

Techniques for scheduling time-triggered

resource-constrained embedded systems

Thesis submitted for the degree of

Doctor of Philosophy

at the University of Leicester

by

Ayman K. G. Gendy

Embedded Systems Laboratory

Department of Engineering

University of Leicester

Leicester, UK

June 2009

http://www.le.ac.uk/av/pms12/logo/black on white.png�

Techniques for scheduling time-triggered resource-
constrained embedded systems

Ayman K. G. Gendy

Abstract

It is often argued that time-triggered (TT) architectures are the most suitable basis for
safety-related applications as their use tends to result in highly-predictable system
behaviour. This predictability is increased when TT architectures are coupled with the
use of co-operative (or "non pre-emptive") task sets.

Despite many attractive properties, such "time-triggered co-operative" (TTC) and
related "time-triggered hybrid" (TTH) architectures rarely receive much attention in the
research literature. One important reason for this is that these designs are seen to be
"fragile": that is, small changes to the task set may require revisions to the whole
schedule. Such revisions are seen as challenging and time consuming. To tackle this
problem two novel algorithms (TTSA1 and TTSA2), which help to automate the
process of scheduler selection and configuration, are introduced. While searching for a
workable schedule, both the algorithms try to ensure that all task constraints are met, a
co-operative scheduler is used whenever possible and the power consumption is kept as
low as possible. The effectiveness of these algorithms is tested by means of empirical
trials.

Both TTSA1 and TTSA2, like most of scheduling algorithms introduced in the
literature, rely on knowledge of task worst-case execution time (WCET).
Unfortunately, determining the WCET of tasks is rarely straightforward. Even in
situations where accurate WCET estimates are available at design time, variations in
task execution time, between its best-case execution time (BCET) and its WCET, may
still affect the system predictability and/or violate task constraints. In an effort to
address this problem, a set of code-balancing techniques is introduced. Using an
empirical study it is demonstrated that these techniques help in reducing the variations
in task execution time, and hence increase the system predictability. These goals are
achieved with a reduced power-consumption overhead, compared to alternative
solutions.

Acknowledgement

First of all, I would like to express my heartfelt gratitude to Professor Michael Pont. As

my supervisor, he has provided me with invaluable guidance and constant support

throughout this research project. I consider myself very fortunate for having found such

an excellent supervisor. Without him, this thesis would not have been possible.

Next, I would like to thank people in Assiut University in Egypt (especially Prof.

Ibrahim H., Prof. Doss M., Prof. Mahdy Y., and Prof. Sewisy A.) for their support and

for awarding me the scholarship which gave me the opportunity to pursue my research

at the University of Leicester.

I also would like to thank all my colleges at the embedded systems lab and TTE

Systems Ltd, Ahmad A., Amir M., Athaide K., Chan K. , Bautista R., Edwards T.,

Hanif M., Hughes Z., Imran S., Key S., Kurian S., Kyriakopoulos I., Lei D., Lakhani F.,

Mearns D., .Nazri A., Rizvi S., Vidler P., Wang H., Dr. Ayavoo D., Dr. Das A., Dr.

Fang J., Dr. Maaita A., Dr. McEwan A., Dr. Mwelwa M., Dr. Nahas M., Dr. Ong R.,

Dr. Phatrapornnant T., and Dr. Short M. for both their technical and moral supports. It

was privilege to work with you all.

A special acknowledge to Chan K. (ESL, Leicester) for his help in making the power

measurements, Lakhani F and Wang H. for their help in getting me the papers whenever

I needed them, Dr. Nahas M. (ESL, Leicester) for his help in making the measurements

of the scheduler overhead, Dr. Ayavoo D. (TTE Systems Ltd) for his help in

proofreading earlier version of Chapter 1 of the thesis, and Dr. Demian P.

(Loughborough University) for his help in proofreading of the thesis English.

More importantly, I would like to thank my beloved wife, Mary, for her support,

encouragement and patience, which I needed the most. You sacrifice your dreams and

did everything you can, whether you like or not, for preparing the environment I need

during the whole period of my work in this thesis. I hope that God help me in being

always beside you doing whatever I can to bring happiness to your loving heart.

The great thanks go to the youngest person who brought unbounded joy and happiness

to my heat, my son Kyrillos. You were the light that shines in our small family and the

source of smile which we need in difficult times.

Last but not least I would like to thank my mother, brother, sisters, mother in law, father

in law and brothers in law for their constant support and prayers over the last few years.

Thank you all for being there for me, as always. Special thanks to the soul of my father

who departed while I was in middle of my work in this project. Your dream of seeing

me getting my PhD degree was always in front of my eyes encouraging me especially in

hard times.

I dedicate this thesis to

 my wife, son, mum and the soul of my father

i

Table of contents

ACKNOWLEDGEMENT ... II

TABLE OF CONTENTS .. I

LIST OF FIGURES ... V

LIST OF TABLES .. IX

LIST OF PUBLICATIONS ... XII

LIST OF ABBREVIATIONS, SYMBOLS AND UNITS ... XIV

CHAPTER 1 INTRODUCTION .. 1

1.1 INTRODUCTION .. 1

1.2 WHAT IS AN EMBEDDED SYSTEM? .. 2

1.3 WHAT IS A REAL-TIME SYSTEM? .. 3

1.4 DEVELOPING REAL-TIME SYSTEMS ... 4

1.5 SCHEDULING TIME-TRIGGERED SYSTEMS ... 6

1.6 CHALLENGES WITH SIMPLE TT ARCHITECTURE .. 7

1.7 AIMS OF THE THESIS ... 9

1.8 THESIS CONTRIBUTIONS ... 10

1.9 THESIS OUTLINE ... 11

1.10 CONCLUSIONS .. 12

CHAPTER 2 SCHEDULING STRATEGIES... 13

2.1 TASK CHARACTERISTICS .. 13

2.2 TASK CONSTRAINTS ... 15

2.3 SCHEDULING CRITERIA ... 19

2.4 CYCLIC EXECUTIVES .. 22

2.5 PRIORITY SCHEDULERS .. 24

2.6 DISCUSSION ... 40

2.7 CONCLUSIONS .. 43

CHAPTER 3 SCHEDULING ALGORITHMS .. 44

3.1 THE FUNCTION OF SCHEDULING ALGORITHMS .. 44

ii

3.2 CHOOSING THE RIGHT SCHEDULING STRATEGY .. 44

3.3 CHOOSING THE APPROPRIATE TASK ORDER/STARTING TIME ... 46

3.4 AUTOMATIC SCHEDULE GENERATION IN REAL-TIME SYSTEMS ... 48

3.5 PREVIOUS WORK DONE IN ESL FOR AUTO CODE GENERATION FOR TT SYSTEMS 52

3.6 DISCUSSION ... 54

3.7 CONCLUSIONS .. 54

CHAPTER 4 NECESSITY OF STABILISING TASK EXECUTION TIME 56

4.1 IMPACTS OF VARIATIONS OF TASK EXECUTION TIME .. 56

4.2 THE NEED FOR STABILISING THE TASK EXECUTION TIME .. 59

4.3 CHALLENGES WITH ESTIMATING THE TASK EXECUTION TIME... 61

4.4 DEALING WITH EXECUTION TIME ERRORS .. 64

4.5 DISCUSSION ... 65

4.6 CONCLUSIONS .. 65

CHAPTER 5 CODE-BALANCING TECHNIQUES ... 67

5.1 TOWARD A FIXED EXECUTION PATH ... 67

5.2 THE SINGLE PATH PROGRAMMING PARADIGM .. 68

5.3 THE PROPOSED CB1 TECHNIQUES .. 69

5.4 PERFORMANCE OF THE CB1 TECHNIQUES .. 73

5.5 DISCUSSION ... 83

5.6 CONCLUSIONS .. 84

CHAPTER 6 ANALYSIS OF SCHEDULER/TASK CONFIGURATION 85

6.1 A CLOSE LOOK AT TTC AND TTH ARCHITECTURES ... 85

6.2 THE NEED FOR APPROPRIATE CONFIGURATION OF SCHEDULER/TASK PARAMETERS 89

6.3 EFFECTS OF TASK OFFSET ... 90

6.4 EFFECTS OF TICK INTERVAL ... 93

6.5 EFFECTS OF TASK ORDER.. 98

6.6 DISCUSSION ... 102

6.7 CONCLUSIONS .. 102

CHAPTER 7 TTSA1 ALGORITHM ... 104

iii

7.1 TTSA1 FOR AUTOMATICALLY CHOOSING/CONFIGURING SCHEDULER/TASK PARAMETERS 104

7.2 EVALUATING THE TTSA1 ALGORITHM .. 112

7.3 DISCUSSION ... 121

7.4 CONCLUSIONS .. 122

CHAPTER 8 TTSA2 ALGORITHM ... 123

8.1 PROBLEMS WITH TTSA1 ALGORITHM .. 123

8.2 TTSA2 ALGORITHM ... 124

8.3 EVALUATING THE TTSA2 ALGORITHM .. 128

8.4 DISCUSSION ... 134

8.5 CONCLUSIONS .. 134

CHAPTER 9 DISCUSSION AND CONCLUSIONS .. 135

9.1 REASONS AND MOTIVATION OF THE THESIS WORK ... 135

9.2 A REVIEW OF THE CONTRIBUTIONS... 136

9.3 LIMITATIONS AND FUTURE WORK .. 142

9.4 CONCLUSIONS .. 143

APPENDIX A TT ARCHITECTURES IMPLEMENTED IN ESL ... 144

A.1 TTC SCHEDULER .. 144

A.2 TTH SCHEDULER.. 147

A.3 CONCLUSIONS .. 148

APPENDIX B TTSA1 CASE STUDY (SCHEDULER AGENT) .. 149

B.1 THE BASIC SYSTEM DESCRIPTION AND FUNCTIONALITY ... 149

B.2 THE MP-SA ARCHITECTURE ... 150

B.3 THE MP-SA PERFORMANCE .. 152

B.4 CONCLUSIONS .. 161

APPENDIX C TTSA2 APPLICATION EXAMPLE .. 162

C.1 THE BASIC SYSTEM DESCRIPTION AND FUNCTIONALITY ... 162

C.2 TASK SPECIFICATIONS .. 162

C.3 TASK SCHEDULING ACCORDING TO ONE SEGMENT PER TASK ... 164

C.4 TASK SCHEDULING WITH CONSIDERING MULTIPLE SEGMENTS PER TASK 164

iv

C.5 CONCLUSIONS .. 165

REFERENCES ... 166

v

List of Figures

FIGURE 1-1 INTEL 4004 MICROPROCESSOR AND BUSICOM 141-PF PRINTING

CALCULATOR. THESE TWO IMAGES HAVE BEEN USED WITH PERMISSION FROM

INTEL MUSEUM (INTEL, 2009). .. 2

FIGURE 1-2 RTOS BASIC SERVICE GROUPS, REDRAWN FROM (KALINSKY, 2005) (FIGURE

1). ... 5

FIGURE 2-1 TYPICAL TASK PARAMETERS. ...15

FIGURE 2-2 CYCLIC EXECUTIVE SCHEDULER FOR THE TASK SET SHOWN IN TABLE 2-1. .24

FIGURE 2-3 RM SCHEDULE OF THE TASK SET SHOWN IN TABLE 2-2. 27

FIGURE 2-4 DM SCHEDULE FOR THE TASK SET SHOWN IN TABLE 2-3. 29

FIGURE 2-5 EDF SCHEDULE FOR THE TASK SET SHOWN IN TABLE 2-4. 31

FIGURE 2-6 LLF SCHEDULE FOR THE TASK SET SHOWN IN TABLE 2-5, ADAPTED FROM

COTTET ET AL. (2002). ...32

FIGURE 2-7 ILLUSTRATION OF THE PRIORITY INVERSION PHENOMENON FOR TASKS

SHOWN IN TABLE 2-6, ADAPTED FROM SHA ET AL. (1990). ..34

FIGURE 2-8 ILLUSTRATION OF USING THE PRIORITY INHERITANCE PROTOCOL FOR

TASKS SHOWN IN TABLE 2-6, ADAPTED FROM SHA ET AL. (1990). 36

FIGURE 2-9 ILLUSTRATION OF THE DEADLOCK PHENOMENON FOR TASKS SHOWN IN

TABLE 2-7, ADAPTED FROM SHA ET AL. (1990). ...38

FIGURE 2-10 ILLUSTRATION OF USING THE PRIORITY CEILING PROTOCOL FOR TASKS

SHOWN TABLE 2-7, ADAPTED FROM SHA ET AL. (1990). ..39

FIGURE 3-1 INFEASIBLE RM SCHEDULER FOR TASK SHOWN IN TABLE 3-1, ADAPTED

FROM XU AND PARNAS (2000). ..45

FIGURE 3-2 FEASIBLE NON PRE-EMPTIVE EDF SCHEDULER FOR TASK SHOWN IN TABLE

3-1, ADAPTED FROM XU AND PARNAS (2000). ..46

FIGURE 3-3 INFEASIBLE FIXED PRIORITY SCHEDULER FOR TASK SET SHOWN IN TABLE

3-2, ADAPTED FROM XU AND PARNAS (2000). ..47

FIGURE 3-4 FEASIBLE SCHEDULER FOR TASK SET SHOWN IN TABLE 3-2, ADAPTED FROM

XU AND PARNAS (2000). ..47

vi

FIGURE 4-1 TASK SCHEDULE WHEN TASKS SHOWN IN TABLE 4-1 RUN WITH THEIR

BCETS. ...57

FIGURE 4-2 TASK SCHEDULE WHEN TASKS SHOWN IN TABLE 4-1 RUN WITH THEIR

WCETS. ..58

FIGURE 4-3 TASK SCHEDULE FOR TASKS SHOWN IN TABLE 4-2. ...59

FIGURE 5-1 CONVERTING IF-THEN-ELSE STRUCTURE TO SINGLE PATH, ADAPTED FROM

(PUSCHNER AND BURNS, 2003). ...68

FIGURE 5-2 PSEUDO CODE OF A BALANCED FOR-LOOP. ..71

FIGURE 5-3 PSEUDO CODE OF A BALANCED WHILE-LOOP USED FOR WAITING FOR INPUT.

 ...72

FIGURE 5-4 PSEUDO CODE OF A BALANCED IF-THEN-ELSE STRUCTURE, ADAPTED FROM

(PUSCHNER AND BURNS, 2003). ...73

FIGURE 5-5 THE CIRCUIT USED TO MEASURE THE SYSTEM POWER CONSUMPTION,

COPIED FROM NAHAS (2009) ..74

FIGURE 5-6 TRADITIONAL IMPLEMENTATION OF BUBBLE SORT. ...76

FIGURE 5-7 SINGLE PATH IMPLEMENTATION OF BUBBLE SORT (ADAPTED TO WORK

WITHOUT THE SUPPORT OF THE CONDITIONAL MOVE INSTRUCTION) (PART 1/2). 77

FIGURE 5-8 CB1 IMPLEMENTATION OF BUBBLE SORT (PART 1/2). ...79

FIGURE 6-1 ILLUSTRATING THE OPERATION OF A TYPICAL (INTERRUPT-DRIVEN) TTC

SCHEDULER IMPLEMENTATION. ..87

FIGURE 6-2 ILLUSTRATION OF TTC SCHEDULE OF TASK SET SHOWN IN TABLE 6-2. 88

FIGURE 6-3 ILLUSTRATING THE OPERATION OF A TYPICAL TTH SCHEDULER

IMPLEMENTATION, ADAPTED FROM MAAITA AND PONT (2005B), FIGURE 1. 89

FIGURE 6-4 TASK SCHEDULE FOR TASKS SHOWN IN TABLE 6-5. ...92

FIGURE 6-5 TASK SCHEDULE FOR TASKS SHOWN IN TABLE 6-6. ...93

FIGURE 6-6 TASK SCHEDULE FOR TASKS SHOWN IN TABLE 6-7 (WITH TICK INTERVAL =

2 MS). ..94

FIGURE 6-7 TASK SCHEDULE FOR TASKS SHOWN IN TABLE 6-8 (WITH TICK INTERVAL =

1 MS). ..95

vii

FIGURE 6-8 TASK SCHEDULER FOR TASKS SHOWN IN TABLE 6-9 (WITH TICK INTERVAL =

2 MS). ..96

FIGURE 6-9 TASK SCHEDULER FOR TASKS SHOWN IN TABLE 6-10 (WITH TICK INTERVAL

= 1 MS). ...96

FIGURE 6-10 INAPPROPRIATE TASK ORDERING FOR TASKS SHOWN IN TABLE 6-12. 99

FIGURE 6-11 APPROPRIATE TASK ORDERING FOR TASKS SHOWN IN TABLE 6-12. 100

FIGURE 6-12 POSSIBLE SCHEDULE FOR TASKS SHOWN IN TABLE 6-13. 101

FIGURE 6-13 JITTER-AWARE SCHEDULE FOR TASKS SHOWN IN TABLE 6-13. 102

FIGURE 7-1 FLOW CHART FOR THE TTSA1 ALGORITHM. ..107

FIGURE 7-2 FLOW CHART FOR THE CHECK_SCHED() FUNCTION OF TTSA1 ALGORITHM.

 ...108

FIGURE 7-3 NUMBER OF SCHEDULED TASK SETS (3 INTERDEPENDENT TASKS IN EACH

SET). ...119

FIGURE 7-4 NUMBER OF SCHEDULED TASK SETS (4 INTERDEPENDENT TASKS IN EACH

SET). ...119

FIGURE 7-5 NUMBER OF SCHEDULED TASK SETS (5 INTERDEPENDENT TASKS IN EACH

SET). ...120

FIGURE 7-6 NUMBER OF SCHEDULED TASK SETS (50 INTERDEPENDENT TASKS IN EACH

SET). ...120

FIGURE 8-1 PSEUDO CODE FOR THE TTSA2 ALGORITHM. ..126

FIGURE 8-2 NUMBER OF SCHEDULED TASK SETS (3 INTERDEPENDENT TASKS IN EACH

SET). ...132

FIGURE 8-3 NUMBER OF SCHEDULED TASK SETS (4 INTERDEPENDENT TASKS IN EACH

SET). ...132

FIGURE 8-4 NUMBER OF SCHEDULED TASK SETS (5 INTERDEPENDENT TASKS IN EACH

SET). ...133

FIGURE 8-5 NUMBER OF SCHEDULED TASK SETS (50 INTERDEPENDENT TASKS IN EACH

SET). ...133

viii

FIGURE A-1 THE MAIN FUNCTION OF A TTC SCHEDULER WHICH EXECUTES THREE

PERIODIC TASKS, ADAPTED FROM KURIAN AND PONT (2007). 145

FIGURE A-2 THE DISPATCH FUNCTION OF A TTC SCHEDULER, ADAPTED FROM KURIAN

AND PONT (2007). ..146

FIGURE A-3 THE TICK ISR FUNCTION OF A TTC SCHEDULER, COPIED FROM KURIAN AND

PONT (2007). ..146

FIGURE A-4 THE TICK ISR FUNCTION OF A TTH, ADAPTED FROM (PONT, 2001). 148

FIGURE B-1 AN OVERVIEW OF THE MP-SA ARCHITECTURE. ...150

FIGURE B-2 THE MP-SA HARDWARE. ...153

FIGURE B-3 A SIMPLE SCHEDULE BASED ON THE ESTIMATED BCET AND WCET WITH

100 MS TICK INTERVAL. ..157

FIGURE B-4 EFFECT OF INACCURATE ESTIMATIONS OF BCET AND WCET ON TASK

BEHAVIOUR. ..157

FIGURE B-5 EFFECT OF SCHEDULER OVERHEAD ON TASK BEHAVIOUR. 158

FIGURE B-6 TASK BEHAVIOUR WITH THE SCHEDULER PRODUCED BY THE MP-SA

ARCHITECTURE. ...158

FIGURE C-1 ILLUSTRATING OF THE FIRST 3 TICKS FOR THE TASKS SHOWN IN TABLE C-1

AND TABLE C-2 SCHEDULED BY TTC WITHOUT CONSIDERING TASK

SEGMENTATION. ...165

FIGURE C-2 ILLUSTRATING OF THE FIRST 3 TICKS FOR THE TASKS SHOWN IN TABLE C-1

AND TABLE C-2 SCHEDULED BY TTC WITH CONSIDERING TASK SEGMENTATION

(TTSA2 ALGORITHM). ..165

ix

List of Tables

TABLE 2-1 TASK SPECIFICATIONS FOR A SYSTEM RUNS WITH SIMPLE CYCLIC

EXECUTIVE SCHEDULER. ...23

TABLE 2-2 TASK SPECIFICATIONS FOR A SYSTEM SCHEDULED BY RM SCHEDULER. 27

TABLE 2-3 TASK SPECIFICATIONS FOR A SYSTEM SCHEDULED BY DM SCHEDULER. 29

TABLE 2-4 TASK SPECIFICATIONS FOR A SYSTEM SCHEDULED BY EDF SCHEDULER. 30

TABLE 2-5 TASK SPECIFICATIONS FOR A SYSTEM SCHEDULED BY LLF SCHEDULER. 32

TABLE 2-6 TASK SPECIFICATIONS FOR A SYSTEM WHICH MAY ENCOUNTER PRIORITY

INVERSION ...34

TABLE 2-7 TASK SPECIFICATIONS FOR A SYSTEM WHICH MAY SUFFER FROM

DEADLOCK. ..37

TABLE 3-1 TASK SPECIFICATIONS FOR A SYSTEM IN WHICH THE SCHEDULER STRATEGY

DECISION AFFECTS TASK SCHEDULABILITY. ...45

TABLE 3-2 TASK SPECIFICATIONS FOR A SYSTEM IN WHICH TASK ORDER/STARTING

TIMES AFFECTS TASK SCHEDULABILITY. ...47

TABLE 4-1 AN EXAMPLE THAT SHOW THE EFFECT OF VARIATIONS OF EXECUTION TIME

ON TASK ORDER. ..57

TABLE 4-2 AN EXAMPLE THAT SHOW THE EFFECT OF VARIATIONS OF TASK EXECUTION

TIME ON JITTER. ...59

TABLE 5-1 MINIMUM, MAXIMUM, (MAXIMUM – MINIMUM), AND PERCENTAGE OF

VARIATIONS (W.R.T. THE MAXIMUM) IN TASK EXECUTION TIME RESULTED FROM

DIFFERENT IMPLEMENTATIONS OF BUBBLE SORT. ..81

TABLE 5-2 MAXIMUM JITTER AND AVERAGE POWER CONSUMPTION RESULTED FROM

DIFFERENT IMPLEMENTATIONS OF BUBBLE SORT. ..81

TABLE 5-3 MINIMUM, MAXIMUM, (MAXIMUM – MINIMUM), AND PERCENTAGE OF

VARIATIONS (W.R.T. THE MAXIMUM) IN TASK EXECUTION TIME RESULTED FROM

DIFFERENT IMPLEMENTATIONS OF FIBONACCI. ...82

TABLE 5-4 MAXIMUM JITTER AND AVERAGE POWER CONSUMPTION RESULTED FROM

DIFFERENT IMPLEMENTATIONS OF FIBONACCI. ...82

x

TABLE 5-5 MINIMUM, MAXIMUM, (MAXIMUM – MINIMUM), AND PERCENTAGE OF

VARIATIONS (W.R.T. THE MAXIMUM) IN TASK EXECUTION TIME RESULTED FROM

DIFFERENT IMPLEMENTATIONS OF MATRIX MULTIPLICATION. 83

TABLE 5-6 MAXIMUM JITTER AND AVERAGE POWER CONSUMPTION RESULTED FROM

DIFFERENT IMPLEMENTATIONS OF MATRIX MULTIPLICATION. 83

TABLE 6-1 EXAMPLE OF TASK SPECIFICATIONS SCHEDULED BY TTC. 86

TABLE 6-2 EXAMPLE OF TASK SPECIFICATIONS WHICH CANNOT BE SCHEDULED BY TTC.

 ...88

TABLE 6-3 TASK SPECIFICATIONS FOR A SYSTEM IN WHICH TASK OFFSETS ARE

INAPPROPRIATE (TASK C MISSED ITS DEADLINE). ..90

TABLE 6-4 TASK SPECIFICATIONS FOR A SYSTEM IN WHICH TASK OFFSETS ARE

APPROPRIATE. (ALL TASKS MET THEIR DEADLINES). ...91

TABLE 6-5 TASK SPECIFICATIONS FOR A SYSTEM IN WHICH TASK OFFSETS CAUSE HIGH

JITTER. ...91

TABLE 6-6 TASK SPECIFICATIONS FOR A SYSTEM IN WHICH TASK OFFSETS CAUSE LOW

JITTER. ...92

TABLE 6-7 TASK SPECIFICATIONS FOR A SYSTEM IN WHICH TICK INTERVAL IS

INAPPROPRIATE (TASK B MISSED ITS DEADLINE). ..94

TABLE 6-8 TASK SPECIFICATIONS FOR A SYSTEM IN WHICH TICK INTERVAL IS

APPROPRIATE (ALL TASKS MET THEIR DEADLINES). ..94

TABLE 6-9 TASK SPECIFICATIONS FOR A SYSTEM WITH AN INAPPROPRIATE TICK

INTERVAL (TASK B SUFFERS FROM JITTER). ..95

TABLE 6-10 TASK SPECIFICATIONS FOR A SYSTEM WITH AN APPROPRIATE TICK

INTERVAL (ALL TASKS HAVE LOW JITTER; APPROXIMATELY ZERO). 96

TABLE 6-11 AVERAGE POWER CONSUMPTION (MW) USING DIFFERENT TICK INTERVALS.

 ...97

TABLE 6-12 TASK SPECIFICATIONS FOR A SYSTEM WHERE AN INAPPROPRIATE TASK

ORDERING AFFECTS SCHEDULABILITY. ..99

TABLE 6-13 TASK SPECIFICATIONS FOR A SYSTEM WHERE AN INAPPROPRIATE TASK

ORDERING AFFECTS JITTER. ...101

xi

TABLE 7-1 SAMPLE OF TASK SPECIFICATIONS AND CONSTRAINTS (SET OF 3 TASKS) 116

TABLE 7-2 NUMBER OF TRIAL AND THE TOTAL TIME ..118

TABLE 8-1 TASK SPECIFICATIONS FOR A TASK SET THAT CANNOT BE SCHEDULED WITH

TTC/TTH. ...124

TABLE 8-2 TASK SPECIFICATIONS FOR A TASK SET THAT CAN BE SCHEDULED WITH

TTC/TTH. ...124

TABLE 8-3 NUMBER OF TRIALS AND THE TOTAL TIME. ...131

TABLE B-1 TASK SPECIFICATIONS. ...156

TABLE B-2 EXTENDED TASKS’ SPECIFICATIONS. ...160

TABLE C-1 TASK SPECIFICATIONS FOR THE APPLICATION EXAMPLE. 163

TABLE C-2 TASK EXCLUSION RELATIONS FOR THE APPLICATION EXAMPLE 164

xii

List of Publications

A number of papers were published during the course of the work described in this

thesis. These are listed below (in reverse chronological order). Please note that the

contents of some of these papers have been adapted for presentation in this thesis:

where applicable, a footnote at the beginning of a chapter indicates that material from

one or more papers has been included.

Gendy, A. and Pont, M.J. (2008a) "Automatically configuring time-triggered schedulers
for use with resource-constrained, single-processor embedded systems," IEEE

Transactions on Industrial Informatics, vol. 4, no.1, 37 - 46

Gendy, A. and Pont, M.J. (2008b) "Automating the processes of selecting an
appropriate scheduling algorithm and configuring the scheduler implementation for
time-triggered embedded systems," Lecture Notes in Computer Science, Computer

Safety, Reliability, and Security, Volume 5219/2008, Springer Berlin / Heidelberg,

27th International Conference on Computer Safety, Reliability and Security,

SAFECOMP 2008, 22-25 September 2008, Newcastle upon Tyne, UK , 440-453.

Gendy, A. and Pont, M.J. (2007) "Towards a generic 'single-path programming'
solution with reduced power consumption", Proceedings of the ASME 2007

International Design Engineering Technical Conferences & Computers and

Information in Engineering Conference (IDETC/CIE 2007), September 4-7, 2007,

Las Vegas, Nevada, USA

Gendy, A., Dong, L. and Pont, M.J. (2007) "Improving the performance of time-
triggered embedded systems by means of a scheduler agent", Proceedings of the

ASME 2007 International Design Engineering Technical Conferences & Computers

xiii

and Information in Engineering Conference (IDETC/CIE 2007), September 4-7,

2007, Las Vegas, Nevada, USA.

Gendy, A. and Pont, M.J. (2007) "Power-aware software design for resource-
constrained embedded systems," Poster presentation at the Festival of Postgraduate

Research, 29 July 2007, University of Leicester, Leicester, UK.

Gendy, A. and Pont, M.J. (2006) "Selecting and implementing a custom scheduler for a

reliable embedded application," Poster presentation at the IET Postgraduate Workshop

on Embedded Systems, 11th October 2006 (NEC, Birmingham, in conjunction with the

Embedded Systems Show), and Festival of Postgraduate Research, 13 June 2006,

University of Leicester, Leicester, UK.

Gendy, A. and Pont, M.J. (in preparation) "Analysis of scheduler/task configuration in

time-triggered embedded systems".

Das, A., Lakhani, F., Gendy, A., and Pont, M.J. (accepted) "Two simple patterns to
support the development of reliable, real-time embedded systems", EUROPLOP

2009 14th European Conference On Pattern Languages Of Program, July 08, 2009 -

July 12, 2009, Irsee, Germany.

xiv

List of Abbreviations, Symbols and Units

Abbreviations

BCET Best-Case Execution Time

CB1 Code-Balancing Techniques 1

CPU Central Processing Unit

DM Deadline Monotonic

DVS Dynamic Voltage Scaling

ECG Electrocardiogram

EDF Earliest Deadline First

EMI Electromagnetic Interference

ESL Embedded Systems Laboratory

ET Event-Triggered

GCD Greatest Common Divisor

I/O Input / Output

ISR Interrupt Service Routine

LCM Least Common Multiple

LLF Least Laxity First

MP Main Processor

PTTES Pattern for Time-Triggered Embedded Systems

PC Personal Computer

RM Rate Monotonic

xv

RTOS Real-Time Operating System

SA Scheduling Agent

SA1 Segment 1 of Task A

SL Super Loop

Time(x), Time spent in performing "x" iterations

TT Time-Triggered

TTC Time–Triggered Co-operative

TTH Time–Triggered Hybrid

TTSA1 Time–Triggered Scheduling Algorithm 1

TTSA2 Time–Triggered Scheduling Algorithm 2

WCET Worst-Case Execution Time

Symbols

AbsJitter(Ti) The absolute jitter of task Ti

Ci Execution time of task Ti

𝐶𝐶𝑖𝑖
(𝑘𝑘) The completion time of the kth invocation of task Ti.

Di Deadline of task Ti

Li Laxity of task Ti

N Number of tasks

Oi The offset of task Ti

xvi

Pi Period of task Ti

𝑃𝑃𝑖𝑖
(𝑚𝑚𝑚𝑚𝑚𝑚) The maximum time intervals between successive

completions (or invocation) of task Ti;

𝑃𝑃𝑖𝑖
(𝑚𝑚𝑖𝑖𝑚𝑚) The minimum time intervals between successive

completions (or invocation) of task Ti

ri Release time of task Ti

𝑆𝑆𝑖𝑖
(𝑘𝑘) The start time of the kth invocation of task Ti ;

u Unitization

Units

ms Millisecond

mW Milliwatt

s Second

μs Microsecond

Chapter 1

Introduction

In this introductory chapter, an overview of the work undertaken in this thesis is

introduced and the importance of this area is discussed.1

1.1 Introduction

We live in a fast-changing world; new ideas are converted to practical products, which

reach consumers over a short period of time. For example while it took about 47 years

for the major inventions of the 19th century, like telegraph and photography, before their

commercial use, the time span is shortened to about 33 years for most of the 20th

century inventions; such as telephone and electric railroad, and it shrank even more, to

be less than 20 years, for recent inventions, time span was approximately 13 years in

case of the cellular telephone (Moore and Simon, 2000).

While the above phenomenon, fast time-to-market, is welcome and preferred, other

considerations, such as increasing the reliability and reducing the cost of the product,

have to be taken into account. Meeting all goals together is a very difficult task, for

example it is concluded that meeting the "faster, better, and cheaper" strategy which

was adopted by NASA in the early 1990s, need a lot of hard work and careful design

which follow thorough on details, otherwise failure is likely to be the result (Musser,

1995; Gregory, 1996; David, 2000). One of the design considerations which can affect

the system reliability is the design of the scheduler, that part of the system which

decides when each task in the system should run or should use a resource (Zurawski,

2005). The scheduling problem which caused multiple system resets in the NASA Mars

Pathfinder (Reeves, 1997) is a well known example of that kind of problem which may

arise from scheduling design errors.

1 Parts of this chapter have been published previously in Gendy and Pont (2008a)

Chapter 1: Introduction 2

The focus of this thesis is on the design of schedulers which can be used in low-cost

safety-related embedded-systems.

1.2 What is an embedded system?

Embedded systems can be defined as "information processing systems that are

embedded into a larger product and that are normally not visible to the user"

(Marwedel, 2006). This means that, unlike desktop computer systems, embedded

systems have more limited interactions with users and have limited resources (such as

small size, low processing power, and small memory) which are dequate to complete

their specific operation in the product where they reside.

The first appearance of such systems can be dated back to year 1971, the year in which

the first microprocessor, the 4004, was produced by Intel to be used in a series of

calculators produced by the Japanese company Busicom (Leventhal, 1979; Barr, 1999;

Ganssle and Barr, 2003), as shown in Figure 1-1.

Over the years a great deal of work has been done in the development of the

microprocessor which was going in two different trends. The first trend was based on

building microprocessors to be used in general purpose desktop systems, including PC’s

and servers. The other trend was based on developing a special purpose

microprocessor, typically called a microcontroller, to be used in embedded applications.

Intel 4004

microprocessor

Busicom 141-PF

printing calculator

Figure 1-1 Intel 4004 microprocessor and Busicom 141-PF printing calculator.

These two images have been used with permission from Intel Museum (Intel, 2009).

Chapter 1: Introduction 3

The main difference between a microprocessor and a microcontroller is that a

microprocessor contains only a central processing unit (CPU) whereas a microcontroller

contains a CPU in addition to memory and input/output (I/O) on the chip (Arnold,

2000).

The vast majority of processors sold every year go to the embedded market. For

example in 2005 the total number of embedded processors sold was estimated to exceed

3 billion, compared to 200 million desktop computers and 10 million servers (John and

David, 2007). This is a result of the increased demand for new devices, which normally

include embedded microprocessor, to be used in every aspect of our modern lifestyle.

Examples range from the simple devices used in home appliances (such as microwave

ovens, mobile phones, washing machines), to the more sophisticated devices used in the

medical sector (such as the mobile ECG), or the automotive industry (for example the

Mercedes S-class has 63 microprocessors in it and 1999 BMW 7-series has 65) (Turley,

1999).

1.3 What is a real-time system?

Many embedded systems are also real-time systems. In real-time systems the execution

of each function (or task) is constrained by a set of temporal requirements, such as task

deadline, the time before which the task should finish its execution (Liu and Layland,

1973; Xu and Parnas, 1993; Tindell, 1994; Sandström and Norström, 2002; Buttazzo et

al., 2005). Thus real-time systems can be defined as "computing systems that must

react within precise time constraints to events in the environment" (Buttazzo, 2005a).

This means that the key factor that defines a real-time system is that it produces the

correct output within the predefined time limit (Cheng, 2002; Laplant, 2004). Note that

– contrary to common usage – this does not necessarily imply either that the system

must be fast (Stankovic, 1988) or that the response time of the system must be short

(Laplant, 2004; Buttazzo, 2005a), as the required response time depends on the

application at hand.

According to Laplant (2004) and Buttazzo et al. (2005) real-time systems are usually

classified into 3 categories (depending on the criticality of the tasks they perform): hard,

firm, and soft real-time systems. They showed that in soft real-time systems the system

keeps working at low level of performance in case of failure to meet response-time

Chapter 1: Introduction 4

constraints, for example: automated teller machine. Whereas in firm real-time systems

only a limited number of missed deadlines are allowed, but missing more than this lead

to complete and catastrophic system failure, for example: an embedded navigation

controller for autonomous robot weed killer. Finally in hard real-time systems a critical

and complete system failure can result if a single deadline is missed, example: avionics

weapons. To cope with these timing constraints careful designs (both in terms of

hardware and software) must be employed in the development process of such

applications.

