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Two cylindrical cavities of diameter to depth ratigD = 0.71 andL/D = 2.5 were
investigated by numerical modelling. The flow was modellsthg three dierent ap-
proaches at free-stream Mach numbeB36 and (8. These models were an inviscid
flow prediction, a viscous flow prediction, where the dissgrawas given only by
the laminar viscosity and by the numerical dissipation, artdrbulent flow predic-
tion, where the energy dissipation at the small scales biutance was modelled by
Detached Eddy Simulation (DES). Single domain decompms{fsDD) and recursive
domain decomposition (RDD) MPI parallelization algorithmvere developed along
with the DES model to run mesh refined tests. The paralléizadficiency of the
two methods was investigated and the advantages and drgadea of these were
shown. The mesh-converged results of th® = 0.71 cylindrical cavity have been
compared to experiment. Two counter-rotating convectingices at the cavity down-
stream edge were found. The vortex core locations at vastwaamwise planes were
located using streamlines of the spanwise and flow-normma thean velocity compo-
nents. The radiating pressure field directivity in th® = 0.71 andL/D = 2.5 was
investigated at als5radial distance from the cavity centre. The tiy configurations
are characterized by a similar upstream directivity. THE = 0.71 cavity is louder
and displays a secondary downstream peak. In the spanvaise, gthe acoustic wave
from theL/D = 2.5 cavity is asymmetric whereas it is symmetric in tyd = 0.71
cavity. “Rossiter modes” and duct modes are found to cot@xtbe cylindrical cavity.
The Power Spectral Density (PSD) of the wall pressure fropearent and compu-
tation over the Mach number range 0 t@85 show an amplification of these modes at
coincidence for thé&/D = 0.71 cavity.
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Chapter 1

Introduction

1.1 Context

Advances in jet noise reduction have considerably incaeése importance of noise
from the engine fan and the airframe as a significant corttabuo the overall aircraft
noise, especially during landinlylcPike, 1993. Civil airframes often feature recesses
or grooves to accommodate service hatches and other ap@t@ipment. The flow
in these cavity-shaped recesses is unsteady and, at tigndahg speeds, may feature
large-scale instabilities. The most acoustically activeaane components in a civil
aircraft are the high lift systems and the landing gear. Nuwgless, other components,
such as fuel vents and the ailerons, also contribute to temtwnoise emissions.

In an aircraft fuel tank, as fuel is supplied to the engin@ssdet in through a vent to
balance the tank internal pressure. This avoids any vacaouheifuel tank that could
stop the fuel flow or cause the tank to implode. The design acatibn of fuel vents
vary among aircraft. Fuel vents are often cut in the undersithg skin. Alternatively,
these are located on the wing trailing edge, as in Cessna Altsugh the amplitude
of fuel vent noise is relatively low, it happens to be overagjtrency range higher than
the one of high lift systems noise, therefore it is perceiligch ground observer as
louder with respect to what its amplitude in decibel wouldgest, due to the dB(A)
weighting Cambiancet al., 200§. The fuel vent represents a niche of the broader
subject of cylindrical cavity flows.

A cylindrical open cavity placed one metre downstream ofvilireg leading edge is
herein investigated as an initial low fidelity fuel vent mbdéa wide-body civil air-



1.2 Aims

Vortex shedding
P R
N>

Figure 1.1: Cylindrical cavity flow.

craft. Past cavity aeroacoustic investigations mainlugsed on rectangular enclo-
sures, due to the savings in computational time that can hiead by the use of a
Cartesian mesh. This study contributes to the literaturedmsidering the cylindri-
cal cavity flow. Figurel.1lshows a schematic of the cylindrical cavity subject of the
present study and the geometrical parameters.

1.2 Aims

The body of work of this thesis aims to extend the current ustdading of the mecha-
nisms that drive the unsteadiness in cylindrical cavity fljma numerical approach. It
aims to identify the instabilities that are likely to develo such a cavity at typical air-
craft landing speeds. The experimental worlGaudet & Wintei(1973, Hiwadaet al.
(1983 andHering et al. (2006 on cylindrical cavity has shown that non-symmetric
vortex structures can be found in this flow. The focus is taiiig possible driving
mechanisms that are responsible for the observed asynarfietvipattern.

