0.000	1
212	30	GLU	HB2	H	2.055	0.019	1	252	33	SER	HA	H	4.343	0.000	1
213	30	GLU	HB3	H	2.055	0.019	1	253	33	SER	HB2	H	3.703	0.000	1
214	30	GLU	HG2	H	2.169	0.006	1	254	33	SER	HB3	H	3.703	0.000	1
215	30	GLU	HG3	H	2.342	0.005	1	255	33	SER	N	N	117.105	0.000	1
216	30	GLU	N	N	119.624	40.000	1	256	34	PRO	CA	C	65.765	0.017	1
217	31	LYS	CA	C	57.626	0.024	1	257	34	PRO	CB	C	31.573	0.020	1
218	31	LYS	CB	C	32.168	0.061	1	258	34	PRO	CD	C	51.617	0.095	1
219	31	LYS	CD	C	28.222	0.076	1	259	34	PRO	HA	H	4.238	0.009	1
220	31	LYS	CE	C	41.573	0.095	1	260	34	PRO	HB2	H	1.447	0.008	1
221	31	LYS	CG	C	24.005	0.055	1	261	34	PRO	HB3	H	2.294	0.005	1
222	31	LYS	H	H	7.2870	0.005	1	262	34	PRO	HD2	H	3.693	0.007	1
223	31	LYS	HA	H	3.957	0.005	1	263	34	PRO	HD3	H	3.165	0.007	1

344	41	ILE	HG23	H	0.704	0.009	1	384	45	ARG	H	H	8.190	0.006	1
345	41	ILE	$\mathrm{N} \quad \mathrm{N}$	N	119.782	0.000	1	385	45	ARG	HA	H	4.804	0.007	1
346	42	ARG	CA	C	54.750	0.082	1	386	45	ARG	HB2	H	1.073	0.010	0
347	42	ARG	CB	C	33.936	0.077	1	387	45	ARG	HB3	H	1.273	0.011	1
348	42	ARG	CD	C	43.416	60.067	1	388	45	ARG	HD2	H	2.980	0.006	6
349	42	ARG	CG	C	27.169	0.042	1	389	45	ARG	HD3	H	3.060	0.014	4
350	42	ARG	H	H	8.588	0.009	1	390	45	ARG	HG2	H	1.472	20.011	1
351	42	ARG	HA	H	4.777	0.007	1	391	45	ARG	HG3	H	1.472	2.011	1
352	42	ARG	HB2	H	1.675	0.007	1	392	45	ARG	N	N	122.461	0.000	1
353	42	ARG	HB3	H	1.763	0.006	1	393	46	ASP	CA	C	54.612	0.005	1
354	42	ARG	HD2	H	3.105	0.015	1	394	46	ASP	CB	C	43.538	0.046	1
355	42	ARG	HD3	H	3.105	0.015	1	395	46	ASP	H	H	8.441	0.007	1
356	42	ARG	HG2	H	1.421	0.008	1	396	46	ASP	HA	H	4.391	0.006	1
357	42	ARG	HG3	H	1.540	0.011	1	397	46	ASP	HB2	H	2.491	0.011	1
358	42	ARG	N	N	125.620	00.000	1	398	46	ASP	HB3	H	2.823	0.009	1
359	43	VAL	CA	C	62.654	0.027	1	399	46	ASP	N	N	122.329	0.000	1
360	43	VAL	CB	C	32.114	0.024	1	400	47	MET	CA	C	57.774	40.043	1
361	43	VAL	CG1	C	22.160	00.018	1	401	47	MET	CB	C	32.209	0.081	1
362	43	VAL	CG2	C	20.367	70.078	1	402	47	MET	CG	C	32.271	10.042	1
363	43	VAL	H	H	8.784	0.002		403	47	MET	HA	H	4.103	0.007	1
364	43	VAL	HA	H	3.784	0.005	1	404	47	MET	HB2	H	2.052	2.007	1
365	43	VAL	HB	H	1.839	0.007	1	405	47	MET	HB3	H	2.629	0.006	1
366	43	VAL	HG11	H	0.564	0.008	1	406	47	MET	HG2	H	2.558	0.004	4
367	43	VAL	HG12	H	0.564	0.008	1	407	47	MET	HG3	H	2.558	0.004	1
368	43	VAL	HG13	H	0.564	0.008	1	408	48	ILE	CA	C	62.739	0.052	1
369	43	VAL	HG21	H	0.661	0.012	1	409	48	ILE	CB	C	37.604	0.123	1
370	43	VAL	HG22	H	0.661	0.012	1	410	48	ILE	CD1	C	11.505	0.032	1
371	43	VAL	HG23	H	0.661	0.012	1	411	48	ILE	CG1	C	27.838	0.025	1
372	43	VAL	N	N	126.946	60.000	1	412	48	ILE	CG2	C	17.213	0.083	1
373	44	CYS	CA	C	60.765	0.013	1	413	48	ILE	H	H	8.4530.	0.002	
374	44	CYS	CB	C	27.263	0.030	1	414	48	ILE	HA	H	4.011	0.007	1
375	44	CYS	H	H	8.3520	0.0021		415	48	ILE	HB	H	2.052	0.007	1
376	44	CYS	HA	H	4.139	0.007	1	416	48	ILE	HD11	H	0.767	0.003	1
377	44	CYS	HB2	H	1.666	0.007	1	417	48	ILE	HD12	H	0.767	0.003	1
378	44	CYS	HB3	H	2.431	0.006	1	418	48	ILE	HD13	H	0.767	0.003	1
379	44	CYS	N	N	128.839	0.000	1	419	48	ILE	HG12	H	1.197	0.005	1
380	45	ARG	CA	C	54.587	0.053	1	420	48	ILE	HG13	H	1.473	0.006	1
381	45	ARG	CB	C	34.103	0.054	1	421	48	ILE	HG21	H	0.805	0.004	1
382	45	ARG	CD	C	42.712	20.036	1	422	48	ILE	HG22	H	0.805	0.004	1
383	45	ARG	CG	C	28.436	0.058	1	423	48	ILE	HG23	H	0.805	0.004	1

42	48	ILE	N	N	0.000	
425	49	THR	CA	C	62.7120 .020	1
26	49	TH	CB	C	70.6970 .140	1
427	49	TH	CG2	C	21.3850 .0	1
428	49	TH	H	H	8.6550 .003	
429	49	THR	HA	H	4.1280 .008	1
430	49	TH	HB	H	4.2850 .008	1
431	49	THR	HG21	H	1.1710 .004	1
432	49	THR	HG22		1.1710 .004	1
433	49		HG23		1.1710 .004	1
434	49	THR	N	N	109.6380 .000	1
435	50	AR	CA	C	57.6350 .040	1
43	50	AR	CB	C	26.6310 .038	1
43	50	AR	C	C	42.6990 .045	1
438	50	AR	CG	C	27.1530 .030	1
43	50	AR	H	H	7.7900 .003	1
440	50	ARG	HA	H	3.9150 .009	1
441	50	AR	HB2	H	2.0160 .011	1
442	50	AR	HB3	H	2.1160 .005	1
4	50	AR	HD2	H	3.0870 .009	1
444	50	AR	HD3	H	3.0870 .009	
445	50	AR	HG2	H	1.5110 .006	1
446	50	AR	HG3	H	1.5110 .006	1
44	50	AR	N	N	113.5900 .000	1
448	51	AR	CA	C	56.0270 .065	1
449	51	AR	CB	C	31.0690 .065	1
450	51	AR	CD	C	43.3310 .057	1
45	51	AR	CG	C	26.5270 .058	1
452	51	ARG	H	H	7.6970 .005	1
453	51	ARG	HA	H	4.1140 .010	1