1.4 Developing real-time systems

It can be inferred from the previous section that developers creating software for use in

real-time systems face a very different set of challenges from those creating the majority

of "desktop" applications. For example the time interval within which the desktop

system should respond to a command may vary significantly without causing a major

problem whereas even small levels of variation in task stating time, formally called "

release jitter", (milliseconds or much less) in safety-related systems may prove life

threatening in (for example) an industrial, automotive or medical system. Hence

general desktop software architectures (e.g. desktop operating systems) are not suitable

for safety-critical applications (Pont, 2001; Cheng, 2002; Buttazzo et al., 2005;

Marwedel, 2006).

Figure 1-2 shows the main services provided by the kernel of a real-time operating

system, RTOS, (Kalinsky, 2005). One of the main components of any RTOS is the task

scheduler (Cheng, 2002; Kalinsky, 2005; Marwedel, 2006); moreover "a scheduler can

be viewed as a simple operating system that allows tasks to be called periodically or

(less commonly) on a one-shot basis" (Pont, 2001).

Chapter 1: Introduction 5

Depending on the type of the application a wide range of software architecture can be

used, from a simple scheduler to a complex full RTOS. However, it is desirable to keep

system complexity as low as possible (Pont, 2001) as it may affect both the system

reliability and cost. For example cost estimates of embedded software (from

commencement to shipping) are quoted around US$15-30 per line of code, this

increases up to $100 in military defence systems and to approximately $1,000 for highly

critical applications, such as the Space Shuttle (Atkinson et al., 2005). The increased

system complexity may result in additional demand for hardware resources (such as

memory and CPU processing power) and make the debugging process more difficult.

For example making a tiny change, changing just three lines of code, when fixing a bug,

in the several-million-line signalling program used in the local telephone systems in

California and along the Eastern seaboard caused a breakdown in the system in 1991

(Joch and Sharp, 1995).

There are two common approaches used in scheduling real-time embedded systems:

event-triggered (ET) schedulers and time-triggered (TT) schedulers. In ET

architectures, tasks are invoked as a response to events represented by external

interrupts (Albert, 2004; Scheler and Schröder-Preikschat, 2006), whereas in TT

architectures tasks are invoked periodically under the control of a timer (Ludemann,

1983; Volz and Mudge, 1987; Ward, 1991; Kopetz, 1997; Pont, 2001). The ET

architecture may be used in systems which have many aperiodic events whereas the TT

architecture is the preferred choice for safety-related systems in which the task

Figure 1-2 RTOS basic service groups, redrawn from (Kalinsky, 2005) (Figure 1).

Inter-task
Communication,
Synchronisation

Dynamic
Memory

Allocation

Timers

Device
I/O

Interface

Task
Scheduling

Chapter 1: Introduction 6

characteristics are known a priori (Kopetz, 1997; Domaratsky and Perevozchikov, 2000;

Pont, 2001; Albert, 2004; Scheler and Schröder-Preikschat, 2006). The work in this

thesis focuses on TT architectures.

For resource-constrained embedded systems, which have a very limited memory and

CPU performance, a simple "time-triggered co-operative" (TTC) – a form of cyclic

executive – scheduler (Baker and Shaw, 1988; Burns, 1995; Kopetz, 1997; Huang et al.,

2003; Gangoiti et al., 2005), "which has low run-time overhead" (Huang et al., 2003), is

often used. Furthermore for safety-related applications which have hard real-time

constraints, such as low jitter requirements, the TTC architectures demonstrate very low

levels of task jitter (Locke, 1992), and can maintain their low-jitter characteristics even

when techniques such as dynamic voltage scaling (DVS) are employed to reduce system

power consumption (Phatrapornnant and Pont, 2006).

In most TT designs, an "offline" (also known as "pre-runtime", or "static") schedule is

said to be the best choice (Xu and Parnas, 2000; Pont, 2001; Huang et al., 2003; Xu,

2003; Gangoiti et al., 2005).

1.5 Scheduling time-triggered systems

The specific implementation options which are considered here are a time-triggered co-

operative (TTC) scheduler (a form of cyclic executive: e.g. Shaw (2001)), and a time-

triggered "hybrid" (TTH) scheduler. Such architectures are employed frequently in

low-cost control systems (e.g. automotive control: (Ayavoo et al., 2005; Ayavoo,

2006)) and in condition-monitoring / fault diagnosis systems (e.g. Schlindwein et al.

(1988)). A brief overview of these schedulers will be discussed in the following

subsections.

1.5.1 Time-triggered cooperative scheduler (TTC)

The TTC implementation discussed in this work is based on the idea of executing each

task in predefined time intervals which are derived from a scheduler tick. The scheduler

tick is usually signalled by an interrupt associated with the (periodic) overflow of a

hardware timer. At each tick the status of each task is updated and tasks which are due

to run are dispatched. Then the processor is usually set to an "idle" (power saving)

Chapter 1: Introduction 7

mode, where it will remain until the following tick (in order to reduce the system power

consumption)

1.5.2 Time-triggered hybrid scheduler (TTH)

Despite some attractive features, a TTC solution is not always appropriate. For example

the system cannot respond to an external critical event while executing specific task if

the required response time is shorter than the worst-case execution time (WCET) of the

running task plus the time required to handle the event (Allworth, 1981). In these cases

a fully pre-emptive architecture such as the rate monotonic (RM) or the earliest deadline

first (EDF) can be used (Liu and Layland, 1973). Such an approach provides flexibility

(and possibly, portability), but it will also tend to increase the system complexity and

overhead when compared to pre-run-time scheduling (Xu and Parnas, 2000; Xu, 2003).

In some designs the system responsiveness can be increased while maintaining the

minimal resource requirements, by allowing a limited level of pre-emption in the

system. This can be done by using what is called a "time-triggered hybrid" (TTH)

scheduler (Pont, 2001; Maaita and Pont, 2005a), sometimes called a "multi-rate

executive with interrupts" (Kalinsky, 2001). The TTH scheduler can be seen as a RM

scheduler that supports a single, short, high priority, pre-empting task, and a collection

of co-operative tasks (which have equal priorities lower than that of the pre-empting

task).

The pre-empting task may be used for periodic data acquisition, typically by means of

an analogue-to-digital converter or similar device. Such requirements are common in,

for example, control systems (Buttazzo, 2005b), and applications which involve data

sampling and Fast-Fourier transforms (FFTs) or similar techniques: an example is given

in the work by Schlindwein et al. (1988).

1.6 Challenges with simple TT architecture

Two key challenges facing the developers of simple TTC and TTH designs are the

schedule fragility (at design time) and the possibility of task overruns (at run time).

These challenges are considered in this section.

Chapter 1: Introduction 8

1.6.1 The fragility of TTH and TTC designs

It has been shown that – during the design process – TTC / TTH designs are "fragile":

that is, small changes to the timing of particular tasks can mean that the developer has to

make substantial changes to the whole schedule (e.g. Shaw (2001)). Moreover, it has

been demonstrated in previous studies that the problem of testing the schedulability and

determining the scheduler and task parameters for a set of tasks for such a system is NP-

hard (Brucker et al., 1977; Baker and Shaw, 1988; Tindell et al., 1992; Xu and Parnas,

1992; Xu and Parnas, 2000; Ekelin and Jonsson, 2001; Cucu and Sorel, 2004; Baruah,

2006). Inappropriate choices of parameters may mean that a given task set cannot be

scheduled at all. Where the parameter set does ensure that all tasks are scheduled,

inappropriate decisions may still lead to unnecessarily high levels of task jitter and / or

to increased system power consumption. The focus in this thesis is therefore on

developing ways in which the process of configuring TT schedulers for use in single-

processor embedded systems can be automated.

1.6.2 Impact of long tasks during system execution

As discussed in the previous section, TTH architectures allow a designer to execute one

or more tasks with long WCETs and also respond within a short time interval to

external events. This solution can be effective, for many designs, if the WCET of every

task is known at design time. Unfortunately, as many researchers have observed (Nett

et al., 1996; Domaratsky and Perevozchikov, 2000; Engblom and Ermedahl, 2000;

Engblom and Jonsson, 2002; Gergeleit and Nett, 2002; Burguiere and Rochange, 2005;

Deverge and Puaut, 2005; Kirner and Puschner, 2008), determining the WCET of tasks

is rarely straightforward.

Lack of knowledge about WCETs is a problem which faces the developers of many

embedded systems (not just those based on TTC / TTH designs). For example, as

Gergeleit and Nett have noted: "Nearly all known real-time scheduling approaches rely

on the knowledge of WCETs for all tasks of the system." (Gergeleit and Nett, 2002).

Nonetheless, the fact that a TTC / TTH architectures employs static scheduling (and,

even in the case of TTH, a very limited degree of pre-emption) means that – in the event

of a task overrun – the problem may not even be detected (let alone resolved). This may

have a serious impact on the system behaviour. For example, as Buttazzo has noted:

Chapter 1: Introduction 9

"[Co-operative] scheduling is fragile during overload situations, since a task exceeding

its predicted execution time could generate (if not aborted) a domino effect on the

subsequent tasks" (Buttazzo, 2005b).

As part of an effort to address these problems, the work presented here introduces a set

of novel code-balancing techniques which helps to reduce variations in task execution

time to a value equal to its WCET. Unlike other methods, these techniques can be

adapted to be used with any hardware and have limited impact on system power

consumption.

1.7 Aims of the thesis

Despite the attraction of using an offline (or pre-run time) schedulers, such as the TTC

and TTH schedulers described above, "Builders of real-time systems often use priority

scheduling in their systems without considering alternatives" (Xu and Parnas, 2000).

The main reason beyond the above argument can be related to the "fragility" of the

offline designs of schedulers. It is generally assumed that the effort involved in such a

rescheduling process will be very significant. Such arguments have been used in the

past as a reason for avoiding TT architectures.

While it can be argued that the issue of TTC/TTH fragility can be exaggerated in

situations where appropriate design decisions are taken, it is true that re-scheduling may

be required during the development and maintenance of TTC/TTH designs. Given that

such a schedule re-design may be required, the aim of this thesis is to explore

techniques which can reduce the effort involved in such a process via the use of novel

scheduling algorithms.

The second aim of the project is to increase the predictability of systems which use

TTC/TTH designs. The proposed scheduling algorithms introduced in this thesis

attempt to find a workable schedule that satisfies all task constraints. Like other

scheduling algorithms, the proposed algorithms introduced here rely on the availability

of accurate estimates of the upper bound of task execution time at design time.

Unfortunately determining WCET values is becoming more challenging as embedded

designs become more complex and make use of faster and smaller processors and

"system on chip" architectures. The work introduced in this thesis introduces new

Chapter 1: Introduction 10

techniques which aim to reduce variations in task execution time that will in turn reduce

difficulties in obtaining the task WCET. More importantly stabilising task execution

time will increase the system predictability and determinism, for example the points at

which each instance of the task starts, and finishes, can be known in advance.

1.8 Thesis contributions

The project described in this thesis made the following contributions to this research

area:

First, problems facing developers of time-triggered architecture (particularly TTC and

TTH), such as the need for stabilising the task execution time and carefully choosing

task / scheduler parameters are identified. Effects of variations of task execution times,

on violating task constraints and / or decreasing the system reliability, are discussed and

analysed. Then a set of code-balancing techniques which helps to reduce variations in

the task execution time to its WCET, while avoiding excessive increase in power

consumption which faces other methods, are introduced.

Second, the need to appropriately choose the right scheduling strategy and configure the

task and scheduler parameters is discussed. The effects of inappropriate choices of the

scheduler and / or task parameters (such as task offset, task order and tick interval) on

task schedulability and system power consumption are discussed and analysed.

Finally, a proposed TTSA1 algorithm which can be used to automate the process of

scheduler selection and configuration, while reducing power consumption, for TT

schedulers is presented. The proposed algorithm uses a novel two-stage search

technique and is intended to support the configuration of time-triggered schedulers for

use with resource-constrained embedded systems which employ a single processor. The

overall goal is to identify a scheduler implementation which will ensure that: (i) all task

constraints are met; (ii) CPU power consumption is "as low as possible"; (iii) a fully co-

operative scheduler architecture is employed whenever possible.

The performance of the proposed TTSA1 algorithm is improved by developing the

TTSA2 algorithm. This algorithm tries to increase the chance of finding a suitable

schedule by dividing some tasks into two, or more, segments, in cases were a suitable

schedule can not be found when scheduling each task as one segment. It assumes that

Chapter 1: Introduction 11

the points at which a task can / cannot be pre-empted / divided into two or more tasks

are known in advance.

1.9 Thesis outline

Following this introductory chapter which sets up the background and aims of the

current work, Chapter 2 gives an overview of the task model, task parameters and

constraints which are normally used in scheduler design. It then discusses various

scheduling strategies introduced in the literature.

Chapter 3 reviews previous work in scheduler design and the need for automatic

schedule generation in embedded systems.

Chapter 4 discusses the problems encountered form variations in task execution times

and the challenges involved in the process of estimating accurate values for task WCET.

Chapter 5 introduces a new set of code-balancing techniques which help to reduce

variations in the task execution time, and hence reduce jitter and increase predictability,

while avoiding the unnecessary high increase in power consumption caused by other

methods.

Chapter 6 discusses the need for choosing the appropriate scheduling strategy and

configuring the task and scheduler parameters. The effects of inappropriate choices are

also discussed and analysed.

Chapter 7 introduces and evaluates a new heuristic scheduling algorithm "TTSA1"

which helps to automate the process of scheduler selection and configuration for single-

processor embedded systems. It then discusses the scheduling overhead and its effects

on task schedulability. It also introduces an easy way of measuring this overhead and

taking its effects into account while designing the scheduler.

In Chapter 8 an improved scheduling algorithm, TTSA2, is presented. The TTSA2

algorithm assumes that points at which a task can be divided / pre-empted (such as

critical sections boundaries) are predefined. The TTSA2 uses this information to

increase the chance of finding a feasible scheduler for a given task set by dividing one,

or more, long tasks into two, or more, segments in case where it is not possible to

schedule each task as one segment.

Chapter 1: Introduction 12

Finally Chapter 9 discusses the work presented in the thesis, gives the conclusions and

future work.

1.10 Conclusions

This chapter has presented a background about embedded systems design and

emphasised on time-triggered approaches which is to be preferred in safety-related

systems. Two main problems which face developers of such systems, scheduler

fragility, and difficulties in having accurate estimates of WCET, have been discussed.

Techniques to overcome these problems will form the main focus of this document.

Chapter 2

Scheduling strategies

This chapter gives an overview of the task model, task parameters and constraints

which are normally used in scheduler design. Then it discusses various scheduling

criteria2 3

2.1 Task characteristics

introduced in the literature.

Embedded applications are usually implemented as a collection of communicating tasks

(Shaw, 2001). In the design phase of such applications each task is used to perform

certain function(s). In embedded systems in general, and in safety-related applications

in particular, it is not sufficient that the required function is implemented correctly to

produce the right output but it has to produce this output at the right time as well

(Stankovic, 1988; Cheng, 2002; Laplant, 2004). In order to achieve this each task is

assigned a set of timing parameters and constraints, such as period and deadline.

Tasks in embedded application are classified into 3 categories: periodic, aperiodic, and

sporadic.

Periodic tasks are repeated or activated frequently; the time between two activations is

called the task period (P) (Liu and Layland, 1973). Typical examples of such tasks

include sampling and processing of data (Jeffay et al., 1991).

Sporadic tasks are those tasks which are not activated regularly at fixed time intervals

but rather they have minimum inter-arrival times. Sporadic tasks can be represented as

periodic tasks with periods equal to the minimum inter-arrival time of the equivalent

sporadic tasks (Jeffay et al., 1991). A typical example of such tasks includes an alarm

or the emergency shutdown of a production robot (Zurawski, 2005).

2 Scheduling criterion describes the basic features of the scheduler (such as TT or ET, online or offline,

etc).

3 Scheduling strategy describes the way in which specific property (such as the task period) is assigned to

each task.

Chapter 2: Scheduling strategies 14

Aperiodic tasks are those tasks which are activated irregularly. Their invocation time is

not known in advance as they can be activated at any time. Typical examples of such

tasks include operator’s commands and exception handling subroutines (Lin and Tarng,

1991).

The work presented here is concerned with high reliability safety-related applications.

According to the IEC 61508 (IEC, 2005) "The term safety-related is used to describe

systems that are required to perform a specific function or functions to ensure risks are

kept at an accepted level.4

In the worked presented in this thesis it is assumed that task characteristics are known in

advance and all the tasks in the system are periodic tasks (and sporadic tasks which are

replaced by their equivalent periodic tasks). The following parameters are usually used

to characterise each task (Liu and Layland, 1973; Tindell, 1994; Buttazzo et al., 2005),

and are shown in

". The IEC 61508 is an international standard concerned with

safety-related electronic and/or programmable electronic systems.

Figure 2-1.

• Period (Pi): is the time interval after which task Ti should be repeated, in another

word it is the length of time between every two invocations.

• Offset (Oi): is the time, measured from the start of the system power on, after

which the first period of task Ti starts.

• Release time (ri): is the time, measured from the start of the task period, after

which task Ti becomes ready to run. In the rest of this document, it will be

assumed that all tasks have release time equal to zero; otherwise release time will

be explicitly stated.

• Worst-case execution time (WCETi): is the longest time taken by the processor to

execute task Ti without pre-emption.

4 This text contains extracts from the IEC Functional Safety Zone. All such extracts are copyright of

International Electrotechnical Commission © 2005, IEC, Geneva, Switzerland. All rights reserved. IEC

has no responsibility for the placement and context in which the extracts are reproduced. This notice takes

precedence over any general copyright statement.

Chapter 2: Scheduling strategies 15

• Best-case execution time (BCETi): is the shortest time taken by the processor to

execute task Ti.

• Deadline (Di): is the time before which task Ti should be completed. Deadline can

be measured from the start of the system power on, in which case it is called

absolute deadline. Alternatively it can be measured from the start of the task

period, in which case it is called relative deadline; this is illustrated in Figure 2-1.

2.2 Task constraints

As embedded systems become widespread and more complex, developers need ways to

specify various application requirements. This is normally done by specifying some

restrictions that govern the way in which each task runs and the way in which it

interacts with other tasks. These restrictions are usually represented by specifying one

or more of the task constraints described below.

2.2.1 Jitter

Many real-time applications require tasks to run at specific time instants, even small

variations of these times may cause problems. For example, in multimedia applications,

such as CD audio or video, data must be displayed/replayed under relative timing

constraints: sample K+1 must be played no later than a fixed interval (e.g., 125 µs) once

Oi ri WCETi

Di

Pi

TimeBCETi

Figure 2-1 Typical task parameters.

Chapter 2: Scheduling strategies 16

sample K is played (Han et al., 1996). Variations in this time will affect the playback

quality.

Another example is a chemical process control system. In such systems it is important

that all necessary ingredients are added in at the right times (Han et al., 1996). When

scheduling a moving cart to ship the ingredients to the container, it is important to have

the cart come in regular intervals so that one ingredient must be added into the container

within a certain time after another has been put in (Han et al., 1996).

A final example is the sampling task that used to measure the height of the aircraft.

Variations in the interval of executing this task will results in inaccuracy of the aircraft

estimated height.

"Output [or input] jitter refers to the variation between the inter-completion [or

activation] times of successive jobs of the same task" (Baruah et al., 1999). Jitter can be

caused by either hardware or software factors or both. Hardware factors include a drift

in the oscillator frequency, noise, or crosstalk caused by electromagnetic interference

(EMI) along a circuit or a cable pair (a further discussion are given in Phatrapornnant

(2007)). On the other hand software factors include variation in task execution time,

task pre-emption, or inappropriate design of the scheduler (Ayavoo et al., 2007; Short

and Pont, 2007; Hughes and Pont, 2008). The current work considers only the jitter

which results from software factors.

According to Baruah et al (1999) the absolute jitter of task Ti "AbsJitter(Ti)" is defined

as:

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑇𝑇𝑖𝑖) ≝ max(𝑃𝑃𝑖𝑖
(𝑚𝑚𝑚𝑚𝑚𝑚) − 𝑃𝑃𝑖𝑖 ,𝑃𝑃𝑖𝑖 − 𝑃𝑃𝑖𝑖

(𝑚𝑚𝑖𝑖𝑚𝑚)) Equation 2-1

where:

𝑃𝑃𝑖𝑖
(𝑚𝑚𝑖𝑖𝑚𝑚) ≝ {𝐶𝐶𝑖𝑖

(𝑘𝑘+1) − 𝐶𝐶𝑖𝑖
(𝑘𝑘)

𝑘𝑘≥0
𝑚𝑚𝑖𝑖𝑚𝑚 } Equation 2-2

or

𝑃𝑃𝑖𝑖
(𝑚𝑚𝑖𝑖𝑚𝑚) ≝ {𝑆𝑆𝑖𝑖

(𝑘𝑘+1) − 𝑆𝑆𝑖𝑖
(𝑘𝑘)

𝑘𝑘≥0
𝑚𝑚𝑖𝑖𝑚𝑚 }; Equation 2-3

and

Chapter 2: Scheduling strategies 17

𝑃𝑃𝑖𝑖
(𝑚𝑚𝑚𝑚𝑚𝑚) ≝ {𝐶𝐶𝑖𝑖

(𝑘𝑘+1) − 𝐶𝐶𝑖𝑖
(𝑘𝑘)

𝑘𝑘≥0
𝑚𝑚𝑚𝑚𝑚𝑚 } Equation 2-4

or

𝑃𝑃𝑖𝑖
(𝑚𝑚𝑚𝑚𝑚𝑚) ≝ {𝑆𝑆𝑖𝑖

(𝑘𝑘+1) − 𝑆𝑆𝑖𝑖
(𝑘𝑘)

𝑘𝑘≥0
𝑚𝑚𝑚𝑚𝑚𝑚 }; Equation 2-5

𝑃𝑃𝑖𝑖
(𝑚𝑚𝑖𝑖𝑚𝑚) denotes the minimum time intervals between successive completions (or

invocation) of task Ti;

𝑃𝑃𝑖𝑖
(𝑚𝑚𝑚𝑚𝑚𝑚) denotes the maximum time intervals between successive completions (or

invocation) of task Ti;

𝑆𝑆𝑖𝑖
(𝑘𝑘) denotes the start time of the kth invocation of task Ti ;

𝐶𝐶𝑖𝑖
(𝑘𝑘) denotes the completion time of the kth invocation of task Ti.

For simplicity of notation the "AbsJitter(Ti)" will be simply donated as "Jitter(Ti)" in the

remainder of this document.

2.2.2 Precedence

Precedence constraints are used to specify the execution order between two tasks

(Sandström and Norström, 2002). For example in control application it is required that

the sampling process (sampling task) is done first and that it is followed by calculating

the control algorithm (control task) and finally the actuation process (actuation task) is

run at the end. So the sampling task should precede the control task which in turn

should precede the actuation task.

If it is required that task Ti precedes task Tj, then, in any tick, task Tj is allowed to start

its execution only after task Ti completes its execution, i.e. for any k:

𝐶𝐶𝑖𝑖
(𝑘𝑘) ≤ 𝑆𝑆𝑗𝑗

(𝑘𝑘) Equation 2-6

where: k is the k th invocation of task Ti and task Tj.

Chapter 2: Scheduling strategies 18

2.2.3 Exclusion

Exclusion constraints are used to maintain data consistency and control access to shared

resources (Buttazzo, 2005a). For example if two tasks, task Ti and task Tj,, share one

(or more) variable(s), in order to prevent simultaneous updating process of the shared

variable(s) by the two tasks an exclusion relation is specified between them. This

means that task Ti is not allowed to pre-empt task Tj and vice versa; i.e. if task Ti starts

its execution before task Tj then task Tj is not allowed to start is execution before task Ti

completes its execution (Xu and Parnas, 1990) and vice versa. This is if task Ti

excludes task Tj this means that:

if 𝑆𝑆𝑖𝑖
(𝑘𝑘) < 𝑆𝑆𝑗𝑗

(𝑘𝑘) ⇒ 𝐶𝐶𝑖𝑖
(𝑘𝑘) ≤ 𝑆𝑆𝑗𝑗

(𝑘𝑘) Equation 2-7

and

if 𝑆𝑆𝑗𝑗
(𝑘𝑘) < 𝑆𝑆𝑖𝑖

(𝑘𝑘) ⇒ 𝐶𝐶𝑗𝑗
(𝑘𝑘) ≤ 𝑆𝑆𝑖𝑖

(𝑘𝑘) Equation 2-8

2.2.4 Distance

The distance constraint is defined as the minimum time interval between the completion

of one task and the start of another task (Sandström and Norström, 2002). A reason for

this could be the delays in the communication hardware between two communicating

tasks, or the limitations in the processing speed of the environment that the tasks

interact with (Ekelin and Jonsson, 1999).

If the distance between task Ti and task Tj is required to be Distance(i,j) this means that:

𝑆𝑆𝑗𝑗
(𝑘𝑘) − 𝐶𝐶𝑖𝑖

(𝑘𝑘) ≥ 𝐷𝐷𝑖𝑖𝐴𝐴𝐴𝐴𝑚𝑚𝑚𝑚𝐷𝐷𝐴𝐴(𝑖𝑖, 𝑗𝑗) Equation 2-9

2.2.5 Latency

The latency relation between any two tasks can be defined as the maximum duration of

time between the start of one task and the completion of another task (Sandström and

Norström, 2002). For example in control applications it may be required that the time

Chapter 2: Scheduling strategies 19

interval between stating the sampling task to the completion of the actuation task does

not exceed a predefined value.

If the latency between task Ti and task task Tj is required to be Latency(i,j) this means

that:

𝐶𝐶𝑗𝑗
(𝑘𝑘) − 𝑆𝑆𝑖𝑖

(𝑘𝑘) ≤ 𝐿𝐿𝑚𝑚𝐴𝐴𝐴𝐴𝑚𝑚𝐷𝐷𝐿𝐿(𝑖𝑖, 𝑗𝑗) Equation 2-10

2.3 Scheduling criteria

As explained in the previous sections, embedded applications are normally developed as

a collection of tasks which should run under certain constraints to ensure that the system

generates the correct output within the required time interval.

The time and order in which each task should be activated can be configured through

the use of an appropriate scheduler. A feasible schedule is that in which all task

constraints are met, in which case the set of tasks is called a "schedulable" task set. The

scheduling algorithm which is able to find a feasible schedule for any schedulable task

set is called an "optimal scheduling algorithm" (Buttazzo, 2005a). In another words an

optimal scheduling algorithm can find a feasible (not necessary the best) schedule for a

given task set if any other scheduler can, i.e. this optimality is not mean related to the

quality of the schedule produced by the optimal scheduler but it is related to its ability

to find a feasible schedule.

The following subsections discuss various scheduling criteria.

2.3.1 Event-triggered and time-triggered scheduling

The event-triggered and time-triggered scheduling differs in the way in which tasks are

called. If tasks are invoked as a response to the occurrence of events represented by

external interrupts then the scheduler is event-triggered (ET), whereas tasks in time-

triggered (TT) architectures are invoked in a predefined time intervals under the control

of timer (Kopetz, 1993; Kopetz, 1997; Albert, 2004).

The question of whether to use the ET or TT architecture has been debated and

discussed intensively in the literature (Kopetz, 1991; Kopetz, 1993; Kopetz, 1997;

Chapter 2: Scheduling strategies 20

Domaratsky and Perevozchikov, 2000; Pont, 2001; Albert, 2004; Scheler and Schröder-

Preikschat, 2006).

According to Albert: "In general, reality is neither black nor white but rather gray.

Thus it depends on the application whether a time-triggered or event-triggered behavior

is more suitable" (Albert, 2004). The ET approach may prove cost effective in cases

where the system must handle many aperiodic and sporadic events (Kopetz, 1993;

Albert, 2004; Scheler and Schröder-Preikschat, 2006), since the conversion of such

events to periodic events may reduce the system utilisation. On the other hand time-

triggered systems are considered as the preferred choice for supporting safety-related

applications (Kopetz, 1997; Domaratsky and Perevozchikov, 2000; Pont, 2001; Scheler

and Schröder-Preikschat, 2006). The work in this document focuses on systems with a

TT architecture.

2.3.2 Pre-emptive and non pre-emptive (co-operative) scheduling

In pre-emptive schedulers a high priority task can pre-empt a lower priority one if the

higher priority task becomes ready to run while the lower priority task is still running

(Liu and Layland, 1973; Pont, 2001). The context of the pre-empted task (the lower

priority task) is saved to enable it later to continue its execution from the point at which

it is pre-empted; this context is loaded when the pre-empting task (the higher priority

task) finishes its execution. The disadvantages of the pre-emptive scheduler are the

imposed overhead necessary for performing this context switching and the necessity for

developing mechanisms to manage access to shared resources, so it is desirable to keep

the context switching (or the number of pre-emptions) as fewer as possible (Jeffay et

al., 1991; Joseph, 1996). On the other hand the main advantage of the pre-emptive

scheduling strategy is its responsiveness: when a high priority task becomes ready to

run it will immediately gain control of the CPU by pre-empting the current running task

(Labrosse, 2002).

By contrast, in non pre-emptive (also called co-operative) schedulers, task(s) is

executed to completion without being pre-empted (Pont, 2001; Baruah, 2006). The

main drawback of this strategy is its latency to responding to important events: a higher

priority task will have to wait until the current running task finishes its execution

(Labrosse, 2002). This problem can be solved by dividing long task(s) into two or more

Chapter 2: Scheduling strategies 21

shorter tasks (Baker and Shaw, 1988; Locke, 1992; Pont, 2001). The non pre-emptive

scheduling has the advantage of requiring low overhead and simple design (as it

guarantees exclusive access to shared resources and it has low context switch overhead,

the context switch only happen when the task finishes its execution) (Jeffay et al., 1991;

Labrosse, 2002). Another advantage is that the interrupt latency is typically low

(Labrosse, 2002).

2.3.3 Static priority and dynamic priority scheduling

In priority scheduling each task is assigned a specific priority and the schedule is

generated based on these priorities (Buttazzo, 2005b). Task priority can be either fixed

or dynamic. In the case of static (or fixed) task priority scheduling the priority of each

task is decided at design stage and does not change afterward. An example of this

scheduler is the rate monotonic (RM) scheduler in which the priority of each task is

assigned based on the task period; the shorter the task period the higher its priority (Liu

and Layland, 1973). By contrast, in dynamic priority scheduling the priority of each

task is dynamically assigned and can be changed at runtime (Buttazzo, 2005b). An

example of such scheduler is the earliest deadline first (EDF) scheduler in which the

priority of each task depends on its absolute deadline, the sooner the task deadline, with

respect to other tasks’ deadlines, the higher the task priority (Liu and Layland, 1973).

The main advantage of priority scheduling is its flexibility in handling dynamic

situations such as creating a new task, or changing one or more of the task

characteristics (such as task period) (Buttazzo, 2005b). On the other hand this

flexibility comes at the price of increasing the system complexity, especially in the case

of using dynamic priority scheduling. In such systems careful analysis of the scheduler

and resource allocation techniques has to be made to avoid problems which can arise

during run time. An example of such problems is the famous priority inversion problem

(Sha et al., 1990) which will be discussed later in this chapter.

A well known example of a situation in which such problem is encountered and caused

multiple systems resets is the NASA Mars Pathfinder (Reeves, 1997).

Chapter 2: Scheduling strategies 22

2.3.4 Offline and online scheduling

In online schedulers, scheduling decisions are taken at run-time (Marwedel, 2006). This

approach is normally used in systems in which it is likely that a task(s) can be added /

removed during run time, such as a team of robots cleaning up a chemical spill

(Stankovic et al., 1995). These schedulers generate overhead at run-time, but are quite

flexible (Marwedel, 2006).

By contrast, in offline schedulers, scheduling decisions are taken at design time (Xu,

1993; Marwedel, 2006). These schedulers are normally used in cases where a complete

knowledge of task properties and constraints are known in advance (at design time),

such as control applications which have well defined environment and processing

requirements and uses fixed sets of sensors and actuators (Stankovic et al., 1995).

Offline schedulers are usually based on pre-run-time analysis of the system. The

scheduler is often computed for a period of time equals to the least common multiple

(LCM) of task periods, which is the period of time after which the same sequence of

task calling is repeated over time (Xu and Parnas, 1993). The main advantage of pre-

run-time scheduling is that satisfying all the deadlines and other constraints are easy to

verify (Xu and Parnas, 2000).

Finally it remains the case that the choice of certain architecture depends on the

application at hand. As noted by Laplant "even after more than 30 years of research

there is no methodology available that answers all of the challenges of real-time

specification and design all the time and for all applications." (Laplant, 2004).

A wide range of schedulers can be used in real-time systems based on the scheduling

criteria discussed above. These schedulers have different behaviours. The following

sections will discuss the most commonly used schedulers.

2.4 Cyclic executives

As its name implies, in cyclic executive based schedulers the sequence and pattern at

which tasks (which are normally periodic) are executed takes the form of a cycle which

is repeated over time. This cycle is usually called the "major cycle". The length of this

major cycle is taken as the least common multiple (LCM) of all tasks' periods. The

major cycle is divided into a number of smaller cycles called "minor cycles" (in TT

Chapter 2: Scheduling strategies 23

architectures they are called "ticks"). Normally the length of the minor cycle is taken as

the greatest common divisor (GCD) of the tasks’ periods.

Although they have been used in many applications for a long time, the first formal

description of cyclic executives is introduced by Baker and Shaw (1988). This work is

followed by many studies and discussions over the years (Baker and Shaw, 1988;

Locke, 1992; Burns, 1995; Kopetz, 1997; Zamorano et al., 1997; Pont, 2001). Recent

uses of such simple schedulers can be noted. For example Huang et al. (2003) used a

fixed-polling binary tree for USB bandwidth scheduling using a cyclic-executive-based

approach "which has low run-time overhead" (Huang et al., 2003). They showed that

this method helped to guarantee the quality of service requirements for the device. In

another recent study, Gangoiti et al.(2005) used co-simulation of different tools

employed in PLC programming and process modelling and simulation. They used a

cyclic executive design to mark the time instants in which data exchange must be

performed for each control loop, in order to facilitate the design of the simulation steps

in both tools.

Cyclic executives based schedulers are usually used in offline scheduling, in which

scheduling decisions are taken at the design time.

Figure 2-2 shows an example of a simple cyclic executive scheduler which has 3 tasks

(Task A; Task B, Task C) with fixed durations of 3, 4, and 5 ms respectively; assuming

that each has a period of 30 ms, as shown in Table 2-1 (Pont, 2001; Kurian and Pont,

2007).

Table 2-1 Task specifications for a system runs with

 simple cyclic executive scheduler.

Task WCET (ms) Deadline (ms) Period (ms)

A 3 30 30

B 4 30 30

C 5 30 30

Chapter 2: Scheduling strategies 24

The major advantage of this scheduler is its simple implementation and small resource

requirements (Pont, 2001; Kurian and Pont, 2007). On the other hand, the main

disadvantage of this scheduler is that it is difficult to obtain a fixed period length of

tasks if the tasks execution times are not fixed (Kurian and Pont, 2007). This will, in

turn, have bad effects on task jitter and / or may cause some tasks to miss their

deadlines. This problem can be solved by careful use of timers, such as that which is

used in TTC and TTH schedulers, further details are given in Appendix A.

2.4.1 Common problems with cyclic executive schedulers

The main problems facing developers of cyclic executive based scheduler are mainly

similar to those problems facing designers of TTC and TTH (the possibility of task

overruns (at run time) and the schedule fragility (at design time)). These problems

along with the proposed solutions were previously discussed in Section 1.6.

2.5 Priority schedulers

Priority-based schedulers are usually used in online scheduling, in which scheduling

decisions are taken at run-time; when a running task finishes its execution or a new task

enters the system (Cottet et al., 2002). As described above task priority can either be

fixed and never changed once it is assigned to the task (fixed priority scheduling) or can

be changed during the run-time (dynamic priority scheduling).

The following subsections discuss the most common priority-based scheduling

strategies.

A B

Time (ms)

Fixed
delay

Fixed
delay

C Fixed
delay

A BFixed
delay

Fixed
delay

C Fixed
delay

30 ms
30+ ms

10 20 30 40 50 605 15 25 35 45 55

Figure 2-2 Cyclic executive scheduler for the task set shown in Table 2-1.

Chapter 2: Scheduling strategies 25

2.5.1 Fixed priority schedulers

As discussed earlier, in fixed priority schedulers once a certain priority is assigned to a

task it does not change at run-time. This priority is usually based on a fixed parameter

which is assigned to the task before its activation (Liu and Layland, 1973; Cottet et al.,

2002). Examples of such schedulers are the rate monotonic and deadline monotonic

algorithms.

2.5.1.1 Rate monotonic scheduler

Rate monotonic (RM) scheduler is said to be as the most commonly used priority

assignment scheduling strategy used in real-time systems (Buttazzo, 2005b). The RM

scheduler assigns fixed priority to tasks according to their rate; tasks with shorter

periods are assigned higher priorities (Liu and Layland, 1973).