To achieve such knowledge, the existing in-house CFD codleeat/niversity of Le-
icester is developed to use high performance computingeskisSuch development
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1.3 Methodology

represents a strong attractor for industry, asters the opportunity to reduce the time-
scales of a typical industrial design.

The small body work on cylindrical cavity flow as compareddotangular cavity flow
over the past 30 years drives the interest of this reseataholitcomes of the research
will help future studies in terms of reliability and accuyac

1.3 Methodology

An existing time-dependent in-house CFD flow solver is usedddel the cylindrical
cavity flow. The code is an explicit finite-volume solver tivaplements a Detached
Eddy Simulation turbulent model validated and develope&bposoky(2009. The
author developed the MPI recursive domain decompositigarghm to use the code
on high performance computing clusters to allow numerycadpensive simulations
to run.

The flow solver linearises the convective flux vector by thelGwv method. The
interface fluxes normal to the finite-volume unit cell bounels are estimated by the
approximate Riemann solver basedRoe (1981). The Monotone Upwind Scheme
for Conservation Laws (MUSCL) interpolation &an Leeret al. (1987 is used to
achieve up to a third-order accurate spatial reconstnuctio

The velocity vector gradients are computed by the Gaussghwee theorem using a
staggered grid built across the cell interfaces.

The turbulent closure model is by a hybrid RANES model. The RANS model
consists on th&k — w model proposed byenter (1992. The Yoshizawa(1986
one-equation SGS model is used to solve the LES turbulesticdoas proposed by
Dahlstrom & Davidson2003. A blending function proposed byenter (1992 is
used at the RANA&ES interface. The present model is driven by a mesh-basdyl ed
viscosityu; andpk/w by the blending function.

The author developed the RDD parallelization algorithm deployed the flow solver
on HPC distributed-memory clusters.



1.4 Thesis outline

1.4 Thesis outline

This thesis is divided into eight chapters. The first chagtees the context of this
work in terms of industrial and scientific interests driviting research. It then gives
the the aims and objectives of this work and the expectedms.

The second chapter present the geometrical and the flow pteesrthat are given
both in dimensional and non-dimensional form. It also peguba literature review
on cavity flow from the available literature. A classificatibased on geometrical and
physical parameters is given to put the present study indgheegt of the open litera-
ture. The instability driving mechanisms and the modellpgroaches of cylindrical
cavity flows are reviewed.

The third chapter explains theftérent numerical models used to study the cylindrical
cavity flow. The time-marching scheme used in the simulaiwhthe relation between
the Reynolds Averaged Navier-Stokes and Large Eddy Simulaariables is also
given in this chapter. A brief discussion is presented orsthadard data format and
its post-processing.

The fourth chapter describes the code parallelizationrdifgos developed to run the
code in the High Performance Computing (HPC) facilitiese Performances of two
algorithms is tested in terms of speed-up and paralletinadticiency.

In the fifth chapter, the physical domain discretizationrapph is explained for the
selected cylindrical cavity flow configuration of chaptereth. The mesh skewness
Is evaluated as a controlling parameter to the finite volumeretization. The free-
stream boundary conditions used in the simulation are d&fimghis chapter.

The sixth chapter presents the results from the numericaletscof the cylindrical
cavity flow. The numerical data are divided into the timeraged flow, the time-
dependent aerodynamic flow, and the radiating near-fieldspre. The latter is in-
vestigated in terms of time-dependent data (dynamic predhictuation) and time-
averaged data (near-field Sound Pressure Level). The ncaheesults from a 9.6
million cells mesh of the 01 aspect ratio deep cavity configuration are compared
with available experimental data. The time-averaged vgl@omponents and time-
dependent pressure are investigated to characterize lthdrayal cavity instability as
a function of the free-stream velocity. The predicted apphing boundary layer is
compared with experiment.



1.4 Thesis outline

Chapter seven, the conclusions, reports the achievemedttha implications of the
research for the scientific community. Finally, chapteheideals with the future of
cylindrical cavity flow research and the ways to overcomeeaoifithe limitations of
this study.



Chapter 2

Cylindrical cavity test case description
and background

2.1 Introduction

This chapter gives the geometry of the test case of this stadyell as the flow param-
eters. These variables are organized into non-dimensiettities that described the
cavity flow as proposed bgolonius(2001).