45	51	ARG	HB2	H	1.5600 .011	1
455	51	AR	HB3	H	1.6910 .007	1
456	51	ARG	HD2	H	2.8510 .006	
457	51	AR	HD3	H	3.0960 .015	
458	51	ARG	HG2	H	1.4380 .007	1
459	51	ARG	HG3	H	1.6630 .001	1
460	51	ARG	N	N	119.8790 .000	1
461	52	SER	CA	C	58.4210 .040	1
462	52	SER	CB	C	64.2900 .134	1
	52		HA	H	4.1420 .006	

464	52	SER	HB2	H	3.756	0.008	1
465	52	SER	HB3	H	3.907	0.005	1
466	53	LEU	CA	C	54.599	0.009	1
467	53	LEU	CB	C	42.131	0.011	1
468	53	LEU	CD1	C	25.872	0.016	1
469	53	LEU	CD2	C	22.195	0.123	1
470	53	LEU	CG	C	27.102	0.078	1
471	53	LEU	H	H	9.036	0.003	1
472	53	LEU	HA	H	4.288	0.005	1
473	53	LEU	HB2	H	0.989	0.010	1
474	53	LEU	HB3	H	1.606	0.008	1
475	53	LEU	HD11	H	0.700	0.011	1
476	53	LEU	HD12	H	0.700	0.011	1
477	53	LEU	HD13	H	0.700	0.011	1
478	53	LEU	HD21	H	0.812	0.005	1
479	53	LEU	HD22	H	0.812	0.005	1
480	53	LEU	HD23	H	0.812	0.005	1
481	53	LEU	HG	H	1.303	0.008	1
482	53	LEU	N	N	126.282	0.000	1
493	593	54	GLY	CA	C	45.679	0.079

504	56	ALA	CB	C	25.9150 .070	1	544	60	PHE	CB	C	40.1920 .031	1
505	56	ALA	H	H	8.6080 .008	1	545	60	PHE	CD1	C	131.4850 .000	3
506	56	ALA	HA	H	4.9600 .004	1	546	60	PHE	CD2	C	131.4850 .000	3
507	56	ALA	HB1	H	0.8240 .008	1	547	60	PHE	CE1	C	130.3650 .000	3
508	56	ALA	HB2	H	0.8240 .008	1	548	60	PHE	CE2	C	130.3650 .000	3
509	56	ALA	HB3	H	0.8240 .008	1	549	60	PHE	CZ	C	128.5880 .000	1
510	56	ALA	N	N	120.4160 .000	1	550	60	PHE	H	H	8.9620 .022	
511	57	TYR	CA	C	56.7420 .081	1	551	60	PHE	HA	H	4.4720 .007	1
512	57	TYR	CB	C	41.3240 .132	1	552	60	PHE	HB2	H	2.9640 .004	1
513	57	TYR	CE1	C	118.0570 .039	3	553	60	PHE	HB3	H	3.5640 .006	1
514	57	TYR	CE2	C	118.0570 .039	3	554	60	PHE	HD1	H	6.9420 .000	3
515	57	TYR	H	H	8.3450 .005		555	60	PHE	HD2	H	6.9420 .000	3
516	57	TYR	HA	H	5.4300 .009	1	556	60	PHE	HE1	H	6.9330 .000	3
517	57	TYR	HB2	H	2.4730 .006	1	557	60	PHE	HE2	H	6.9330 .000	3
518	57	TYR	HB3	H	$2.810 \quad 0.005$	1	558	60	PHE	HZ	H	6.8230 .000	1
519	57	TYR	HE1	H	6.9380 .002	3	559	60	PHE	N	N	124.5670 .000	1
520	57	TYR	HE2	H	6.9330 .005	3	560	61	GLN	CA	C	59.0010 .012	1
521	57	TYR	N	N	114.9800 .000	1	561	61	GLN	CB	C	29.7060 .037	1
522	58	VAL	CA	C	61.5520 .039	1	562	61	GLN	CG	C	34.1000 .127	1
523	58	VAL	CB	C	33.8080 .111	1	563	61	GLN	H	H	8.0080 .002	1
524	58	VAL	CG1	C	20.9560 .033	1	564	61	GLN	HA	H	$4.030 \quad 0.006$	1
525	58	VAL	CG2	C	20.2690 .021	1	565	61	GLN	HB2	H	2.2580 .005	1
526	58	VAL	H	H	8.9020 .005	1	566	61	GLN	HB3	H	1.8480 .007	1
527	58	VAL	HA	H	3.9630 .005	1	567	61	GLN	HG2	H	2.2340 .015	
528	58	VAL	HB	H	1.3730 .011	1	568	61	GLN	HG3	H	2.2340 .015	1
529	58	VAL	HG11	H	-0.013 0.007	1	569	61	GLN	N	N	118.4430 .000	1
530	58	VAL	HG12	H	-0.013 0.007	1	570	62	GLN	CA	C	51.6060 .000	1
531	58	VAL	HG13	H	-0.013 0.007	1	571	62	GLN	CB	C	29.4300 .000	1
532	58	VAL	HG21	H	$0.150 \quad 0.010$	1	572	62	GLN	H	H	9.6190 .000	1
533	58	VAL	HG22	H	$0.150 \quad 0.010$	1	573	62	GLN	N	N	116.0550 .000	1
534	58	VAL	HG23	H	$0.150 \quad 0.010$	1	574	63	PRO	CA	C	65.8510 .035	1
535	58	VAL	N	N	122.9420 .000	1	575	63	PRO	CB	C	32.2410 .089	1
536	59	ASN	CA	C	52.1580 .039	1	576	63	PRO	CD	C	51.4440 .040	1
537	59	ASN	CB	C	39.0360 .034	1	577	63	PRO	CG	C	27.6740 .123	1
538	59	ASN	H	H	8.6060 .003	1	578	63	PRO	HA	H	4.2250 .007	1
539	59	ASN	HA	H	5.3120 .005	1	579	63	PRO	HB2	H	1.9580 .009	1
540	59	ASN	HB2	H	$2.644 \quad 0.006$	1	580	63	PRO	HB3	H	2.3960 .008	1
541	59	ASN	HB3	H	2.8710 .012	1	581	63	PRO	HD2	H	3.8600 .007	1
542	59	ASN	N	N	125.2870 .000	1	582	63	PRO	HD3	H	3.9690 .009	1
543	60	PHE	CA	C	59.5570 .040	1	583	63	PRO	HG2	H	2.1420 .007	1

584	63	PRO	HG3	H	2.142	0.007	1
585	64	ALA	CA	C	54.972	0.140	1
586	64	ALA	CB	C	18.472	0.101	1
587	64	ALA	H	H	8.553	0.003	1
588	64	ALA	HA	H	4.116	0.010	1
589	64	ALA	HB1	H	1.336	0.016	1
590	64	ALA	HB2	H	1.336	0.016	1
591	64	ALA	HB3	H	1.336	0.016	1
592	64	ALA	N	N	117.023	0.000	1
593	65	ASP	CA	C	56.092	0.149	1
594	65	ASP	CB	C	39.659	0.025	1
595	65	ASP	H	H	7.074	0.006	1
596	65	ASP	HA	H	4.267	0.009	1
597	65	ASP	HB2	H	2.303	0.006	1
598	65	ASP	HB3	H	2.811	0.010	1
599	65	ASP	N	N	119.300	0.000	1
600	66	ALA	CA	C	54.553	0.029	1
618	68	ARG	CA	C	59.012	0.039	1
621	66	ALA	CB	C	18.367	0.045	1
623	68	68	ARG	CB	C	29.762	0.065

624	68	ARG	HB2	H	1.910	0.007	1
625	68	ARG	HB3	H	1.910	0.007	1
626	68	ARG	HD2	H	3.271	0.008	1