Bini et al. (2003) gave an example of possible use of the RM scheduler in a radar

system which is used to track a number of moving targets. Assuming that each of these

targets moves with a constant speed, which may be different from other targets’ speeds,

the RM can be used to assign priorities to tasks according to their speeds, high speed

task gets high priority. As targets dynamically enter and exit the visual field of the

radar system, corresponding tasks are activated and removed from the schedule. When

a new target enters the visual field of the radar system an acceptance test (or utilisation

test, described below) is done to check the schedulability of the new task and make sure

that accepting it will not violate the task constraints of the tasks already run in the

system. If the acceptance test fails an appropriate action can be taken, such as

allocating additional computational resources (if available), or activating an alarm.

The interest of this scheduler was initiated by a significant study introduced in 1973 by

Liu and Layland (1973). In this study tasks are assumed to be independent, periodic,

can be pre-empted at any time, have relative deadlines equal to periods, and have fixed

execution times. They showed that a set of n tasks can be scheduled with RM if the

total processor utilisation (u) satisfies the following sufficient (but not necessary)

condition:

)12(
1

1
−≤= ∑

=

n
n

i i

i n
P
eu Equation 2-11

Chapter 2: Scheduling strategies 26

where:

n is the number of tasks;

ei is the execution time of task Ti;

Pi is the period of task Ti.

This gives a least upper bound of utilisation of 0.69 for large values of n (as n tends to

infinity). This means that any task set is guaranteed to be scheduled by RM if u ≤ 0.69,

but not all task sets can be scheduled if 0.69 <u ≤ 1, for example when all pairs of

periods in the task set are in harmonic relation the tasks can still be scheduled by RM

(ignoring the other overheads) although the total utilisation of the tasks can be 1.00

(Buttazzo, 2005b). It has been shown that RM is optimal in the sense that if there exist

a feasible priority assignment schedule for a given task set, then the RM is also feasible

for that task set (Liu and Layland, 1973).

Since 1973 a great deal of work has been done by many researchers to improve the

efficiency and relax the assumptions of the RM introduced by Liu and Layland. For

example Bini et al.(2003) proposed a less pessimistic acceptance ratio, yet their

formulation has the same complexity, which allows the acceptance of task sets that

would be rejected by using the Liu and Layland original schedulability test. Sha et al.

(1990) extended the original model, which assumes that all the tasks are independent,

and propose novel protocols (the Priority Inheritance Protocol and the Priority Ceiling

Protocol) which solve the problems that may arise in the existence of shared resources

(such as task priority inversion and deadlock).

Figure 2-3 shows an example of three tasks run with RM. The specifications of these

tasks are shown in Table 2-2. It can be noticed that the condition in Equation 2-11 is

satisfied as the total processor utilisation is 0.467 which is less than the upper bound of

utilisation for three tasks (0.78).

It should be noted that that the highest priority is indicated by the smallest number.

Arrows pointing down (as those shown Figure 2-3) will be used to mark the task

deadline. These notations will be used in the rest of this document.

Chapter 2: Scheduling strategies 27

2.5.1.2 Deadline monotonic scheduler

The Deadline Monotonic (DM), or sometimes called inverse deadline, scheduler

weakens the rate monotonic’s "period equals deadline" constraint by assuming that

tasks’ deadlines can be less than their periods (Leung and Whitehead, 1982; Audsley et

al., 1991). DM scheduler was first introduced by Leung and Whitehead (1982).

According to DM scheduling technique fixed priorities are assigned to tasks based on

their relative deadlines; tasks with smaller relative deadlines are assigned higher

priorities.

Time (ms)10 15 25 305 200

Time (ms)
10 15 25 305 200

Time (ms)10 15 25 305 200

Task A

Task B

Task C

Figure 2-3 RM schedule of the task set shown in Table 2-2.

Table 2-2 Task specifications for a system scheduled by RM scheduler.

Task WCET (ms) Deadline (ms) Period (ms) Priority

A 1 5 5 0

B 3 15 15 1

C 2 30 30 2

Chapter 2: Scheduling strategies 28

Audsley et al. (1991) showed that the DM scheduler provides the application designer

with more flexible process model by discussing some motivating applications. For

example they showed that DM can be used to easily include the effect of the inevitable

communication delay in distributed systems which have precedence constraints among

periodic processes. To maintain the precedence constraints while taking the effect of

this delay into account, the deadline of these periodic processes must be set to a value

less than the end of their periods, the deference between the period and the deadline is

considered as a dead time represents the communication delay.

DM is optimal in the sense that if there exist a feasible fixed priority assignment

schedule for some task set, where deadline less than periods, then the DM is also

feasible for that task set (Leung and Merrill, 1980; Audsley et al., 1991). It has been

shown that a set of n tasks can be scheduled with DM if the processor unitization (u)

satisfies the following sufficient condition (Cottet et al., 2002):

)12(
1

1
−≤=∑

=

n
n

i i

i n
D
eu Equation 2-12

where:

n is the number of tasks;

ei is the execution time of task Ti;

Di is the relative deadline of task Ti.

Figure 2-4 shows an example of three tasks run with DM. The specifications of these

tasks are shown in Table 2-3. It can be noticed that the condition in Equation 2-12 is

satisfied as the total processor utilisation is 0.75, which is less than the upper bound of

utilisation for three tasks (0.78).

Chapter 2: Scheduling strategies 29

2.5.2 Dynamic priority schedulers

Unlike fixed priority schedulers in dynamic priority schedulers, the priority assigned to

a given task can be changed at run-time. This priority is usually based on a dynamic

parameter that may change during the system evolution (Cottet et al., 2002). Examples

of such schedulers include the earliest deadline first and least laxity first algorithms.

2.5.2.1 Earliest deadline first scheduler

While RM and DM statically assigns priorities to tasks, earliest deadline first (EDF) is

said to be the most common scheduler that dynamically assigns priority to each task

Time (ms)10 15 25 305 200

Time (ms)
10 15 25 305 200

Time (ms)10 15 25 305 200

Task A

Task B

Task C

Figure 2-4 DM schedule for the task set shown in Table 2-3.

Table 2-3 Task specifications for a system scheduled by DM scheduler.

Task WCET (ms) Deadline (ms) Period (ms) Priority

A 1 5 5 0

B 2 6 30 1

C 3 14 15 2

Chapter 2: Scheduling strategies 30

according to its current absolute deadline. The task which has the earliest deadline is

assigned the highest priority (Liu and Layland, 1973). An example of using EDF in a

real-time application is to maintain strict delay requirements of the multimedia

communication involving digital audio and/or digital video (Ferrari and Verma, 1990).

In which case the EDF is used, usually in conjunction with other scheduling strategies,

to assign high priority to packets with earliest deadline to maintain the end to end delay

requirements (Ferrari and Verma, 1990; Maina and Saidane, 2006).

Liu and Layland (1973) showed that using the same assumptions which are introduced

in their RM analysis, for a set of n periodic tasks to be scheduled by EDF the necessary

and sufficient condition is that the total processor utilisation should be less than or

equals to 1, that is:

1
1

≤=∑
=

n

i i

i

P
eu Equation 2-13

According to Cottet et al. (2002), for tasks which have deadlines less than periods the

schedulability condition becomes:

1
1

≤=∑
=

n

i i

i

D
eu Equation 2-14

It is shown also that the EDF is optimal in the sense that if there exists a feasible

priority scheduler for a given task set, then the EDF is also feasible for that task set (Liu

and Layland, 1973).

Figure 2-5 shows an example of two tasks scheduled by EDF scheduler. The

specifications of the two tasks are shown in Table 2-4.

Table 2-4 Task specifications for a system scheduled by EDF scheduler.

Task WCET (ms) Deadline (ms) Period (ms)

A 3 6 6

B 7 15 15

Chapter 2: Scheduling strategies 31

2.5.2.2 Least laxity first

The laxity (or slack) of a task is defined as the maximum time the task can be delayed

without missing its deadline (Cheng, 2002). According to Buttazzo (2005a), the laxity

(Li) of task Ti can be calculated as:

iiii erDL −−= Equation 2-15

where:

Di is the relative deadline of task Ti

ri is the arrival time of task Ti,

ei is the execution time of task Ti.

The least laxity first (LLF) algorithm assigns priority to each task according to its laxity,

the task that has the least laxity is assigned the highest priority (Leung, 1989). As

shown in Oh and Yang (1998) using the LLF will result in poor system performance in

case where there are two or more tasks have same, or close, laxity. This is because of

the frequent context switches which takes place at every scheduling point until the tie

breaks. They introduced a Modified Least-Laxity-First (MLLF) to solve this problem.

The MLLF scheduling algorithm reduces the number of context switches by delaying

them until necessary, even if the laxity-tie occurs.

Time (ms)20

Task B

64 108 1412 18 2220 2624 302816

Time (ms)20

Task A

64 108 1412 18 2220 2624 302816

Figure 2-5 EDF schedule for the task set shown in Table 2-4.

Chapter 2: Scheduling strategies 32

LLF, like EDF, is optimal for pre-emptable tasks with no precedence, resource, or

mutual exclusion constraints (Cottet et al., 2002).

Figure 2-6 shows an example, given by Cottet et al. (2002), to describe the idea of LLF.

Task specifications are shown in Table 2-5.

2.5.3 Common problems with priority schedulers

As shown above, priority-based schedulers usually allow task pre-emption to occur. In

case where tasks share resources, specific techniques, such as using semaphores, can be

used to prevent simultaneous access to shared resources. If not carefully designed, the

use of these techniques may cause other problems, such as priority inversion or

Time (ms)0

Task A

2 4 6 10 12 148 16 18 20

Time (ms)0

Task B

2 4 6 10 12 148 16 18 20

Time (ms)0

Task C

2 4 6 10 12 148 16 18 20

Figure 2-6 LLF schedule for the task set shown in Table 2-5,

adapted from Cottet et al. (2002).

Table 2-5 Task specifications for a system scheduled by LLF scheduler.

Task WCET (ms) Deadline (ms) Period (ms)

A 2 4 5

B 3 7 20

C 1 8 10

Chapter 2: Scheduling strategies 33

deadlock, which may results in violating task constraints, such as missing deadlines

(Sha et al., 1990; Silberschatz and Galven, 1998; Cottet et al., 2002).

The above problems along with suggested solutions, which can be used to avoid their

occurrence, or at least reduce their effects, are previously discussed by Sha et al. (1990).

The following subsections will summarise this work.

2.5.3.1 Priority inversion

As defined by Sha et al., "priority inversion is the phenomenon where a higher priority

job is blocked by lower priority job." (Sha et al., 1990). They showed that this can

happen in situations where both the high priority tasks and the low priority ones have a

shared resource. In situations where the high priority task is activated and requested

access to the shared resource while the lower priority task is still running and holding

that shared resource, the high priority task will be blocked and wait until the low

priority task completes its execution, or at least releases the shared resource. In this

case it can be seen that the priorities of the two tasks are inverted, as the lower priority

task enforced the high priority one to wait until it finishes. The situation may

exaggerate in cases where the lower priority task is pre-empted by another task with

intermediate priority, which does not need to access the shared resource. In this case

the high priority task has to wait until both the two tasks finish their executions. This

may cause the high priority task to miss its deadline.

Table 2-6 and Figure 2-7 show an example given by Sha et al. (1990) for a system that

may suffer from the priority inversion phenomenon. The system has 3 tasks which

have the priorities shown in Table 2-6. Task A and Task C share a common resource

R1. The sequence of events listed in Table 2-6 can be described as follows:

• At time t0 Task C is released and gains access to the microprocessor.

• At time t1 it requires access to the shared resource R1. As this resource is not

currently in use, Task C gains access to it and hence locks it.

• At time t2 Task A becomes ready to run and pre-empts Task C as it has a higher

priority.

• At time t3 Task A requires access to the shared resource R1. As this resource is

currently being locked by Task C, Task A is blocked and the control goes back to

Task C.

Chapter 2: Scheduling strategies 34

• At time t4 the task with the intermediate priority, Task B, becomes ready to run and

pre-empts Task C as it has a higher priority.

• At time t5 Task B finishes its execution and releases the processor for Task C to

resume its execution.

• At time t6 Task C releases the shared resources and is pre-empted by Task A which

now can use the resource.

• At time t7 Task A finishes its execution and releases the shared resource so Task C

resumes its execution and eventually releases the processor when it finishes.

As can be noticed from the above scenario the priority inversion problem occurred as

the highest task, Task A, was forced to wait for a lower priority task, Task C.

Timet0 t1 t2 t3 t4 t5 t6 t7 t8

Timet0 t1 t2 t3 t4 t5 t6 t7 t8

Timet0 t1 t2 t3 t4 t5 t6 t7 t8

request
R1

request
R1

release
R1

release
R1

Task A
released

Task B
released

Task C
released

R1 in use

Figure 2-7 Illustration of the priority inversion phenomenon for tasks shown in

Table 2-6, adapted from Sha et al. (1990).

Table 2-6 Task specifications for a system which may encounter priority inversion

Task Priority Release time Request R1 time

A 0 t2 t3

B 1 t4 -

C 2 t0 t1

Chapter 2: Scheduling strategies 35

Moreover, the situation was exaggerated when Task C had been pre-empted by Task B,

an intermediate priority task, which in turn increased the blocking time of the highest

priority task.

In order to reduce the effects of priority inversion, i.e. to shorten the task blocking time,

the priority inheritance protocol introduced by Sha et al. (1990) can be used. The basic

idea of the priority inheritance protocol is that any task executing in its critical section

(the area of the code during which the tasks should not be pre-empted), or holding a

shared resource, inherit the priority the highest priority task waiting for this resource,

and return to its original priority after exiting its critical section or releasing the shared

resource. This has been proven to reduce the blocking time of the high priority tasks.

Figure 2-8 shows how priority inheritance protocol helps to reduce the effects of

priority inversion in the above example. This is can be explained as follows.

At time t3 when Task A required access to the shared resource R1, which is currently

blocked by Task C, Task A is blocked and Task C temporary inherited the priority of

Task A and continued running with this priority. Later, at time t4, when Task B became

ready to run it could not pre-empt Task C as its priority is lower than the new priority of

Task C. As a consequence Task C continued running with this priority until it released

the shared resource, at which point it restored its original priority. This enabled Task A

to pre-empt Task C and gain access to the shared resource. After Task A finished its

execution control goes to Task B as it has had the highest priority amongst tasks which

are waiting. Eventually, Task C resumed its execution after Task B finished.

As can be noticed from the above example, with the help of using the priority

inheritance protocol the blocking time of the higher priority task can be reduced.

Chapter 2: Scheduling strategies 36

2.5.3.2 Deadlock

A deadlock may occur if two, or more, tasks share two, or more, resources and each one

of them hold one resource while it is waiting for another resource which is currently

held by the other task. To explain this situation consider the following example which

is given by Sha et al. (1990).

Consider the system of tasks indicated in Table 2-7 and

Figure 2-9. Assume that Task B and Task C share two common resources which can be

locked by the semaphores S1 and S2. Only Task A has an access to a resource which

can be locked by the semaphore S0. The deadlock problem can be explained by

considering the following sequence of events as listed in Table 2-7.

• At time t0 Task C is released and gaines access to the microprocessor.

• At time t1 it requires access to the shared resource locked by semaphore S2. As

this resource is now available Task C gaines access to it and lockes it by semaphore

S2.

• At time t2 Task B becomes ready to run and pre-empts Task C as it has a higher

priority.

Task A
released

Timet0 t1 t2 t3 t4 t5 t6 t7 t8

Timet0 t1 t2 t3 t4 t5 t6 t7 t8Task C
released

Timet0 t1 t2 t3 t4 t5 t6 t7 t8

Task B
released

request
R1

request
R1

release
R1

release
R1

R1 in use

Figure 2-8 Illustration of using the priority inheritance protocol for tasks shown

in Table 2-6, adapted from Sha et al. (1990).

Chapter 2: Scheduling strategies 37

• At time t3 Task B requires access to the shared resource locked by semaphore S1.

As this resource is currently available Task B gains access to it and lockes it by

semaphore S1.

• At time t4 Task B requires access to the shared resource currently locked by

semaphore S2, this causes Task B to be blocked and the control to go back to

Task C.

• At time t5 Task A becomes ready to run so it pre-empts Task C and gains access to

the microprocessor.

• At time t6 Task A requires access to the shared resource locked by semaphore S0.

As this resource is now available Task A gains access to it and locks it.

• At t7 Task A finishes its execution and the control goes back to Task C, as Task B

is currently blocked and waiting for S2.

• At time t8 Task C requires access to the shared resource currently locked by

semaphore S1, this causes Task C to be blocked.

Table 2-7 Task specifications for a system which may suffer from deadlock.

Task Release time Priority Request S0 Request S1 Request S2

A t5 0 t6 - -

B t2 1 - t3 t4

C t0 2 - t5 t1

Chapter 2: Scheduling strategies 38

As can be noticed from the above scenario the system goes to the deadlock status as

each one of Task B and Task C was holding one resource and waiting for the resource

currently held by the other task to be released.

Techniques like priority ceiling protocol, introduced by Sha et al. (1990) can be used to

prevent the occurrence of such deadlocks. The underlying idea of this protocol is to

extend priority inheritance protocol by assigning each resource a priority (called the

ceiling priority) equals to the priority of the highest priority task that may use this

resource. A task is only allowed to gain access to a resource if the resource is free and

the task priority is higher than all priority ceilings of all resources currently held by

other tasks.

Applying this protocol to the above example helps to avoid the deadlock occurrence.

This can be described as follows.

As the resource locked by semaphore S0 can be used by Task A it is allocated a priority

ceiling equals to the priority of that task. In the same manner both semaphores S1 and

S2 are allocated a priority ceiling equals to the priority of Task B, as this is the highest

request
& lock

S2

request
& lock

S0

request
S2

unlock
S0

Task A
released

Task C
released

S2 in use

Timet0 t1 t2 t3 t4 t5 t6 t7 t8 t9Task B
released

t10

Timet0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

Timet0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

request
& Lock

S1

request
S2

S1 in useS0 in use

Figure 2-9 Illustration of the deadlock phenomenon for tasks shown in Table 2-7,

Chapter 2: Scheduling strategies 39

priority task amongst all tasks which may use the resources locked by these

semaphores. Under these conditions the scenario of events will occur according to

those shown in Figure 2-10 and can be described as follows.

The sequence of events will occur in the same manner as described above until time t3.

At this point of time Task B requires access to the shared resource locked by semaphore

S1. As the priority of Task B is not higher than the ceiling priority of this semaphore, it

will be blocked. This will cause Task C to inherit this ceiling priority and to resume its

running until it is pre-empted by Task A which has the highest priority and which will

continue to run in the same way as described above. Task C will resume its running

after Task A finishes its execution. In which case it requires and gains access to the

shared resource locked by semaphore S1, and continue running until it releases both S1

and S2. At this point of time (t8) Task B resumes its execution, gains access to both S1

and S2, and eventually finishes its execution.

request
& lock

S2

request
& lock

S0

request
S1

unlock
S0

Task A
released

Timet0 t1 t2 t3 t4 t5 t6 t7 t8 t9Task B
released

t10

Timet0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

Timet0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

Lock
S1

request
S2

lock
S1

release
S1 & S2

release
S1 & S2

S2 in useS1 in useS0 in use

request
S1

Figure 2-10 Illustration of using the priority ceiling protocol for tasks shown Table

2-7, adapted from Sha et al. (1990).

Chapter 2: Scheduling strategies 40

2.6 Discussion

In this chapter an overview of various scheduling criteria, along with the most common

scheduling strategies introduced in the literature is discussed. However there are some

misconceptions that exist between developers about the characteristics and behaviours

of various schedulers which are sometimes lead to favouring one or another. The

following subsections will consider these misconceptions.

2.6.1 Misconceptions about schedulers classification

It is noted in the literature that there are some confusions in the way various scheduling

strategies are mapped to the appropriate scheduling criteria. Not least the confusion

between different scheduling criteria themselves, for example fixed and dynamic

priority scheduling are sometimes confused with offline (or static) and online

scheduling (Stankovic et al., 1995; Marwedel, 2006).

In order to avoid the above confusions it is necessary to emphasis that each scheduling

strategy can be implemented using more than one criterion. For example the RM is

always referred to as a fixed priority scheduling as the priority of each task does not

change once it is assigned. However, RM can be implemented by allowing or

disallowing task pre-emption, i.e. using pre-emptive or non pre-emptive criterion

respectively. As a result one may have pre-emptive rate monotonic or non pre-emptive

rate monotonic. In the same way it can be implemented using either time-triggered or

event-triggered, hence one may have time-triggered rate monotonic or event-triggered

rate monotonic. Consequently different forms of RM can be used such as (non) pre-

emptive time-triggered rate monotonic or (non)-pre-emptive event-triggered rate

monotonic.

Moreover, if the complete schedule of a given task set is constructed offline by

assigning priorities according to RM - in cases where the number of tasks, along with

all the task parameters, is known in advance and these parameters will not change at

runtime- then a scheduler is referred to as a static (or offline) scheduler. On the other

hand if some task parameters, such as the task execution time, or the number of tasks in

the system may be changed at runtime, then the resulted schedule may not be the same

Chapter 2: Scheduling strategies 41

in every major cycle, in which case the scheduler is referred to as an online (or

dynamic) scheduler.

Consequently one can have (non pre-emptive)/(pre-emptive) (time-triggered)/(event-

triggered) (offline)/(online) RM scheduling strategy.

In sum may it can be said that a given scheduler can be mapped to more than one

criterion in the same time.

2.6.2 Misconceptions about offline and online schedulers

It is often argued that use of offline, or pre-run-time, scheduling produces a highly

predictable systems (Xu and Parnas, 1992; Pont, 2001; Buttazzo, 2005a). But on the

other hand there are some misconceptions about the limitations and performance of pre-

run-time schedulers that favour run-time schedulers, especially those based on priority

schedulers. These misconceptions have been addressed by Xu (1993; 2003) and Xu and

Parnas (1993; 2000) and are summarised below.

First it has been argued that pre-run-time schedulers are inadequate for an environment

whose behaviour is not completely known in advance, especially for systems in which

not all the tasks are periodic.

However, it is impossible to make sure that the timing constraints will be met if the

scheduler does not know the major characteristics of the system, especially in safety-

related systems. In addition if the minimum inter-arrival times of the non-periodic tasks

are known in advance it is possible to translate them into equivalent periodic tasks so

that it will still be possible to schedule them using the pre-run-time schedulers.

Second, it has been claimed that pre-run-time schedulers are less flexible, compared to

run-time scheduler, for systems with changing application requirements.

In reality it is not guaranteed that the run-time scheduler will be able to compute

appropriate scheduler, especially for complex systems, as in most cases the amount of

time assigned for making the scheduling decision is severely limited. This restriction in

time usually forces the run-time scheduler to use rigid hierarchy of priorities without

investigating different combinations of times and orders in which tasks can execute. By

contrast this limitation does not exist for pre-run-time schedulers which are computed

Chapter 2: Scheduling strategies 42

offline. In addition, the pre-run-time scheduler can cope with changing in the systems

by computing more than one schedule in advance (Kopetz et al., 1998). A code can

easily be inserted in the scheduler and activated by external event to enable the

processor to switch between the pre-computed schedulers (Xu and Parnas, 2000).

Third, it has been argued that the scheduler computed by pre-run-time scheduling can

be failing long as – in theory – the LCM of the task periods could be very long

(particularly in large task sets with co-prime periods).

However, in practice, there may be some flexibility in the choice of task periods (Xu

and Parnas, 1993; Pont, 2001). As an example Gerber et al. (1994; 1995) introduced a

design methodology in which the end-to-end timing constraints (which is initially

defined in such a way like: the car dynamics, such as speed, must be updates, based on

the input throttle position, within period of 5 ms (Ayavoo et al., 2005; Ayavoo et al.,

2007; Short and Pont, 2008)) are transformed into a set of intermediate rate constraints.

They introduce an algorithm that solves these constraints with minimising the CPU

utilisation. They showed that a feasible solution for task constraints (like the period)

can found by considering the relationship of period of that task with the periods of all its

successors (for example if Task A precedes Task B, then the may have the same period

or at least one of them divides the other). Kim et al. (1999) went further to improve and

automate this period calibration method.

Fourth, it has been claimed that translating all non-periodic tasks to periodic ones and

adapting the period of all tasks to have a harmonic relation with minor cycle (usually

the greatest common divisor "GCD" of task periods) results in wasting systems

resources.

Although these techniques affect the processor utilisation their effects can be less than

the effects of other factors which adds to the cost and inefficiency of the run-time

scheduler. For example it is difficult to reduce the number of pre-emptions, and

consequently reduce the overhead cost of the of context switching, in run-time

schedulers as it has limited time to take the scheduling decision. By contrast the

number of pre-emptions can be minimised (Dobrin and Fohler, 2004) offline in the case

of pre-run-time scheduler. Another factor that adds to the system cost in a run-time

scheduler is the overhead encountered in executing the required mechanisms which are

used to avoid deadlocks and control access to shared resources. In addition, using such

Chapter 2: Scheduling strategies 43

mechanisms can reduce the processor utilisation and, even in some cases reduce the

chance of finding a feasible scheduler; for example in some cases using a priority

ceiling protocol may results in a task being blocked, and hence missed its deadline, to

prevent a possible occurrence of deadlock even if in reality executing the task would not

cause any problem. Again such mechanisms are not needed in pre-run-time scheduler.

Finally computing the scheduler offline gives the designer the opportunity to

investigate, compare, test, and verify different schedulers and choose the best one which

fits the application needs. In contrast it is impossible to find a totally online optimal

run-time scheduler in some cases, such as when there are mutual exclusion constraints

(Mok, 1983).

2.7 Conclusions

As the work in this thesis is concerned with automating the process of scheduling time-

triggered architecture this chapter starts by defining task characteristics and constraints

that are usually used to model tasks in real-time systems. Various scheduling criteria,

along with the most commonly used scheduling strategies, are reviewed. These

schedulers can be implemented either using ET or TT architecture. When using certain

scheduling strategy task parameters along with scheduler parameters need to be

appropriately chosen in order to ensure that all constraints will be met, whenever

possible.

The next chapter will review previous work that has been done in automating the

process of scheduler configuration.

Chapter 3

Scheduling algorithms

In this chapter previous work in automating the process of testing the schedulability of

a set of tasks and creating the schedule, where possible, is reviewed.

3.1 The function of scheduling algorithms5

Although some strategies, such as RM, are known to be optimal, it should be

emphasised that this optimality is only guaranteed under certain conditions (Audsley et

al., 1993), for example all tasks are assumed to be completely pre-emptable (Section

2.5.1.1 describes the conditions in which RM is optimal). Furthermore, as noted by Xu

and Parnas (2000) "Even if all processes are completely pre-emptable—an unlikely

situation in a complex hard real-time system, scheduling processes according to

priorities, is still not optimal."

Consequently the designer not only has to choose the appropriate scheduler for the

application at hand but he/she also has to customise some additional parameters, like

task starting times and task order. Inappropriate choices may lead to violating task

constraints. Manually exploring these choices is a tedious and time consuming process,

even for a small number of tasks. Hence an appropriate scheduling algorithm is often

used to automate the process of scheduler selection and customisation.

The following sections discuss the effects on task schedulability of an inappropriate

choice of scheduler or inappropriate task order and/or task starting time.

3.2 Choosing the right scheduling strategy

Inappropriate choice of the scheduling strategy may affect the task schedulability. For

example although "RM algorithm is probably the most used priority assignment in real-

5 Scheduling algorithm decides the order and the starting point of each task (by configuring a given

strategy / criterion).

Chapter 3: Scheduling algorithms 45

time applications" (Buttazzo, 2005b) it fails to find a workable schedule in some cases

where there actually exists a scheduler which can successfully schedule the tasks, such

as the EDF.

Table 3-1, Figure 3-1, and Figure 3-2 show an example given by Xu and Parnas (2000)

to illustrate this fact.

Time (ms)0

Task A

2 4 6 10 12 148 16 18 20 22 24

Time (ms)0

Task B

2 4 6 10 12 148 16 18 20 22 24

deadline miss deadline miss

Figure 3-1 Infeasible RM scheduler for task shown in Table 3-1,

adapted from Xu and Parnas (2000).

Table 3-1 Task specifications for a system in which

the scheduler strategy decision affects task schedulability.

Task r (ms) WCET (ms) Deadline (ms) Period (ms)

A 0 3 6 6

B 0 4 8 8

Chapter 3: Scheduling algorithms 46

3.3 Choosing the appropriate task order/starting time

As noted by Cheng (2002) there is no optimal priority based scheduler for non-pre-

emptable tasks with arbitrary start times, computations times, and deadlines, even on a

uniprocessor. In these cases assigning task priority without considering appropriate

assignment of task starting times and task execution order may lead to missed deadlines.

Table 3-2, Figure 3-3 , and Figure 3-4 illustrate an example adapted from Xu and Parnas

(2000) for a system in which inappropriate assigning of task stating time can lead to

missed deadline if task pre-emption is not allowed.

In this example if Task A starts its execution as soon as it becomes ready (at t=0) this

will cause Task B to miss its deadline (as it can not pre-empt Task A). On the other

hand delaying the stating time of Task A by 1 ms, and leaving the processer idle during

this period, will allow Task B to start its execution early, and eventually both the tasks

will meet their deadlines.

Time (ms)0

Task A

2 4 6 10 12 148 16 18 20 22 24

Time (ms)0

Task B

2 4 6 10 12 148 16 18 20 22 24

Figure 3-2 Feasible non pre-emptive EDF scheduler for task shown in Table 3-1,

adapted from Xu and Parnas (2000).

Chapter 3: Scheduling algorithms 47

Time (ms)0

Task A

2 64 8 10 12

Time (ms)

Task B

0 2 64 8 10 12

Figure 3-4 Feasible scheduler for task set shown in Table 3-2,

adapted from Xu and Parnas (2000).

Time (ms)0

Task A

2 64 8 10 12

Time (ms)

Task B

0 2 64 8 10 12

deadline miss

Figure 3-3 Infeasible fixed priority scheduler for task set shown in Table 3-2,

adapted from Xu and Parnas (2000).

Table 3-2 Task specifications for a system in which

task order/starting times affects task schedulability.

Task r (ms) WCET (ms) Deadline (ms) Period (ms)

A 0 10 12 12

B 1 1 2 12

Chapter 3: Scheduling algorithms 48

3.4 Automatic schedule generation in real-time systems

As explained above careful decisions have to be made in choosing and customising the

appropriate scheduler for a specific application. Although testing the schedulability and

customising the scheduler parameters can be done manually for systems with a small

number of tasks, this process is challenging and time consuming. The situation

becomes more complex and intractable as the number of tasks and the inter-task

constraints in the systems grows. As explained in Chapter 1 this problem is NP-hard.

Considerable work has been described in the literature to overcome these difficulties.

This work resulted in introducing schedulability tests via evaluating and checking the

value of a specific expression which takes task parameters as input ((Jeffay et al., 1991;

Cheng, 2002; Bini et al., 2003; Baruah, 2006) for example).

Unfortunately these tests are not sufficient as they do not normally take all task

constraints into account, such as jitter, distance, latency, precedence and exclusion. As

a result scheduling algorithms are introduced to help automate the process of scheduler

selection and customisation.

The following subsections give a brief overview of commonly used scheduling

algorithms introduced in the literature.

3.4.1 Brute-force search

Brute-force searching tests all possible combinations of settings until it finds a feasible

solution. In the worst-case it will test all possible solutions. This can be used if the

number of tasks and the inter-task constraints in the systems are small. However, as the

problem size grows (for example: as the number of tasks and inter-task constraints

increase), the brute force approach may take an extremely long time until it finds a

feasible schedule, if one exists. As Burns (1995) noted "For any reasonable number of

processes this is clearly impracticable".

For the reasons above, brute force search can be used for small size problems when

there is no other way that leads to a possible feasible scheduler, otherwise one of the

following algorithms is normally used.

Chapter 3: Scheduling algorithms 49

3.4.2 Branch-and-bound (BaB)

As described by Ekelin (2000) the branch-and-bound (BaB) algorithm searches for a

feasible solution in a tree-like pattern, branch by branch. An initial solution is

calculated in the beginning (the tree root). At each step a new branch is created to

improve the initial solution. A rule, which is calculated depending on the application at

hand, is usually used to prune the branching (bounding).

For example Xu and Parnas (1990) presented a branch-and-bound algorithm that finds

the optimal schedule (if one exists), for a set of processes (or tasks). The algorithm tries

to find a valid schedule for the set of tasks by minimising the lateness of all tasks

(lateness is defined as the difference between the completion time and the deadline). It

starts by computing an initial schedule based on the EDF strategy. This initial schedule

forms the root of the tree. The tree is expanded in two directions. The first direction is

formed by adding additional precedence relation by allowing the latest task to run

before a task in the parent branch. The second direction is formed by adding additional

pre-emption relation by allowing the latest task to pre-empt a task in the parent branch.

At each stage, the lower bound of lateness of all the new braches is calculated. The tree

is expanded from the node which has the lower bound of lateness. The search continues

until a feasible schedule is found or until there no improvement in the lateness. Xu

(1993) extended the previous study to find a feasible co-operative scheduler (if one

exists) in a multi processor environment. Kovalyov and Xu (2000) went on to further

refine this algorithm.

3.4.3 Heuristic search

Unlike brute-force and BaB algorithms, which may end up testing all possible paths, in

the worst-case that lead to a feasible solution, heuristic search only tests paths that are

likely to lead to the solution (Burns, 1995). The advantage is that it takes less time, but

on the other hand it is not guaranteed that to find a solution if one exists.

The following subsections will give an overview of heuristic searche examples.

Chapter 3: Scheduling algorithms 50

3.4.3.1 Simulated annealing

Simulated annealing is an optimisation technique based on the annealing process used

in solids to obtain a perfect configuration for a crystal, the process by which all the

atoms are aligned in a lattice, this configuration having the least total energy

(Kirkpatrick et al., 1983; Radcliffe and Wilson, 1990). In the annealing process the

temperature of the metal is increased, to allow the atoms to move so as to increase the

chance that they line up with their neighbours. Then the temperature is slowly

decreased to restrict the movement of the atoms to their new aligned positions.

Kirkpatrick et al. (1983) used an analogy of this method to solve several problems that

arise in the manufacturing of computer components, such as subdividing each design

into smaller circuits small enough to fit into single chip or group of chips, deciding the

location of the circuits inside the chips, and deciding the best location of these chips on

printed circuit boards that reduce the length of the paths between them as much as

possible (Radcliffe and Wilson, 1990).

A similar approach is used by Tindell et al. (1992) to solve the problem of allocating a

number of tasks to a number of processors in a distributed hard real-time architecture.

The energy in this algorithm represents a measure of the suitability of a certain

allocation of the tasks to the processors in certain manner. The algorithm tries to find

the allocation with the lowest energy. In doing so it starts with a random point, which

represents a certain allocation, and computes the energy function of this point, Es. Then

the energy function, En, is calculated for a random point in the neighbouring space.

This point can be represented by choosing a random task and moving it to a randomly

chosen processor. The new point becomes the new starting point if its energy is less

than that of the old point or if the probability that the system energy will be decreased,

in subsequent steps, is higher than a certain value (to escape from a local minimum).

This probability is computed based on the current value of a control variable, C, which

is analogous to the temperature factor in a thermodynamic system. The control variable

is slowly reduced (‘cooling’ the system) making higher energy jumps less likely during

the annealing process. Deadline monotonic scheduling is chosen to schedule the tasks

and a token protocol is used to control the communication between different processors.

Chapter 3: Scheduling algorithms 51

3.4.3.2 Genetic algorithm

Genetic algorithms are inspired by Darwin’s theory of evolution. The basic idea around

genetic algorithms as described in Mitchell (1998) is to encode candidate (initial)

solutions to the problem at hand to abstract chromosomes, which are represented as

strings of ones and zeros. A fitness function is calculated for each chromosome. Based

on their fitness values, a number of these chromosomes are chosen to form the

following generation of solutions (next population). The new population is formed by

performing two operations on some, or all, of the selected chromosomes, crossover and

mutation. In crossover operation a number of bits are randomly selected from two

different chromosomes and swapped together to form two new chromosomes. In the

mutation operation one, or more, bits in specific chromosomes are randomly selected

and flipped. The fitness function of each chromosome in the new generations is then

calculated and the process is repeated again until a specified value of the fitness, or the

maximum number of iterations, is reached.