This chapter aims to give background information about #landrical cavity flow
presented in the available literature. A classificationhef tylindrical cavity flow
is proposed based on the existing rectangular cavity flossdiaation proposed by
Roecket al.(2004). The flow instability and the flow acoustic interaction affuanced
by the cavity geometry and inflow conditions are herein dbsdr The flow modelling
of the cavity flow is herein briefly described by means of théedeént approaches to
study the acoustic near-field and the source region. Fiadbiyef description to study
the acoustic far-field is given.

2.2 Geometry and flow parameters

Figurel.1lshows the schematic of a cylindrical cavity flow. The cyliocdl cavity has
a diametel and a depttD, and it is fabricated as a recess into a flat plate. The air flow
is characterized by the free-stream velocity the free-stream speed of soundand
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the free-stream kinematic viscosity,. The boundary layer that develops on the flat
plate is characterized by a boundary layer of thickideasd momentum thicknegs

In figure 1.1, the Cartesian coordinatés y, z) are centred at the bottom of the cavity.
The x axis coincides with the streamwise direction of the flow, yhexis coincides
with the spanwise direction and thevith the wall normal direction. The aerodynamic
instability is discussed in chaptémwith respect to this system of coordinates.

To discuss the near-field acoustic predictions, a more coemeauxiliary reference
system in spherical coordinat@s, ¢, ) is used. The origin of the spherical reference
system(y, ¢, 1) is the centre of the cavity open end.

The following coordinate transformations relate the twordinate systems:

X = I COSY COSp
y = r cosy sing (2.1)

z=rsing+D

r= \/XZ +y2 + (z- D)?
¢ = arctar(¥) (2.2)

= arcsin —=ft——
v ?‘( x2+y2+(z—D)2)

Two cylindrical cavities are modelled in this thesis. In &irgrical cavity, the charac-
teristic lengthL and widthW are both equal to the diamet&lock (1976 showed that

in rectangular cavities whele = W, the flow is characterized by important spanwise
structures. The three dimensionality of the flow structawkds to the modellingfort.
The cavity diametet. = 100 mm and two cavity depth are chosén= 40 mm and

D = 140 mm. These geometrical parameters were selected inltatrwuwith Airbus
France to be representative of a low fidelity model of a aftéuel vent. The diferent
configurations are selected to evaluate the influence of akigycdepth on the flow
instability.

Two free-stream flow velocities are analysad,= 80 nys andu,, = 102 m's. These
correspond to typical landing speeds of a wide-body civitraift. The flow is con-
sidered at International Standard Atmosphere (ISA) grazordlitions. These are: a
free-stream temperatuiie, = 28815 K, a free-stream pressupe, = 101325 Pa, an
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air densityp., = 1.225 kgm®, a free-stream speed of souad = 3403 nys, and a
kinematic viscosity.,, = 1.461x 107> m?/s.

A fully turbulent boundary layer approaches the cavity. Boendary layer momen-
tum thicknes® is 1.35 mm atu,, = 80 nys and is 129 mm atu, = 102 nys. Itis
assumed that the growth rate upstream of the cavity is fiettad by any pressure
gradient.

The cavity wall and the flat plate around it are modelled aseimmeable adiabatic
walls. It is assumed that the flow is not subject to any exteneat source nor to
external forces and it is a non-reactive flow.

2.3 Non-dimensional parameters

Colonius (2007 rearranged the dimensional flow parameters in se@i@nnto the
corresponding non-dimensional parameté &V, L/D, L/, R = Uy0/v, My,

By definition, the characteristic length to width ratigW/ = 1 as the cavity is cylindri-
cal. The two diferent diameter to cavity depth ratios &rgD = 2.5 andL/D = 0.71,
to resolve the changes in the fuel vent pattern associatée tavity depth at the given
test conditionsBlock (1976 andAhuja & Mendoza1995 showed that, for rectangu-
lar cavities,L/W = 1 represents a limit that separates a three-dimensiondy ¢evm

a two-dimensional ones.

To account for the influence of the incoming boundary layékitess on the cavity
flow instability, two diferentRe, are selectedRe = 8850 andRe, = 10750. The
remaining two non-dimensional quantitiégp and the Mach numbeM,,, are selected
in the simulation a& /0 = 65 atM,, = 0.3, andL/0 = 62 atM,, = 0.235.