627	68	ARG	HD3	H	3.198	0.007	1
628	68	ARG	HG2	H	1.677	0.004	1
629	68	ARG	HG3	H	1.677	0.004	1
630	68	ARG	N	N	118.723	0.000	1
631	69	ALA	CA	C	55.785	0.053	1
632	69	ALA	CB	C	18.347	0.070	1
633	69	ALA	H	H	7.918	0.012	1
634	69	ALA	HA	H	3.759	0.004	1
635	69	ALA	HB1	H	1.289	0.008	1
636	69	ALA	HB2	H	1.289	0.008	1
637	69	ALA	HB3	H	1.289	0.008	1
638	69	ALA	N	N	124.351	0.000	1
639	70	LEU	CA	C	59.006	0.021	1
640	70	LEU	CB	C	41.693	0.075	1
641	70	LEU	CD1	C	24.637	0.025	1
662	71	ASP	N	N	115.416	0.000	1
653	72	70	LEU	CD2	C	25.358	0.038
659	1						
655	71	71	ASP	CA	C	63.244	0.085

664	72	THR	CB C	C	71.563	30.039		699	75	PHE	HB3	H	3.291	0.005	1
665	72	THR	CG2	C	21.54	440.019	1	700	75	PHE	HD1	H	7.092	0.003	3
666	72	THR	H H	H	7.838	0.004	1	701	75	PHE	HD2	H	7.092	0.003	3
667	72	THR	HA	H	4.442	0.005	1	702	75	PHE	HE1	H	7.095	0.000	3
668	72	THR	HB	H	4.158	0.005	1	703	75	PHE	HE2	H	7.095	0.000	3
669	72	THR	HG21	1	H 1.2	. $217 \quad 0.0$	008	704	75	PHE	N	N	118.892	20.000	1
1								705	76	ASP	CA	C	54.945	0.101	1
670	72	THR	HG22		H 1.2	1.2170 .0	. 008	706	76	ASP	CB	C	40.721	0.105	1
1								707	76	ASP	H	H	7.8750	0.005	1
671	72	THR	HG23		H 1.2	1.2170 .0	. 008	708	76	ASP	HA	H	4.452	0.006	1
1								709	76	ASP	HB2	H	2.288	0.009	1
672	72	THR	N N	N	106.071	10.000		710	76	ASP	HB3	H	2.627	0.006	1
673	73	MET	CA	C	55.779	90.020	1	711	76	ASP	N	N	120.882	0.000	1
674	73	MET	CB	C	33.327	70.038	1	712	77	VAL	CA	C	62.721	10.049	1
675	73	MET	CG	C	33.245	50.106	1	713	77	VAL	CB	C	32.195	50.050	1
676	73	MET	H H	H	8.139	0.002		714	77	VAL	CG1	C	21.506	60.020	0
677	73	MET	HA	H	4.579	0.005		715	77	VAL	CG2	C	21.515	50.031	1
678	73	MET	HB2	H	1.759	90.007	1	716	77	VAL	H	H	8.190	0.010	1
679	73	MET	HB3	H	1.759	90.007		717	77	VAL	HA	H	3.940	0.006	1
680	73	MET	HG2	H	2.503	30.005		718	77	VAL	HB	H	1.704	0.006	1
681	73	MET	HG3	H	2.503	30.005		719	77	VAL	HG11	H	0.598	0.007	71
682	73	MET	N N	N	119.179	790.000		720	77	VAL	HG12	H	0.598	0.007	7
683	74	ASN	CA	C	54.610	00.058		721	77	VAL	HG13	H	0.598	0.007	7
684	74	ASN	CB C	C	37.460	00.139		722	77	VAL	HG21	H	0.818	0.005	51
685	74	ASN	H H	H	7.084	0.003	1	723	77	VAL	HG22	H	0.818	0.005	51
686	74	ASN	HA	H	4.141	0.005		724	77	VAL	HG23	H	0.818	0.005	1
687	74	ASN	HB2	H	2.545	0.010	1	725	77	VAL	N	N	118.741	10.000	1
688	74	ASN	HB3	H	2.963	0.004		726	78	ILE	CA	C	61.394	0.100	1
689	74	ASN	N N	N	117.707	70.000	1	727	78	ILE	CB	C	40.000	0.123	1
690	75	PHE	CA C	C	59.553	30.024		728	78	ILE	CD1	C	13.633	0.041	1
691	75	PHE	CB C	C	36.512	2.021		729	78	ILE	CG1	C	26.489	0.041	1
692	75	PHE	CD1	C	131	1.5790 .0		730	78	ILE	CG2	C	17.726	0.049	1
3								731	78	ILE	H	H	8.1700.	0.0111	
693	75	PHE	CD2	C	131	1.5790 .0		732	78	ILE	HA	H	4.086	0.005	1
3								733	78	ILE	HB	H	1.684	0.009	1
694	75	PHE	CE1	C	132.41	110.000	3	734	78	ILE	HD11	H	0.588	0.011	1
695	75	PHE	CE2	C	132.41	110.000		735	78	ILE	HD12	H	0.588	0.011	1
696	75	PHE	H H		7.9750	0.005	1	736	78	ILE	HD13	H	0.588	0.011	1
697	75	PHE	HA H	H	4.533	0.003	1	737	78	ILE	HG12	H	0.758	0.015	1
698	75	PHE	HB2	H	3.291	0.005		738	78	ILE	HG13	H	1.445	0.009	1

$\left.\begin{array}{llllllllllllllllll}739 & 78 & \text { ILE } & \text { HG21 } & \text { H } & 0.719 & 0.008 & 1 & & 779 & 82 & \text { PRO } & \text { CB } & \text { C } & 32.089 & 0.085 & 1 \\ 740 & 78 & \text { ILE } & \text { HG22 } & \text { H } & 0.719 & 0.008 & 1 & & 780 & 82 & \text { PRO } & \text { CD } & \text { C } & 51.486 & 0.053 & 1 \\ 741 & 78 & \text { ILE } & \text { HG23 } & \text { H } & 0.719 & 0.008 & 1 & & 781 & 82 & \text { PRO } & \text { CG } & \text { C } & 27.729 & 0.061 & 1 \\ 742 & 78 & \text { ILE } & \text { N } & \text { N } & 126.183 & 0.000 & 1 & & 782 & 82 & \text { PRO } & \text { HA } & \text { H } & 4.459 & 0.007 & 1 \\ 743 & 79 & \text { LYS } & \text { CA } & \text { C } & 56.591 & 0.067 & 1 & 783 & 82 & \text { PRO } & \text { HB2 } & \text { H } & 1.775 & 0.009 & 1 \\ 744 & 79 & \text { LYS } & \text { CB } & \text { C } & 29.873 & 0.119 & 1 & 784 & 82 & \text { PRO } & \text { HB3 } & \text { H } & 2.249 & 0.010 & 1 \\ 745 & 79 & \text { LYS } & \text { CD } & \text { C } & 28.392 & 0.014 & 1 & 785 & 82 & \text { PRO } & \text { HD2 } & \text { H } & 3.715 & 0.023 & 1 \\ 746 & 