Sandström and Norström (2002) used a genetic algorithm to assign attributes such as

priorities and offsets to a set of tasks that have complex timing constraints in pre-

emptive priority-based run-time systems (using off-the-shelf operating systems). The

chromosomes were constructed by assigning each periodic task an offset and a priority

value, and assigning each sporadic task a priority value. The objective function was to

calculate the start times and completion times of each task so that the deviations from

the required constraints (such as the distance between tasks) is minimised.

Oh and Wu (2004) used a genetic algorithm to decide the order at which tasks have to

be scheduled and the number of the required processors in a multiprocessor

environment. In order to achieve their objective they used 2-partitions chromosomes,

the first partition was used to represent task order while the second partition was used to

represent the processor at which each task should run. Their goal was to reduce the task

finishing time and the number of needed processors for a set of tasks with precedence

constraints.

3.4.4 Constraint programming

In constraint programming the problem at hand is expressed in terms of variables,

which can take a range of values, and some constraints on these variables. A constraint

Chapter 3: Scheduling algorithms 52

solver is used to find suitable, or optimal, values for these variables. The constraint

solver uses propagation in order to reduce the search space variables by removing

values that cannot be part of a solution.

Schild and Würtz (1998; 2000) used constraint programming, with the help of constraint

programming language Oz, to solve the problem of finding a feasible schedule and map

tasks to different processor in time-triggered architecture. Ekelin and Jonsson (2000;

2001) extended this work by extending the problem to include more task constraints and

system constraints using the SICStus Prolog and its associated constraint solver.

3.5 Previous work done in ESL for auto code generation for TT systems

All the above work is relevant to a discussion about tool support for scheduler design.

However, none of this previous work relates directly to TTC / TTH architectures:

instead, such previous studies have tended to focus on "conventional" RT operating

systems (e.g. VxWorks: (Sandström and Norström, 2002)). Such operating systems

exceed the resource requirements available in the types of processor considered in this

study.

While previous studies on scheduler parameter selection do not relate directly to the

work presented in this thesis, there has been considerable work carried out by

researchers in Embedded Systems Laboratory (ESL) at the University of Leicester over

recent years on the "automatic" creation of systems with a TTC architecture (e.g.

(Mwelwa et al., 2003; Mwelwa et al., 2004; Mwelwa et al., 2005; Mwelwa, 2006;

Mwelwa et al., 2006)). Such work supports the creation of code for complete TTC

systems (including the system scheduler) using a collection of "design patterns" (Pont,

2001; Kurian and Pont, 2005a; Kurian and Pont, 2005b; Kurian and Pont, 2006a;

Kurian and Pont, 2006b; Pont et al., 2006; Kurian and Pont, 2007). The following

subsections summarise the work done in this area.

3.5.1 Design patterns

In software engineering, design patterns describe solutions to commonly recurring

software problems (Sommerville, 2007). Work on design patterns in general was

initiated by Alexander and his colleagues (Alexander et al., 1977; Alexander, 1979;

Chapter 3: Scheduling algorithms 53

Kurian and Pont, 2007) who use it in architecture. This work inspired researchers

working in software to use design patterns in software design (Cunningham and Beck,

1987; Gamma et al., 1995; Kurian and Pont, 2007).

Since 1996, researchers in ESL lab at the University of Leicester, more specifically

Michael J. Pont, focused on producing patterns used to support the development of

embedded systems with TTC architectures. His work resulted in the creation of a

collection of patterns (more than 70 patterns) which were referred to as the Pattern for

Time-Triggered Embedded Systems (PTTES) collection (Pont, 2001).

In recent work, Kurian and Pont (2007) have revised the form of the PTTES patterns.

In this revised structure each pattern consists of three layers:

(i) Abstract patterns: which are used to describe the pattern at the higher

abstraction level – that of the system design

(ii) Patterns: describe ways in which a given abstract pattern can be

implemented

(iii) Pattern Implementation examples (PIEs): intended to illustrate how a

particular pattern can be implemented on different hardware platforms.

It has been shown that design patterns provide an effective means of developing

software for resource-constrained embedded systems in which reliability is a key design

consideration.

3.5.2 Auto code generation tool

Initially, the above work on patterns focused on a manual approach, it is assumed that

the developer has to manually search a catalogue for the appropriate pattern and adapt it

to fit his application needs (Mwelwa et al., 2005). Despite the above mentioned

advantages of using these patterns, this manual process has the potential to be error

prone and time consuming thus resulting in unreliable systems (Mwelwa et al., 2003;

Mwelwa et al., 2005; Mwelwa et al., 2006)).

To avoid these problems a pattern-based code generation tool is developed. This tool

supports the automatic code generation based on the PTTES collection (Mwelwa et al.,

2003; Mwelwa et al., 2006)).

Chapter 3: Scheduling algorithms 54

It has been demonstrated that using this tool helps reducing the time and effort required

to develop TT embedded software and potentially improve its reliability (Mwelwa et

al., 2003; Mwelwa et al., 2004; Mwelwa et al., 2005; Mwelwa, 2006; Mwelwa et al.,

2006).

3.6 Discussion

The tool mentioned above supports the development of embedded software using the

TT architectures. However, the user still needs to "hand tune" some task parameters

(like the offset) and scheduler parameters (like the tick interval).

The work presented in this thesis seeks to address the problem of choosing between

TTC and TTH schedulers and – for the chosen scheduler – determining an appropriate

set of task, and scheduler, parameters.

While choosing the appropriate scheduling strategy and the suitable task and scheduler

parameters do ensure that various task constraints are met, the resulting system is not

fully predictable; for example the points of time at which each instant of the task will

start or finish its execution cannot be predicted. This is due to the variation in task

execution times. One possible way to increase system predictability is to minimise

variations in the task execution times.

The following chapter will give an overview of the impacts of variations in task

execution time and the goals that can be achieving by fixing task execution time.

3.7 Conclusions

In this chapter previous work on scheduling algorithms for real-time systems has been

reviewed. It started by discussing the effects of choosing inappropriate scheduling

strategy and/or inappropriate task parameters on task schedulability. Then the most

commonly used scheduling algorithms are reviewed. Other scheduling algorithms are

used to deal with soft real-time systems (such as Feedback scheduling (Lu et al., 1999;

Stankovic et al., 1999) and group-EDF scheduling (Li et al., 2007)), these schedulers

are out of the scope of the current work.

Chapter 3: Scheduling algorithms 55

Most scheduling algorithms require the upper bound of task execution time to be known

at design time. The following chapter will highlight previous work done in this area

and discuss the effects of variations in task execution times.

Chapter 4

Necessity of stabilising task execution time

This chapter discusses the need for stabilising the task execution time as an important

requirement for increasing the predictability and satisfying task constraints in safety-

related systems. Previous work that has been published in the literature in this area is

reviewed.

4.1 Impacts of variations of task execution time

Variations of task execution time may affect the system predictability. Moreover, it

may cause violation of task constraints (such as violating the distance constraints

and / or introduction of unwanted high levels of jitter). This will be discussed in the

following subsections.

4.1.1 Impact of variations of task execution time on system predictability

In safety-related systems it may required that knowledge about what the system will be

doing in every moment of time during its execution (such as: which task is expected to

be running at each point of time) to be known in advance. Variations in task execution

time will affect the points at which each task finishes its execution and hence it will also

affect the points at which subsequent tasks start their executions. Moreover it may

affect the sequence at which the tasks run.

Table 4-1 describes the specifications of a set of tasks in which the system predictability

may be affected by variations in tasks execution times. Predicting the task sequence

and / or the points at which each task will start / finish its execution of such system,

when scheduled by any scheduling strategy, may not be possible. For example using

the non pre-emptive EDF strategy for scheduling these tasks will result in the schedule

shown in Figure 4-1 if tasks ran with their BCETs while it will result in the schedule

shown in Figure 4-2 if tasks ran with their WCETs.

Chapter 4: Necessity of stabilising task execution time 57

In the first case, it can be noted that when Task A runs with its BCET it finishes its

execution before the release time of Task C, and after the release time of Task B. In

which case, Task B starts its execution directly after Task A finishes, as it is the only

ready available task at that time. On the other hand, when Task A runs with its WCET

it finishes its execution after the release time of both Task B and Task C. In which case,

the non pre-emptive EDF strategy chooses to run Task C first as it has the earliest

deadline amongst the ready tasks, and Task B will run at last.

Time (ms)0

Task A

5 10 15 25 30 3520 40 45

Time (ms)0

Task B

5 10 15 25 30 3520 40 45

Time (ms)0

Task C

5 10 15 25 30 3520 40 45

Figure 4-1 Task schedule when tasks shown in Table 4-1 run with their BCETs.

Table 4-1 An example that show the effect of variations of execution time on task order.

Task Release time

(ms)
BCET

(ms)

WCET

(ms)

Deadline

(ms)

Period

(ms)

A 0 6 12 50 50

B 5 7 15 100 100

C 10 8 20 75 75

Chapter 4: Necessity of stabilising task execution time 58

4.1.2 Impact of variations of task execution time on task constraints

Variations of task execution time may result in violating the distance constraints. For

example, assuming that the WCET of Task C in a given task set equals the required

distance between two other tasks, Task A and Task B. The required distance constraint

between these two tasks can be achieved by scheduling Task C to run after Task A and

before Task B. However, variations in Task C execution time will result in violating the

distance constraint of the other two tasks.

Variation of task execution time can also affect the jitter level of the task(s) which

follows this task which will in turn reduce the system predictability.

Table 4-2, along with Figure 4-3, shows an example for a set of tasks scheduled by

TTC. It should be noted that using this scheduler Task C runs either directly after

Task A finishes its execution, or after both Task A and Task B finish their executions.

Assuming that the upper bound of jitter that can be tolerated by Task C is 3 ms, the

schedule shown in Figure 4-3 can satisfy all task constraints as long as both Task A and

Task B run always with their WCET. However variations of the execution times of

these two tasks (especially that of Task B) will increase the jitter level of Task C.

Time (ms)0

Task A

5 10 15 25 30 3520 40 45

Time (ms)0

Task B

5 10 15 25 30 3520 40 45

Time (ms)0

Task C

5 10 15 25 30 3520 40 45

Figure 4-2 Task schedule when tasks shown in Table 4-1 run with their WCETs.

Chapter 4: Necessity of stabilising task execution time 59

4.2 The need for stabilising the task execution time

In safety-related systems it is important for the scheduler to have the major

characteristics of the system in order to ensure that the timing constraints of all tasks

will be met (Xu and Parnas, 1993). The upper bound of task execution time is

considered as a key requirement when determining the most appropriate scheduling

strategy (and scheduler parameters) for use with embedded systems (Engblom and

Ermedahl, 2000; Engblom and Jonsson, 2002). For example the initial schedulability

Time (ms)0

Task A

10 20 30 40 50 60

Time (ms)0

Task B

10 20 30 40 50 60

Time (ms)0

Task C

10 20 30 40 50 60

Figure 4-3 Task schedule for tasks shown in Table 4-2.

Table 4-2 An example that show the effect of variations of task execution time on jitter.

Task WCET (ms) Deadline (ms) Period (ms) Offset (ticks)

A 2 10 10 0

B 3 20 20 0

C 4 30 30 0

Chapter 4: Necessity of stabilising task execution time 60

test for any kind of scheduler is to check that the total processor utilisation is less than

or equals to one, task utilisation is calculated as the ratio of its WCET to its period.

The following subsections discuss how stabilising the task execution times to a value

equals to its WCET will help in choosing the appropriate scheduler and configuring

scheduler / task parameters, focusing on the TT schedulers.

4.2.1 Choosing an appropriate scheduler

Fixing the task execution time to a value equals to its WCET will help in choosing the

appropriate scheduling strategy as most scheduling algorithms rely on knowledge about

task WCET. For example, by checking the tasks’ WCETs, along with their periods, for

a given task set one can find that this set may not be schedulable by RM if their

utilisation exceeds the limit in Equation 2-11. But, on the other hand, the same task set

may still satisfy the EDF utilisation limit given by Equation 2-13 and hence be

schedulable by the EDF.

Moreover task execution time is considered as a key player in other scheduling

strategies, for example the Shortest Job First (SJF) strategy (Stankovic and

Ramamritham, 1987; Cottet et al., 2002; Buttazzo, 2005a) assigns priorities to tasks

according to the length of their execution time, the shorter the task execution time the

higher its priority.

The same applies in the situation where it is required to choose between the TTC and

TTH schedulers. As explained earlier TTC fails to find a workable scheduler for a

system which has one, or more, long task with WCET longer than the time frame within

which the system has to respond to an external event, assuming that the long task has to

be run as one segment. In this case the TTH may be considered as an appropriate

choice. Additionally the pre-emptive task in TTH is normally chosen to be the task

with the smallest period, which usually has a short execution time (Pont, 2001).

4.2.2 Configuring scheduler/task parameters

Given that an appropriate scheduling strategy is used, knowledge about task execution

time still plays a key role in configuring task / scheduler parameters such as task offsets

Chapter 4: Necessity of stabilising task execution time 61

and tick intervals. For example the designer of safety-related applications may need to

employ error checking and recovery mechanisms (such as task guardians (Hughes and

Pont, 2004), and/or watchdog timers (Pont and Ong, 2002)). In these cases the tasks

should be scheduled in such a way that the summation of WCETs of tasks which run at

any tick does not exceed the length of the tick interval. To achieve this, an appropriate

tick interval must be chosen. Moreover, if such a tick interval cannot be found, offsets

can be used to balance the load over different ticks (an example is discussed in Section

6.3).

4.3 Challenges with estimating the task execution time

There are two main challenges involved in the process of estimating the task WCET

(i) the path problem; and (ii) the state problem (Engblom and Ermedahl, 2000; Kirner

and Puschner, 2008).

The path problem was related to finding the longest execution path (the path which

takes the longest time) amongst all feasible paths through the program. It has been

shown that as the complexity of today’s embedded applications increases the number of

different paths in the program may grow exponentially with program size, which makes

the process of obtaining this path a challenging task (Deverge and Puaut, 2005; Kirner

and Puschner, 2008).

On the other hand it is shown that obtaining the upper bound of the time taken by the

processor to execute the longest path is another challenging process, this is due to the

fact that the time taken to execute a specific instruction is not constant; rather it depends

on the state of the processor at the time of executing the instruction (Rochange and

Sainrat, 2002; Kirner and Puschner, 2008). As today’s embedded designs become more

complex and make use of faster and smaller processors and "system on chip"

architectures (Baynes et al., 2003; Kirner and Puschner, 2003), which often incorporate

features such as pipelines, caches, and branch predictors that help to increase the

performance, these features, on the other hand, make it difficult to determine the

internal state of the system (Deverge and Puaut, 2005)

As a consequence, analysing the timing of the whole system and estimating the WCET

requires a significant effort even for systems with a simple software architecture, such

Chapter 4: Necessity of stabilising task execution time 62

as time-triggered systems which use a table-driven task schedule (Puschner and Kirner,

2006). In addition, use of fault-tolerance polices based on knowledge of WCET

becomes more challenging with these modern processors (Nett et al., 1996).

A number of previous studies have been conducted to address the above problems for

accurately estimating WCET: this work was based on two main approaches (i) static

analysis; and (ii) measurements based analysis (sometimes called dynamic method)

(Deverge and Puaut, 2005; Kirner and Puschner, 2008).

In measurement-based methods the time taken by the processor to execute the program

(or a set of program segments) is normally measured on real hardware (or an accurate

simulator) (Engblom and Ermedahl, 2000; Deverge and Puaut, 2005). The WCET is

obtained by taking the maximum measured time over a number of trials using a set of

selected input data.

Although this method seems to be an easy solution for obtaining the task WCET, it still

has a number of drawbacks. Firstly, it may require a custom hardware and complex

system setup, which may be available only at late stages of development (Engblom and

Ermedahl, 2000). Secondly, the upper bound of the task execution time may not be

captured; as sets of the used input data may not guaranteed to catch the longest

execution time (Deverge and Puaut, 2005). Finally, it is not guaranteed that the

measured value will be the same as the real value as it is sometimes needed to modify

the code (for example by adding some instructions to steer timers) and hence the

measured value will be for code different from the original code (Thesing, 2004).

On the other hand in static analysis based methods the WCET is calculated by statically

analysing the program structures with the help of a theoretical model of the hardware

(Deverge and Puaut, 2005). As explained earlier, although obtaining the longest path of

the program is not an easy job with today’s complex programs, it is still not sufficient

since the time taken to execute each instruction depends on the execution history (to

incorporate the effect modern processor features such as of cache, pipelines and branch

predictions) (Rochange and Sainrat, 2002; Kirner and Puschner, 2008). As in the case

of the measurement-based method, the estimated value of the WCET calculated here

will depend on the used input data (Thesing, 2004).

Chapter 4: Necessity of stabilising task execution time 63

A number of previous studies have been conducted to address the problem of accurately

estimating WCET: this work was based on the above explained methods, static-

analysis-based method and / or measurements-based method, (e.g. (Ferdinand et al.,

1997; Theiling et al., 2000; Engblom, 2002; Engblom and Jonsson, 2002; Puschner and

Burns, 2002b; Rochange and Sainrat, 2002; Deverge and Puaut, 2005; Aparicio et al.,

2008)).

Deverge and Puaut (2005) proposed generation of test data to measure the execution

times of different program segments. The test data is initially applied to the whole

program and the execution times of the program are measured over a number of runs. If

the resulting execution times are widely spread then the program is divided to a number

of small segments, with the help of the program syntax tree. This process is repeated

until the segments become small enough so that their measured execution times do not

vary. The authors assumed that the execution time of the same program path with

different data values will always be the same. They assumed that this can be done by

controlling advanced processors mechanisms (for example by disabling the cache).

Engblom and Jonsson (2002) examined the timing of instructions from the perspective

of static WCET using a mathematical model of instruction execution on in-order single-

issue pipelined processors. The particular concern in this study was to study the timing

effects between non-adjacent instructions. It is shown that it is not sufficient to

calculate the WCET of a set of instructions by simply subtracting the pipelines speedup

effect of overlapping pairs of adjacent instructions from the total sum of individual

execution time. Rather it is necessary to take the effect of executing certain instruction

on non-adjacent instruction as well, this can be either positive or negative.

In another study, Rochange and Sainrat (2002) studied the effect of speculative

execution on instruction scheduling and fetching time . They showed that branch

misprediction can result in delaying the scheduling of instruction belonging to the

correct path. Moreover it is shown that an instruction belonging to the wrong path that

has its operands ready can be executed before a preceding instruction from the correct

path that is waiting for one of its operands. It is also shown that branch misprediction

can result in longer fetching times of instruction from the correct path in case where the

later is replaced by an instruction from the wrong path.

Chapter 4: Necessity of stabilising task execution time 64

A different approach has been proposed by Puschner and Burns (2002b; 2002a; 2003):

this is called "the single-path programming paradigm". This approach was based on the

idea of writing the program in a manner which ensures that there is only one execution

path. They showed that this helps to produce a constant task execution time and hence

makes estimating the task WCET an easy job, this method will be discussed in more

detail in the following chapter.

4.4 Dealing with execution time errors

As explained earlier, problems may be caused by variations of task execution time and

inaccuracy in estimating task WCET. One simple solution to these problems is to err on

the side of caution when employing WCET estimates, thereby reducing the chances that

an overrun will occur. Typical "safety margins" used in this way are said to be around

20% (Vallerio and Jha, 2003).

Such an approach is simple and can be effective, but it inevitably adds to costs. An

alternative is to be slightly more conservative when estimating WCET values (e.g. by

adding 5% to accurate estimates) and then to extend the scheduler (or add additional

hardware) in such a way that (at run time) any overrunning tasks can be shut down, and

/ or the schedule can be adjusted. Such an approach may allow dealing with error-

related overruns (for example, tasks which overrun because of a hardware-related error).

In these circumstances, the problem can be addressed (at least in part) by employing

some form of "watchdog timer" (e.g. Ganssle (1992)) in a "scheduler watchdog" design

(e.g. Pont and Ong (2002)). As an example of such an approach Pont and Ong (2002)

introduced different scenarios that can be implemented in case of scheduler error caused

by problems such as task overrun detected by watchdog timer. The first introduced

scenario was based on resetting the system "reset recovery". This can be used in cases

where the overrun caused by a temporary error. However, if the task overrun was the

result of a permanent error they introduced a "fail silent" mode. In such mode the

systems is assumed to be put in a freezing known safe state. Moreover a "limp home

recovery" scenario was introduced in which a simple control algorithm, for example,

can be used to control the system.

Alternatively, greater control over the system behaviour can be obtained by using a

"task guardian" presented by Hughes and Pont (2004; 2008). The simplest form of the

Chapter 4: Necessity of stabilising task execution time 65

presented task guardian was to shut-down the overrun task and return the system to its

original status before running that task. A better solution is also provided in which the

facility of running a backup task, if one exists, is added to the task guardian which can

be useful for safety-related applications. Alternatively, if a backup task does not exist

then the scheduler can lower the priority of the overrunning task to reduce its impact in

case it overran again.

The effectiveness of the above techniques can be increased if all tasks in the system run

with a fixed execution time. This will help in having prior knowledge about the points

in time at which each task should start / finish its execution and the order at which the

tasks in the system run, as indicated earlier in this chapter.

4.5 Discussion

As discussed above, variations in task execution time may lead to violation of task

constraints and / or decreasing the system predictability.

On the other hand by stabilising the task execution time and using the appropriate

scheduling algorithm, and choosing the suitable task and scheduler parameters, all task

constraints can be met. Moreover stabilising the task execution times will increase the

systems determinism and predictability as it will help in predicting not only the task

starting time but also its finishing time. Finally, maintaining a fixed task execution time

has the potential of helping safety agents to check the correct operation of the system

and take appropriate actions in case of error.

4.6 Conclusions

In this chapter the impacts of variations in task execution time is discussed. It has been

shown that variations in task execution time may affect the system reliability and may

cause violations of task constraints. On the other hand it has been shown that stabilising

the task execution time, to a value equals to its WCET, can help in choosing the

appropriate scheduler and configuring the scheduler / task parameters.

Chapter 4: Necessity of stabilising task execution time 66

The chapter then gave an overview of previous work that has been described in the

literature in the area of estimating task execution time. Finally it concluded by

discussing ways used to deal with execution time errors.

The following chapter will present a set of novel code-balancing techniques that are

intended to help reducing variations in the task execution time.

Chapter 5

Code-balancing techniques

This chapter presents a set of novel code-balancing techniques which help in reducing

the variations in task execution time with limited overhead in system power

consumption6

5.1 Toward a fixed execution path

.

As explained in the previous chapter the upper bound of task execution time is

considered as a key characteristic which should be known in advance when designing

safety-related systems. This upper bound can be obtained by calculating, or measuring

the time taken by the processor to execute the longest path in the program. As noted by

Deverge and Puaut (2005) "The analysis of complete paths of the whole program could

be unachievable in practice. Moreover, number of paths could be exponential even for

small program. " Unfortunately, "Any brute-force approach like executing or simulating

the program with all possible input data is doomed to fail due to the high number of

paths and typically even higher number of different values of input data." (Kirner and

Puschner, 2008).

As part of an effort to address this problem, Puschner and Burns (2002b) proposed the

"single path programming paradigm". As its name implies, program code written

according to this paradigm has only one execution path: this helps to ensure a constant

execution time. Yet there are two problems with the techniques described by Puschner

and Burns: (i) they are applicable only to hardware which supports "conditional move"

or similar instructions; (ii) their balancing approach increases power consumption. The

work presented in this chapter will address both of these problems with a set of novel

code-balancing techniques. The effectiveness of these new techniques is explored by

means of an empirical study.

6 Parts of this chapter have been published previously in Gendy and Pont (2007)

Chapter 5: Code-balancing techniques 68

5.2 The single path programming paradigm

This section gives an overview of the single-path programming paradigm as described

previously by Puschner and Burns (2002b; 2002a; 2003).

Programming code that complies with the single-path programming paradigm has only

one execution path. This can be achieved by replacing input-data dependencies in the

control flow by predicated (instead of branched) code. In predicated execution,

instructions are associated with predicates: if the predicate evaluates to true the

instruction is executed; otherwise the microprocessor internally replaces the instruction

by a no-operation (NOP) instruction. It is assumed that a simple predicated execution

model is used (such as the conditional move instruction in M-Core processor, in which

conditional instructions have a constant, data-independent execution time).

As an example, Figure 5-1 shows pseudo code that indicates how a code branch using

an if-then-else structure can be translated to the single path form. In this example the

conditional move instruction "movt" copies the value of "temp1" to "result" if the result

of the "test" instruction is true; otherwise the processor performs a NOP instruction.

The same can be said for the "movf" instruction; it will copy the value of "temp2" to

"result" if the result of the "test" instruction is false; otherwise the processor performs a

NOP instruction. This code can be easily modified to be used with nested if statements

(Allen et al., 1983).

Figure 5-1 Converting if-then-else structure to single path,

adapted from (Puschner and Burns, 2003).

 if (cond)

 {

 result = expr1;

 }

else

 {

 result = expr2;

 }

temp1 = expr1;

temp2 = expr2;

test cond;

movt result, temp1;

movf result, temp2;

Chapter 5: Code-balancing techniques 69

In a similar manner, a loop of variable length can be translated into a loop of constant

length (provided that the maximum size of the loop is known). Less structured "goto"

and "exit" statements are not considered in this approach.

It has been demonstrated by Puschner and Burns (2002b; 2002a; 2003) that using this

method helps to produce a constant task execution time. However, this method has

some drawbacks:

(i) Its usage is limited to hardware which supports "conditional move" or similar

instructions

(ii) It is likely to increase power consumption because the CPU will always execute

the single-path code for a fixed (maximum) period. During this time, the

processor will be in "full power" mode.

5.3 The proposed CB1 techniques

This section addresses the drawbacks mentioned above by using a set of novel code-

balancing techniques. For ease of reference, the approaches described here are referred

to as the "CB1 techniques" in the remainder of this thesis.

5.3.1 Overview

The main idea behind the CB1 approach can be explained by considering an example.

This example is intended to reduce variations in the time taken to complete a number of

iterations in a given loop.

Assume that the time spent in performing "x" iterations of the loop is equal to Time(x).

The microcontroller is set to enter a power-saving mode for the period of time required

to perform (MAX - x) iterations, where MAX is the maximum number of iterations.

This time can be approximated by Equation 5-1.

) Time(*) - (MAX) - (MAX Time
x

xxx = Equation 5-1

Chapter 5: Code-balancing techniques 70

Hardware timers can be used to measure Time(x); the time spent in performing x

iterations, by starting the timer directly before the start of the loop and stop it directly

after the last statement of the loop. By substituting this value in Equation 5-1,

Time(MAX - x) can be calculated. This time can then be used to set a timer interrupt to

waken the microcontroller after the required time has elapsed.

It should be noted that it is assumed that the loop will be executed at least once for

Equation 5-1 to give real results. It should also be noted that Time(MAX – x) given by

Equation 5-1 is an approximation as it does not take into account the effects of the

performance improvements features mentioned earlier. The reason for this

approximation is to simplify the calculations and the implementations process so as to

be suitable for any platform while avoiding complex analysis of each specific feature.

Based on this form of "sandwich delay"(Pont et al., 2006), a set of balanced code can be

used to reduce the variations in executing for and while loops, as explained in the

following subsections.

5.3.2 Balanced for loop

Figure 5-2 shows pseudo code that can be used to reduce variations in the WCET of a

for-loop for any number of iterations in the range of [1, MAX], where MAX is the

maximum number of iterations.

A small "safety margin" was added to the time calculated in Equation 5-1 to assure that

there is time to enter sleep mode before the interrupt occurs even at the maximum loop

length.

Chapter 5: Code-balancing techniques 71

5.3.3 Balanced while loop used for waiting for input

Figure 5-3 shows a pseudo code that can be used to reduce variations in the WCET of

executing a while-loop which is usually used to wait, for a predefined maximum time

(TMAX), for an input to be ready.

A small "safety margin" was (again) added to the time TMAX after the end of the while

loop to ensure that there is time to enter sleep mode before the interrupt occurs, even in

cases where the input becomes ready at time TMAX. The safety margin will typically

be 1% of the value of TMAX.

Start timer;

for (i = 0; i < x; i++)
 {
 //loop body
 }

Stop timer;
Time(x) = timer count;
Time(MAX - x) = (MAX - x) * Time(x)/ x;
Reset timer;
Adjust timer interrupt to occur after time:
Time_till_next_int = Time(MAX - x) + “Safety margin”;
Send the microcontroller to power saving mode;

Figure 5-2 Pseudo code of a balanced for-loop.

Chapter 5: Code-balancing techniques 72

5.3.4 Balanced if-then-else structure

Figure 5-4 shows a pseudo code that can be used to reduce variations in the WCET of a

general if-then-else structure.

It should be noted that the number of the assignment instructions in the if-part must be

equal to those in the else-part ("NOP" padding or similar approaches must be used, if

necessary).

Set timer interrupt to occur after Time = TMAX,
//(where TMAX equals to maximum time of waiting for input //
to be available)

Start timer;

while (1)
 {
 if input is available or timer
 count equals to TMAX then
 break;
 }
Stop timer;
Adjust timer interrupt to occur after time:
Time_till_next_int=(TMAX + “safety margin” – “timer value”);
Send the microcontroller to power saving mode;

Figure 5-3 Pseudo code of a balanced while-loop used for waiting for input.

Chapter 5: Code-balancing techniques 73

5.4 Performance of the CB1 techniques

An empirical test was carried out to explore the effectiveness of the CB1 techniques.

The procedure employed and the results obtained are detailed in this section.

5.4.1 Experimental methodology

The following subsections describe the experimental methodology used to obtain the

results shown in this chapter.

5.4.1.1 Hardware platform

The tests was carried out on an NXP (formerly Philips) LPC2106 microcontroller

running on a small evaluation board (Philips, 2004b). The LPC2106 is based on an

ARM7TDMI core and is typical of modern (low cost) embedded processors. Except

where otherwise noted, the microcontroller used an oscillator frequency of 12 MHz, and

run – under control of an on-chip PLL – a CPU frequency of 60 MHz. Because this

microcontroller does not support the conditional move instruction the single path code

is modified, while keeping the main structure described by (Puschner and Burns,

2002b), to cope with this limitation.

temp1 = expr1;
temp2 = expr2;

if (cond)
 {
 result = temp1;
 }
else
 {
 result = temp2;
 }

Figure 5-4 Pseudo code of a balanced if-then-else structure,

adapted from (Puschner and Burns, 2003).

Chapter 5: Code-balancing techniques 74

5.4.1.2 Software tool chain

The compiler used was the GCC ARM 4.1.1 operating in Windows by means of

Cygwin (a Linux emulator for windows). The IDE and simulator used was the Keil

ARM development kit (v3.12), with all compiler optimizations turned off.

5.4.1.3 Power measurements

To obtain representative values of power consumption, the input current and voltage to

the LPC2106 CPU core were measured using the same method described in

Phatrapornnant (2007) and Nahas (2009), as shown in Figure 5-5. The voltage

measurements were obtained by using the National Instruments data acquisition card

‘NI PCI-6035E’ in conjunction with LabVIEW 7.1 software. Values for currents and

voltages were then multiplied and then averaged out to give the power. The sampling

rate was 100 KHz and a total of 800000 samples were recorded. Although this

sampling rate was not high enough to capture all the voltages fluctuations that results

from executing different instructions it gives a trend of the results. More accurate

results can be obtained by using a data acquisition card with higher sampling rate.

5.4.1.4 Jitter and execution time measurements

In order to measure the task jitter experimentally, a pin was set high at the beginning of

the task (for a short time) then the periods between every two successive rising edges

were measured using the same data acquisition card mentioned above (this has 24 bit

timer/counter works with 20 MHz). For every experiment a total of 2000 periods were

recorded and the jitter was calculated according to Equation 2-1. Those were averaged

to get the final jitter value.

LPC2106
core

1 Ohm

Vcc

I

V1
V2

Figure 5-5 The circuit used to measure the system power consumption,

copied from Nahas (2009)

Chapter 5: Code-balancing techniques 75

A similar approach was adapted to measure the task execution time, a pin was set high

at the beginning of the task and set low at the end of the task execution (this will

produce a pulse of width equals to the task execution time) then the pulse width

between the raising edge and failing edge was measured. For every experiment a total

of 2000 pulse widths were recorded from which the maximum, minimum and average

values were calculated.

5.4.2 Initial test

In this test an example which was used to assess the effectiveness of the single path

programming paradigm (in Puschner and Burns (2002b)) is used. The original example

explores different implementations of a "bubble sort" for arrays of 10 elements. The

original example was used to sort all the elements of the array. The version used here

sorts the first x elements of the array (where x is <= SIZE, the total number of the array

elements). This modification was made in order to explore the impact of different

implementations on the execution time, jitter, and power consumption.

The tests employed a TTC scheduler. The tick interval was set to 10 ms. The main

(sorting) task was run every two ticks.

Three additional tasks were also scheduled:

i) A "jitter-test" task. This low-priority task was scheduled to execute in the same

tick as the sorting task. It was used to measure the effect of the variations in the

execution time of the sorting task on the jitter in the start times of other tasks in the

system

ii) A "sort length" task used to increment the value of x, from 2 to 10 and then back

to 2.

iii) A "sort complexity" task used to initialise the array in "completely sorted" or

"completely unsorted" forms, in order to vary the time taken to carry out the sort

process.

Figure 5-6, Figure 5-7 , and Figure 5-8 show different implementations of the bubble

sort using the traditional, single path, and the proposed CB1 code respectively.

Chapter 5: Code-balancing techniques 76

Table 5-1 and Table 5-2 show the measured minimum and maximum execution time,

maximum jitter, and average power consumption resulted from each implementation.

From these tables it can be noticed that:

• Both the single-path code and CB1 code demonstrated a reduction in both the

variation of the execution time and in jitter levels. These improvements were at the

expense of an increase in the average power consumption and execution time.

• The jitter and the variations in execution time obtained by using the CB1 code

was less than that of the traditional code and higher than that of the single-path code.

• The average power consumption obtained by using the CB1 code was less than

that of the single path code and higher than that of the traditional code.

void traditional_bubble()
 {
 int i,j,t;
 for (i=x-1; i>0; i--)
 {
 for (j=1;j<=i;j++)
 {
 if (a[j-1] > a[j])
 {
 //swap
 t = a[j];
 a[j] = a[j-1];
 a[j-1] = t;
 }
 }
 }
 }

Figure 5-6 Traditional implementation of bubble sort.

Chapter 5: Code-balancing techniques 77

void single_path_bubble()
 {
 int i,j,s,t, dummy[10];
 char Finished_i,Finished_j;

 for (i=SIZE-1; i>0; i--)
 {
 if (i > (x-1))
 { Finished_i = 1; }

 if (!(i > (x-1)))
 { Finished_i = 0; }

 for (j=1;j<= SIZE-1;j++)
 {
 if (!(j <= i))
 { Finished_j = 1; }

 if (j <= i)
 { Finished_j = 0; }

 if (!Finished_i && !Finished_j)
 { //do real statements
 s = a[j-1];
 t = a[j];

 if (s <= t)
 {
 a[j-1] = s;
 a[j] = t;
 }

 if (s > t)
 {
 a[j-1] = t;
 a[j] = s;
 }
 }

 if (!(!Finished_i &&
 !Finished_j))
 { //do dummy statements
 s = dummy[j-1];
 t = dummy[j];

Figure 5-7 Single path implementation of bubble sort (adapted to work without the

support of the conditional move instruction) (Part 1/2).

Chapter 5: Code-balancing techniques 78

 if (s <= t)
 {
 dummy[j-1] = s;
 dummy[j] = t;
 }

 if (s > t)
 {
 dummy[j-1] = t;
 dummy[j] = s;
 }
 }
 }
 }
 }

Figure 5-7 Single path implementation of bubble sort (adapted to work without the

support of the conditional move instruction) (Part 2/2).

Chapter 5: Code-balancing techniques 79

void balanced_code_bubble()
 {
 int i,j,s,t;
 unsigned long Temp1=0,Temp2=0;
 // Initialise and start T1
 T1MCR = 0x00;
 T1TCR = 0x2; // Reset counter
 T1TCR = 0x01; // Counter enable
 for (i=x-1;i>0;i--)
 {
 //Store T1 value before inner loop
 T1TCR = 0x00;
 Temp1 = Temp1 + T1TC;

 // Prepare T1 for inner loop
 T1MCR = 0x00;
 T1TCR = 0x2;
 T1TCR = 0x01;

 for (j=1;j<=i;j++)
 {
 s = a[j-1];
 t = a[j];
 if (s<=t)
 {
 a[j-1] = s;
 a[j] = t;
 }
 if (s > t)
 {
 a[j-1] = t;
 a[j] = s;
 }
 }
 // Store T1 value at end of inner
 // loop
 T1TCR = 0x00;
 Temp2 = T1TC;

Figure 5-8 CB1 implementation of bubble sort (Part 1/2).