Charwatet al. (1967 studied a wide range of non-dimensional paramedtér, L/,
Re, M, in a rectangular cavity flow. He showed that in the range ofdiomensional
parameters selected in this study, the cavity flow is openitaisccharacterized by a
major recirculation zone within the cavity and by an unsyestdgnation point on the
downstream cavity wall.
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2.4 Cylindrical cavity unsteady aerodynamics

Cavities can be classified intoftérent types depending on their length to delptb
or length to widthL/W ratios. These types fller from each other in the way the
aeroacoustic noise is generated and radiated. A clasgfigaitcavity flow is given in
Roecket al. (2004 for rectangular cavities and it is used in this thesis tesifg the
cylindrical cavity flow.

2.4.1 Classification onL/D: deep cavity and shallow cavity flow

In shallow cavitiesl./D > 1, there can be more than one recirculation zone. For longer
cavitiesL/D > 5, there can be a reattachment of the flow to the bottom of thigéyca
Due to this flow pattern, the broadband noise dominates theséic field. Periodic
components are present in the acoustic field but are ofvelgtsmall amplitude. To
model such cavity flow, Direct Numerical Simulations (DN$)arge Eddy Simula-
tions (LES) can capture the broad-band spectrum of acaligtactive flow structures.
Other modelling approaches, such as Reynolds Average@Naiokes (RANS) meth-
ods, are likely to give rather approximate predictions, ttuthe lack of information
on the small scales of turbulend&/@nget al., 2004).

Shallow cylindrical cavities may display a complex azinaltrecirculation in the en-
closure, as shown experimentally Baudet & Winter(1973, Hiwadaet al. (1983
and byDybenkoet al. (2006. Hiwadaet al. (1983 show by wall pressure measure-
ments that, for 5 < L/D < 2.5, a cylindrical cavity may feature a diagonal outflow, in
which mass ejection is uneven about the cavity mid-span pféferential side of mass
ejection switches from left to right of the mid-span, leagiiiwadaet al. (1983 to
define this regime as a switch flow. FabZ L/D < 5, Hiwadaet al. (1983 identify a
different flow regime that they refer to as flapping flow, due to tlattons in the shear
layer that spans the cavity open end.

Deep rectangular cavities are characterized by one or teictgation zones that take
part in a flow-resonant feed-back loop the tonal contrimgifom which dominate
over the broad-band noise. The most dominant tones in tise spectrum are typically
the second and third cavity feed-back resonances. Theteddioustic field has a
directivity peak around 50azimuth with respect to the inflow direction.
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The flow in deep cylindrical cavitiels/D < 1.5 is generally stable and symmetric with
respect to the streamwise directigbaudet & Winter(1973 identified this behaviour
using oil flow visualization and by streamline tracing oves tavity walls.

2.4.2 Classification orlL./W: two-dimensional and three-dimensional
flow

Early experimental work bivlaull & East(1963 highlighted the presence of spanwise
structures in cavity flows. A classification based on lengthidth ratio was first made
by Block (1976. Based on her experimental research, she made a distiretoeen
cavities where the acoustic field is two-dimensional,/AV < 1, or three-dimensional,
atL/W > 1. These findings were confirmed by the extensive researéhoja &
Mendoza(1995. They found also that changing the width of the rectangcdemity
does not &ect the resonance frequencies but the overall sound pedeset decreases
by up to 15 dB in three-dimensional cavities. The main casiolu from this research
is that, for rectangular cavities &fW < 1, it is possible to compare two-dimensional
computational aeroacoustic results with experimentasoferL/W > 1 geometries,
the directivity and noise spectrum from two-dimensionaheuical models can be used
by an appropriate amplitude scaling factor to predict thauatic far-field.

2.4.3 Classification on mean flow pattern: open and closed ciy
flow

Figure2.1(a)and2.1(b) show a schematic of the open cavity flow and of the closed
cavity flow respectively.

An open cavity flow is characterized by a main recirculatiathim the enclosure and
possibly one or two secondary recirculations on the cawiyrflIThe flow separates at
the cavity leading edge and reattaches at the cavity tgadolge, as shown in figure
2.1(a) In a closed cavity flow, the flow separates at the cavity leqéidge and reat-
taches on the cavity floor. It then separates from the cawoty flurther downstream
and reattaches on the downstream wall. The upstream sepagaid reattachment
points are the ends of a finite streamline that delimits anre@s flow recirculation

10
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Recirculation
ubble

Leading edg;

separation point

\Tralllng edge

reattachment point

Main
recirculation

Secondary
recirculation

(a) Open cavity flow. (b) Closed cavity flow.