79 & \text { LYS } & \text { CE } & \text { C } & 41.839 & 0.152 & 1 & 786 & 82 & \text { PRO } & \text { HD3 } & \text { H } & 3.838 & 0.009 & 1 \\ 747 & 79 & \text { LYS } & \text { CG } & \text { C } & 25.572 & 0.074 & 1 & 787 & 82 & \text { PRO } & \text { HG2 } & \text { H } & 2.138 & 0.007 & 1 \\ 748 & 79 & \text { LYS } & \text { HA } & \text { H } & 3.604 & 0.006 & 1 & 788 & 82 & \text { PRO } & \text { HG3 } & \text { H } & 2.138 & 0.007 & 1 \\ 749 & 79 & \text { LYS } & \text { HB2 } & \text { H } & 1.340 & 0.006 & 1 & 789 & 83 & \text { VAL } & \text { CA } & \text { C } & 60.784 & 0.032 & 1 \\ 750 & 79 & \text { LYS } & \text { HB3 } & \text { H } & 1.709 & 0.005 & 1 & 790 & 83 & \text { VAL } & \text { CB } & \text { C } & 33.111 & 0.113 & 1 \\ 751 & 79 & \text { LYS } & \text { HD2 } & \text { H } & 1.197 & 0.009 & 1 & 791 & 83 & \text { VAL } & \text { CG1 } & \text { C } & 22.106 & 0.032 & 1 \\ 752 & 79 & \text { LYS } & \text { HD3 } & \text { H } & 1.197 & 0.009 & 1 & 792 & 83 & \text { VAL } & \text { CG2 } & \text { C } & 20.590 & 0.000 & 1 \\ 753 & 79 & \text { LYS } & \text { HE2 } & \text { H } & 2.470 & 0.010 & 1 & 793 & 83 & \text { VAL } & \text { H } & \text { H } & 8.608 & 0.003 & 1\end{array}\right]$

819	85	ILE	CG1	C	28.108	0.162	1	859	88	SER	HB3	H	3.8300 .016
820	85	ILE	CG2	C	20.303	0.032	1	860	88	SER	N	N	116.5480 .000
821	85	ILE	H H	H	8.6270	0.0051							
822	85	ILE	HA	H	5.049	0.005	1						
823	85	ILE	HB	H	1.300	0.008	1						
824	85	ILE	HD11	H	0.684	0.006	1						
825	85	ILE	HD12	H	0.684	0.006	1						
826	85	ILE	HD13	H	0.684	0.006	1						
827	85	ILE	HG12	H	0.797	0.009	1						
828	85	ILE	HG13	H	0.797	0.009	1						
829	85	ILE	HG21	H	0.685	0.009	1						
830	85	ILE	HG22	H	0.685	0.009	1						
831	85	ILE	HG23	H	0.685	0.009							
832	85	ILE	$\mathrm{N} \quad \mathrm{N}$	N	125.072	0.000							
833	86	MET	CA	C	54.246	60.118	1						
834	86	MET	CB	C	37.184	40.020							
835	86	MET	H	H	9.130	0.004							
836	86	MET	HA	H	4.572	0.010							
837	86	MET	HB2	H	1.938	8 0.010							
838	86	MET	HB3	H	2.131	10.005							
839	86	MET	N	N	123.310	00.000	1						
840	87	TRP	CA	C	58.713	0.000	1						
841	87	TRP	CB	C	30.209	0.058	1						
842	87	TRP	CD1	C	127.52	10.000	1						
843	87	TRP	CE3	C	123.78	840.000	0						
844	87	TRP	CZ2	C	118.84	480.000							
845	87	TRP	CZ3	C	113.83	830.000	0						
846	87	TRP	H	H	8.480	0.000							
847	87	TRP	HA	H	4.724	0.009	1						
848	87	TRP	HB2	H	2.938	0.006	1						
849	87	TRP	HB3	H	3.329	0.001	1						
850	87	TRP	HD1	H	7.210	0.002							
851	87	TRP	HE3	H	6.985	0.000	1						
852	87	TRP	HZ2	H	7.121	0.008	1						
853	87	TRP	HZ3	H	7.222	0.004							
854	87	TRP	N	N	121.526	60.000	1						
855	88	SER	CA	C	58.904	0.120	1						
856	88	SER	CB	C	63.931	0.023							
857	88	SER	H	H	8.553	0.006							
858	88	SER	HA	H	4.425	0.007							

Reference:

1. Arnaout, M. A., Goodman, S.L., Xiong, J.P. (2007) Curr Opin Cell Biol 19, 495-507
2. Zamir, E., Geiger, B. (2001) J Cell Sci 114, 3577-3579
3. Larsen, M., Artym, V.V., Green, J.A., Yamada, K.M. (2006) Curr Opin Cell Biol 18, 463-471
4. Gingras, A. R., Ziegler, W.H., Bobkov, A.A., Gordon Joyce, M., Fasci, D., Rothemund, S., Ritter, A., Grossman, J., Patel, B., Bate, N., Goult, B.T., Emsley, J., Barsukov, I.L., Roberts, G.C.K., Liddington, R.C., Critchley, D.R. (2009) J Biol Chem 284(13), 8866-8876
5. Lietha, D., Cai, X., Ceccarelli, D.F.J., Li, Y., Schaller, M.D., Eck, M.J. (2007) Cell 129, 1177-1185
6. Deo, R. C., Bonanno, J. B., Sonenberg, N., and Burley, S. K. (1999) Cell 98(6), 835845
7. Woods, A. J., Roberts, M. S., Choudhary, J., Barry, S. T., Mazaki, Y., Sabe, H., Morley, S. J., Critchley, D. R., and Norman, J. C. (2002) J Biol Chem 277(8), 64286437
8. Langer, H. F., and Chavakis, T. (2009) J Cell Mol Med 13(7), 1211-1220
9. Croft, D. R., Olson, M.F. (2008) Cancer Cell 14, 349-351
10. Olson, M. F., Sahai, E. (2008) Clin Exp Metastasis
11. Wyckoff, J. B., Pinner, S.E., Gschmeissner, S., Condeelis, J.S., Sahai, E. (2006) Curr Opin Cell Biol 16, 1515-1523
12. Sanz-Moreno, V., Gadea, G., Ahn, J., Paterson, H., Marra, P., Pinner, S., Sahai, E., and Marshall, C. J. (2008) Cell 135(3), 510-523