Chapter 5: Code-balancing techniques 80

 // Adjust MR for the remaining
 // time,
 // start T1 and go to sleep
 T1MR0 = ((SIZE- i)*Temp2)/i;
 T1TCR = 0x2;
 T1MCR = 0x05;
 T1TCR = 0x01;
 PCON = 1; // Go to sleep

 // Complete the outer loop
 // Initialise and start T1
 T1MCR = 0x00;
 // Add the time spent in inner
 // loop to the time spent so
 // far in the outer loop
 Temp1 = Temp1 + Temp2 + T1TC;
 T1TCR = 0x2; // Reset counter
 T1TCR = 0x01;// Counter enable
 }

 // Stop T1 and calculate the remaining
 // time
 // in the outer loop
 T1TCR = 0x00; // Stop counter
 Temp1 = Temp1 + T1TC;
 // Adjust MR for the remaining time,
 // start T1 and go to sleep
 T1MR0 = ((SIZE- (x-1))*Temp1)/(x-1);
 T1TCR = 0x2; // Reset counter
 T1MCR = 0x05;
 T1TCR = 0x01; // Counter enable
 PCON = 1; // Go to sleep
 }

Figure 5-8 CB1 implementation of bubble sort (Part 2/2).

Chapter 5: Code-balancing techniques 81

5.4.3 Extended test

The experiment described in the previous section was repeated using two additional

benchmark test cases which have been used in previous WCET studies (Engblom and

Ermedahl, 2000; Engblom et al., 2001):

i) The first test case implements a single nested loop used to calculate the

Fibonacci series for up to 30 elements.

ii) The second test case implements a triple-nested loop used to calculate matrix

multiplication of two 2-D arrays up to 20x20 elements in size.

Table 5-2 Maximum jitter and average power consumption resulted from different

implementations of bubble sort.

 Maximum jitter

(ms)

Average power

consumption (mW)

Traditional 0.3208 11.8120

CB1 0.0689 13.0185

Single path 0.0515 13.0193

Table 5-1 Minimum, maximum, (maximum – minimum), and percentage of

variations (w.r.t. the maximum) in task execution time resulted from different

implementations of bubble sort.

Min (ms) Max (ms)

(Max- Min)

(ms)
% of variations

Traditional 0.00815 0.33165 0.32350 97.54 %

CB1 0.90050 1.00265 0.10215 10.19 %

Single-path 0.80210 0.85305 0.05095 5.97 %

Chapter 5: Code-balancing techniques 82

The length of the tick interval of the TTC scheduler was set to 10 ms for the first test

and 100 ms for the second test.

Table 5-3 through Table 5-6 show the measured minimum and maximum execution

times, maximum jitter, and average power consumption resulted from each case. These

results were in line with the results obtained from the test described in the previous

section.

Table 5-4 Maximum jitter and average power consumption resulted from different

implementations of Fibonacci.

 Maximum jitter

 (ms)

Average power

consumption (mW)

Traditional 0.0829 11.2170

CB1 0.0631 11.2684

Single path 0.0005 11.4732

Table 5-3 Minimum, maximum, (maximum – minimum), and percentage of

variations (w.r.t. the maximum) in task execution time resulted from different

implementations of Fibonacci.

Min (ms) Max (ms)

(Max- Min)

(ms)

% of

variations

Traditional 0.00565 0.08810 0.08245 93.59 %

CB1 0.11345 0.17700 0.06355 35.90 %

Single path 0.16640 0.16635 0.00005 0.03 %

Chapter 5: Code-balancing techniques 83

5.5 Discussion

As explained in this chapter obtaining accurate estimates of task WCET is a challenging

process. Yet it is a key factor in designing the task schedule and ensuring the

satisfaction of task constraints. Of equal importance is reducing the variations of task

execution time.

In an effort to address these problems Puschner and Burns (2002b; 2002a; 2003)

introduced what they called the "single path programming paradigm" which helps to fix

task execution time to its maximum length so that it can be measured easily.

Table 5-6 Maximum jitter and average power consumption resulted from different

implementations of Matrix Multiplication.

 Maximum jitter

(ms)

Average power

consumption (mW)

Traditional 41.5651 15.8626

CB1 3.5232 18.2561

Single path 0.2366 39.0217

Table 5-5 Minimum, maximum, (maximum – minimum), and percentage of

variations (w.r.t. the maximum) in task execution time resulted from different

implementations of Matrix Multiplication.

Min (ms) Max (ms)

(Max- Min)

(ms)

% of

variations

Traditional 0.06760 41.62990 41.56230 99.84 %

CB1 52.39640 59.85655 7.46015 12.46 %

Single path 66.25970 66.49350 0.23380 0.35 %

Chapter 5: Code-balancing techniques 84

The work presented in this chapter highlighted two issues with the techniques described

by Puschner and Burns: their limitation to be applicable to certain hardware, and their

effects on slightly increasing the power consumption. In this chapter, both of these

problems have been addressed with a novel set of code-balancing techniques.

The CB1 techniques presented in this chapter involved two stages:

i) using an interrupt-based sandwich delay to keep the execution time of tasks

fixed without requiring much increases in system power consumption.

ii) calculating the maximum execution time (and required timer settings) for each

form of branch / loop structure.

It has been demonstrated (using empirical studies) that the presented code-balancing

techniques gave intermediate results (compared with those of the traditional code and

the single-path programming paradigm) both in terms of reducing the variations in task

execution time and slightly increasing the power consumptions.

5.6 Conclusions

This chapter gave an overview of the "single path programming paradigm" as

introduced by (Puschner and Burns, 2002b). Then it presented some code-balancing

techniques which address two issues that limit the usage of this technique. It has been

shown that the use of these code-balancing techniques help to reduce variations in task

execution time by adjusting the total time taken by the processor to execute the task

with its WCET. This is done by sending the processor to power saving mode for a time

period equals to the difference between the task execution time of any task instance and

its WCET. The proposed code-balancing techniques are then empirically assessed.

In the following chapters a novel scheduling algorithm, which takes task WCET along

with other task constraints, as an input, is presented. The algorithm tries to find a

suitable scheduler and configure the task and scheduler parameters, whenever one is

found. Before introducing the algorithm the effects of inappropriate choices of task and

scheduler parameters are discussed and analysed in the following chapter.

Chapter 6

Analysis of scheduler/task configuration

This chapter analyses the effects of inappropriate configurations of the scheduler and /

or task parameters on the task behaviour and system power consumption.

6.1 A close look at TTC and TTH architectures

Before starting to discuss the possible effects of scheduler / task parameters, this section

begins by giving a detailed overview of the TT schedulers discussed in this project, as

described by (Pont, 2001; Maaita and Pont, 2005b; Kurian and Pont, 2007).

6.1.1 TTC scheduler

As its name implies, the TTC schedules the tasks co-operatively according to the time-

triggered architecture. This means that tasks are dispatched in predefined points in time

and each task runs to completion without being pre-empted. The time duration between

each two such points is usually fixed and called the "tick interval". At every tick the

status of each task is checked / updated and the tasks which are ready to run, if any, are

dispatched in order of their importance (priority). This order is specified offline before

the scheduler starts its execution.

The length of the scheduler tick interval can be adjusted by using suitable delay

functions. Generating the tick interval in this way is very simple and has small resource

requirements (Pont, 2001; Kurian and Pont, 2007). However the main disadvantage of

this method is that it is almost impossible to obtain a fixed length of tick interval if the

tasks executions times are not fixed (Kurian and Pont, 2007). This will, in turn, have

negative effects on task jitter and / or may cause some tasks to miss their deadlines.

A better way to have a fixed tick interval is to use a hardware timer. An interrupt can be

set to occur whenever a timer overflows (or a timer count matches certain value). The

timer can easily be adapted to generate the interrupt in periodic bases with a fixed

period of time equals to the tick interval. Using this method will allow the scheduler to

set the processor to an "idle" or power saving mode, to reduce the power consumption,

Chapter 6: Analysis of scheduler/task configuration 86

after finishing the execution of all ready tasks, if any, in each tick. A possible

implementation of such a scheduler is described in Appendix A.

Provided that an appropriate implementation is used, a time-triggered, cooperative

(TTC) architecture is a good match for a wide range of low-cost, resource-constrained

applications. TTC architectures also demonstrate very low levels of task jitter (Locke,

1992), and they can maintain their low-jitter characteristics even when techniques such

as dynamic voltage scaling (DVS) are employed to reduce system power consumption

(Phatrapornnant and Pont, 2006).

Table 6-1 lists the specifications of 3 tasks as an example of a system of tasks scheduled

by TTC. It should be noted that the offsets of Task A and Task B are zero while the

offset of Task C is 1 ms.

Figure 6-1 shows the timeline of the corresponding TTC scheduler which uses a tick

interval of 1 ms.

Table 6-1 Example of task specifications scheduled by TTC.

Task WCET (ms) Deadline (ms) Period (ms) Offset (ticks)

A 0.3 1 2 0
B 0.4 1 2 0
C 0.5 1 2 1

Chapter 6: Analysis of scheduler/task configuration 87

6.1.2 TTH scheduler

The TTC scheduler described above is a non pre-emptive scheduler, in the sense that it

is not possible that a low priority task to be pre-empted by a high priority task if the

latter becomes ready to run while the former is still running, i.e. each task is guaranteed

to run to completion without being pre-empted by another task. Hence, systems based

on this kind of schedulers have the advantage of being highly predictable and having

limited resource requirements (due to the limited number of context switching and the

unnecessity of implementing complex techniques to control access to shared resources).

Unfortunately these schedulers can not be used in all situations. Allworth (1981) noted:

"[The] main drawback with this [co-operative] approach is that while the current

process is running, the system is not responsive to changes in the environment.

Therefore, system processes must be extremely brief if the real-time response [of the]

system is not to be impaired."

This concern can be expressed slightly more formally by noting that if a system is being

designed which must execute one or more tasks of (worst-case) execution time e and

also respond within an interval t to external events then, in situations where t < (e +

Time (ms)

Task A

0 31 42

Time (ms)

Task C

0 31 42

Time (ms)

Task B

0 31 42

Figure 6-1 Illustrating the operation of a typical (interrupt-driven) TTC scheduler

implementation.

Chapter 6: Analysis of scheduler/task configuration 88

execution time of the task that handles the event), a pure co-operative scheduler will not

generally be suitable, as shown in Table 6-2 and Figure 6-2.

In such circumstances, it is tempting to opt immediately for a fully pre-emptive design.

Indeed, some studies seem to suggest that this is the only viable alternative (e.g. Locke

(1992) dna Bate (1998)). However, there are other design options available. For

example, a single, time-triggered, pre-empting task can be added to a TTC architecture,

to give what have been called a "time-triggered hybrid" (TTH) scheduler (Pont, 2001;

Maaita and Pont, 2005b) or "multi-rate executive with interrupts" (Kalinsky, 2001) .

Use of a TTH scheduler allows the system designer to create a static schedule made up

of (i) a collection of tasks which operate co-operatively and (ii) a single – short - pre-

empting task, Figure 6-3 shows how the tasks shown in Table 6-2 can be scheduled with

a TTH scheduler with a tick interval of 1 ms.

Time (ms)

Task A

0 31 42

Time (ms)

Task B

0 31 42

deadline miss deadline miss

Figure 6-2 illustration of TTC schedule of task set shown in Table 6-2.

Table 6-2 Example of task specifications which cannot be scheduled by TTC.

Task WCET (ms) Deadline (ms) Period (ms)

A 0.2 0.2 1

B 1.3 3 3

Chapter 6: Analysis of scheduler/task configuration 89

It should be noted that in this schedule, all tasks are periodic. This is in contrast to

architectures investigated in some previous studies (e.g. Sandström et al. (1998)) which

have sought to integrate time-triggered task scheduling with the response to aperiodic

(event related) interrupts.

6.2 The need for appropriate configuration of scheduler/task parameters

Whether a TTC or TTH implementation is used, a number of key scheduler/task

parameters must be determined (including the tick interval, task order, and initial delay -

or phase - of each task). Inappropriate choices may mean that a given task set cannot be

scheduled at all. Where the parameter set does ensure that all tasks are scheduled,

inappropriate decisions may still lead to unnecessarily high levels of task jitter and / or

to increased system power consumption.

The following sections will discuss the effects of inappropriate choices of task and / or

scheduler parameters. Some examples will be used to illustrate the effects of these

parameters. However, to limit the thesis length, and the number illustrations, in cases

where the same ideas applies in the same way when using either the TTC or TTH

schedulers, the idea will be illustrated using the TTC scheduler for ease of clarification.

P

Time (ms)

P

Task P

0 31 42

C-

Time (ms)

C-

Task C

0 31 42

P PP

-C -C

Figure 6-3 Illustrating the operation of a typical TTH scheduler implementation,

adapted from Maaita and Pont (2005b), Figure 1.

Chapter 6: Analysis of scheduler/task configuration 90

6.3 Effects of task offset

Inappropriate choices of task offset may render the task set unschedulable (for example

some tasks may miss their deadlines). Moreover even if the chosen offsets do ensure

that all tasks are scheduled, inappropriate choice of offsets may still lead – for example

– to unnecessarily high levels of task jitter.

6.3.1 Effects of task offset on schedulability

As shown earlier, the task offset specifies when the task should start (more precisely it

specifies the first tick at which the first instance of the task is ready to run). In some

situations, tasks cannot be scheduled if they start execution at the same time. In these

situations a task offset can be used to balance the processor load over various ticks so

that each task meets its deadline.

Table 6-3 shows an example for a set of tasks which cannot all be scheduled when all

tasks begin their executions simultaneously (all offsets equal to zero). This is because

the sum of the WCETs means that Task C cannot meet its deadline as it has to wait until

both Task A and Task B finish their executions before it can start its execution.

By using a suitable tick interval and adjusting the task offsets, a workable schedule can

often be achieved (Goossens and Devillers, 1997; Xu and Parnas, 2000; Pont, 2001).

For example, the tasks in Table 6-3 can be scheduled if a tick interval of 5 ms is used

and the offset of Task C is adjusted to 1 tick (as shown in Table 6-4).

Table 6-3 Task specifications for a system in which task offsets are inappropriate

(Task C missed its deadline).

Task WCET (ms) Deadline (ms) Period (ms) Offset (ticks)

A 1 5 5 0
B 1.5 5 10 0
C 3 5 10 0

Chapter 6: Analysis of scheduler/task configuration 91

6.3.2 Effects of task offset on jitter

Where the parameter set does maintain various task requirements and constraints (such

as deadlines, precedence, distance, and latency) inappropriate setting of offsets may still

increase the task jitter to a value beyond the permitted level.

Table 6-5, and the corresponding figure (Figure 6-5), shows an example for

inappropriate choices of a set of offsets for a task set. By using the shown values of

offsets it can be noticed that in some ticks Task C runs after both Task A and Task B

while in the other ticks it runs directly after Task A. So Task C will suffer from jitter

values approximately equal to the WCET of Task B which may not be a desired

behaviour if Task C is a jitter sensitive task.

Table 6-5 Task specifications for a system in which task offsets cause high jitter.

Task WCET (ms) Deadline (ms) Period (ms) Offset (ticks)

A 2 10 10 0

B 3 40 40 0

C 2 20 20 0

Table 6-4 Task specifications for a system in which task offsets are appropriate.

(All tasks met their deadlines).

Task WCET (ms) Deadline (ms) Period (ms) Offset (ticks)

A 1 5 5 0
B 1.5 5 10 0
C 3 5 10 1

Chapter 6: Analysis of scheduler/task configuration 92

Alternatively if the offsets are adjusted as shown in Table 6-6, Task C will always run

after Task A and hence will have a reduced jitter value (depending on the variations in

Task A execution times), as shown in Figure 6-5.

Table 6-6 Task specifications for a system in which task offsets cause low jitter.

Task WCET (ms) Deadline (ms) Period (ms) Offset (ticks)

A 2 10 10 0

B 3 40 40 0

C 2 20 20 1

Task A

Task C

Task B
Time (ms)0 10 20 30 40 50 60 70 80 90

Time (ms)0 10 20 30 40 50 60 70 80 90

Time (ms)0 10 20 30 40 50 60 70 80 90

Figure 6-4 Task schedule for tasks shown in Table 6-5.

Chapter 6: Analysis of scheduler/task configuration 93

6.4 Effects of tick interval

Choosing the appropriate length of the tick interval plays an important role in TT

architectures. The following subsections discuss the effects of various lengths of tick

interval on task schedulability, jitter, and system power consumption.

6.4.1 Effects of tick interval on schedulability

The developer of TT architectures has to carefully choose a suitable value for the length

of the tick interval so that it fits his application needs. An inappropriate value of tick

interval may cause violations of task constraints (such as missed deadlines).

An example that illustrates the effect of inappropriate choice of tick interval in violating

task deadlines is shown in Table 6-7 and Figure 6-6. It can be noticed that using a tick

interval of 2 ms will cause missed deadline of Task B. On the other hand using a tick

interval of 1 ms (with the appropriate offsets), as shown in Table 6-8 and Figure 6-7,

will help to ensure that all the tasks meet their deadlines.

Task A

Task C

Task B
Time (ms)0 10 20 30 40 50 60 70 80 90

Time (ms)0 10 20 30 40 50 60 70 80 90

Time (ms)0 10 20 30 40 50 60 70 80 90

Figure 6-5 Task schedule for tasks shown in Table 6-6.

Chapter 6: Analysis of scheduler/task configuration 94

Table 6-8 Task specifications for a system in which tick interval is appropriate

 (all tasks met their deadlines).

Task WCET (ms) Deadline (ms) Period (ms) Offset (ticks)

A 3 5 20 0

B 4 5 20 1

Time (ms)

Task A

0 4020

Time (ms)

Task B

0 4020

deadline miss deadline miss

Figure 6-6 Task schedule for tasks shown in Table 6-7 (with tick interval = 2 ms).

Table 6-7 Task specifications for a system in which tick interval is inappropriate

(Task B missed its deadline).

Task WCET (ms) Deadline (ms) Period (ms) Offset (ticks)

A 3 5 20 0

B 4 5 20 0

Chapter 6: Analysis of scheduler/task configuration 95

6.4.2 Effects of tick interval on jitter

In cases where the application at hand contains one or more jitter-sensitive tasks, a

suitable tick interval (along with appropriate offset) has to be chosen.

To illustrate the effect of tick interval on task jitter, assume that all the tasks specified in

Table 6-9 are jitter-sensitive tasks. Using a tick interval of 2 ms will ensure that all

tasks meet their deadline, but on the other hand it will cause Task B to suffer from jitter

which is caused by the variations in Task A execution times as shown in Figure 6-8.

One way to overcome this problem is to use a tick interval of 1 ms (with appropriate

values for the offsets) as shown in Table 6-10 and Figure 6-9. This will enable every

task to run in a separate tick and hence not be affected by the variations in the other task

execution time, if any.

Table 6-9 Task specifications for a system with an inappropriate tick interval

 (Task B suffers from jitter).

Task WCET (ms) Deadline (ms) Period (ms) Offset (ticks)

A 0.3 2 2 0

B 0.4 2 2 0

Time (ms)

Task A

0 3010 4020

Time (ms)

Task B

0 3010 4020

Figure 6-7 Task schedule for tasks shown in Table 6-8 (with tick interval = 1 ms).

Chapter 6: Analysis of scheduler/task configuration 96

6.4.3 Effects of tick interval on power consumption

As explained earlier in this chapter, the TT architectures which are discussed in this

thesis (TTC / TTH) are built on the idea of executing the tasks from a (dispatcher)

Time (ms)

Task A

0 31 42

Time (ms)

Task B

0 31 42

Figure 6-9 Task scheduler for tasks shown in Table 6-10 (with tick interval = 1 ms).

Table 6-10 Task specifications for a system with an appropriate tick interval

(all tasks have low jitter; approximately zero).

Task WCET (ms) Deadline (ms) Period (ms) Offset (ticks)

A 0.3 2 2 0

B 0.4 2 2 1

Time (ms)

Task A

0 42

Time (ms)

Task B

0 42

Figure 6-8 Task scheduler for tasks shown in Table 6-9 (with tick interval = 2 ms).

Chapter 6: Analysis of scheduler/task configuration 97

function which is invoked at every scheduler tick. This function updates the state of

each task, runs "ready" tasks, and then it places the processor into a power-saving mode

until the following tick. If the tick interval employed is shorter than necessary, there

may be some empty ticks (ticks in which there are no tasks ready to run, Figure B-3

shows an example) during which the system has to come out of the power saving mode

to execute the dispatcher before the system goes back to the power-saving mode. This

will, inevitably, increase power consumption when compared to a design with an

"optimal" tick interval.

To illustrate the effect of tick interval on system power consumption an experiment was

carried out. In this experiment a set of 3 dummy tasks was used and run on an NXP

LPC2106 microcontroller (Philips, 2004b). The period of all the three tasks was set at

10 ms. The power consumption of the core microcontroller was measured using a range

of different tick intervals (using the approach described in Section 5.4.1.3). In each

case, the results of several runs were averaged using both TTC and TTH architectures

(as shown in Table 6-11).

It can be seen from Table 6-11 that, for both TTC and TTH, choosing the largest

possible tick interval reduces the power consumption.

It should be noted that a specific value of tick interval may help in reducing the total

average power consumption but at the same time it may cause an increase in the jitter

level of one or more tasks, and vice versa, i.e. another choice of tick interval may cause

more power consumption but, if used with appropriate offsets, may reduce the jitter

level of jitter-sensitive tasks in the system.

Table 6-11 Average power consumption (mW) using different tick intervals.

Tick interval (ms) TTC TTH

1 16.6725 17.5583

2 16.3807 16.5104

5 16.1999 16.2332

10 16.1262 16.1524

Chapter 6: Analysis of scheduler/task configuration 98

So choosing the length of the tick interval will depend on the requirements of the

application at hand.

6.5 Effects of task order

The sequence at which TTC and TTH check and update the status of each task, and run

the ready ones (in each tick) has to ensure that task precedence constrains are met.

Even in situations where task order does maintain these precedence constraints, an

inappropriate choice of task order can affect task schedulability and/or jitter.

Although all tasks run co-operatively in TTC, and there is a limited level of pre-emption

in TTH, the sequence at which tasks are added to the schedule assigns different levels of

priority of the co-operative tasks. For example the first task in each tick will normally

have the lowest level of jitter as will be explained in the following subsections.

The following subsections give an overview on the effects of inappropriate task order in

the task schedulability and jitter.

6.5.1 Effects of task order on schedulability

Some scheduler strategies such as EDF and RM, are optimal only under certain

conditions (detailed in Section 2.5) and this optimality only applies to certain

constraints (normally task deadline). Other constraints (such as jitter, distance, latency,

precedence, and exclusion) are not usually considered.

Table 6-12 shows an example of a set of tasks that explain the above idea. It is assumed

that Task A is required to precede Task B, and the minimum distance between them

must be at least 0.1 ms. Looking only at the task deadlines and scheduling these tasks

according to a schedule like EDF will result in scheduling Task B directly after Task A

finishes its executions, as it has the nearest deadline. This will satisfy all task deadlines.

But, on the other hand, this will violate the distance constraint, as shown in Figure 6-10.

To meet this constraint, while at the same time satisfying the deadline constraints,

Task C should follow Task A, and at last Task B should start, as shown in Figure 6-11.

Chapter 6: Analysis of scheduler/task configuration 99

Time (ms)

Task A

0 42

Time (ms)

Task B

0 42

Time (ms)

Task C

0 42

Figure 6-10 Inappropriate task ordering for tasks shown in Table 6-12.

Table 6-12 Task specifications for a system where an inappropriate task ordering

affects schedulability.

Task WCET (ms) Deadline (ms) Period (ms) Offset (ticks)

A 0.4 0.5 2 0

B 0.3 1.0 2 0

C 0.2 2.0 2 0

Chapter 6: Analysis of scheduler/task configuration 100

6.5.2 Effects of task order on jitter

If a given schedule does maintain task constraints (such as precedence, distance, and

latency) it will still have to ensure that the resulting task jitter is within the permitted

limits.

For an example it is assumed that, for the set of tasks shown in Table 6-13, Task C is a

jitter-sensitive task. Scheduling these tasks with TTC and using a tick interval of 1 ms

along with the offsets shown in the table will ensure that all deadlines will be met. On

the other hand, using the shown task order may not satisfy the jitter constraints of the

jitter-sensitive task, Task C, as shown in Figure 6-12. However scheduling the tasks

according to the task order shown in Figure 6-13 will maintain the jitter level of the

jitter-sensitive task.

Time (ms)

Task A

0 42

Time (ms)

Task B

0 42

Time (ms)

Task C

0 42

Figure 6-11 Appropriate task ordering for tasks shown in Table 6-12.

Chapter 6: Analysis of scheduler/task configuration 101

Task A

Task B

Task C
Time (ms)0 10 20 30 40 50 60 70 80

Time (ms)0 10 20 30 40 50 60 70 80

Time (ms)0 10 20 30 40 50 60 70 80

Figure 6-12 Possible schedule for tasks shown in Table 6-13.

Table 6-13 Task specifications for a system where an inappropriate

task ordering affects jitter.

Task WCET (ms) Deadline (ms) Period (ms) Offset (ticks)

A 2 10 10 0

B 3 20 20 0

C 4 30 30 0

Chapter 6: Analysis of scheduler/task configuration 102

6.6 Discussion

The work presented in this chapter explored the impact of inappropriate choice of task

parameters and / or scheduler parameters (such as task offset, task order and tick

interval).

It has been shown that inappropriate configurations of task offset may cause missed

deadlines and/or increase the task jitter. Similar effects may be caused by inappropriate

choice of task order. The analysis also concluded that choosing the scheduler tick

interval has considerable effects on system power consumption in addition to the above

mentioned effects caused by misconfiguration of task offset and task order. The

analysis suggests that using the longest possible tick interval, whenever possible, can

help in reducing the power consumption.

6.7 Conclusions

The work presented in this chapter began by reviewing the main functionality of TTC

and TTH schedulers. Then it discussed the effect of inappropriately choosing task /

scheduler parameters (mainly task offset, task order, and tick interval) when using such

schedulers.

Task A

Task B

Task C
Time (ms)0 10 20 30 40 50 60 70 80

Time (ms)0 10 20 30 40 50 60 70 80

Time (ms)0 10 20 30 40 50 60 70 80

Figure 6-13 Jitter-aware schedule for tasks shown in Table 6-13.

Chapter 6: Analysis of scheduler/task configuration 103

It has been shown in previous chapters that testing the task schedulability, and

determining appropriate values of scheduler and task parameters, is a challenging and

time consuming process.

The following chapter will introduce a new scheduling algorithm which helps to

automate the process of selecting these parameters.

Chapter 7

TTSA1 algorithm

This chapter describes a novel two-stage search technique which is intended to support

the selection and configuration of schedulers for use with resource-constrained

embedded systems7

7.1 TTSA1 for automatically choosing/configuring scheduler/task
parameters

.

The previous chapter considered the need for tools which will help to automate the

process of developing TTC and TTH schedules. This chapter presents and assesses a

novel algorithm which addresses this need. For ease of reference, this algorithm will be

called "time-triggered scheduling algorithm 1" (TTSA1). TTSA1 is described in this

section.

The overall goal of the TTSA1 algorithm is to identify a scheduler configuration which

will ensure that: (i) all task constraints are met; (ii) CPU power consumption is "as low

as possible"; (iii) a fully co-operative scheduler architecture is employed whenever

possible.

7.1.1 Overview

The flow charts shown in Figure 7-1 and Figure 7-2 describe TTSA1. The input to

TTSA1 is a list of task specifications and constraints. The algorithm tests the

schedulability of the given task set and configures the scheduler and task parameter

(task order, task offset, and tick interval), in case one found. This is done in two stages.

In the first stage the algorithm checks that the total task utilisation, u, does not exceeds

the processor capacity (u<1). The algorithm takes the scheduling overhead into account

in calculating u. A details description of an easy and efficient way of measuring this

7 Parts of this chapter have been published previously in Gendy and Pont (2008a)

Chapter 7: TTSA1 algorithm 105

overhead is given in Section 7.1.7. Then the TTSA1 algorithm tries to find a feasible

schedule for the task set using the TTC scheduler (which is non-pre-emptive) according

to five different strategies as follows:

• According to their deadlines (shortest deadline first). This is "TTSA1-DM" and

is based on a "deadline monotonic" scheduling algorithm (Leung and Whitehead, 1982).

• According to their slack – or laxity – time (least laxity first). This is "TTSA1-

LLF" and is based on a "least laxity first" scheduling algorithm (Leung, 1989).

• According to their periods (shortest period first). This "TTSA1-RM" is related

to a rate monotonic scheduling strategy (Liu and Layland, 1973).

• According to their WCET (shortest WCET first). This is referred here as

"TTSA1-SJF" and is related to a "shortest job first" scheduling strategy (Stankovic and

Ramamritham, 1987).

• According to their upper bound of jitter (shortest jitter first). This is referred

here as "TTSA1-Jitter"

If the task set cannot be scheduled in the first stage the process is repeated using the

TTH scheduler

To achieve this result, TTSA1 begins by sorting the tasks according to two criteria:

a) task precedence, b) scheduling criterion (such as TTSA1-DM), trying one at a time.

It is then assumed that the first task will run with zero offset and the algorithm tries to

find a suitable offset for the second task, using the longest possible tick interval. If such

an offset is identified (and the constraints of both tasks are met), a third task is added to

the system and the process is repeated. The algorithm continues in this way until all

tasks have been scheduled (if this proves possible), as shown in Figure 7-2.

This search process is not exhaustive, and might be described as a "best characteristics

first" approach: for example, the algorithm starts with a long tick interval (which is

known to reduce power consumption: this is discussed in Section 6.4.3) and the tick

interval is gradually reduced until the timing needs of the application are matched (if

ever). The algorithm proceeds iteratively, stopping the search when it has identified the

first workable solution. It assumes that - because it has begun the search with "best

characteristics" - any schedule identified will represent a good (but not necessarily

completely optimal) solution.

Chapter 7: TTSA1 algorithm 106

The output from the algorithm depends on the results of each schedulability test, as

follows:

• If all the tasks are schedulable, a suitable tick interval is calculated, along with

the task order and the required offset value for each task.

• If the tasks cannot all be scheduled, a list of the schedulable tasks is generated.

Chapter 7: TTSA1 algorithm 107

No

Yes

Yes

No

Yes

No

Yes

No

Yes

YesNo

Input task constraints

Arrange tasks
GCD[t] = {GCD1, GCD2, …, GCDm}, t=1, 2,,.., m

Sched_Strategy = {TTC, TTH}

Sched_Strategy_Index = 1

Tick_Index = 1

Tick_Interval = GCD[Tick_index]
i = 1

Offset[i] = 0
Sched[i] = TRUE
Sched_Tasks = 1

i++
Offset[i] = 0

Length_of_Major_Cycle = LCM(Period[k]), k=1,2..,i
Max_Offset = Max(Offset[k]), k=1,2..,i

Test_Period = 2* Length_of_Major_Cycle + Max_Offset
Sched[i] = Check_Sched(i, Test_Period, Tick_Interval, Sched_Strategy_Index)

Sched[i] = TRUE? Sched_Tasks ++Offset[i]++

(Offset[i]<Period[i])
and

(Sched[i] = FALSE)
?

i < n ?

Sched_Tasks = n ?

print:
task offsets,
task order,

tick interval,
scheduler type

EXIT

Tick_index++

Tick_index <= m ?

Sched_Strategy++

Sched_Strategy <= 2 ?

Print list of
scheduled and

unscheduled tasks

Figure 7-1 Flow chart for the TTSA1 algorithm.

Chapter 7: TTSA1 algorithm 108

No

Yes

Yes

No

No

Yes

Yes

No

YesNo

Yes

No

No

Yes

No

Yes

No

Yes

No

Yes

Yes

No

YesNo

Current_Tick_Num= 1
j=1

Current_Time=0
Temp_Tick_Num=0

Current_Time += TTC_Overhead

Exclusion[j][p] = 1

Temp_WCET = WCET[j]
temp_t=Tick_Interval - (Current_Time) mod (Tick_Interval)

TAsk[i] due to run?

Sched_Strategy[Sched_Strategy_Index] = TTC?

(Current_Time)
mod

 (Tick_Interval)
= 0?

Temp_WCET > temp_t ?

Temp_WCET -= temp_t
Current_Time += temp_t + TTC_Overhead
temp_t=Tick_Interval - (Current_Time) mod

(Tick_Interval)

(j = p)
and

(Current_Tick_Num <> Temp_Tick_Num)
?

Current_Time += WCET[j] + TTH_Overhead

Temp_WCET = WCET[j]
Temp_Tick_Num = Current_Tick_Num

temp_t=Tick_Interval - (Current_Time) mod (Tick_Interval)

Temp_WCET > temp_t ?

Temp_WCET -= temp_t
Current_Time += temp_t + TTH_Overhead
temp_t=Tick_Interval - (Current_Time) mod

(Tick_Interval)
Temp_Tick_Num++;

Task[p] is due to run in
Temp_Tick_Num?

return FALSE

Current_Time += WCET[p]

j++

 all constraint are
met?

j <= i?

Current_Time
<

(Current_Tick_Num *
Tick_Interval)

Current_Time = (Current_Tick_Num * Tick_Interval)

Current_Tick_Num
<=

Test_Period

RETURN TRUE

Current_Time += Temp_WCETCurrent_Time += Temp_WCET

Current_Tick_Num ++

Figure 7-2 flow chart for the Check_Sched() function of TTSA1 algorithm.

7.1.2 Tick interval

It was previously shown that an inappropriate choice of tick interval may mean that a

given task set cannot be scheduled at all. Also where the parameter set does ensure that

all tasks are scheduled, inappropriate choice of tick interval may still lead – for example

– to increased system power consumption.

To find the most suitable (that is, longest possible) tick interval, the algorithm checks

the schedulability using all the common divisors of the task periods, starting with the

Greatest Common Divisor (GCD) for the best results in power reduction. The

Chapter 7: TTSA1 algorithm 109

algorithm stops at the largest possible tick interval with which all the tasks meet their

temporal constraints (if such an interval exists).

7.1.3 Offset

As discussed in Section 6.3, the choice of offset can have a significant impact on both

the task schedulability and the levels of task jitter in the system. The algorithm tries to

choose an appropriate offset for a given set of tasks.

It is assumed (for the purposes of this work) that the offset of a task can take any value

between zero and its period, assuming that values of offset and period are expressed in

ticks.

7.1.4 Test period

Choosing a suitable offset for each task may require that the schedule is tested (using

different offset combinations) over a period of time long enough to determine that all

the tasks will meet their deadlines (or not). Since all tasks are periodic, the

schedulability needed to be tested over the "major cycle" (a period of time equal to the

Least Common Multiple – LCM – of the task periods: e.g. Section 2.4).

In addition, since each task may have a different offset, the full schedule will not

necessarily begin immediately; instead, the algorithm must therefore test the schedule

for one complete cycle, measured from the time that the last task to be added to the

schedule is executed for the first time. Finally, it may be necessary to consider the task

behaviour at the boundary between the end of one (major) cycle and the start of the

next.

As a result, for a given tick interval and set of offsets, the testing period used in this

work is represented by Equation 7-1; the units here are "ticks" (Leung and Merrill,

1980; Leung and Whitehead, 1982; Leung, 1989).

Test_period = 2 * Length_of_Major_cycle + Maximum_offset Equation 7-1

As shown in the previous section, offset of a task is in the range zero and its period, so

for a set of n tasks the longest test period can be calculated form Equation 7-2.

Chapter 7: TTSA1 algorithm 110

Test_period = 2 * LCM (P[1], P[2], .., P[n]) + Max (P[1], P[2],…,P[n]) Equation 7-2

7.1.5 Task starting time

At any time, task Task[i] is considered to be due to run at tick ‘Tick_Num’ if the

condition represented by Equation 7-3 is true.

(Tick_Num - Offset[i]) mod P[i] = 0 Equation 7-3

7.1.6 Deadline checking

Assuming that a specific instant of task Task[i], which has deadline D[i] that is less than

or equal to P[i], begins its execution at time ‘Starting_Time’ and finishes its execution

at time ‘Finishing_Time’ this task is considered to have met its deadline if the condition

in Equation 7-4 is satisfied for all its segments:

(Finishing_Time – Starting_Time) <= D[i] Equation 7-4

7.1.7 Taking scheduler overheads into account

The scheduler overhead may have a considerable impact on the schedulability of the

task set. This overhead arises from the time spent in handling the tick interrupt, the

time spent in updating and testing the delay of each task in turn (in order to check which

task should run next), and the time spent in saving/resuming the state of pre-empted

tasks in TTH designs. The level of this overhead depends on many factors including the

number of tasks in the system, the scheduler type, and the speed of the hardware used to

implement the system.