Figure 2.1: Two-dimensional sketch of mean cavity flow patte

region, close to the upstream cavity corner. Similarly,rgdarecirculation is found
near the downstream cavity wall.

The transition between the open and closed cavity regimgsrisrally associated to
the length to depth ratideller et al., 1971, Rockwell & Naudascherl978. At low
subsonic speeds, the critidalD that separates the open and closed cavity regimes is
shown bySarohia1977) to bed.iy = L/D ~ 7 — 8 for rectangular cavities. In practice,
d.rit varies depending on a number of factors, among which the mfbséntial ones
are the free stream Mach numbbst,,, and the width to depth ratidy/D (Atvarset al.,
2009 Plentovichet al., 1993 Stallings Jr. & Wilcox Jr.1987). At L/D ~ d., a cavity
can display intermittently both the open and closed flowgoat. When the cavity
flow is closed for the majority of time, the enclosure is dadias transitionally closed.
When the cavity flow is open for the majority of time, this idided as transitionally
open. The transition between open and closed regimes fordeidal cavities is not
readily documented in the open literature, possibly bex#us three-dimensional and
unsteady nature of this flow prevents an analogous simpleltmensional description
of the flow spanning the open end.

Stallings Jr. & Wilcox Jr(1987 studied the ffect of the width to length ratid/V/L, on
the flow over a cavity. They studied the centreline pressisteloution on the floor of a
cavity of constant length and depth and variable width. Asddwity width decreases,
the flow switches from transitionally open to transitiogatlosed atW/D = 5 when
doit = 13. In cavities where & W/D < 4 the transition corresponds talg; = 12. A
further decrease in width gives a closed cavity flow. As thetgavidth decreases, the
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value ofd; decreases. These studies illustrate the importance afgakio account
the three-dimensional character of cavity flows.

Stallings Jr. & Wilcox Jr(1987 and laterCrook et al. (2007 investigated the three-
dimensionality by measuring the lateral pressure grasligeross the rear face of a rect-
angular cavity at supersonic flow speeds and using oil flowalization techniques. It
was found that, in a closed cavity, the pressure gradieptsaused by the formation
of vortices along the side walls as the flow expands into tivéycaear the leading
edge.

In open cavities, large lateral pressure gradients ocltbhgugh their magnitude is con-
siderably less than that in closed cavity flow. The resultStaflings Jr. & Wilcox Jr.
(1987 indicated that the side wall vortices are absent in opeitieaywhile a more
recent investigation btvarset al. (2009 shows longitudinal shoulder vortices run-
ning along the floor of an open subsonic compressible cestil, the etects of cavity
width on the pressure distribution for open cavities arellEnaompared to those in
closed cavities. Increasing the width in open cavities gaheresults in an increase
in wall pressure on the cavity rear face and on the rear podidhe cavity floor.

2.5 Cylindrical cavity noise

The frequency content of cavity noise contains both broaudbcomponents, intro-
duced by the turbulence in the shear layer that separatég afpstream cavity cor-
ner, and tonal components due to a feed-back coupling batieeflow field and
the acoustic fieldRossiter(1964) was one of the first researchers who described this
feedback mechanism based on shadowgraphic observaticms®iomber of dierent
rectangular cavities. He concluded that the periodic flottepa in the cavity can be
described by a four step procedure:

| Vortices shed from the leading edge of the cavity are caiededownstream along
the shear layer until they reach the trailing edge of thetgavi

Il At the trailing edge, the vortices interact with the dowesam wall of the cavity
and this causes the generation of acoustic waves. A pareséthcoustic waves
radiate above the cavity to the acoustic far-field.

12
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[l Pressure waves radiate inside the cavity in the upstréiaaction until they reach
the leading cavity edge.

IV When reaching the upstream wall of the cavity, the presstaves cause the shed-
ding of a new vortex at the leading edge. The pressure waflasite the spacing
between the dierent vortices and thus also determine the frequency ofebid-
back phenomenon.