13. Hynes, R. O. (1996) Dev Biol 180, 402-412
14. Oelz, D., Schmeiser, C., Small, J.V. (2008) cell Adh Migr. 2, 117-126
15. Le Clainche, C., and Carlier, M. F. (2008) Physiol Rev 88(2), 489-513
16. Broussard, J., Webb, D.J., Kaverina, I. (2008) Curr Opin Cell Biol 20, 85-90
17. Ezratty, E. J., Partridge, M.A., Gunderson, G.G. (2005) Nat Cell Biol 7, 581-590
18. Wittmann, T., Bokoch, G.M., Waterman-Storer, C.M. (2003) J Cell Biol 161, 845-851
19. Small, J. V., and Kaverina, I. (2003) Curr Opin Cell Biol 15(1), 40-47
20. Golubovskaya, V. M., Kweh, F.A., Cance, W.G. (2009) J Cell Mol Biol 24, 503-510
21. Huttenlocher, A. (2005) Nat Cell Biol 7(4), 336-337
22. Hynes, R. O. (2002) Cell 69, 11-25
23. Hanks, S. K., Ryzhova, L., Shin, N.Y., Brabek, J. (2003) Front Biosci 8, d982-d996
24. Berrier, A., Yamada, K.M. (2007) J Cell Physiol 213, 565-573
25. Zaidel-Bar, R., Itzkovitz, S., Maayan, A., Iyengar, R., Geiger, B. (2007) Nat Cell Biol 9, 858-867
26. Chan KT, C. C., Huttenlocher A. (2009) J Cell Biology 185, 357-370
27. Brunton, V. G., and Frame, M. C. (2008) Curr Opin Pharmacol 8(4), 427-432
28. Cox, B. D., Natarajan, M., Stettner, M.R., Gladson, C.L. (2006) J Cell Biochem 99, 36-52
29. Critchley, D. R. (2009) Annu Rev Biophys 38, 235-254
30. Ziegler, W. H., Liddington, R. C., and Critchley, D. R. (2006) Trends Cell Biol 16(9), 453-460
31. Humphries, J. D., Wang, P., Streuli, C., Geiger, B., Humphries, M.J., Ballestrem, C. (2007) J Cell Biol 179, 1043-1057
32. Bois, P. R. J., Borgon, R.A., Vonrhein, C., Izard, T. (2005) Mol Cell Biol 25, 61126122
33. Papagrigoriou, E., Gingras, A.R., Barsukov, I.L., Bate, N., Fillingham, I., Patel, B., Frank, R., Ziegler, W.H., Roberts, G.C.K., Critchley, D.R., Emsley, J. (2004) Embo J 23, 2942-2951
34. Turner, C. E. (2000) J Cell Sci 113 Pt 23, 4139-4140
35. Deakin, N. O., Turner, C.E. (2009) J Cell Sci 121, 2435-2444
36. Wang, X., Fukuda, K., Velyvis, A., Wu, C., Gronenburg, A., Qin, J. (2008) J Biol Chem 283, 21113-21119
37. Nikolopoulos, S. N., Turner, C.E. (2002) J Biol Chem 277, 1568-1575
38. Efimov, A., Schiefermeier, N., Grigoriev, I., Brown, M. C., Turner, C. E., Small, J. V., and and Kaverina, I. (2008) J Cell Sci 121, 196-204
39. Webb, D. J., Donais, K., Whitmore, L. A., Thomas, S. M., Turner, C. E., Parsons, J., and T. and Horwitz, A. F. (2004) Nat Cell Biol 6, 154-161
40. Ito, A., Kataoka, T. R., Watanabe, M., Nishiyama, K., Mazaki, Y., Sabe, H., Kitamura, and Y. and Nojima, H. (2000) Embo J 19, 562-571
41. Geiger, B. (2001) Nature Review 2, 793
42. Van Slambrouck S, J. A., Romero AE, Steelant WF. (2009) Int J Oncol. 34, 17171726
43. Retta, S. F., Cassara, G., Amato, M., Alessandro, R., Pellegrino, M., Degani, S., Leo, G., Silengo, L., Tarone, G. (2001) Mol Cell Biol 12, 3126-3138
44. Lee, J. O., Rieu, P., Arnaout, M. A., and Liddington, R. (1995) Cell 80(4), 631-638
45. Isaji, T., Sato, Y., Zhao, Y., Miyoshi, E., Wada, Y., Taniguchi, N., Gu, J. (2006) J Biol Chem 281, 33258-33267
46. Xiong, J. P., Stehle, T., Diefenbach, B., Zhang, R., Dunker, R., Scott, D.L., Joachimiak, A., Goodman, S.L., Arnaout, M.A. (2002) Science 296, 151-155
47. Zhu, J., Luo, B. H., Xiao, T., Zhang, C., Nishida, N., and Springer, T. A. (2008) Mol Cell 32(6), 849-861
48. Garcia-Alvarez, B., Pereda, J.M., Calderwood, D.A., Ulmer, T.S., Critchley, D., Campbell, I.D., Ginsberg, M.H., Liddington, R.C. (2003) Mol Cell Biol 11, 49-58
49. Anthis, N. J., Wegener, K. L., Ye, F., Kim, C., Goult, B. T., Lowe, E. D., Vakonakis, I., Bate, N., Critchley, D. R., Ginsberg, M. H., and Campbell, I. D. (2009) Embo J 28, 3623-3632
50. Yan, B., Calderwood, D.A., Yaspan, B., and Ginsberg, M.H. (2001) J Biol Chem 276, 28164-28170
51. Gingras, A. R., Ziegler, W. H., Frank, R., Barsukov, I. L., Roberts, G. C., Critchley, D. R., and Emsley, J. (2005) J Biol Chem 280(44), 37217-37224
52. Gingras, A. R., Bate, N., Goult, B.T., Hazelwood, L., Canestrelli, I., Grossmann, J.G., Liu, H., Putz, N.S., Roberts, G.C., Volkmann, N., Hanein, D., Barsukov, I.L., Critchley, D.R. (2008) Embo J 27, 458-469
53. Wegener, K. L., Partridge, A. W., Han, J., Pickford, A. R., Liddington, R. C., Ginsberg, M. H., and Campbell, I. D. (2007) Cell 128(1), 171-182