Previous work has been conducted in this area, for example Sandström et al (1998)

handle the interrupt overhead in an efficient non-pessimistic way. The current work

introduces an alternative way of representing the overall scheduler overhead for a given

number of tasks. It assumes that the scheduler overhead can be represented by adding a

dummy task to the set of tasks to be scheduled. This additional task is included in the

schedule calculations at every tick and has a WCET equal to the actual scheduler

Chapter 7: TTSA1 algorithm 111

overhead. This effect is shown in the Check_Sched() function (Error! Reference

source not found.).

Of course, it is necessary to determine the WCET value for this "overhead" task. This

value can not be predicted (without conducting an extensive – and expensive –

modelling process). Therefore it is noted that the maximum scheduling overhead will

occur when all the tasks run in the same tick (if ever).

Assuming that we have n tasks and that the scheduler enters "sleep" mode after running

all the ready tasks in each tick (if there is time left), then the scheduling overhead is

given by Equation 7-5.

)][WCETmode_in_sleep_time_spent(valTick_Interoverhead
1
∑
=

+−=
n

i
i Equation 7-5

The overhead can be determined empirically, using a scheduler with the same number

of "dummy" (empty) tasks that will be employed in the final system. In this case, the

last term in Equation 7-5, ∑
=

n

i
i

1
][WCET , can be assumed to be 0, and a single set of

measurements will be required for a given hardware platform, regardless of the

particular system being implemented

Determining the overhead in this way may seem to be unduly pessimistic for a static

schedule. However, this measure of the maximum scheduler load is easily obtained

(one single measurement, rather than having to make numerous measurements as

different schedules are tested). In addition making a precise measurement of this load is

– in practice – not straightforward. Therefore it has been chosen to accept a slight risk

that the scheduling decision made will be altered by the inaccuracy of this overhead

measurement (indeed, it is assumed that any loss of accuracy that results from this

approach is likely to be smaller than the error which results from WCET

approximations for the tasks: as discussed in Chapter 4).

The value of time_spent_in_sleep_mode can be determined either through the use of a

hardware simulator or by making direct measurements from the hardware.

The scheduling overhead for the experiments which are carried out in this thesis is

measured as follows. The scheduler is adjusted so that it will set a spare I/O pin to

"high" at the start of the interrupt service routine (ISR) of the tick interrupt. This pin is

Chapter 7: TTSA1 algorithm 112

then set to "low" directly before the scheduler calls the sleep function, after all tasks are

complete.

The duration of the time in which the pin is high in every tick is measured using

appropriate external hardware.

By using three dummy tasks, the above measured time approximates the scheduling

overhead (which is shown in Equation 7-5). The above measured time does not take

into account the times taken to change out of the sleep mode, save registers values, or

call the ISR. Also the code in the scheduler that does not run in all conditions may not

have been taken into account. Therefore, an additional 20% is added to the measured

value, a figure that is in line with previous studies (Vallerio and Jha, 2003).

7.2 Evaluating the TTSA1 algorithm

The TTSA1 algorithm is evaluated in this section. The "branch and bound" algorithm

(BaB) was chosen previously as a benchmark to test the effectives of other heuristic

algorithms (Cucu and Sorel, 2004). The same algorithm is adapted here to evaluate the

effectiveness of the TTSA1 algorithm.

7.2.1 Algorithm complexity

The algorithm complexity can be calculated by considering a set of n independent tasks,

Task[1], Task[2], …, Task[n], with periods P[1], P[2], .., P[n], respectively. As

previously discussed, the offset O[i] of task Task[i] is assumed to take any value from

zero to P[i]. Choosing a suitable set of offsets may require testing schedulability over

the period defined by Equation 7-1.

Using the BaB search algorithm a partial schedule is constructed by adding tasks one by

one to the system (trying all possible offsets of this task). A branch is terminated if the

constraints of any added task, or the task under test, are violated. Ignoring the possible

task offsets, in the worst-case this will require testing n paths each of length n!; this has

a complexity of O(n.n!) which is "computationally intractable and cannot be used in

practical systems when the number of tasks is high" (Buttazzo, 2005a). In this case the

longest testing period will therefore be given by Equation 7-6 and Equation 7-7.

Chapter 7: TTSA1 algorithm 113

longest testing period = (number of offsets combinations) * (number of possible

execution orders) * (test period)
Equation 7-6

����〖𝑃𝑃[𝑖𝑖])
𝑚𝑚

𝑖𝑖=1

∗ (𝑖𝑖!) ∗ [𝑀𝑀𝑚𝑚𝑚𝑚(𝑂𝑂[1],𝑂𝑂[2], … ,𝑂𝑂[𝑖𝑖]) + 2 ∗ 𝐿𝐿𝐶𝐶𝑀𝑀(𝑃𝑃[1],𝑃𝑃[2], …𝑃𝑃[𝑖𝑖])]〗�
𝑚𝑚

𝑖𝑖=1

 Equation 7-7

This problem has an order of complexity O(tn.n!), where t is the period (in ticks).

By contrast, the TTSA1 algorithm tries only a subset of the possible offset

combinations. In this case, the longest testing period will be given by Equation 7-8.

�(𝑃𝑃[𝑖𝑖] ∗ (𝑀𝑀𝑚𝑚𝑚𝑚(𝑂𝑂[1],𝑂𝑂[2], … ,𝑂𝑂[𝑖𝑖]) + 2 ∗ 𝐿𝐿𝐶𝐶𝑀𝑀(𝑃𝑃[1],𝑃𝑃[2], …𝑃𝑃[𝑖𝑖])
𝑚𝑚

2

)) Equation 7-8

The complexity of this algorithm is O((n-1)t) or approximately O(n.t).

It should be noted that summation in Equation 7-8 starts from index 2, (rather than index

1). This is because the TTSA1 algorithm assumes that, after sorting the set of tasks, the

first task is added to the system with offset 0. The offsets of subsequent tasks are

determined at the time they are added to the system (one by one). Once an offset for a

given task is identified, this is "fixed".

It is also noteworthy that these calculations ignore the effort required to determine the

scheduler overhead (for both the BaB and TTSA1 calculations).

7.2.2 Algorithm performance

An empirical test of the performance of the TTSA1 algorithm was carried out. The

procedure and results obtained by applying the algorithm to a set of interdependent

tasks are detailed in this section.

7.2.2.1 Method

The schedulability of the task sets was assessed using the BaB search. The results were

then compared with those obtained using the TTSA1 algorithm.

Chapter 7: TTSA1 algorithm 114

The chosen hardware platform was an NXP (formerly Philips) LPC2129

microcontroller running on a small evaluation board (Philips, 2004a). The LPC2129 is

based on an ARM7TDMI core and is typical of modern (low cost) embedded

processors. The tests were conducted as follows:

• The measurements of scheduler load were carried out using the NXP board.

• The BaB and the TTSA1 algorithm schedulability tests were carried out using a

simple (custom) schedule simulator, running on a desktop PC (making use of the load

information obtained from the NXP board).

7.2.2.2 Dataset used

To explore the effectiveness of this algorithm, 1000 sets of tasks were pseudo randomly

generated. Each set consisted of 3, 4 and 5 tasks. Task characteristics and constraints

were generated according to the criteria specified in the following subsections.

7.2.2.3 Task characteristics

Task WCET, deadline and period were pseudo randomly generated according to the

following inequalities:

0 < WCET(i) ≤ 1000 µs Equation 7-9

WCET(i) < P(i) ≤ 10000 µs Equation 7-10

WCET(i) ≤ D(i) ≤ P(i) Equation 7-11

In order to simplify the calculations, task periods were pseudo randomly generated at

multiples of 1 ms (constrained by Equation 7-10).

7.2.2.4 Task constraints

Task constraints of precedence, exclusion, distance, latency, and upper bound of jitter

were also pseudo randomly generated and were in line with the findings from previous

studies (e.g. Xu (1993) and Sandström and Norström (2002)).

• Jitter:

In the experiment discussed in the present chapter, the upper bound of task jitter is

pseudo randomly generated according to Equation 7-12.

Chapter 7: TTSA1 algorithm 115

0 ≤ Jitter ≤ P(i) Equation 7-12

• Precedence:

If it is required that Task A precedes Task B, then, in any tick, Task B is allowed

to start its execution only after Task A completes its execution (e.g. Xu and Parnas

(1990)).

In the current study, the precedence relation between any two tasks, Task A and

Task B, is pseudo randomly generated if

P(A) = P(B) Equation 7-13

and

P(A) ≥ (WCET(A) + WCET (B)) Equation 7-14

• Distance:

In the current study the precedence relation between two tasks, Task A and

Task B, was pseudo randomly generated according to Equation 7-15.

0 ≤ Distance(A, B) ≤ P(A) – (WCET(A) + WCET (B)) Equation 7-15

• Latency

In the current study the latency relation between two tasks, Task A and Task B,

was pseudo randomly generated as follows:

If there are no distances constraint between Task A and Task B then:

(WCET(A) + WCET (B)) ≤ Latency(A, B) ≤ Max (P(A), P(B)) Equation 7-16

otherwise:

(WCET(A) + WCET (B) + Distance (A,B)) ≤ Latency(A, B) ≤ P(A) Equation 7-17

Table 7-1 shows an example of a set of 3 tasks generated according to the above

constraints.

Chapter 7: TTSA1 algorithm 116

7.2.2.5 Extending the basic algorithm

Variations on the original TTSA1 algorithm were also investigated in this trial. In the

original algorithm (henceforth referred to as "TTSA1-DM"), the tasks are added to the

schedule according to their deadline, the task with the shortest deadline is added first.

Variations on this algorithm are also explored so that tasks were added:

• According to their slack – or laxity – time (least laxity first). This is "TTSA1-

LLF" and is based on a "least laxity first" scheduling algorithm (Leung, 1989).

• According to their periods (shortest period first). This "TTSA1-RM" is related

to a rate monotonic scheduling strategy (Liu and Layland, 1973).

• According to their WCET (shortest WCET first). This is referred here as

"TTSA1-SJF" and is related to a "shortest job first" scheduling strategy (Stankovic and

Ramamritham, 1987).

• According to their upper bound of jitter (shortest jitter first). This is referred

here as "TTSA1-Jitter"

7.2.2.6 Results (small task sets)

The numbers of identified task sets that were found to be scheduled using the TTSA1

algorithm and BaB are shown in Figure 7-3 to Figure 7-5. The results obtained by

combining the (unique) results from TTSA1-DM, TTSA1-LLF, TTSA1-Jitter, TTSA1-

Table 7-1 Sample of task specifications and constraints (set of 3 tasks)

Task
WCET

(µs)

Deadline

(µs)

Period

(µs)

Jitter

(µs)
Exclusion Precedence

Distance

(µs)

Latency

(µs)

A 496 3964 4000 1618

Task A

Excludes

 Task C

Task A

Precedes

Task C

Distance

 between

Task A

&

 Task C

 is 3335

Latency

Between

 Task A

&

 Task C

 is 3921

B 828 4711 10000 9488

C 64 3673 4000 67

Chapter 7: TTSA1 algorithm 117

RM, and TTSA1-SJF are shown in these figures as TTSA1-ALL. The number of trials

until each of the two algorithms identified the set of tasks as scheduled/unscheduled and

the total time is also shown in Table 7-2.

From the results obtained it was noted that:

• For both the TTC and TTH schedulers the results obtained from TTSA1 (when

overheads are taken into account) are found to be a subset of the complete list of valid

schedules identified by the BaB search. In addition, although TTSA1 tests the

schedulability using a subset of all the possible offset combinations, it produces results

which are similar to those obtained with the BaB method.

• The criteria used for adding the tasks have an impact on the schedulability of the

set (different criteria may give different results).

• Combining results from the variations of TTSA1 together gives results which

are closer to those obtained from the BaB search while requiring a much lower number

of trials, and hence less time (Section 7.2.1).

7.2.2.7 Results (large task set)

The results shown in Figure 7-3 to Figure 7-5 consider a maximum of 5 tasks. This is

not an unrealistic number for the resource-constrained systems that are concerned with

in this thesis. However, this task set does not fully test the algorithm. In order to

explore the performance of TTSA1 on larger problems, 1000 new data sets were

created. Each data set consisted of 50 tasks, each with a maximum execution time of

1 ms and maximum period of 100 ms. The task sets were randomly created according to

the constraints described previously. To reduce the length of the major cycle, task

periods were randomly generated as a multiple of 10 ms. The results from this test are

shown in Figure 7-6. It took approximately 10 s to complete the schedulability test for

one set of 50 tasks using TTSA1-DM, and a total of approximately 50 s to complete the

test for TTSA1-All. It was not possible to complete this search using a BaB approach

as this would have required performing a huge number of trials.

Chapter 7: TTSA1 algorithm 118

Table 7-2 Number of trial and the total time

3-tasks sets 4-tasks sets 5-tasks sets

TTC TTH TTC TTH TTC TTH

TTSA1 BaB TTSA1 BaB TTSA1 BaB TTSA1 BaB TTSA1 BaB TTSA1 BaB

Minimum number of trials 2 2 2 2 3 3 3 3 4 4 4 4

Maximum number of trials 85 2966 75 2966 125 33571 64 35072 170 1585571 87 879901

Average number of trials 16.3 162.0 11.4 159.8 31.7 2561.7 17.4 2544.2 59.6 56283.7 23.7 46575.6

Total number of trials 16285 161962 11360 159823 31655 2561690 17360 2544241 59596 5.6E+07 23652 4.7E+07

Total time (s) 1 2 1.5 3 1.5 88 2 184 3 3091 3.5 4924

Chapter 7:TTSA1 algorithm 119

TTSA1-DM TTSA1-LLF TTSA1-Jiiter
TTSA1-RM TTSA1-SJF TTSA1-ALL
BnB

Figure 7-4 Number of scheduled task sets (4 interdependent tasks in each set).

Figure 7-3 Number of scheduled task sets (3 interdependent tasks in each set).

Chapter 7:TTSA1 algorithm 120

TTSA1-DM TTSA1-LLF TTSA1-Jiiter
TTSA1-RM TTSA1-SJF TTSA1-ALL
BnB

Figure 7-6 Number of scheduled task sets (50 interdependent tasks in each set).

Figure 7-5 Number of scheduled task sets (5 interdependent tasks in each set).

Chapter 7:TTSA1 algorithm 121

7.3 Discussion

The work presented in this chapter introduced a scheduling algorithm (TTSA1) which

helps to automate the process of determining the parameters required to schedule a

given set of tasks in a resource-constrained embedded system employing a TTC or TTH

architecture.

It has been shown in the literature that commonly used scheduling techniques (such as

RM, DM, etc) are optimal in satisfying one of the task constraints (usually the task

deadline). This can be guaranteed only in special cases, for example RM assumes

independent tasks which have deadlines equal to their periods. On the other hand,

finding just a workable schedule for dependent tasks with shared resources is known to

be a challenging process.

Therefore the TTSA1 scheduling algorithm presented in this chapter tries to use

heuristic search guided by the most commonly used scheduling techniques (such as

DM, RM, LLF, and SJF), in addition to adding the jitter-based scheduling, to find a

workable scheduler.

The effectiveness of the TTSA1 scheduling algorithm has been evaluated by applying it

on 1000 sets of tasks. The results were compared with those obtained from applying a

BaB search which has been taken previously as a benchmark by other researchers (Cucu

and Sorel, 2004). It is believed that the aim has been achieved through the use of this

algorithm which – while it does not perform an exhaustive search – does provide results

close to those obtained in the BaB search, in a fraction of time. While searching for a

workable scheduler the proposed scheduling algorithm ensures that the CPU power

consumption is "as low as possible" (by choosing the longest possible tick interval), and

that task constraints are met (by adjusting the tasks’ offsets, tick interval, and task

orders).

Another empirical study has been done to evaluate the effectiveness of the above

algorithm. In these experiments the algorithm was implemented and ported to a

separate microcontroller called scheduler agent (SA). The aim of this agent was to

continue measuring the execution times of the tasks running in the main target

hardware, or main processor (MP), for a certain period of time at systems power up.

These values were used by the algorithm to fine tune the task scheduler in the main

Chapter 7:TTSA1 algorithm 122

processor. After the fine tuning process is completed the SA continue monitoring the

MP and take appropriate action, such as resetting the system, in case of errors. More

details about this case study are described in Appendix B.

7.4 Conclusions

This chapter presented a scheduling algorithm (TTSA1) which helps in overcoming the

fragility problem encountered in TT designs (based on TTC or TTH architecture) by

automating the process of selecting an appropriate scheduler and configuring the

required parameters.

The effectiveness of the above mentioned algorithm is tested, and compared with that of

the BaB algorithm, by empirical studies.

The following chapter will introduce an enhanced version of this algorithm.

Chapter 8

TTSA2 algorithm

In the previous chapter a novel scheduling algorithm ("TTSA1") was presented that can

be used to automate the process of selecting an appropriate scheduler and configuring

the task and scheduler parameters. This algorithm focuses on time-triggered embedded

systems (based on TTC and TTH) which employ a single processor.

This chapter describes a modified version of the TTSA1 algorithm ("TTSA2"). TTSA2

employs task segmentation to increase the number of task sets which can be scheduled8

8.1 Problems with TTSA1 algorithm

.

Despite its attractive features, in some cases the TTSA1 algorithm fails to find a suitable

schedule for a set of tasks. For example assume that for a given set all tasks have

deadlines equal to their periods. Assume also that this set includes two short tasks

(Task S1 and Tasks S2), and at least one long task (Task L).

The TTSA1 algorithm fails to find a suitable schedule for this set if:

Deadline (S1) < WCET (S1) + WCET (L) Equation 8-1

and

Deadline (S2) < WCET (S2) + WCET (L) Equation 8-2

For example Task B and / or Task C shown in Table 8-1 will miss their deadlines every

time Task A runs if these three tasks are scheduled using TTC / TTH. To overcome this

situation, while still using a TTC / TTH architecture, long task(s) can be divided into

multiple short tasks (Baker and Shaw, 1988; Locke, 1992; Pont, 2001): for example

Task A can be divided into two segments, Segment SA1 and Segment SA2, as shown in

Table 8-2.

8 Parts of this chapter have been published previously in Gendy and Pont (2008b)

Chapter 8:TTSA2 algorithm 124

8.2 TTSA2 algorithm

As previously indicated, testing the schedulability of a set of tasks and finding a suitable

scheduler for them (if any) is an NP-hard problem. The problem becomes more

complex if some parts of some tasks are required to exclude parts of other tasks in the

set. For example, it may be that Segment SA2 in Task A excludes Segment SB3 and

Segment SC2 in Task B and Task C respectively, and Segment SB1 in Task B excludes

Segment SC1 in Task C.

In the following subsections the TTSA2 scheduling algorithm, which takes inter-task

and inter-segment constraints into account and supports task segmentation to increase

schedulability, will be described and assessed.

Table 8-2 Task specifications for a task set that can be scheduled with TTC/TTH.

Task WCET (ms) Deadline (ms) Period (ms)

SA1 5 45 50

SA2 5 50 50

SB1 1 10 10

SC1 1 10 10

Table 8-1 Task specifications for a task set that cannot be scheduled with TTC/TTH.

Task WCET (ms) Deadline (ms) Period (ms)

A 10 50 50

B 1 10 10

C 1 10 10

Chapter 8:TTSA2 algorithm 125

8.2.1 Overview

It is assumed that the input to TTSA2 is a list of task specifications and constraints,

including critical-section boundaries.

The TTSA2 algorithm tests the schedulability of the given task set, first using the TTC

scheduler, if possible, otherwise it will try the TTH, considering each task as a single

segment. If the task set still cannot be scheduled the process is repeated after dividing

one or more long tasks into two or more shorter tasks. The algorithm calculates a

suitable tick interval, the task order, the smallest number of task segments along with

the required offset value for each task and task segment if all the tasks are schedulable;

otherwise a list of the schedulable tasks and task segments is generated.

To achieve this result, TTSA2 begins (like TTSA1) by sorting the tasks according to

two criteria: a) task precedence, b) task deadline, laxity, period, WCET, or jitter. It is

then assumed that the first task will run as one segment with zero offset and the

algorithm tries to find a suitable offset for the second task (in one segment), using the

longest possible tick interval (the greatest common divisor of the task periods). If such

an offset is identified (and the constraints of both tasks are met), a third task is added to

the system and the process is repeated. This process continues until all tasks have been

scheduled (if this proves possible). If a schedule cannot be found at any stage the last

task added to the design is removed and divided into two segments. After adding the

segmentation overhead and updating the segment deadlines (as explained in the

following subsections) the search proceeds, (

Figure 8-1).

Chapter 8:TTSA2 algorithm 126

YesNo

No

No

Yes

Yes

No

Yes

No

Yes

No

Yes

YesNo

Input task constraints

Arrange tasks
GCD[t] = {GCD1, GCD2, …, GCDm}, t=1, 2,,.., m

Sched_Strategy = {TTC, TTH}

Sched_Strategy_Index = 1

Tick_Index = 1

Tick_Interval = GCD[Tick_index]
i = 1

Offset[i] = 0
Sched[i] = TRUE
Sched_Tasks = 1

i++
s = 1

Length_of_Major_Cycle = LCM(Period[k]), k=1,2..,i
Max_Offset = Max(Offset[k][s]), k=1,2..,i, s=1,2..,Seg[i]
Test_Period = 2* Length_of_Major_Cycle + Max_Offset

Sched[i] = Check_Sched(i, Test_Period, Tick_Interval, Sched_Strategy_Index)

Sched[i] = TRUE? s++

Offset[i][s]++
take segmentation

overhead into
account

(Offset[i][s]<Period[i])
and

(Sched[i] = FALSE)
?

i < n ?

Sched_Tasks = n ?

print:
task offsets,
task order,

tick interval,
scheduler type

EXIT

Tick_index++

Tick_index <= m ?

Sched_Strategy++

Sched_Strategy <= 2 ?

Print list of
scheduled and

unscheduled tasks

Offset[i][s]=0

s = Seg[i]?s++

s = 1?Offset[i][s]=Offset[i][s-1]

Figure 8-1 Pseudo code for the TTSA2 algorithm.

Chapter 8:TTSA2 algorithm 127

8.2.2 Adjusting the segment deadline

If Task T is divided into n segments, ST1, ST2.., STn, then the TTSA2 algorithm

calculates the deadline of each segment as follows:

Deadline (STn) = Deadline (T) Equation 8-3

Deadline (STi-1) = Deadline (STi) – WCET (STi), Equation 8-4

where i = n, n -1, n -2…,2.

The deadline of Segment SA1 in Table 8-2 is an example of such deadline adjustment.

To be able to divide long tasks into multiple short tasks accurate information about the

task WCET and the points at which the task can / cannot be pre-empted must be

specified. This can be done using techniques such as the "single path programming

paradigm" (Puschner and Burns, 2002b; Puschner and Burns, 2003) or code-balancing

techniques presented in Chapter 5.

8.2.3 Adding the segmentation overhead

If a task is divided into two or more segments, the TTSA2 algorithm takes segmentation

overhead into account. This overhead represents the time needed to save the context of

the current segment and the time needed to restore this context when the following

segment becomes ready to run. The time required for saving the context

(Context_Saving_overhead) may not be the same as that required for loading the context

(Context_Loading_overhead).

If Task T is divided into n segments, ST1, ST2.., STn, then the TTSA2 algorithm updates

the segments WCETs to reflect this overhead, as follows:

WCET (ST1) = WCET (ST1) + Context_Saving_overhead. Equation 8-5

WCET (STi) = Context_Loading_overhead + WCET (STi) +

Context_Saving_overhead,
Equation 8-6

Chapter 8:TTSA2 algorithm 128

where i = 2, 3…, n-1.

WCET (STn) = Context_Loading_overhead +WCET (STn). Equation 8-7

8.3 Evaluating the TTSA2 algorithm

In this section the complexity and the effectiveness of the TTSA2 is evaluated. As in

Chapter 7, the performance of the TTSA2 is compared with that of the "branch and

bound" algorithm (BaB).

8.3.1 Algorithm complexity

Assume we have a set of n independent tasks and that each consists of s segments.

Recalling from the previous chapter, investigating the schedulability of these tasks by

means of a BaB algorithm has a complexity of O(sn! (sn)) which is computationally

intractable (Buttazzo, 2005a) .

As noted previously, the offset of each task can be any value in the range [0, Period[, in

ticks. In the worst-case the BaB algorithm will take all possible offset combinations

(tn), where t is the period, and considering each task as set of s segments, each may have

a different offset, the complexity will increase to O(tn.s .sn!), as shown in Equation 8-8.

�≪≪< (�𝑃𝑃[𝑖𝑖]) ∗ (𝑖𝑖!) ∗ [𝑀𝑀𝑚𝑚𝑚𝑚(𝑂𝑂[1],𝑂𝑂[2], … ,𝑂𝑂[𝑖𝑖]) + 2
𝐴𝐴.𝑚𝑚

𝑖𝑖=1

𝐴𝐴.𝑚𝑚

𝑖𝑖=1

∗ 𝐿𝐿𝐶𝐶𝑀𝑀(𝑃𝑃[1],𝑃𝑃[2], …𝑃𝑃[𝑖𝑖])]}

Equation 8-8

By contrast, the TTSA2 algorithm does not try all paths. In addition, it does not change

the task or / and segment offset of a given task once it has been added successfully to

the schedule (that is, added without causing violation of the constraints of any of the

tasks and segments which have been included in the schedule previously). The

complexity of this algorithm is O(n.s.t), as shown in Equation 8-9.

�(𝑃𝑃[𝑖𝑖] ∗ (𝑀𝑀𝑚𝑚𝑚𝑚(𝑂𝑂[1],𝑂𝑂[2], … ,𝑂𝑂[𝑖𝑖]) + 2 ∗ 𝐿𝐿𝐶𝐶𝑀𝑀(𝑃𝑃[1],𝑃𝑃[2], …𝑃𝑃[𝑖𝑖])
𝐴𝐴.𝑚𝑚

2

)) Equation 8-9

Chapter 8:TTSA2 algorithm 129

8.3.2 Algorithm performance

An empirical test was carried out to explore the performance of the TTSA2 algorithm.

The procedure and the results of this test are discussed in this section.

8.3.2.1 Method

The method which was used to asses the performance of TTSA1 is also used here. The

measurements of scheduler overhead were carried out using the NXP (formerly Philips)

LPC2129 microcontroller running on a small evaluation board (Philips, 2004a), in the same

way previously described in Section 7.1.7 and Section 7.2.2.1. The segmentation overhead

was measured simply by using break points on the simulator (the Keil ARM development

kit (v3.2)).

8.3.2.2 Dataset used

The dataset used to explore the effectiveness of TTSA2 algorithm was pseudo randomly

generated in the same way which is used to generate the dataset employed to test the

effectiveness of TTSA1 algorithm. The only difference here is that longer tasks are

added to some task sets to test the performance of TTSA2 in systems which include

long tasks. To achieve this, WCETs were pseudo randomly generated according to the

following criteria:

0 < WCET(i) ≤ 2000 µs Equation 8-10

8.3.2.3 Results (small task sets):

The effectiveness of the TTSA2 algorithm is tested when scheduling small sets of tasks

(each containing 3, 4, or 5 tasks) and compared the results with those from the TTSA1

and the BaB algorithms. The results obtained from the BaB algorithm with / without

using task segmentation are recorded as BaB1 and BaB2 respectively.

Figure 8-2 to Figure 8-4 show the number of task sets that was found to be schedulable

using TTSA1, TTSA2, BaB1, and BaB2. The results obtained by combining the

(unique) results from TTSAx-DM, TTSAx-LLF, TTSAx-Jitter, TTSAx-RM, and

TTSAx-SJF are shown in these figures as TTSAx-ALL, where x equals 1 or 2 for

TTSA1 and TTSA2. Table 8-3 also shows the number of trials until each algorithm

identified the set of tasks as schedulable / unschedulable and the total time.

Chapter 8:TTSA2 algorithm 130

From the results obtained it was noted that:

• TTSA2 found a suitable scheduler for more sets than TTSA1.

• Because TTSA2 tries to find a suitable (TTC or TTH) scheduler using the lowest

number of task segments, the results obtained from TTSA1 are found to be a subset of

the complete list of valid schedules identified by TTSA2. This means that all the

schedulers identified by both TTSA1 and TTSA2 have the same scheduling overhead

and power consumption.

• The results obtained from TTSA1 and TTSA2 (when overheads are taken into

account) are found to be a subset of the complete list of valid schedules identified by

BaB1 and BaB2, respectively. In addition, although TTSA1 and TTSA2 test the

schedulability using a subset of all the possible offset combinations, they produce

results which are similar to those obtained with the BaB1 and BaB2 methods.

• The criteria used for adding the tasks to TTSA1 and TTSA2 have an impact on

the schedulability of the set (different criteria may give different results).

• Combining results from the variations of TTSA1 and variations of TTSA2

together gives results which are closer to those obtained from the BaB1 and BaB2

respectively, while requiring a much lower number of trials, and hence less time (as

shown in Table 8-3).

8.3.2.4 Results (large task set):

In order to explore the performance of TTSA2 on larger problems, 1000 new data sets

were created, as in the case of evaluating the TTSA1 algorithm. Each data set consisted

of 50 tasks, each with a maximum execution time of 2 ms and maximum period of

200 ms. The task sets were pseudo randomly created according to the constraints

described previously. To reduce the length of the major cycle, task periods were pseudo

randomly generated as a multiple of 20 ms.

The results from this test are shown in Figure 8-5. It took approximately 1 minute to

complete the schedulability test for one set of 50 tasks using TTSA2-DM, and a total of

approximately 6 minutes to complete the test for TTSA2-All.

Chapter 8:TTSA2 algorithm 131

Table 8-3 Number of trials and the total time.

3-task set
TTC TTH

TTSA1 TTSA2 BaB1 BaB2 TTSA1 TTSA2 BaB1 BaB2

Minimum number of trials 2.00E+00 2.00E+00 2.00E+00 2.00E+00 2.00E+00 2.00E+00 2.00E+00 2.00E+00

Maximum number of trials 2.70E+02 5.80E+02 2.97E+03 4.66E+06 1.65E+02 3.30E+02 2.83E+03 1.99E+05

Average number of trials 2.46E+01 4.63E+01 3.51E+02 1.75E+04 1.59E+01 3.04E+01 1.97E+02 2.08E+03

Total number of trials 2.46E+04 4.63E+04 3.51E+05 1.75E+07 1.59E+04 3.04E+04 1.97E+05 2.08E+06

Total time (s) 4.00E+00 4.00E+00 3.90E+01 8.49E+02 2.50E+00 2.50E+00 2.50E+01 1.17E+02

4-task set
TTC TTH

TTSA1 TTSA2 BaB1 BaB2 TTSA1 TTSA2 BaB1 BaB2

Minimum number of trials 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00

Maximum number of trials 2.65E+02 5.30E+02 7.23E+04 1.60E+08 2.65E+02 5.30E+02 4.21E+04 2.78E+07

Average number of trials 3.49E+01 7.01E+01 5.45E+03 5.30E+05 2.49E+01 4.99E+01 3.24E+03 1.13E+05

Total number of trials 3.49E+04 7.01E+04 5.44E+06 5.29E+08 2.49E+04 4.99E+04 3.23E+06 1.13E+08

Total time (s) 3.50E+00 4.50E+00 2.22E+02 1.73E+04 2.50E+00 4.50E+00 1.11E+02 4.17E+03

5-task set
TTC TTH

TTSA1 TTSA2 BaB1 BaB2 TTSA1 TTSA2 BaB1 BaB2

Minimum number of trials 4.00E+00 4.00E+00 4.00E+00 4.00E+00 4.00E+00 4.00E+00 4.00E+00 4.00E+00

Maximum number of trials 1.40E+02 3.14E+02 1.03E+06 1.21E+09 1.02E+02 2.26E+02 1.33E+06 1.98E+08

Average number of trials 4.04E+01 8.58E+01 8.84E+04 2.04E+07 2.93E+01 6.34E+01 5.41E+04 5.09E+06

Total number of trials 4.04E+04 8.58E+04 8.84E+07 2.04E+10 2.93E+04 6.34E+04 5.41E+07 5.09E+09

Total time (s) 2.50E+00 6.00E+00 3.69E+03 2.94E+06 2.50E+00 3.50E+00 5.26E+03 3.79E+05

Chapter 8:TTSA2 algorithm 132

s

TTSA1-DM TTSA2-DM TTSA1-LLF
TTSA2-LLF TTSA1-Jiiter TTSA2-Jiiter
TTSA1-RM TTSA2-RM TTSA1-SJF
TTSA2-SJF TTSA1-ALL TTSA2-ALL
BnB1 BnB2

Figure 8-3 Number of scheduled task sets (4 interdependent tasks in each set).

18
0

12
4

21
7

16
3

16
2

99

19
6

13
716

3

92

18
6

12
615

7

90

18
5

12
314

5

11
7

18
0

15
6

22
2

17
4

26
5

22
325

3

22
7

33
0 37

2

0

100

200

300

400

TTC TTHNu
m

be
r o

f s
ch

ed
ul

ab
le

 t
as

k
se

ts

Scheduling strategy

Figure 8-2 Number of scheduled task sets (3 interdependent tasks in each set).

37
9

30
1

42
2

33
935

8

27
5

39
9

30
333

1

24
3

36
2

27
8

33
8

24
9

37
3

27
932

1

25
7

35
3

30
8

40
6

35
2

45
6

40
442

7

38
2

49
0

48
1

0

100

200

300

400

500

TTC TTHNu
m

be
r o

f s
ch

ed
ul

ab
le

 t
as

k
se

ts

Scheduling strategy

Chapter 8:TTSA2 algorithm 133

s

TTSA1-DM TTSA2-DM TTSA1-LLF
TTSA2-LLF TTSA1-Jiiter TTSA2-Jiiter
TTSA1-RM TTSA2-RM TTSA1-SJF
TTSA2-SJF TTSA1-ALL TTSA2-ALL
BnB1 BnB2

Figure 8-5 Number of scheduled task sets (50 interdependent tasks in each set).

11 1012 1211 1012 13

8

5

9

5

13

3

14

3

12 10

13 11

41

26

45

28

0

10

20

30

40

50

TTC TTHNu
m

be
r o

f s
ch

ed
ul

ab
le

 t
as

k
se

ts

Scheduling strategy

 Figure 8-4 Number of scheduled task sets (5 interdependent tasks in each set).

58 6172 74

54 48

67 5963 50

75

6055 46

71

5445 41

59 56

85 90

10
9

11
2

11
9 13

4

19
7

27
4

0

100

200

300

TTC TTHNu
m

be
r o

f s
ch

ed
ul

ab
le

 t
as

k
se

ts

Scheduling strategy

Chapter 8:TTSA2 algorithm 134

8.4 Discussion

In this chapter a new offline scheduling algorithm, TTSA2, is introduced which helps to

automate the process of determining the parameters required to schedule a given set of

tasks in a resource-constrained embedded system employing a TTC or TTH

architecture. The TTSA2 algorithm tries to find a suitable scheduler for the set of tasks

by dividing each task into two or more segments.

Design patterns can be used to help identifying the points at which task may / may not

be divided. For example these points can be chosen to mark the critical sections

boundaries, where tasks gain access to a shared resource. Another way is to choose the

points at which a condition is completed.

The effectiveness of the TTSA2 was tested in the same way which has been used to test

the effectiveness of TTSA1. The results show that the TTSA2 algorithm improves on

the performance of both a BaB search (with and without supporting task segmentation)

and TTSA1.

To give an idea about the potential use of the TTSA2, a simple example has been

discussed in Appendix C. The used set of tasks are intended to be representative of a

case in which a single microcontroller is used to control three plants or to control a

robot which has three degrees of freedom. More details are given in Appendix C.

8.5 Conclusions

The chapter has given an overview of the problems which may limit the use of the

TTSA1 scheduling algorithm presented in the previous chapter. Then it introduced an

enhanced version of the algorithm, called TTSA2, which tries to overcome these

problems. The main concern was to increase the possibility of finding a feasible

schedule (using TTC or TTH) by supporting task segmentation. The TTSA2 updates

task parameters to take the segmentation overhead into account.

The effectiveness of TTSA2 was evaluated and compared with that of the TTSA1 and

BaB algorithms using the same method which is used for evaluating the TTSA1

algorithm.

Chapter 9

Discussion and conclusions

This chapter discusses the work introduced in the thesis and analyses the thesis

contributions. Limitation and future work are also discussed.

9.1 Reasons and motivation of the thesis work

The work described in this thesis is concerned with the development of reliable

embedded systems using time-triggered architectures where limitted (or no) task pre-

emption is permitted (TTC , TTH schedulers).