Based on experimental resul®Rossiter(1964) derived the following semi-empirical
formula for the Strouhal numbé&rtof this periodic phenomenon:
fL n-a

St=—

e — 2.3
Uso Mo + Uso/Uconv (2.:3)

wheref is tonal frequency. is the length of the cavityy € N the mode numbeiy,,
the free stream Mach numbe, the free stream velocity.,n, the convection velocity
of the vortices, and a factor to account for the lag time between the passage afa vo
tex and the emission of a sound pulse at the cavity trailiggeed’he model proposed
by Rossiter(1964 does not provide numerical values ferand the ratiou,,/Ugony-
They are treated as empirical constants, depending onnigéhle to depthD ratio of
the cavity. They are determined BRossiter(1964) by a best fit to the measured data.
The flow-acoustic resonance frequencies obtained fronuatiaty @.3) withn > 1 are
not an harmonic sequence, although some harmonics may hd fotexperimental
spectra $amimyet al., 2004).

Equation 2.3) was subject to several empirical improvements for reaiargcavity
flow over the years by several authofdvarez et al., 2004 Bilanin & Covert 1973
Block, 1976 Colonius 2002, Covert 197Q Grace 2001, Graceet al., 2004 Heller &
Bliss, 1975 Helleret al,, 1971 Howe, 1997 Rockwell & Naudascherl978 Rowley

& Williams, 2006 Tam & Block, 1978.

The formula ofBlock (1976 accounts for theféect of the bottom reflected acoustic
wave and it is given by:

fL n
St: U_ = 0514 (24)
0 MOO (1 + L/_D) + uoo/uConv

13
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Czechet al. (2006 propose a correction that accounts for the circular edgpesin
cylindrical cavities, which replaces the characteristiegthL in (2.3) with Lo, that
is a function of the cavity diametér.

\r

L (2.5)

The formula ofBlock (1976 with the correction byCzechet al. (2006 is used in this
thesis.Czechet al. (2006 use the original formulation dRossiter(1964) in their work

to fit experimental data on cylindrical cavity wall presstluetuations.

Cylindrical cavities can feature purely acoustic modesdditon to the Rossiter type
flow-acoustic resonance. These takes the forrie@inmholtz (1895 resonances and
duct modes Rayleigh 1894. It is expected that high-amplitude tones are gener-
ated when the natural frequency of the flow-acoustic feadk-lb@op coincides with
an acoustic modeMarsderet al,, 2008.

The duct modes are the acoustic resonance of a pipe open ehdraand closed at the
other endRayleigh(1894) gives an expression for this configuration that includes th
length of the pipe ) and its radiusr). For a pipe closed at one end, the acoustic
resonant modes are given by:

I—c:orr =

f= n;
4(H + ar)

n=135,..2k+1 ke Nisan odd integer number that identifies the harmonic of
each acoustic resonant mode in a pipe with one open @rgla constant parameter.
Rayleigh(1894) defined by asymptotic arguments the rangé < o < 8/ (3r) and
proposedr = 0.82 for the real case of a finite length pip&lomuraet al. (1960
and laterNorris & Sheng(1989 found in diferent ways a more accurate value for
a. Nomuraet al. (1960 proposedr = 0.8217 andNorris & Sheng(1989 proposed
a = 0.82159. The value fromorris & Sheng(1989 is used in this thesis.
From equationZ.6), the Strouhal number of the acoustic resonant modes is:

(2.6)

fL n 1
" U, M.4D/L+2a
Rona(2007 solved the Helmholtz equation within a rectangular andiuiga cylin-
drical cavity to seek the acoustic resonant modes in thesectmfigurations. For a

St 2.7)
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Table 2.1: Cylindrical cavity natural circular wavenumier ,R.
L m [ o0 [ «1 ] 2 [ 3 |

=0 - 0 0 0

| =1| 1.2556| 2.4048| 3.5180| 4.6123

| =2|4.0793| 55201 | 6.8661| 8.1576

cylindrical cavity, Rona(2007) found that symmetric and anti-symmetric modes can
be encountered in this geometry, in addition to axial adousbdes. The Helmholtz
equation is taken as having the general trial solution:

Py = Ay COS(MY — ay) + By cos(—mP — By) (2.8)