54. Rodius, S., Chaloin, O., Moes, M., Schaffner-Reckinger, E., Landrieu, I., Lippens, G., Lin, M., Zhang, J., Kieffer, N. (2008) J Biol Chem 283, 24212-24223
55. Fillingham, I., Gingras, A.R., Papagrigoriou, E., Patel, B., Emsley, J., Critchley, D.R., Roberts, G.C., Barsukov, I.L. (2005) Structure 13, 65-74
56. Gingras, A. R., Vogel, K.P., Steinhoff, H.J., Ziegler, W.H., Patel, B., Emsley, J., Critchley, D.R., Roberts, G.C., Barsukov, I.L. (2006) Biochemistry 45, 1805-1817
57. Izard, T., Evans, G., Borgon, R.A., Rush, C.L., Bricogne, G., Bois, P.R. (2004) Nature 427, 171-175
58. Bakolitsa, C., Cohen, D. M., Bankston, L. A., Bobkov, A. A., Cadwell, G. W., Jennings, L., Critchley, D. R., Craig, S. W., and Liddington, R. C. (2004) Nature 430(6999), 583-586
59. Goksoy, E., Ma, Y. Q., Wang, X., Kong, X., Perera, D., Plow, E. F., and Qin, J. (2008) Mol Cell 31(1), 124-133
60. Goult, B. T., Bate, N., Anthis, N. J., Wegener, K. L., Gingras, A. R., Patel, B., Barsukov, I. L., Campbell, I. D., Roberts, G. C., and Critchley, D. R. (2009) J Biol Chem 284(22), 15097-15106
61. del Rio, A., Perez-Jimenez, R., Liu, R., Roca-Cusachs, P., Fernandez, J.M., Sheetz, M.P. (2009) Science 323, 638-641
62. Sieg, D. J., Hauck, C.R., Ilic, D., Klingbeil, C.L., Schaefer, E., Damsky, C.H., Schlaepfer, D.D. (2000) Nat Cell Biol 2, 249-256
63. Ceccarelli, D. F., Song, H. K., Poy, F., Schaller, M. D., and Eck, M. J. (2006) J Biol Chem 281(1), 252-259
64. Nowakowski, J., Cronin, C.N., McRee, D.E., Knuth, M.W., Nelson, C.G., Pavletich, N.P., Rodgers, J., Sang, B.-C., Scheibe, D.N., Swanson, R.V., Thompson, D.A. (2002) Structure 10, 1659-1667
65. Calalb, M. B., Polte, T. R., and Hanks, S. K. (1995) Mol Cell Biol 15(2), 954-963
66. Schaller, M. D., Borgman, C.A., Cobb, B.S., Vines, R.R., Reynolds, A.B, Parsons, J.T. (1992) Proc Natl Acad Sci U S A 89, 5192-5196
67. Gao, G., Prutzman, K.C., King, M.L., Scheswohl, D.M., DeRose, E.F., London, R.E., Schaller, M.D., Campbell, S.L. (2004) J Biol Chem 279, 8441-9451
68. Serrels, B., Serrels, A., Brunton, V. G., Holt, M., McLean, G. W., Gray, C. H., Jones, G. E., and Frame, M. C. (2007) Nat Cell Biol 9(9), 1046-1056
69. Cooper, L. A., Shen, T.L., Guan, J.L. (2003) Mol Cell Biol 23, 8030-8041
70. Hoellerer, M. K., Noble, M. E., Labesse, G., Campbell, I. D., Werner, J. M., and Arold, S. T. (2003) Structure 11(10), 1207-1217
71. Bertulucci, C. M., Guibao, C.D., Zheng, J.J. (2007) J Biochemistry
72. Abbi, S., Ueda, H., Zheng, C., Cooper, L.A., Zhao, J., Christopher, R., Guan, J.L. (2002) Mol Cell Biol 13, 3178-3191
73. Nagoshi, Y., Yamamoto, G., Irie, T., and Tachikawa, T. (2006) Med Mol Morphol 39(3), 154-160
74. Glenney Jr, J. R., Zokas, L. (1989) J Cell Biol 108, 2401-2408
75. Mazaki, Y., Hashimoto, S., Sabe, H. (1997) J Biol Chem 272, 7437-7444
76. Critchley, D. R. (2000) Curr Opin Cell Biol 12(1), 133-139
77. Schaller, M. D., Parsons, J.T. (1995) Mol Cell Biol 15, 2635-2645
78. Deakin NO, B. M., Warwood S, Schoelermann J, Mostafavi-Pour Z, Knight D, Ballestrem C, Humphries MJ. (2009) J Cell Sci 122, 1654-1664
79. Goldfinger, L. E., Han, J., Kiosses, W.B., Howe, A.K., Ginsberg, M.H. (2003) J Cell Biol 162, 731-741
80. Nishiya, N., Kiosses, W. B., Han, J., and Ginsberg, M. H. (2005) Nat Cell Biol 7(4), 343-352
81. Brown, M. C., Perrotta, J.A., Turner, C.E. (1996) J Cell Biol 135, 1109-1123
82. Tong, X., Salgia, R., Li, J. L., Griffin, J. D., and Howley, P. M. (1997) J Biol Chem 272(52), 33373-33376
83. Tumbarello, D. A., Brown, M. C., and Turner, C. E. (2002) FEBS Lett 513(1), 114118
84. Brown, M. C., Turner, C.E. (2004) Physiol Rev 84, 1315-1339
85. Nikolopoulos, S. N., Turner, C.E. (2000) J Cell Biol 151, 1435-1448
86. Nikolopoulos, S. N., Turner, C.E. (2001) J Biol Chem 276, 23499-23505
87. Turner, C. E., Brown, M.C., Perrotta, J.A., Riedy, M.C., Nikolopoulos, S.N., McDoanld, A.R., Bagrodia, S., Thomas, S., Leventhal, P.S. (1999) J Cell Biol 145, 851-863
88. Hervy, M., Hoffman, L., Beckerle, M.C. (2006) Curr Opin Cell Biol 18, 524-532
89. Kadrmas, J. L., Beckerle, M.C. (2004) Nat Rev Mol Cell Biol 5, 920-931