It has been argued that using offline schedulers, especially those based on time-

triggered architecture, produce a highly predictable system. Building such architectures

using approaches which support no (or limited) pre-emption helps to reduce the context

switching overhead and increase the system determinism.

Despite the above features these schedulers have not been given much attention

compared to that of online, or dynamic, schedulers which is based on full pre-emptive

priority scheduling. It is claimed that the main reasons around this are the fragility of

the schedule created by these schedulers and the necessity for having accurate

knowledge of task parameters (like period and WCET) at the design stage. On the other

hand, it is widely believed that priority scheduling, such as RM and EDF, are optimal

(in the sense that if there exists a scheduler that can find a feasible schedule for a given

set of tasks, then these schedulers can too) and it is easy to check the schedulability of a

given task set using simple schedulability tests for these scheduler. This was taken as a

reason to avoid using offline schedulers and support the use of full RTOSs which are

normally based on fully pre-emptive priority schedulers, whatever the nature of the

application at hand.

The work presented in this thesis helps to overcome the difficulties facing developers of

the time-triggered approaches using TTC and TTH by automating the process of

choosing an appropriate scheduler, and configuring the scheduler parameters, whenever

one exists. Moreover the work discussed here introduced ways to reduce the variations

Chapter 9: Discussion and conclusions 136

in task execution times and hence increase the systems predictability. It is also shown

that that priority driven schedulers, such as RM and EDF, are not always optimal as this

optimality can only be achieved under certain conditions (such as assuming completely

independent tasks which can be pre-empted at any point of time) which are seldom the

case in real applications. Moreover the overhead, especially that which is caused by

context switching, may affect the task schedulability. And finally it is shown that most

of the schedulability tests for these schedulers normally test one constraint, such as the

deadline, and do not take into consideration the maintainability of other constraints,

such as precedence, distance, and jitter.

In sum the fundamental argument of the work presented here was to support and

encourage the developers of embedded systems, especially those who work on safety-

related applications, to first consider using time-triggered schedulers which have non

pre-emption, or limited pre-emption, such as TTC and TTH.

9.2 A review of the contributions

This section reviews the key contributions of the studies presented in this document and

discusses the extent to which the initial aims of the thesis were achieved.

9.2.1 Scheduling in real-time systems

The work presented in this thesis started in Chapter 1 by giving an introduction to the

development of real-time systems and identifying the main problems facing developers

of offline schedulers based on time-triggered architectures; in particular, the TTC and

TTH. Two main problems are identified (i) the fragility of the schedulers; that is it may

be necessary to redesign the whole schedule in case of making changes in the task set

and (ii) the necessity for available accurate WCET estimates at design time.

Following this introduction, Chapter 2 gave an overview of the main task characteristics

and constraints that are normally used to define tasks and inter-task relations in real-

time systems. Then the chapter discussed various scheduling criteria and reviewed the

most commonly used scheduling strategies. Some misconceptions about these

schedulers, which tend to favour online-(or dynamic)-priority-based schedulers on

offline schedulers, are then highlighted.

Chapter 9: Discussion and conclusions 137

It has been shown that in order to guarantee that task constraints will be met it is

necessary to choose an appropriate scheduling strategy, of equal importance is the

configuration of the scheduler and task parameters; such as task order and task stating

times. Schedulability tests are normally used to check the task schedulability under

certain scheduling strategy.

Unfortunately these schedulability tests are not sufficient as they are normally used to

check that only one constraint; such as task deadline, is met. Therefore Chapter 3

reviewed the most commonly used scheduling algorithms which are used to choose

suitable values for task/scheduler parameters for a given scheduling strategy.

9.2.2 The need for stabilising task execution time

In order to ensure that task constraints will be maintained when using a specific

scheduling strategy it is important that most task characteristics (such as BCET, WCET

and period) to be known priori. Yet, as discussed in Chapter 4, variations in task

execution time between its BCET and its WCET may have bad impacts in the systems

predictability and it may also cause violations of task constraints. On the other hand,

stabilising task execution time will help in increase system predictability, choosing the

appropriate scheduler, and configuring the scheduler and task parameters. Moreover,

with the use of TT schedulers (such as TTC and TTH) the complete task schedule can

be known in advance and hence safety agents can easily be used to monitor the system

while it is running and take appropriate actions in case of faults.

9.2.3 CB1 techniques

Chapter 5 started by reviewing previous work that has been done by Puschner and

Burns (2002b; 2002a; 2003) to fix the task execution time. They introduced a technique

called "single path programming paradigm". As its name implies, this technique is

based on the idea of ensuring that the execution of any task will always follow one path.

This is basically achieved by using a conditional move instruction, whenever a branch is

needed. If the condition of the branching instruction is evaluated to be true the required

set of instructions is executed; otherwise no operation instructions are executed. Hence

the total execution time will be the same; this is obviously achieved at the expense of

Chapter 9: Discussion and conclusions 138

under-utilisation of the processor as tasks always run with their WCET even if this is

not always the actual case.

The work presented in Chapter 5 highlighted two issues in the above technique: (i) it is

limited to hardware that supports "conditional move" or similar instructions; (ii) it used

no-operation instructions to balance the time which can increase power consumption.

In an effort to tackle these problems the work presented in the chapter introduced a set

of code-balancing techniques (CB1). The main idea around the CB1 techniques was to

use a timer to measure the execution time of each form of branch / loop structure.

These measurements are then used to (i) calculate the corresponding maximum

execution time and (ii) use an interrupt-based sandwich delay, after sending the

processor to idle mode to save power consumption, for a period of time equals to the

difference between the current execution time and the maximum calculated execution

time.

The effectiveness of the CB1 techniques was demonstrated using empirical studies. The

results suggests that (i) the variation in task execution time, and hence the obtained jitter

levels, achieved by using the CB1 techniques were less than those obtained by using the

traditional coding techniques and higher than those of the single-path programming

paradigm (ii) the average power consumption obtained by using the CB1 techniques

was less than that of the single-path programming paradigm and higher than that of the

traditional coding techniques (iii) both the results obtained by using single-path

programming paradigm and CB1 techniques were achieved at the expense of an

increase in the maximum task execution time; which can be seen as an acceptable price

to pay for achieving this in safety-related systems.

9.2.4 Effects of task and scheduler parameters

After the attempts made to reduce variations in the task execution time, while avoiding

excessive increase in power consumption, the focus of the work then shifted to tackle

the problem of the scheduler fragility. As mentioned earlier the main cause of this

problem is the need to recalculate task and scheduler parameters in case of updating the

task set. The first step for addressing this problem was to study the effects of various

task and scheduler parameters on task behaviour and average power consumption.

Chapter 9: Discussion and conclusions 139

Chapter 6 presented an analysis of the effects of different values of task offsets, task

order, and tick interval.

It was shown that inappropriate choices of task offsets may mean that the task set is not

schedulable at all. Even in situation where task offsets do ensure that the set of tasks is

schedulable, for example: task constraints such as deadline, precedence, distance, and

latency are met, inappropriate choices may still lead to unnecessary high levels of jitter.

The analyses suggested that similar effects, as those which resulted from inappropriate

offset values, may be caused by inappropriate configuration of task order and/or tick

interval.

An empirical experiment was conducted to study the effects of choosing different values

for the length of tick interval on the average power consumption. The results suggested

the use of the longest possible tick length, as this will help in reducing the average

power consumption.

9.2.5 TTSA1 algorithm

It was shown in the literature that testing the schedulability and choosing appropriate

values for task and scheduler parameters is an NP-hard problem. Moreover, it is argued

that schedulers based on TT architectures are seen to be fragile. In an attempt to

address this problem, Chapter 7 introduced a novel scheduling algorithm (TTSA1

algorithm) which helps to automate the process of choosing an appropriate scheduler

and configuring the scheduler and task parameters, whenever one exists, for time-

triggered embedded systems, the focus was to choose between TTC and TTH

schedulers.

It was shown that testing the schedulability of a given set of tasks using all the possible

parameters combinations is a tedious and time consuming process even for a small

number of tasks. Therefore the TTSA1 algorithm tries to choose a suitable scheduler,

and suitable values for of task offsets, task order, and tick interval, whenever the set

proved to be schedulable, using a heuristic approach that tests only a subset of all

possible parameters combinations. In doing so the TTSA1 algorithm tries to test the

task schedulability using the non pre-emptive scheduler first, the TTC scheduler. In

Chapter 9: Discussion and conclusions 140

order to keep the average power consumption as low as possible the TTSA1 algorithm

tries to schedule the set of tasks using the longest possible tick interval.

As it is required to ensure that all task constraints, such as deadlines and jitter, are met,

the TTSA1 algorithm tries to schedule the tasks using different strategies; TTSA1-DM,

TTSA1-LLF, TTSA1-RM, TTSA1-Jitter, and TTSA1-SJF.

In reality any scheduler has an overhead, which is the time spent by the scheduler to

check and update the status of each task in each tick, load the ready task(s) into

memory, and perform the context switching. The work presented here suggested a

simple method to empirically measure this overhead. This overhead was also taken into

account by the TTSA1 algorithm. Moreover, with the help of using the CB1 techniques

task WCET (which is required to be known a prior for almost all scheduling algorithms)

can be easily obtained and fed to the TTSA1 algorithm.

The complexity of this algorithm has been evaluated and compared with that of the

branch and bound algorithm which is used to test the effectiveness of other scheduling

algorithms introduced in the literature. It has been found that the TTSA1 algorithm has

considerably lower complexity than that of the BaB algorithm.

To test the effectiveness of the TTSA1 algorithm, different sets of tasks, sets of 3, 4,

and 5 tasks, are randomly generated and fed to the algorithm. The number of sets which

were found to be schedulable, the number of trails, and the total time taken by the

TTSA1 algorithm has been recorded and compared to those of the BaB algorithm. The

results showed that the number of identified sets that were found to be schedulable by

the TTSA1 algorithm was close to those found by the BaB algorithm while the TTSA1

algorithm uses a smaller number of trials and shorter time to identify them. The

experiment was repeated for sets of 50 tasks to test the effectiveness of the TTSA1

algorithm for scheduling sets of large numbers of tasks. In this experiment only TTSA1

algorithm was used as it has been found that the time taken by applying BaB algorithm

was intractable.

Another set of empirical tests, described in Appendix B, were conducted to evaluate the

effectiveness of the TTSA1 algorithm. In these experiments the TTSA1 algorithm was

implemented in a separate microcontroller, called scheduler agent (SA), which is used

to fine tune the schedule of a set of tasks running in the main target hardware, which

Chapter 9: Discussion and conclusions 141

was called the main processor (MP). After the fine tuning process is completed the SA

continues to monitor the MP and takes appropriate action in case of faults.

9.2.6 TTSA2 algorithm

It was found that, despite its attractive features the TTSA1 algorithm cannot always find

a workable scheduler, even if one exists. This happens if the task set has one or more

long task(s) which has a WCET longer than the deadlines of other two or more shorter

tasks.

To cope with this problem a modified version of the TTSA1 algorithm, called TTSA2

algorithm, was implemented. The TTSA2 algorithm tries to find a workable scheduler

for a given task set by dividing one or more tasks into multiple segments, in case they

cannot be scheduled as one segment. The points at which a task may / may not be

divided into multiple segments may be chosen as the starting (or ending) points of

critical sections, or the points at which a condition is completed.

The TTSA2 takes the segmentation overhead into account while checking the task

schedulability and calculating the task and scheduler parameters, whenever one is

found. The complexity and the effectiveness of the TTSA2 algorithm is calculated and

compared to that of the BaB algorithm in the same way used for evaluating the TTSA1

algorithm.

A typical representative example that shows the effectiveness of the TTSA2 algorithm

is given in Appendix C.

9.2.7 Potential appliaction

The algorithms (TTSA1 and TTSA2) can be used as part of a tool that can be used for

automatic code generation for safety-related resource-constrained embedded systems.

Using such a tool will not only reduce the time and effort required to develop such

systems but it will also reduce the probability of the occurrence of scheduling errors,

which may cause serious damage (an example of such damage is given in Reeves

(1997)).

Chapter 9: Discussion and conclusions 142

9.3 Limitations and future work

The work presented in this thesis was concerned with the development of time-triggered

embedded systems which employ a single processor. This is a limitation as embedded

applications are becoming more complex and hence tend to use multiple processors

(Short and Pont, 2007; Short and Pont, 2008). Therefore future work needs to be done

to extend the current work to support the use of multiple processors in cases where a

workable scheduler can not be found using a single processor.

Another interesting extension of the code-balancing techniques presented here can be

done at the compiler level to automatically balance the code for safety-related

applications, which is currently worked on by another member of the ESL group.

It was shown that the number of tasks identified to be schedulable using TTSA1 and

TTSA2 were close to (but still less than) those found by the BaB search. So in cases

where a workable schedule can not be found the developer may still need to investigate

the possibility of finding one using the BaB search. In which case someone may ask

what is the benefit of using the TTSA1 or TTSA2 algorithms if it may be the case that

BaB search may be needed at the end. The answer is that the time taken by either

TTSA1 or TTSA2 was considerably shorter than that of the BaB search which was

found to be intractable if the number of tasks in the set is large. So it is recommended

to try the TTSA1 and TTSA2 algorithms at first and only use BaB if they cannot find a

workable scheduler.

It was found that the results obtained by applying the TTSA1 and TTSA2 algorithms to

find a workable schedule using the TTH scheduler were not as good as those obtained

using the TTC scheduler compared to the results obtained by the corresponding BaB

search. Thereby more work is needed to improve the performance in this case. This

can be done by investigating ways to better choose the pre-emptive task as this can

affect the task schedulability. Furthermore, the TTSA1 and TTSA2 algorithms can be

extended to support other schedulers (such as the time triggered rate monotonic).

Finally it has been assumed that the points at which a task can be divided into more than

one segment when applying the TTSA2 represent the critical section boundaries and

they are defined in advance. Future work needs to be done to find a more efficient and

Chapter 9: Discussion and conclusions 143

flexible way of deciding these points of time to increase the efficiency of the TTSA2

algorithm.

9.4 Conclusions

The project described in this thesis has made three major contributions to the field of

scheduling embedded systems using time-triggered architectures (TTC and TTH

schedulers). Firstly, it introduced and assessed a set of code-balancing techniques

which intend to reduce the variations in task execution time, and hence reduce the jitter

and increase the systems predictability, while limiting the overhead in the average

power consumption. This will, in turn, make the problem of estimating or measuring

the WCET an easy job.

Secondly, it analysed the effects of inappropriate choices of a suitable scheduler and / or

task and scheduler parameters on the task schedulability and power consumption.

Finally, it developed and assessed novel scheduling algorithms (TTSA1 and TTSA2)

which help in automating the process of choosing an appropriate scheduler and

configuring the scheduler parameters, in cases where one is found. Future work to

extend and improve the efficiency of the introduced techniques is finally discussed.

Appendix A

TT architectures implemented in ESL

This appendix reviews the main implementation characteristics of TT schedulers used in

this thesis (TTC and TTH schedulers). These implementations have been developed by

researchers in the ESL research group at the University of Leicester.

A.1 TTC scheduler

One possible implementation of the TTC scheduler is described in the literature (Pont,

2001; Kurian and Pont, 2007). In this design, tasks are added to the scheduler in the

initialisation stage, in the main() function, as shown in Figure A-1. A separate

function, the SCH_Dispatch_Tasks() function in Figure A-2 , can be used to

check / update the status of each task, in each tick, and send the system to the idle mode

(to reduce the power consumption) after running the ready tasks, if any. One of the

microcontroller’s timers is set to overflow, causing an interrupt, every specified time

interval (tick interval). In order to ensure having a fixed tick interval the timer interrupt

service routine is kept as simple as possible. This can be achieved by allowing the tick

ISR, the SCH_Update() function in Figure A-3 , to perform only its basic job of

awaking the system from the idle mode and keeping track of the systems time through

updating a global tick count.

Appendix A: TT architectures implemented in ESL 145

void main(void)
 {
 // Set up the scheduler
 SCH_Init_T2();

 // Init tasks
 TaskA_Init();
 TaskB_Init();

 // Add tasks (10 ms ticks)
 // Parameters are <filename>, <offset in ticks>, <period
 // in ticks>
 SCH_Add_Task(TaskA, 0, 3);
 SCH_Add_Task(TaskB, 1, 3);
 SCH_Add_Task(TaskC, 2, 3);

 // Start the scheduler
 SCH_Start();

 while(1)
 {
 SCH_Dispatch_Tasks();
 }
 }

Figure A-1 The main function of a TTC scheduler which executes three periodic tasks,

adapted from Kurian and Pont (2007).

Appendix A: TT architectures implemented in ESL 146

void SCH_Update(void)
 {
 // Note that an interrupt has occured
 Tick_count_G++;
 }

Figure A-3 The tick ISR function of a TTC scheduler,

copied from Kurian and Pont (2007).

void SCH_Dispatch_Tasks(void)
 {
 Update_required = 0;
 // Need to check for a timer interuppt since this
 // function was last executed (in case idle mode is not
 // being used)

 Disable_Timer_Interrupt();
 if (Tick_count_G > 0)
 {
 Tick_count_G--;
 Update_required = 1;
 }
 Enable_Timer_Interrupt();

 while (Update_required)
 {
 // Go through the task array
 for (Index = 0; Index < 3; Index++)
 {
 Update_Task_Status();
 if (Task[Index] due to run)
 {
 Run(Task[Index]);
 }
 }

 Disable_Timer_Interrupt();
 if (Tick_count_G > 0)
 {
 Tick_count_G--;
 Update_required = 1;
 }
 Enable_Timer_Interrupt();
 } //end of while
 SCH_Go_To_Sleep();
 }

Figure A-2 The dispatch function of a TTC scheduler,

adapted from Kurian and Pont (2007).

Appendix A: TT architectures implemented in ESL 147

During the operation of the TTC scheduler, if a task temporary overran and its

execution exceeded the tick interval, the tick ISR will pre-empt that task and update the

system global time to keep track of the timing. In this case the pre-empted task will

regain access to the CPU and continue its execution directly after the ISR ends. So

there will be no chance for an uncontrolled access to a shared resource to occur.

Figure A-1, Figure A-2, and Figure A-3 show an example of three tasks run with TTC

scheduler with a tick interval of 1 ms. It should be noted that the offsets (the time,

measured from the start of the schedule, at which the task first starts execution) of Task

A is zero, Task B is one, and Task C is 2 ms.

A.2 TTH scheduler

As explained earlier in Chapter 1 there are situations in which co-operative schedulers

cannot satisfy task constraints, for example systems that have to react to some events

within a period of time smaller than the execution time of a given task in the system. If

these long tasks cannot be divided to multiple short tasks, then co-operative schedulers

cannot be used. In such situations a modified version (called TTH) of the TTC

scheduler discussed above may be used. As described in (Pont, 2001 and Maaita and

Pont 2005) this scheduler has limited pre-emption capability, to reduce the scheduler

overhead.

TTH supports multiple co-operative tasks and one short pre-empting task, which has

priority higher than that of the co-operative tasks.

TTH can be implemented in the same way as TTC, with the exception of running the

pre-emptive task from within the tick ISR to enable it to easily pre-empt other tasks

whenever it becomes ready to run, as shown in Figure A-4.

Appendix A: TT architectures implemented in ESL 148

A.3 Conclusions

This appendix gave an overview of a possible implementation of the TTC and TTH

schedulers as presented by researchers in ESL, University of Leicester.

void SCH_Update(void)
 {
 // Note that an interrupt has occured
 Tick_count_G++;
 Run pre-empting task;
 }

Figure A-4 The tick ISR function of a TTH, adapted from (Pont, 2001).

Appendix B

TTSA1 Case study (Scheduler agent)

This appendix describes a case study which is developed during the course of the work

in the thesis and is used to study the effectiveness of the TTSA1 algorithm9

B.1 The basic system description and functionality

.

In the proposed architecture introduced here, TTSA1 is used to fine tune the schedule of

a set of tasks. For achieving this, TTSA1 is implemented and run in a separate

hardware platform, in which case it is called the "scheduler agent" (SA).

The architecture is based on two components (i) the main processor (MP) platform,

containing the time-triggered (co-operative) scheduler and task code, and (ii) a second

processor, executing the "scheduler agent" (SA). In the experiments described in this

appendix, the MP contains an instrumented scheduler and, during a "tuning" phase, the

SA measures – on line – the execution time of each task as it runs. The measured

values are then used by the TTSA1 algorithm to fine tune the task schedule in an

attempt to ensure that (i) all task constraints - such as deadline and jitter - are met (ii)

power consumption is reduced. After the tuning phase is completed the SA continues to

monitor the MP and can take appropriate action (such as reseting the systems) in case of

errors. The effectiveness of the proposed architecture is demonstrated empirically by

applying it to a set of tasks that represent a typical embedded control system.

The monitoring approach in another TT architecture should also be mentioned here.

The high-level Giotto language (Henzinger et al., 2001) splits the system into two

components, an "Embedded Machine" and a "Scheduling Machine". In the case of

Giotto, the two components execute (as virtual machines) on the same CPU.

9 Parts of this appendix have been published previously in Gendy et al.(2007)

Appendix B: TTSA1 Case study (Scheduler agent) 150

The following section describes the proposed system architecture in detail.

B.2 THE MP-SA ARCHITECTURE

The remainder of this appendix presents and assesses the proposed system architecture.

B.2.1 Overview

An overview of the proposed system architecture is given in Figure B-1.

The proposed architecture employs an additional microcontroller (the Scheduling

Agent, SA) to measure the BCET and WCET of each task while they are running on the

main processor (MP) for a specified period of time. The SA also measures the

scheduler overhead. The information gathered in this way is used in an attempt to fine

tune task parameters (such as the task offsets, or "initial delay") and scheduler

parameters (such as the tick interval) in order that all task constraints are met and the

power consumption is reduced. After the fine-tuning phase is finished the SA continues

to monitor the MP while running the tasks with the new parameters and take the

appropriate action in case of errors.

For ease of reference, it will be referred to this two-processor arrangement as the "MP-

SA architecture" throughout this appendix.

B.2.2 How does the MP-SA architecture operate?

The MP-SA architecture operates as follows:

Figure B-1 An overview of the MP-SA architecture.

Communication bus

Task status

MP

SA

Reset signal

Appendix B: TTSA1 Case study (Scheduler agent) 151

i) At compile time, the task specifications (estimated BCET, estimated WCET,

deadline, period, and upper bound of jitter) are provided to the MP.

ii) When the system starts, the MP sends task specifications to the SA.

iii) The SA asks the MP to schedule a number of dummy (empty) tasks, equal to the

total number of the real tasks. The SA measures the scheduler overhead (by measuring

the time spent by the scheduler out of "idle" mode as it executes the dummy tasks) for a

pre-specified period of ("overhead") time.

iv) The SA calculates the initial task order, task offsets, and the scheduler tick

interval based on the measured scheduler overhead and the given task parameters. In

doing this the SA assumes that the overhead can be represented as an additional task

that runs at every tick with BCET equal to zero and WCET equal to the scheduler

overhead measured in Step iii. The SA sends these parameters to the MP and asks it to

begin running the real tasks for a specified period of ("tuning") time.

v) While the MP is running the real tasks, the SA measures the actual BCET and

WCET of each task.

vi) The SA repeats Step iv to fine tune the scheduler based on the actual measured

BCET and WCET of each task.

vii) If a set of parameters is found so that all task constraints are met then the SA

sends these parameters to the MP to restart the scheduler according to these new

parameters (If a set of such parameters cannot be found then the SA tells the MP to "sail

silently").

viii) If a suitable set of parameters have been found, the SA monitors the system

during the normal program execution (functioning as a form of "task watchdog").

In Step i and Step ii it is assumed that the task specification will be (initially) stored in

the MP. This allows us to create a generic SA (suitable for use for a wide range of

different MPs).

Appendix B: TTSA1 Case study (Scheduler agent) 152

B.2.3 Calculating task and scheduler parameters

Given a set of tasks each described by (BCET,WCET, deadline, period, jitter), the SA

tries to calculate the appropriate task orders, task offsets, and tick interval so that task

constraints (deadline and jitter in this study) are met and the power consumption is

reduced. In doing this, the SA does not attempt to complete an exhaustive search.

Instead, the SA employs the TTSA1 scheduling algorithm presented in Chapter 7.

B.3 THE MP-SA PERFORMANCE

An empirical test was carried out to study the performance of the MP-SA architecture10

The procedure and results obtained by using this architecture for a system with a set of

3 tasks are detailed in this section. A time-triggered co-operative (TTC) scheduler

described previously was used to schedule the tasks.

.

B.3.1 Task set

To explore the effectiveness of the MP-SA architecture a set of 3 tasks (Task Sa, Task

Co, Task Ac) was used: these were intend to be representative of those used in a typical

embedded control system. In such a system, Task Sa would be the first task to run and

would be used for data sampling. Task Co would then execute the control algorithm

and – finally – Task Ac would control the actuator(s). In this study, it is assumed that

the tasks run co-operatively, in this sequence.

The specifications of the tasks (BCET, WCET, deadline, period, and the maximum

allowed jitter) are shown in Table B-1. There are two values for the BCET and another

two for the WCET of each task indicated in this table. The first value is the value

estimated by the designer and the second value is the value which measured by the SA

while the tasks run on the target MP.

10 It should be noted that for the purpose of simplifying the process of testing the proposed

architecture various steps described in section B.2.2 have been carried out separately.

Appendix B: TTSA1 Case study (Scheduler agent) 153

The chosen hardware platforms for both the SA and the MP were an NXP (formerly

Philips) LPC2129 microcontroller running on a small evaluation board (Philips, 2004a).

The communications between the SA and the MP was carried out via a CAN bus in this

design (as shown in Figure B-2).

B.3.2 Task scheduling without the MP-SA architecture

One possible way to schedule the task set described Table B-1 is shown in Figure B-3.

This schedule is based on the estimated values for the BCET and the WCET along with

the other constraints for the periods, deadlines, and the upper bound of jitter11

This schedule has several potential drawbacks which can be summarised as follows:

. The tick

interval of this scheduler is chosen to be 100 ms length and the offsets of all the tasks

are set to 0.

i) Estimated values of BCET and WCET may not be accurate (Table B-1).

Building the scheduler based only on the estimated values may cause some tasks to miss

their deadlines and / or encounter high level of jitter (Task Ac in this example: as shown

in Figure B-4).

11 Jitter is calculated as the difference between the maximum period and the minimum

period.

Figure B-2 The MP-SA hardware.

Appendix B: TTSA1 Case study (Scheduler agent) 154

ii) Ignoring the scheduler overhead can lead to similar effects (such as missed

deadlines and / or increase the level of jitter): as shown in Figure B-5.

iii) Using a short tick interval, such as the 100 ms tick interval that was used here,

instead of using the longest possible tick interval (which is 400 ms in the current case),

will increase the system power consumption.

B.3.3 Task scheduling with the MP-SA architecture

The impact of the MP-SA architecture is illustrated in Figure B-6.

In this case, the SA has adapted the task schedule based on the measured values of the

task BCET and WCET. One consequence is that the SA has identified a "compromise"

tick interval (200 ms), which could be expected to reduce the power consumption

(compared with the original value of 100 ms) while also ensuring low levels of jitter in

both of the time-sensitive tasks (Task Sa and Task Ac). In this case, the jitter in the

original schedule was 0.014 ms and 8.001 ms for Task Sa and Task Ac (respectively):

after use of the SA, the jitter became 0.014 ms for both the tasks.

It should be noted that in addition to adjusting the tick interval to 200 ms, the SA

adjusted the offset of Task Ac to 1 tick (rather than 0).

B.3.4 System behaviour in case of faults

The effectiveness of the MP-SA architecture on the system behaviour in the "normal"

operating mode was also tested. During this test, a fault was injected in the system

which changed the characteristics of Task Sa (the BCET became 37 ms and the WCET

became 50 ms respectively). This error was assumed to represent the impact of a

hardware fault.

Under these circumstances, without using the MP-SA architecture, the system ran

without sensing the violated deadline and jitter constraints. In this test, the measured

jitter of Task Co was 25.35 ms.

When the test was repeated in a system using the MP-SA architecture, the SA sensed

the violated constraints and it forced the MP to restart (in an effort to recover from this

Appendix B: TTSA1 Case study (Scheduler agent) 155

fault). Other recovery behaviour (e.g. backup tasks) could also be implemented in

response to the detected errors.

Appendix B: TTSA1 Case study (Scheduler agent) 156

Table B-1 Task specifications.

Task Execution time (ms) Deadline

(ms)

Period

 (ms)

Jitter

(ms) Estimated Measured

BCET WCET BCET WCET

Sa 37 38 37 40 50 400 1

Co 10 11 10 11 65 400 6.5

Ac 20 21 20 22 70 400 4.5

Appendix B: TTSA1 Case study (Scheduler agent) 157

S C Slee
pA

Scheduler
overhead

System
Tick

Idel
mode

Task
Ac

Task
Co

Task
Sa

task Ac
deadline

S C

Time (ms)

Slee
p

A
sleep Sleep

100 200 300 400 500 6000

S C
Sleep

A

deadline miss

Figure B-4 Effect of inaccurate estimations of BCET and WCET on task behaviour.

S C

Time (ms)

Slee
p

A
sleep Sleep

100 200 300 400 500 6000

S C
Sleep

A

Figure B-3 A simple schedule based on the estimated BCET and WCET with 100 ms tick interval.

Appendix B: TTSA1 Case study (Scheduler agent) 158

S C Slee
pA

Scheduler
overhead

System
Tick

Idel
mode

Task
Ac

Task
Co

Task
Sa

task Ac
deadline

S C

Time (ms)

Sleep
A

sleep Sleep

200 400 6000

S C A
sleep

Figure B-6 Task behaviour with the scheduler produced by the MP-SA architecture

S C

Time (ms)

Sleep

A
sleep Sleep

100 200 300 400 500 6000

S C
S
l
e
e
p

A

deadline missdeadline miss

Figure B-5 Effect of scheduler overhead on task behaviour.

Appendix B: TTSA1 Case study (Scheduler agent) 159

B.3.5 Extended task set

To test the effectiveness of the MP-SA architecture with a slightly more complex

system, two additional tasks (Task EXT1 and Task EXT2) were added. Table B-2

shows the specifications of the additional tasks (BCET, WCET, deadline, period, and

the maximum allowed jitter).

The same hardware platforms were used in this study.

In this case, the SA set the tick interval to 200 ms and the offsets of the Task Ac, Task

EXT1 and Task EXT2 to 1 tick.

Using the SA, the measured values of the jitter from the Task Sa, Task Co, Task Ac,

Task EXT1 and Task EXT2 was found to be 0.014 ms, 6.008 ms, 0.014 ms, 4.012 ms

and 5.995 ms respectively. The jitter constraints for all 5 tasks were met.

Appendix B: TTSA1 Case study (Scheduler agent) 160

Table B-2 Extended Tasks’ specifications.

Task Execution time (ms) Deadline

(ms)

Period

(ms)

Jitter

(ms) Estimated Measured

BCET WCET BCET WCET

EXT1 3 4 4 5 80 400 5

EXT2 5 6 6 7 90 400 6.5

Appendix B: TTSA1 Case study (Scheduler agent) 161

B.4 Conclusions

This appendix presented a novel architecture that can be used in time-triggered

embedded systems to:

[1] Measure the BCET, WCET, and scheduler overhead during "normal" system

operation.

[2] Fine tune the scheduler using the TTSA1 algorithm so that task constraints (such as

deadline and jitter) are met and power consumption is reduced.

[3] Monitor the system and take the appropriate action in the event of faults.

These results were achieved at the expenses of using an additional microcontroller in

the system.

The effectiveness of the proposed architecture was demonstrated using a small

empirical study.

Appendix C

TTSA2 application example

This appendix describes a simple example that can be used to show the effectiveness of

the TTSA2 algorithm.

C.1 The basic system description and functionality

This application example assumes having a system with a simple set of 3 tasks, each has

3 segments (Segment Sa, Segment Co, Segment Ac). In each task for such a system,

Segment Sa would be the first segment to run and would be used for data sampling.

Segment Co would then execute the control algorithm and – finally - Segment Ac

would control the actuator(s). Although in reality each of these segments are usually

implemented as a separate task, they are used here to in this way to explain a logical

way of diving long tasks into multiple segments. These three tasks are intended to be

representative of three plants that are controlled by a single microcontroller; such as

controlling 3 inverted pendulums (Cervin et al., 2004) or controlling a robot which has

three degrees of freedom.

C.2 Task specifications

Table C-1 shows an example of the specification of the 3 tasks system. Table C-2

shows an example of the exclusion relation between various segments of different tasks.

In this table a value of "T" in cell (i, j) means that segment i excludes segment j and vice

versa. A value of "F" in cell (i, j) means that there is no exclusion relationship between

segment i segment j. It should be noted that the shaded cells in that table are redundant

entries so they do not need not to be filled.

Appendix C: TTSA2 application example 163

Table C-1 Task specifications for the application example.

Task No of

Segments

WCET

(ms)

Deadline

(ms)

Period

(ms)

Jitter

(ms)

Latency

(ms)

Distance

(ms)

Precedence

1 3

Total:0.315

Sa1:0.010

Co1:0.300

Ac1:0.005

1.0 1.0 0.01

Latency (A
,B

): 1.0

D
istance (A

,B
): 0.0

Task A
 Precedes Task B

2 3

Total:0.340

Sa2:0.013

Co2:0.320

Ac2:0.007

1.0 1.0 0.10

3 3

Total:0.370

Sa3:0.012

Co3:0.350

Ac3:0.008

5.0 5.0 1.00

Appendix C: TTSA2 application example 164

C.3 Task scheduling according to one segment per task

Figure C-1 shows the schedule of this task set considering each task as only one

segment. As can be noticed this will violate, at least, the jitter, and may be deadline,

constraints of Task 1 every time Task 3 runs.

C.4 Task scheduling with considering multiple segments per task

By applying the TTSA2 scheduling algorithm to test the schedulability of this task set a

workable schedule is found without violating any task constraints, as shown in Figure

C-2. It should be noted that Task 1 and Task 2 each will run as one segment with offset

0, and Task 3 will as 2 segments, the first with offset 0 and the second with offset 1.

Table C-2 Task exclusion relations for the application example

Segment Sa1 Co1 Ac1 Sa2 Co2 Ac2 Sa3 Co3 Ac3

Sa1 T T T T T T

Co1 T F F T F F

Ac1 T F F T F F

Sa2 T T T

Co2 T F F

Ac2 T F F

Sa3

Co3

Ac3

Appendix C: TTSA2 application example 165

Sleep

System
Tick

Idel
modeTask 3Task 2Task 1

C.5 Conclusions

In this appendix a simple example of a typical control system is used to show the

effectiveness of the TTSA2 algorithm. It has been shown that allowing task

segmentation may increase the chance of finding a feasible schedule for the task set

using TTC; the same applies for TTH.

S C

Time (ms)

A
sleep Sleep

1 2 30

S C A S C AS C A S C A S C A S C A
sleep

Figure C-2 Illustrating of the first 3 ticks for the tasks shown in Table C-1 and Table C-2

scheduled by TTC with considering task segmentation (TTSA2 algorithm).

S C

Time (ms)

A
sleep Sleep

1 2 30

S C A S C A S C A S C A S C A S C A

Figure C-1 Illustrating of the first 3 ticks for the tasks shown in Table C-1 and Table C-2

scheduled by TTC without considering task segmentation.

References

Albert, A. (2004). "Comparison of event-triggered and time-triggered concepts with

regard to distributed control systems". Proceedings of Embedded World,
Nurnberg, Germany.

Alexander, C. (1979). "The timeless way of building". NY, Oxford University Press.

Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, M., Fisksdahl-King, I. and

Angel, S. (1977). "A pattern language". NY, Oxford University Press.

Allen, J., Kennedy, K., Porterfield, C. and Warren, J. (1983). "Conversion of control

dependence to data dependence". Proc. 10th ACM Symposium on Principles of
Programming Languages, Austin, Texas, USA.

Allworth, S. T. (1981). "An introduction to real-time software design", Macmillan,

London.

Aparicio, C., Segarra, J., Rodríguez, C., J. L. Villarroel and Viñals, V. (2008).

"Avoiding the WCET overestimation on LRU instruction cache". Proceedings of
the 2008 14th IEEE International Conference on Embedded and Real-Time
Computing Systems and Applications

Arnold, K. (2000). "Embedded Controller Hardware Design", Newnes.

Atkinson, C., C., B., Gross, H. and Peper, C. (2005). "Component-based software

development for embedded systems: An overview of current research trends
(Lecture notes in computer science) ", Springer-Verlag Berlin and Heidelberg
GmbH & Co. K.