Rona (2007 seeks a particular form of equatioB.8) that satisfies the solid wall
boundary condition at the cavity barrel and fings= A, J, (£r), whereA, is the am-
plitude of the radial acoustic pressure fluctuation, indejeat fromr, andJ,, is the
mi" order Bessel function of the first kind. This is solved using tollowing relation
for the Bessel functions:
In(R) _ ¢R
Jm+l(§R) - m+1
Equation 2.9) can be solved numerically faf, to determine the wavenumbers that
satisfy the radial component of the Helmholtz equation wittylindrical rigid wall as
boundary conditionRona(2007) gives numerical solutions of the first three radial and
azimuthal mode wavenumbers, which is reported in taie
The acoustic mode frequencies are given by the followingntda (Rona 2007):

(2.9)

nr

271/2
o = % [gfm + (E) ] (2.10)

wherel, mandn are integers> 0 andé , is obtained from tabl@.5 by dividing the
stated values by the cylinder radis= 0.5L.

Equation .10 shows mathematically that non-symmetric azimuthal im&taes can
be supported in a cylindrical cavity geometry, extendirgahginal principal compo-
nent analysis oRayleigh(1894) that is limited to axial modes only.

15
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2.6 Aerodynamic field

Gaudet & Winter(1973 investigated the cylindrical cavity flow atféierentL/D ra-
tios using oil flow visualization. The experiments were daheonstanM,, = 0.118,
Re = 400000 and inflow boundary layer to diameter aspect @tio= 0.24. L/D
varied from 0.746 to 25L/D > 4 results in a closed cavity flow regime character-
ized by a symmetric recirculation upstream the reattachnne®. Decreasind./D
changes the flow into the open cavity flow shown in figl#&sand2.3. L/D = 3.45in
figure 2.2(a}(a) is representative of the flapping condition also describe#liwada
et al. (1983. The switch flow condition is reached latD = 2.13 as shown in figure
2.2(c) where an asymmetric recirculation is found in the enclesurd results into a
asymmetric convection on one side of the caviywadaet al. (1983 andDybenko

& Savory (2008 recently studied extensively the flow that result frorh/® = 2.13
cylindrical cavity. As the aspect ratio reduces furtherymmetric recirculation is
found in the enclosure, as shown in fig@(d) Although aL/D = 0.746 oil flow
visualization is reported iGaudet & Winter(1973, it is not reported in this thesis.
The oil flow visualization was limited by theffect of gravity on the oil and a deeper
cylindrical cavity flow was not studied.

Hiwadaet al. (1983 also studied theféect of a cylindrical hole on the drag daieient
and on the heat transfer deient at varioud./D at constant free-stream velocity and
boundary layer thickness. Figu2ed shows the wall pressure fluctuation sampled over
20 second using a pressure probe. The resulting pressuie®re of the symmetric
and asymmetric flow is shown in figu25. Hiwadaet al. (1983 usedH for the
cavity depth and for the cavity diameter. The aspect ratigD in this thesis is
related to the work by Hiwada et al. by D = 1/(H/D)niwada- Different regimes are
responsible for the resulting wall pressure fluctuatibiD = 10 is the statistically
steady condition that correspond to a closed cavity with rmmsgtric recirculation
in the upstream wallL/D = 2.5 andL/D = 3.33 correspond to the flapping open
cavity flow. L/D = 2.5 andL/D = 1.67 are switch asymmetric open cavity flows
andL/D < 1.25 is a symmetric open cavity flow. In this experiment, thenasetric
recirculation was found dt/D = 2.5, as shown in figur2.5(b) The switch between a
symmetric recirculation and an asymmetric one happenefat: 3 as it was inferred
by the pressure cdgcient C,) in figure 2.5(a) L/D = 1 resulted into a symmetric
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(c) L/D = 1.67 (d) L/D = 0.93

Figure 2.2: Oil-film flow visualization of cylindrical cawitat variousL/D at M., =
0.118,Rg = 400000 and/L = 0.24 (Gaudet & Winter1973. Cavity inner domain.
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2.6 Aerodynamic field

(c) L/D = 1.67

Figure 2.3: Oil-film flow visualization of cylindrical cawitat variousL/D at M., =
0.118,Rg = 400000 and/L = 0.24 (Gaudet & Winter 1973. Cavity outer domain.
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Figure 2.4. Wall pressure fluctuation varyin@% < L/D < 10 from Hiwadaet al.
(1983. M., = 0.074,Rq = 111300 and/L = 0.72.L/D = 1/(H/D)niwada-

patter ofC, due to the symmetric flow recirculation at this flow regime.isTiesult
was confirmed bWarsderet al. (2008 atL/D = 1 andM,, = 0.235.