90. Nix, D. A., Beckerle, M.C. (1997) J Cell Biol 138, 1139-1147
91. Fradelizi, J., Noireaux, V., Plastino, J., Menichi, B., Louvard, D., Sykes, C., Golsteyn, R.M., Friederich, E. (2001) Nat Cell Biol 3, 699-707
92. Sadler, I., Crawford, A.W., Michelsen, J.W., Beckerle, M.C. (1992) J Cell Biol 119, 1573-1587
93. Dawid, I. B., Breen, J.J., Toyama, R. (1998) Trends Genetics 14, 156-162
94. Perez-Alvarado, G. C., Miles, C., Michelsen, J.W., Louis, H.A., Winge, D.R., Beckerle, M.C., Summers, M.F. (1994) Nat Struct Biol 1, 388-398
95. Cote, J. F., Turner, C.E., Tremblay, M.L. (1999) J Biol Chem 274, 20550-20560
96. Jamieson, J. S., Tumbarello, D. A., Halle, M., Brown, M. C., Tremblay, M. L., and Turner, C. E. (2005) J Cell Sci 118(Pt 24), 5835-5847
97. Angers-Loustau, A. (1999) J Cell Biol 144, 1019-1031
98. Herreros, L., Rodriguez-Fernandez, J.L., Brown, M.C., Alonso-Lebrero, J.L., Cabanas, C., Sanchez-Madrid, F., Longo, N., Turner, C.E., Sanchez-Mateos, P. (2000) J Biol Chem 275, 26436-26440
99. Waterman-Storer, C. M., Worthylake, R.A., Liu, B.P., Burridge, K., Salmon, E.D. (1999) Nat Cell Biol 1, 45-50
100. Wood, C. K., Turner, C. E., Jackson, P., and Critchley, D. R. (1994) J Cell Sci 107 (Pt 2), 709-717
101. Tachibana, K., Sato, T., D'Avirro, N., and Morimoto, C. (1995) J Exp Med 182(4), 1089-1099
102. Scheswoh1, D. M., Harrell, J. R., Rajfur, Z., Gao, G., Campbell, S. L., Schaller, M. D. (2008) J Mol Signal 3, 1
103. Schaller, M. D. (2001) Oncogene 20, 6459-6472
104. Richardson, A., Parsons, T. (1996) Nature 380, 538-540
105. Panetti, T. S. (2002) Front Biosci 7, d143-150
106. Schneider IC, H. C., Waterman CM. (2009) J Mol Biol 20(13), 3155-3167
107. Zaidel-Bar, R., Milo, R., Kam, Z., Geiger, B. (2007) J Cell Sci 120, 137-148
108. Thomas, S. M., Soriano, P., Imamoto, A. (1995) Nature 376, 267-271
109. Yang, Q., Co, D., Sommercorn, J., Tonks, N.K. (1993) J Biol Chem 268, 6622-6628
110. Nishiya, N., Iwabuchi, Y., Shibanuma, M., Cote, J.F., Tremblay, M.L., Nose, K. (1999) J Biol Chem 274, 9847-9853
111. Bellis, S. L., Perrotta, J.A., Curtis, M.S., Turner, C.E. (1997) J Biol Chem 325, 375381
112. Ku, H., Meier, K.E. (2000) J Biol Chem 275, 11333-11340
113. Webb, D. J., Schroeder, M.J., Brame, C.J., Whitmore, L., Shabanowitz, J., Hunt, D.F., Horwitz, R.A. (2005) J Cell Sci 118, 4925-4929
114. Ishino, K., Kaneyama, J.R., Shibanuma, M., Nose, K. (2000) J Cell Biochem 76, 411419
115. Kim-Kaneyama, J. R., Suzuki, W., Ichikawa, K., Ohki, T., Kohno, Y., Sata, M., Nose, K., Shibanuma, M. (2005) J Cell Sci 118, 937-949
116. Wu, R. F., Xu, Y.C., Ma, Z., Nwariaku, F.E., Sarosi, G.A., Terada, L.S. (2005) J Cell Biol 171, 893-904
117. Lewis, J. M., Schwartz, M.A. (1998) J Biol Chem 273, 14225-14230
118. Kain, K. H., Gooch, S., Klemke, R.L. (2003) Oncogene 22, 6071-6080
119. Czaplinski, K., and Singer, R. H. (2006) Trends Biochem Sci 31(12), 687-693
120. Kislauskis, E. H., Zhu, X., and Singer, R. H. (1997) J Cell Biol 136(6), 1263-1270
121. de Hoog, C. L., Foster, L. J., and Mann, M. (2004) Cell 117(5), 649-662
122. Bullock, S. L. (2007) Semin Cell Biol 18, 194-201
123. Brownawell, A. M., Macara, I.G. (2002) J Cell Biol 156, 53-64
124. Monecke, T., Güttler, T., Neumann, P., Dickmanns, A., Görlich, D., Ficner, R. (2009) Science 324, 1087-1091
125. Gwizdek, C., Ossareh-Nazari, B., Brownawell, A.M., Evers, S., Macara, I.G., Dargemont, C. (2004) J Biochemistry 279, 884-891
126. Shiohamaa, A., Sasakia, T., Nodac, S., Minoshimaa, S., Shimizub, N. (2007) Exp Cell Res 313, 4196-4207
127. Woods, A. J., Kantidakis, T., Sabe, H., Critchley, D. R., and Norman, J. C. (2005) Mol Cell Biol 25(9), 3763-3773
128. Lewis, M. K., Burgess, R.R. (1982) The Enzymes 15, 109-153
129. Young, R. A. (1991) Annu Rev Biochem 60, 689-715
130. Sachs, A. B., Wahle, E. (1993) J Biol Chem 268, 22955-22958
131. Whale, E., Keller, W. (1993) Trends Biochem Sci 21, 247-250
132. Blobel, G. (1973) Proc Natl Acad Sci US A 70, 924-928
133. Baer, B. W., and Kornberg, R. D. (1980) Proc Natl Acad Sci US A 77(4), 1890-1892
134. Gallie, D. R. (1991) Genes Dev 5(11), 2108-2116
135. Marintchev, A., Wagner, G. (2004) Quarterly reviews of Biophysics 37, 197-284