Audsley, N. C., Burns, A., Richardson, M. F. and Wellings, A. J. (1991). "Hard real-

time scheduling: the deadline-monotonic approach". Proceedings 8th IEEE
Workshop on Real-Time Operating Systems and Software, Atlanta, GA, USA.

Audsley, N. C., Tindell, K. and Burns, A. (1993). "The end of line for static cyclic

scheduling?". Fifth Euromicro Workshop on Real-Time Systems.

Ayavoo, D. (2006). "Development of a tool to support the design of real-time embedded

control systems for X-By-Wire applications". Embedded Systems Laboratory,
University of Leicester. PhD thesis.

Ayavoo, D., Pont, M. J., Fang, J., Short, M. and Parker, S. (2005). "A ‘Hardware-in-

the-Loop’ testbed representing the operation of a cruise-control system in a
passenger car". In: Koelmans, A., Bystrov, A., Pont, M.J., Ong, R. and Brown,
A. (Eds.), Proceedings of the Second UK Embedded Forum, Published by
University of Newcastle upon Tyne, Birmingham, UK.

References 167

Ayavoo, D., Pont, M. J., Short, M. and Parker, S. (2007). "Two novel shared-clock
scheduling algorithms for use with ‘Controller Area Network’ and related
protocols." Journal of Microprocessors and Microsystems 31(5): 326-334.

Baker, T. P. and Shaw, A. (1988). "The cyclic executive model and Ada". Proceedings

of the Real-Time Systems Symposium Huntsville, AL, USA.

Barr, M. (1999). "Programming embedded systems in C and C ++", O'Reilly.

Baruah, S. K. (2006). "The non-preemptive scheduling of periodic tasks upon

multiprocessors." Real-Time Systems 32(1-2): 9-20.

Baruah, S. K., Buttazzo, G., Gorinsky, S. and Lipari, G. (1999). "Scheduling periodic

task systems to minimize output jitter". Proceedings of the Sixth International
Conference on Real-Time Computing Systems and Applications, RTCSA Hong
Kong.

Bate, I. J. (1998). "Scheduling and timing analysis for safety critical real-time systems".

Department of Computer Science. York, University of York. PhD thesis.

Baynes, K., Collins, C., Fiterman, E., Ganesh, B., Kohout, P., Smit, C., Zhang, T. and

Jacob, B. (2003). "The performance and energy consumption of embedded real-
time operating systems." Computers, IEEE Transactions on 52(11): 1454 - 1469.

Bini, E., Buttazzo, G. C. and Buttazzo, G. M. (2003). "Rate monotonic scheduling: The

hyperbolic bound." IEEE Trans. Computers 52(7): 933 - 942.

Brucker, P., Garey, M. R. and Johnson, D. S. (1977). "Scheduling equal-length tasks

under treelike precedence constraints to minimize maximum lateness."
Mathematics of Operations Research 2(3): 275-284.

Burguiere, C. and Rochange, C. (2005). "A contribution to branch prediction modeling

in WCET analysis". Proceedings of the Design, Automation and Test in Europe
Conference and Exhibition (DATE’05).

Burns, A. (1995). "Generating feasible cyclic schedules." Control Engineering Practice

3(2): 151-162.

Buttazzo, G. C. (2005a). "Hard real-time computing cystems: Predictable scheduling

algorithms and applications", Springer.

Buttazzo, G. C. (2005b). "Rate monotonic vs. EDF: judgment day." Real-Time Syst.

29(1): 5-26.

Buttazzo, G. C., Lipari, G., Abeni, L. and Caccamo, M. (2005). "Soft real-time systems:

predictability vs. efficiency", Springer.

Cervin, A., Lincoln, B., Eker, J., Årzén, K. and Buttazzo, G. (2004). "The jitter margin

and its application in the design of real-time control systems". Proceedings of

References 168

the 10th International Conference on Real-Time and Embedded Computing
Systems and Applications, Göteborg, Sweden.

Cheng, A. M. K. (2002). "Real- time systems, scheduling, analysis, and verifications",

John Wiley & Sons.

Cottet, F., Delacroix, J., Kaiser, C. and Mammeri, Z. (2002). "Scheduling in real-time

systems", Wiley.

Cucu, L. and Sorel, Y. (2004). "Non-preemptive multiprocessor scheduling for strict

periodic systems with precedence constraints". Proc. 23rd Annual Workshop of
the UK Planning and Scheduling Special Interest Group, PLANSIG'04, Cork,
Ireland.

Cunningham, W. and Beck, K. (1987). "Using pattern languages for object-oriented

programs". Proceedings of OOPSLA87’, Orlando, Florida.

David, L. (2000). "NASA report: too many failures with faster, better, cheaper." from

WWW Page: <
http://www.space.com/businesstechnology/business/spear_report_000313.html
>, (accessed May 2009).

Deverge, J. and Puaut, I. (2005). "Safe measurement-based WCET estimation". Proc. of

the 5th Workshop on Worst-Case Execution Time Analysis, held in conjunction
with the 17th Euromicro Conference on Real-Time Systems.

Dobrin, R. and Fohler, G. (2004). "Reducing the number of pre-emptions in fixed

priority scheduling". Proc. 16th Euromicro Conference on Real-Time Systems.

Domaratsky, Y. and Perevozchikov, M. (2000). "Highly dependable time-triggered

operating system". Dedicated Systems Magazine. 4: pp. 77-80.

Ekelin, C. and Jonsson, J. (1999). "Real-time system constraints: Where do they come

from and where do they go?". Proceedings of the Int’l Workshop on Real-Time
Constraints, Alexandria, Virginia, USA.

Ekelin, C. and Jonsson, J. (2000). "Solving embedded system scheduling problems using

constraint programming". Tech. Rep. 00-12. S-412 96 Goteborg, Sweden, Dept.
of Computer Engineering, Chalmers University of Technology.

Ekelin, C. and Jonsson, J. (2001). "Evaluation of search heuristics for embedded system

scheduling problems". Proceedings of the international conference on Principles
and Practice of Constraint Programming, Paphos, Cyprus.

Engblom, J. (2002). "Processor pipelines and static worst-case execution time

analysis". Dept. of Information Technology. Acta Universitatis Upsaliensis,
Uppsala University. PhD thesis.

http://www.space.com/businesstechnology/business/spear_report_000313.html�

References 169

Engblom, J. and Ermedahl, A. (2000). "Validating a worst-case execution-time analysis
method for an embedded processor". Proc. 21st IEEE Real-time Systems
Symposium (RTSS’00), Orlando, Florida, USA.

Engblom, J., Ermedahl, A., Sjoedin, M., Gustafsson, J. and Hansson, H. (2001). "Worst-

case execution-time analysis for embedded real-time systems." Journal of
Software Tools for Technology Transfer (STTT) 4(4): pp. 437-455.

Engblom, J. and Jonsson, B. (2002). "Processor pipelines and their properties for static

WCET analysis". Proceedings of the Second International Conference on
Embedded Software, London, UK, Springer-Verlag.

Ferdinand, C., Martin, F. and Wilhelm, R. (1997). "Applying compiler techniques to

cache behavior prediction". Proc. ACM SIGPLAN Workshop on Language,
Compiler and Tool Support for Real-Time Systems, Las Vegas, Nevada, USA.

Ferrari, D. and Verma, D. C. (1990). "A scheme for real-time channel establishment in

wide-area networks." IEEE Journal on Selected Areas in Communications 8(3):
368 - 379.

Gamma, E., Helm, R., Johnson, R. and Vlissides, J. (1995). "Design patterns: Elements

of reusable object-oriented software". Reading, MA, Addison-Wesley.

Gangoiti, U., Marcos, M. and Estévez, E. (2005). "Using cyclic executives for achieving

closed loop co-simulation". Proc. of the Joint 44th IEEE Control and Decision
Conference and European Control Conference CDC-ECC’2005, ISSN: 0-7803-
9568-9, 4785-3790 (2005), Sevilla, Spain.

Ganssle, J. (1992). "The art of programming embedded systems", Academic Press, San

Diego, USA.

Ganssle, J. and Barr, M. (2003). "Embedded systems dictionary", CMP Books.

Gendy, A., Dong, L. and Pont, M. J. (2007). "Improving the performance of time-

triggered embedded systems by means of a scheduler agent". Proc. of the ASME
2007 International Design Engineering Technical Conferences & Computers and
Information in Engineering Conference (IDETC/CIE 2007), Las Vegas, Nevada,
USA.

Gendy, A. and Pont, M. J. (2007). "Towards a generic 'single-path programming'

solution with reduced power consumption". Proc. of the ASME 2007
International Design Engineering Technical Conferences & Computers and
Information in Engineering Conference (IDETC/CIE 2007), Las Vegas, Nevada,
USA

Gendy, A. and Pont, M. J. (2008a). "Automatically configuring time-triggered

schedulers for use with resource-constrained, single-processor embedded
systems." IEEE Transactions on Industrial Informatics 4(1): 37 - 46.

References 170

Gendy, A. and Pont, M. J. (2008b). "Automating the processes of selecting an
appropriate scheduling algorithm and configuring the scheduler implementation
for time-triggered embedded systems". Lecture Notes in Computer Science,
Computer Safety, Reliability, and Security, Volume 5219/2008, Springer Berlin
/ Heidelberg, 27th International Conference on Computer Safety, Reliability and
Security, SAFECOMP08, 22-25 September 2008, Newcastle upon Tyne, UK.

Gerber, R., Hong, S. and Saksena, M. (1994). "Guaranteeing end-to-end timing

constraints by calibrating intermediate processes". Proc. IEEE Real-Time
Systems Symposium, IEEE Computer Society Press.

Gerber, R., Hong, S., Saksena, M. (1995). "Guaranteeing real-time requirements with

resource-based calibration of periodic processes." IEEE Transactions on
Software Engineering 21(7): 579-592.

Gergeleit, M. and Nett, E. (2002). "Scheduling transient overload with the TAFT

scheduler". GI/ITG specialized group of operating systems. Berlin.

Goossens, J. and Devillers, R. (1997). "The non-optimality of the monotonic priority

assignments for hard real-time offset free systems." Real-Time Systems 13: 107–
126.

Gregory, F. D. (1996). "Safety and mission assurance in a better, faster, cheaper

environment." Acta Astronautica 39(6): 465-469.

Han, C., Lin, K. and Hou, C. (1996). "Distance-constrained scheduling and its

applications to real-time systems." IEEE Transactions on Computers 45 (7): 814
- 826.

Henzinger, A. T., Horowitz, B. and Kirsch, C. M. (2001). "Giotto: A time-triggered

language for embedded programming”". Proceedings 1st International
Workshop on Embedded Software (EMSOFT), Lecture Notes in Computer
Science 2211, Springer-Verlag.

Huang, C., Chang, L. and Kuo, T. (2003). "A cyclic-executive-based QoS guarantee

over USB". IEEE 9th Real-Time and Embedded Technology and Applications
Symposium, Toronto, Canada.

Hughes, Z. M. and Pont, M. J. (2004). "Design and test of a task guardian for use in

TTCS embedded systems". In : Koelmans, A., Bystrov, A. and Pont, M.J. (Eds.)
Proceedings of the UK Embedded Forum 2004 (Birmingham, UK, October
2004), Published by University of Newcastle upon Tyne [ISBN: 0-7017-0180-
3]. .

Hughes, Z. M. and Pont, M. J. (2008). "Reducing the impact of task overruns in

resource-constrained embedded systems in which a time-triggered software
architecture is employed." Transactions of the Institute of Measurement and
Control 30(5): 427-450.

References 171

IEC. (2005). "Functional safety of electrical/electronic/programmable electronic safety-
related systems – Part 0: Functional safety and IEC 61508." from WWW Page:
< http://www.iec.ch/functionalsafety >, (accessed August 2009).

Intel. (2009). "Intel Museum." from WWW Page: <

http://www.intel.com/museum/archives/4004.htm >, (accessed May 2009).

Jeffay, K., Stanat, D. F. and Martel, C. U. (1991). "On non-preemptive scheduling of

periodic and sporadic tasks". the 12 th IEEE Symposium on Real-Time
Systems.

Joch, A. and Sharp, O. (1995). "How software doesn't work." Byte 20(12): 49–60.

John, L. H. and David, A. P. (2007). "Computer architecture: a quantitative approach",

Morgan Kaufmann.

Joseph, M. (1996). "Real-time systems: specification, verification and analysis",

Prentice Hall.

Kalinsky, D. (2001). "Context switch." Embedded Systems Programming 14(1): 94-105.

Kalinsky, D. (2005). "New directions in real-time operating system kernels." Embedded

Control Europe.

Kim, N., Ryu, M., Hong, S. and Shin, H. (1999). "Experimental assessment of the

period calibration method: A case study." Real-Time Systems 17(1): 41 - 64.

Kirkpatrick, S., Gelatt, C. D. and Vecchi, M. P. (1983). "Optimisation by simulated

annealing." Science 220: 671-680.

Kirner, R. and Puschner, P. (2003). "Discussion of misconceptions about WCET

analysis". 3rd Euromicro International Workshop on WCET Analysis.

Kirner, R. and Puschner, P. (2008). "Obstacles in worst-case execution time analysis".

11th IEEE International Symposium on Object Oriented Real-Time Distributed
Computing (ISORC), Florida, USA.

Kopetz, H. (1991). "Event-triggered versus time-triggered real-time systems". The

International Workshop on Operating Systems of the 90s and Beyond, Springer-
Verlag

Kopetz, H. (1993). "Should responsive systems be event-triggered or time-triggered?"

IEICE Transactions on Information and Systems: 1325--1332.

Kopetz, H. (1997). "Real-time systems: design principles for distributed embedded

applications", Kluwer Academic.

Kopetz, H., Nossala, R., Hexela, R., Krügera, A., Millingera, D., Pallierera, R.,

Templea, C. and Krugb, M. (1998). "Mode handling in the time-triggered
architecture." Control Engineering Practice 6(1): 61-66.

http://www.iec.ch/functionalsafety�
http://www.intel.com/museum/archives/4004.htm�

References 172

Kovalyov, M. and Xu, J. (2000). "Uniform processor scheduling with release times,

deadlines, precedence and exclusion relations International". Workshop
Discrete optimization methods in scheduling and computer-aided design, Minsk,
Belarus.

Kurian, S. and Pont, M. J. (2005a). "Building reliable embedded systems using Abstract

Patterns, Patterns, and Pattern Implementation Examples". In: Koelmans, A.,
Bystrov, A., Pont, M.J., Ong, R. and Brown, A. (Eds.), Proceedings of the
Second UK Embedded Forum, Published by University of Newcastle upon Tyne
[ISBN: 0-7017-0191-9], Birmingham, UK.

Kurian, S. and Pont, M. J. (2005b). "Mining for pattern implementation examples". In:

Koelmans, A., Bystrov, A., Pont, M.J., Ong, R. and Brown, A. (Eds.),
Proceedings of the Second UK Embedded Forum , Published by University of
Newcastle upon Tyne, Birmingham, UK,.

Kurian, S. and Pont, M. J. (2006a). "Evaluating and improving pattern-based software

designs for resource-constrained embedded systems". In: C. Guedes Soares & E.
Zio (Eds), "Safety and Reliability for Managing Risk": Proceedings of the 15th
European Safety and Reliability Conference (ESREL 2006), Estoril, Portugal.

Kurian, S. and Pont, M. J. (2006b). "Restructuring a pattern language which supports

time- triggered co-operative software architectures in resource-constrained
embedded systems". 11th European Conference on Pattern Languages of
Programs (EuroPLoP 2006), Germany.

Kurian, S. and Pont, M. J. (2007). "The maintenance and evolution of resource-

constrained embedded systems created using design patterns." Journal of
systems and software 8(1): 32 - 41

Labrosse, J. (2002). "MicroC OS II: The real time kernel", Cmp Books.

Laplant, P. A. (2004). "Real-time systems design and analysis", IEEE press / John

Wiley & sons, Inc., publication.

Leung, J. (1989). "A new algorithm for scheduling periodic - real-time tasks."

Algorithmica 4: 209 - 219.

Leung, J. and Merrill, M. (1980). "A note on preemptive scheduling of periodic real-

time tasks." Information Processing Letters 11(3): 115-118.

Leung, J. and Whitehead, J. W. (1982). "On the complexity of fixed priority scheduling

of periodic real-time tasks." Performance Evaluation 2(4): 237-250.

Leventhal, L. A. (1979). "Introduction to microprocessors", Prentice-Hall.

Li, W., Kavi, K. and Akl, R. (2007). "A non-preemptive scheduling algorithm for soft

real-time systems." Computers and Electrical Engineering 33(1): 12-29.

References 173

Lin, T. and Tarng, W. (1991). "Scheduling periodic and aperiodic tasks in hard real-
time computing systems." ACM SIGMETRICS Performance Evaluation Review
19(1): 31 - 38

Liu, C. L. and Layland, J. W. (1973). "Scheduling algorithms for multiprogramming in

a hard real-time environment." Journal of the ACM 20(1): 40-61.

Locke, C. D. (1992). "Software architecture for hard real-time applications: cyclic

executives vs. fixed priority executives." Real-Time Syst. 4(1): 37-53.

Lu, C., Stankovic, J., Tao, G. and Son, S. H. (1999). "Design and evaluation of a

feedback control EDF scheduling algorithm". Proceedings of the 20th IEEE
Real-Time Systems Symposium.

Ludemann, C. A. (1983). "A microprocessor multi-task monitor." IEEE Transactions on

Nuclear Science 30(5): 3858 - 3863.

Maaita, A. and Pont, M. J. (2005a). "Using ‘planned pre-emption’ to reduce levels of

task jitter in a time-triggered hybrid". In: Koelmans, A., Bystrov, A., Pont, M.J.,
Ong, R. and Brown, A. (Eds.), Proceedings of the Second UK Embedded Forum
(Birmingham, UK, October 2005), Published by University of Newcastle upon
Tyne [ISBN: 0-7017-0191-9]. .

Maaita, A. and Pont, M. J. (2005b). "Using ‘planned pre-emption’ to reduce levels of

task jitter in a time-triggered hybrid". In: Koelmans, A., Bystrov, A., Pont, M.J.,
Ong, R. and Brown, A. (Eds.), Proceedings of the Second UK Embedded Forum
(Birmingham, UK, October 2005), Published by University of Newcastle upon
Tyne [ISBN: 0-7017-0191-9].

Maina, F. K. and Saidane, L. A. (2006). "Probabilistic QoS guarantees with FP/EDF

scheduling and packet discard in a real time context : A comparative study of
local deadline assignment techniques". proceedings of the 6th IEEE
International workshop on IP operations and management, IPOM 2006, Dublin,
Ireland.

Marwedel, P. (2006). "Embedded system design", Springer.

Mitchell, M. (1998). "An introduction to genetic algorithms ", MIT Press.

Mok, A. K. (1983). "Fundamental design problems of distributed systems for the hard

real-time environment". Department of Electrical Engineering and Computer
Science. Cambridge, MA, USA, MIT. PhD thesis.

Moore, S. and Simon, J. L. (2000). "It's getting better all the time: 100 greatest trends

of the 20th century ", Cato Institute, U.S.

Musser, M. S. (1995). "Faster, better, cheaper, how?: An interview with Domenick J.

Tenerelli." Mercury Magazine 24(4): 12-16.

References 174

Mwelwa, C. (2006). "Development and assessment of a CASE tool to support the design
and implementation of time-triggered embedded systems,". Embedded Systems
Laboratory, University of Leicester. PhD thesis.

Mwelwa, C., Athaide, K., Mearns, D., Pont, M. J. and Ward, D. (2006). "Rapid software

development for reliable embedded systems using a pattern-based code
generation tool". The Society of Automotive Engineers (SAE) World Congress,
SAE document number: 2006-01-1457. Appears in: Society of Automotive
Engineers (Ed.) "In-vehicle software and hardware systems", Published by
Society of Automotive Engineers. [ISBN: 0-7680-1763-7], Detroit, Michigan,
USA.

Mwelwa, C., Pont, M. J. and Ward, D. (2003). "Towards a CASE tool to support the

development of reliable embedded systems using design patterns". In: Bruel, J-
M [Ed.] Proceedings of the 1st International Workshop on Quality of Service in
Component-Based Software Engineering, Published by Cepadues-Editions,
Toulouse. ISBN: 2-85428-617-0, Toulouse, France.

Mwelwa, C., Pont, M. J. and Ward, D. (2004). "Code generation supported by a

pattern-based design methodology". In: Koelmans, A., Bystrov, A. and Pont,
M.J. (Eds.) Proceedings of the UK Embedded Forum 2004, Published by
University of Newcastle upon Tyne, Birmingham, UK.

Mwelwa, C., Pont, M. J. and Ward, D. (2005). "Developing reliable embedded systems

using a pattern-based code generation tool: A case study". In: Koelmans, A.,
Bystrov, A., Pont, M.J., Ong, R. and Brown, A. (Eds.), Proceedings of the
Second UK Embedded Forum, Published by University of Newcastle upon
Tyne, Birmingham, UK.

Nahas, M. (2009). "Bridging the gap between scheduling algorithms and scheduler

implementations in time-triggered embedded systems". Department of
Engineering. Leicester, Uinted Kingdom, University of Leicester. PhD thesis.

Nett, E., Streich, H., Bizzarri, P., Bondavalli, A. and Tarini, F. (1996). "Adaptive

software fault tolerance policies with dynamic real-time guarantees". WORDS
96, IEEE Second Int. Workshop on Object-oriented Real-time Dependable
Systems, Laguna Beach, California, U.S.A.

Oh, S. H. and Wu, C. (2004). "Genetic-algorithm-based real-time task scheduling with

multiple goals." Journal of Systems and Software 71(3): 245 - 258.

Oh, S. H. and Yang, S. M. (1998). "A modified least-laxity-first scheduling algorithm

for real-time tasks". the 5th International Workshop on Real-Time Computing
Systems and Applications (RTCSA '98),, Hiroshima, Japan.

Phatrapornnant, T. (2007). "Reducing jitter in embedded systems employing a time-

triggered software architecture and dynamic voltage scaling". Department of
Engineering. Leicester, United Kingdom, University of Leicester. PhD thesis.

References 175

Phatrapornnant, T. and Pont, M. J. (2006). "Reducing jitter in embedded systems
employing a time-triggered software architecture and dynamic voltage scaling."
IEEE Transactions on Computers 55(2): 113-124.

Philips (2004a). "LPC2119/2129/2194/2292/2294; Single-chip 32-bit microcontrollers

user manual".

Philips (2004b). "NXP LPC2104, LPC2105, LPC2106 data sheet", Data sheet, Philips

Semiconductors.

Pont, M. J. (2001). "Patterns for time-triggered embedded systems", Addison-Wesley.

Pont, M. J., Kurian, S. and Bautista-Quintero, R. (2006). "Meeting real-time constraints

using 'Sandwich Delays'". 11th European Conference on Pattern Languages of
Programs (EuroPLoP 2006), Germany.

Pont, M. J. and Ong, R. H. L. (2002). "Using watchdog timers to improve the reliability

of single-processor embedded systems: Seven new patterns and a case study”".
Hruby, P. and Soressen, K. E. [Eds.] Proceedings of the First Nordic Conference
on Pattern Languages of Programs.

Puschner, P. and Burns, A. (2002a). "Transforming execution-time boundable code into

temporally predictable code". Bernd Kleinjohann, K.H. (Kane) Kim, Lisa
Kleinjohann, and Achim Rettberg, editors, Design and Analysis of Distributed
Embedded Systems,. Kluwer Academic Publishers, 2002. IFIP 17th World
Computer Congress - TC10 Stream on Distributed and Parallel Embedded
Systems (DIPES 2002).

Puschner, P. and Burns, A. (2002b). "Writing temporally predictable code".

Proceedings of the 7th IEEE International Workshop on Object-Oriented Real-
Time Dependable Systems.

Puschner, P. and Burns, A. (2003). "The single-path approach towards WCET-

analysable software". Proc. IEEE International Conference on Industrial
Technology Maribor, Slovenia.

Puschner, P. and Kirner, R. (2006). "From time-triggered to time-deterministic real-

time systems". 5th IFIP Working Conference on Distributed and Parallel
Embedded Systems (DIPES 2006).

Radcliffe, N. and Wilson, G. (1990). "Natural solutions give their best." New Scientist:

47-50.

Reeves, G. (1997). "What really happened on Mars?, Authoritative Account,

research.microsoft.com."

Rochange, C. and Sainrat, P. (2002). "Difficulties in computing the WCET for

processors with speculative execution". 2nd International Workshop on Worst
Case Execution Time Analysis, Vienna.

References 176

Sandström, K. and Norström, C. (2002). "Managing complex temporal requirements in
real-time control systems". 9th IEEE Conf. Engineering of Computer-Based
Systems, Sweden.

Sandström, K., Norström, C. and Fohler, G. (1998). "Handling interrupts with static

scheduling in an automotive vehicle control system". Proc. 5th Int. Conf. on
Real-Time Computing Systems and Applications IEEE Computer Society.

Scheler, F. and Schröder-Preikschat, W. (2006). "Time-triggered vs. event-triggered: A

matter of configuration?". Dulz, Winfried; Schröder-Preikschat, Wolfgang :
MMB Workshop Proceedings (GI/ITG Workshop on Non-Functional Properties
of Embedded Systems Nuremberg, Berlin: VDE Verlag, 107—112, ISBN 978-
3-8007-2956-2.

Schild, M. and Würtz, J. (1998). "Off-line scheduling of a real-time system".

Proceedings of the 1998 ACM symposium on Applied Computing, Atlanta,
Georgia, United States.

Schild, M. and Würtz, J. (2000). "Scheduling of time-triggered real-time systems."

Constraints 5(4): 335-357.

Schlindwein, F. S., Smith, M. J. and Evans, D. H. (1988). "Spectral analysis of doppler

signals and computation of the normalized first moment in real time using a
digital signal processor, ." Medical & Biological Engineering & Computing, 26:
228-232.

Sha, L., Rajkumar, R. and Lehoczky, J. P. (1990). "Priority inheritance protocols: an

approach to real-time synchronization." IEEE Transactions on Computers 39(9):
1175 - 1185.

Shaw, A. C. (2001). "Real-time systems and software". New York, John Wiley & Sons

Inc.

Short, M. J. and Pont, M. J. (2007). "Fault-tolerant time-triggered communication using

CAN." IEEE Transactions on industrial informatics 3(2): 131-142.

Short, M. J. and Pont, M. J. (2008). "Assessment of high-integrity embedded automotive

control systems using hardware in the loop simulation." Journal of Systems and
Software 81(7): 1163-1183.

Silberschatz, A. and Galven, P. B. (1998). "Operating systems concepts", Addison-

Wesley, Boston, MA, USA.

Sommerville, I. (2007). "Software engineering". Essex, England, Pearson Education.

Stankovic, J. A. (1988). "Misconceptions about real-time computing: a serious problem

for next-generation systems." IEEE Computers 21(10): 10 - 19.

References 177

Stankovic, J. A., Lu, C., Son, S. H. and Tao, G. (1999). "The case for feedback control
real-time scheduling". Proceedings of the 11th Euromicro Conference on Real-
Time Systems, York, UK.

Stankovic, J. A. and Ramamritham, K. (1987). "The design of the spring kernel". Proc.

of the IEEE Real-Time Systems Symposium, Los Alamitos, CA, USA.

Stankovic, J. A., Spuri, M., Natale, M. D. and Buttazzo, G. (1995). "Implications of

classical scheduling results for real-time systems." IEEE Computer 28(6): 16-
25.

Theiling, H., Ferdinand, C. and R., W. (2000). "Fast and precise WCET prediction by

separated cache and path analyses." Real-Time Systems 18(2-3): 157 - 179.

Thesing, S. (2004). "Safe and Precise WCET Determination by Abstract Interpretation

of Pipeline Models. .", Universitat des Saarlandes. PhD thesis.

Tindell, K. W. (1994). "Adding time-offsets to schedulability analysis". York, England,

Real-Time Systems Research Group; Department of Computer Science;
University of York: 94 - 221.

Tindell, K. W., Burns, A. and Wellings, A. J. (1992). "Allocating hard real-time tasks:

an NP-hard problem made easy." Real-Time Systems 4(2): 145 - 165.

Turley, J. (1999). "Embedded processors by the numbers." Embedded Systems

Programming 12(5).

Vallerio, K. S. and Jha, N. K. (2003). "Task graph extraction for embedded system

synthesis". Proc. 16th Int. Conference on VLSI Design concurrently with the
2nd International Conference on Embedded Systems Design, New Delhi, India,
IEEE Computer Society, Washington, DC.

Volz, R. A. and Mudge, T. N. (1987). "Instruction level timing mechanisms for accurate

real-time task scheduling." IEEE Transactions on Computers C-36(8): 988 -
993.

Ward, N. J. (1991). "The static analysis of a safety-critical avionics control system". in

Corbyn, D.E. and Bray, N. P. (Eds.) "Air Transport Safety: Proceedings of the
Safety and Reliability Society Spring Conference, 1991" Published by SaRS,
Ltd.

Xu, J. (1993). "Multiprocessor scheduling of processes with release times, deadlines,

precedence, and exclusion relations." IEEE Transactions on Software
Engineering 19(2): 139-154.

Xu, J. (2003). "Making software timing properties easier to inspect and verify." IEEE

Software 20(4): 34-41.

References 178

Xu, J. and Parnas, D. L. (1990). "Scheduling processes with release times, deadlines,
precedence and exclusion relations." IEEE Transactions on Software
Engineering 16(3): 360-369.

Xu, J. and Parnas, D. L. (1992). "Pre-run time scheduling processes with exclusion

relations on nested or overlapping critical sections". 11th IEEE Int. Phoenix
Conf. Computers and Communications, Scottsdale, AZ, USA.

Xu, J. and Parnas, D. L. (1993). "On satisfying timing constraints in hard real-time

systems." IEEE Transactions on Software Engineering 19(1): 70 - 84.

Xu, J. and Parnas, D. L. (2000). "Priority scheduling versus pre-run-time scheduling."

Real-Time Systems 18(1): 7-23.

Zamorano, J., Alonso, A. and de la Puente, J. A. (1997). "Building safety critical real-

time systems with reusable cyclic executives." Control Engineering Practice 5(7):
999 -1005.

Zurawski, T. (2005). "Embedded systems handbook", CRC Press, Boca Raton, FL,

USA.

	Thesis submitted for the degree of
	Doctor of Philosophy
	at the University of Leicester
	Ayman K. G. Gendy
	Embedded Systems Laboratory
	Department of Engineering
	University of Leicester
	Leicester, UK
	Ayman K. G. Gendy
	I dedicate this thesis to
	my wife, son, mum and the soul of my father
	Introduction
	Introduction
	What is an embedded system?
	What is a real-time system?
	Developing real-time systems
	Scheduling time-triggered systems
	Time-triggered cooperative scheduler (TTC)
	Time-triggered hybrid scheduler (TTH)

	Challenges with simple TT architecture
	The fragility of TTH and TTC designs
	Impact of long tasks during system execution

	Aims of the thesis
	Thesis contributions
	Thesis outline
	Conclusions

	Scheduling strategies
	Task characteristics
	Task constraints
	Jitter
	Precedence
	Exclusion
	Distance
	Latency

	Scheduling criteria
	Event-triggered and time-triggered scheduling
	Pre-emptive and non pre-emptive (co-operative) scheduling
	Static priority and dynamic priority scheduling
	Offline and online scheduling

	Cyclic executives
	Common problems with cyclic executive schedulers

	Priority schedulers
	Fixed priority schedulers
	Rate monotonic scheduler
	Deadline monotonic scheduler

	Dynamic priority schedulers
	Earliest deadline first scheduler
	Least laxity first

	Common problems with priority schedulers
	Priority inversion
	Deadlock

	Discussion
	Misconceptions about schedulers classification
	Misconceptions about offline and online schedulers

	Conclusions

	Scheduling algorithms
	The function of scheduling algorithms4F
	Choosing the right scheduling strategy
	Choosing the appropriate task order/starting time
	Automatic schedule generation in real-time systems
	Brute-force search
	Branch-and-bound (BaB)
	Heuristic search
	Simulated annealing
	Genetic algorithm

	Constraint programming

	Previous work done in ESL for auto code generation for TT systems
	Design patterns
	Auto code generation tool

	Discussion
	Conclusions

	Necessity of stabilising task execution time
	Impacts of variations of task execution time
	Impact of variations of task execution time on system predictability
	Impact of variations of task execution time on task constraints

	The need for stabilising the task execution time
	Choosing an appropriate scheduler
	Configuring scheduler/task parameters

	Challenges with estimating the task execution time
	Dealing with execution time errors
	Discussion
	Conclusions

	Code-balancing techniques
	Toward a fixed execution path
	The single path programming paradigm
	The proposed CB1 techniques
	Overview
	Balanced for loop
	Balanced while loop used for waiting for input
	Balanced if-then-else structure

	Performance of the CB1 techniques
	Experimental methodology
	Hardware platform
	Software tool chain
	Power measurements
	Jitter and execution time measurements

	Initial test
	Extended test

	Discussion
	Conclusions

	Analysis of scheduler/task configuration
	A close look at TTC and TTH architectures
	TTC scheduler
	TTH scheduler

	The need for appropriate configuration of scheduler/task parameters
	Effects of task offset
	Effects of task offset on schedulability
	Effects of task offset on jitter

	Effects of tick interval
	Effects of tick interval on schedulability
	Effects of tick interval on jitter
	Effects of tick interval on power consumption

	Effects of task order
	Effects of task order on schedulability
	Effects of task order on jitter

	Discussion
	Conclusions

	TTSA1 algorithm
	TTSA1 for automatically choosing/configuring scheduler/task parameters
	Overview
	Tick interval
	Offset
	Test period
	Task starting time
	Deadline checking
	Taking scheduler overheads into account

	Evaluating the TTSA1 algorithm
	Algorithm complexity

	This problem has an order of complexity O(tn.n!), where t is the period (in ticks).
	The complexity of this algorithm is O((n-1)t) or approximately O(n.t).
	Algorithm performance
	Method
	Dataset used
	Task characteristics
	Task constraints

	Table 7-1 shows an example of a set of 3 tasks generated according to the above constraints.
	Extending the basic algorithm
	Results (small task sets)
	Results (large task set)
	Discussion
	Conclusions

	TTSA2 algorithm
	Problems with TTSA1 algorithm
	TTSA2 algorithm
	Overview
	Adjusting the segment deadline

	The deadline of Segment SA1 in Table 8-2 is an example of such deadline adjustment.
	Adding the segmentation overhead
	Evaluating the TTSA2 algorithm
	Algorithm complexity
	Algorithm performance
	Method
	Dataset used
	Results (small task sets):
	Results (large task set):

	Discussion
	Conclusions

	Discussion and conclusions
	This chapter discusses the work introduced in the thesis and analyses the thesis contributions. Limitation and future work are also discussed.
	Reasons and motivation of the thesis work
	A review of the contributions
	Scheduling in real-time systems
	The need for stabilising task execution time
	CB1 techniques
	Effects of task and scheduler parameters
	TTSA1 algorithm
	TTSA2 algorithm
	Potential appliaction

	Limitations and future work

	It was found that the results obtained by applying the TTSA1 and TTSA2 algorithms to find a workable schedule using the TTH scheduler were not as good as those obtained using the TTC scheduler compared to the results obtained by the corresponding BaB ...
	Finally it has been assumed that the points at which a task can be divided into more than one segment when applying the TTSA2 represent the critical section boundaries and they are defined in advance. Future work needs to be done to find a more effic...
	Conclusions

	The project described in this thesis has made three major contributions to the field of scheduling embedded systems using time-triggered architectures (TTC and TTH schedulers). Firstly, it introduced and assessed a set of code-balancing techniques wh...
	Secondly, it analysed the effects of inappropriate choices of a suitable scheduler and / or task and scheduler parameters on the task schedulability and power consumption.
	Finally, it developed and assessed novel scheduling algorithms (TTSA1 and TTSA2) which help in automating the process of choosing an appropriate scheduler and configuring the scheduler parameters, in cases where one is found. Future work to extend an...
	TT architectures implemented in ESL
	TTC scheduler
	TTH scheduler
	Conclusions

	TTSA1 Case study (Scheduler agent)
	The basic system description and functionality

	The following section describes the proposed system architecture in detail.
	THE MP-SA ARCHITECTURE
	Overview
	How does the MP-SA architecture operate?
	Calculating task and scheduler parameters

	THE MP-SA PERFORMANCE
	Task set
	Task scheduling without the MP-SA architecture
	Task scheduling with the MP-SA architecture
	System behaviour in case of faults
	Extended task set

	The same hardware platforms were used in this study.
	Conclusions
	TTSA2 application example
	The basic system description and functionality
	Task specifications
	Task scheduling according to one segment per task
	Task scheduling with considering multiple segments per task
	Conclusions