136. Hershey, P. E., McWhirter, S.M., Gross, J.D., Wagner, G., Alber, T., Sachs, A.B. (2000) J Biol Chem 274, 21297-21304
137. Adam, S. A., Nakagawa, T., Swanson, M. S., Woodruff, T. K., and Dreyfuss, G. (1986) Mol Cell Biol 6(8), 2932-2943
138. Burd, C. G., Matunis, E. L., and Dreyfuss, G. (1991) Molecular Cell Biology 11, 3419-3424
139. Kuhn, U., and Pieler, T. (1996) J Mol Biol 256(1), 20-30
140. Kessler, S. H., and Sachs, A. B. (1998) Mol Cell Biol 18(1), 51-57
141. Oberstrass FC, A. S., Erat M, Hargous Y, Henning A, Wenter P, Reymond L, AmirAhmady B, Pitsch S, Black DL, Allain FH. (2005) Science 309, 2054-2057
142. Deo, R. C., Sonenberg, N., and Burley, S. K. (2001) Proc Natl Acad Sci U S A 98(8), 4414-4419
143. Mili S, M. K., Macara IG. (2008) Nature 453, 115-119
144. Amrani, N., Minet, M., Le Gouar, M., Lacroute, F., and Wyers, F. (1997) Mol Cell Biol 17(7), 3694-3701
145. Kozlov, G., Trempe, J. F., Khaleghpour, K., Kahvejian, A., Ekiel, I., and Gehring, K. (2001) Proc Natl Acad Sci U S A 98(8), 4409-4413
146. Bodenhausen, G., Ruben, D.J. (1980) Chem. Phys. Lett. 69, 185-189
147. Grzesiek, S., and Bax, A. (1993) J Biomol NMR 3(2), 185-204
148. Wittekind, M., Meuller, L. (1993) J Magn. Reson. 101, 201-205
149. Sklenar, V., Peterson, R. D., Rejante, M. R., and Feigon, J. (1993) J Biomol NMR 3(6), 721-727
150. Grzesiek, S., Bax, A. (1992) J Magn. Reson. 96, 432-440
151. Clubb, R. T., Thanabal, V., and Wagner, G. (1992) J Biomol NMR 2(2), 203-210
152. Vuister, G. W., and Bax, A. (1992) J Biomol NMR 2(4), 401-405
153. Braunschweiler, L., Ernst, R.R. (1983) J Magn. Reson. 53, 521-528
154. Bax, A., Clore, G.M., Gronenborn, A.M. (1990) J Magn. Reson. 88, 425-431
155. Zuiderweg, E. R. P., McIntosh, L.P., Dahlquist, F.W., Fesik, S.W. (1990) J Magn. Reson. 86, 210-216
156. Marion, D., Driscoll, P.C., Kay, L.E., Windfield, P.T., Bax, A., Gronenborn, A.M. (1989) J Biol Chem 28, 6150-6156
157. Marion, D., Kay, L.E., Sparks, S.W., Torchia, D.A., Bax, A. (1989) J Am Chem Soc 111, 1515-1517
158. Piotto, M., Saudek, V., Skelenar, V. (1992) J.Biomol. NMR 2, 661-665
159. Vranken, W. F., Boucher, W., Stevens, T.J., Fogh, R.H., Pajon, A., Llinas, M., Ulrich, E.L., Markley, J.L., Ionides, J., Laue, E.D. (2005) Proteins 59, 687-696
160. Wuthrich, K. (1986) NMR for proteins and nucleic acids: Polypeptide secondary structures in proteins by NMR. In: Wuthrich, K. (ed). John Wiley and Sons Inc., New York
161. Wishart, D. S., Bigam, C.G., Holm, A., Hodges, R.S., Sykes, B.D. (1994) J.Biomol. NMR 5, 67-81
162. Guntert, P., Mumenthaler, C., Wuthrich, K. (1997) J Mol Biol 273, 283-298
163. Laskowski, R. (1996) PROCHECK-NMR. In., 3.5.4 Ed.
164. Koradi, R., Billeter, M., Withrich, K. (1996) J Mol Graph. 14, 51-55
165. Johansson, C., Finger, L. D., Trantirek, L., Mueller, T. D., Kim, S., Laird-Offringa, I. A., and Feigon, J. (2004) J Mol Biol 337(4), 799-816
166. Wang, X., and Tanaka Hall, T. M. (2001) Nat Struct Biol 8(2), 141-145
167. Avis, J. M., Allain, F. H., Howe, P. W., Varani, G., Nagai, K., and Neuhaus, D. (1996) J Mol Biol 257(2), 398-411
168. Urbaniak, M. D., Muskett, F.W., Finucane, M.D., Caddick, S., Woolfson, D.N. (2002) Biochemistry 41, 11731-11739
169. Zwahlen, C., Legault, P., Vincent, S., Greenblatt, J., Konrat, R., Kay, L.E. (1997) J Am Chem Soc 119, 6711-6721
170. Dominguez, C., Boelens, R., and Bonvin, A. M. (2003) J Am Chem Soc 125(7), 17311737
171. Leung, S. W., Apponi, L.H., Cornejo, O.E., Kitchen, C.M., Valentini, S.R., Pavlath, G.K., Dunham, C.M., Corbett, A.H. (2009) Gene 439, 71-78
172. Loughlin, F. E., Mansfield, R.E., Vaz, P.M., McGrath, A.P., Setiyaputra, S., Gamsjaeger, R., Chen, E.S., Morris, B.J., Guss, J.M., Mackay, J.P. (2009) Proc Natl Acad Sci U S A 14, 5581-5586

[^0]: ${ }^{\text {a }}$ From chemical shifts using Talos.
 ${ }^{\mathrm{b}}$ Calculated in Aria 1.2 for the 20 lowest energy structures refined in water.
 ${ }^{\mathrm{c}}$ Obtained using PROCHECK-NMR.

[^1]: ${ }^{\text {a }}$ From chemical shifts using Talos.
 ${ }^{\mathrm{b}}$ Calculated in Aria 1.2 for the 20 lowest energy structures refined in water.
 ${ }^{\text {c }}$ Obtained using PROCHECK-NMR.