Dybenko & Savory(2008 recently repeated the experiment Hiwadaet al. (1983
and studied the Power Spectral Density (PSD) that resolis fine wall pressure fluctu-
ation at three aspect rati@%/ D) pypenko= 0.2, 0.47 and 0.7 that correspondt(D = 5,
2.13and 1.43 by /D = (h/D)Bi,benko In figure2.6, a vertical shift by 20dB is applied
to each PSD. The loudest cylindrical cavity flow correspandle deepest cavity con-
figuration atL/D = 1.43. The experiments were done in a close circuit wind tunnel
where the PSD of the background noise was comparable amergrée test cases.
The results were therefore not conclusive due to this lititea Comparing the PSD of
theL/D = 2.13 shallow cavity with the PSD frorh/D = 1.43, it can be inferred that
in a deeper cavity tonal components are more dominant ingeetisim compared to
a shallower cavityDybenko & Savory(2008 did not find any evidence of concurrent
hydrodynamic and acoustic instabilities as the frequemakoes not correspond to
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Figure 2.5: Pressure cfiieient at varyingL/D from Hiwadaet al. (1983. M. =
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Figure 2.6: Wall pressure fluctuation PSD frddybenko & Savory(2008. M., =
0.08,Rg = 130000 and/L = 0.72.h/D = 0.2,0.47 and 0.7 in the legend corresponds
toL/D =5, 2.13 and 1.43 respectively.

any of the instability modes described in secti®hb

2.7 Modelling cavity flows and parallelization

The experimental work bypybenkoet al. (2006 and byHering et al. (2006 and
the numerical work byGrottadaurea & Ron&007ab) shows that cylindrical cavi-
ties develop a rather unique flow instability that is fundata#ly different from the
well-documentedRossiter(1964) mechanism. The presence of cylindrical cavity ge-
ometries on airframes motivates the investigation andathearization of this peculiar
instability mechanism.

From the available literature on rectangular caviti€slpnius & Lele 2004, it is
known that the momentum thicknegsat the cavity leading edge plays an important
role in the selection of the modes and in governing the stegaar Ilgrowth rate that
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spans an open cavityCharwatet al, 1961 Colonius & Lele 2004 Rowley et al,,
2002 Tam, 2004. The importance of on the mode selection of rectangular cavities
is shown byColoniuset al. (1999 on a mode map.

Direct numerical simulation (DNS) of compressible flow il Binited to low Reynolds
number and high Mach number models. For a fully three-dinoeas simulation, the
total number of floating point operations to resolve all takevant scales of motion
in the flow and to cover at least one wavelength of the radiateshd in the compu-
tational domain is of the order &€} /M% (Crighton 1975. DNS is more suitable
to validate an aeroacoustic method that includes a turbalefosure model than to
perform a full-scale simulation.

A Large Eddy Simulation (LES)Ghow & Gaq 2004 Piomelliet al., 1997 Schroder
& Ewert, 2005 Seroret al,, 2001 is an attractive choice to model flows of industrial
interest. It provides good information on the noise soutece®mpute both the broad-
band spectrum and the single tones in the radiated noiseev&whe computational
effort due to the stringent near-wall grid resolution requiogda high-Reynolds num-
ber flow is a major obstacle to the routine use of LES in thepegyof flow {Wang

et al, 2004.

Time-dependent numerical prediction used in geometriesdafstrial interest can be
obtained by hybrid RAN&ES, as inArunajatesan & Sinhé2003. A Detached Eddy
Simulation (DES) was performed tedgeset al. (2002 and an Unsteady-RANS
(URANS) bySinger & Guo(2004). A careful choice of the turbulent closure model can
be done a priori if the instability mechanism driving the flofunterest is known. The
URANS approach provides the lowest level of flow detail anclaacy (Wanget al.,
2004, though it is the least computationally demanding apgicamong URANS,
DES and LES and it can bdtective in capturing the large-scale fluid motion and its
associated soundpng 2006.

Spalart(2000 offered an overview of the methods available in CFD to model tve fl
at different regimes and their advantages and limitations in tefro@mputational cost
and numerical mesh requirements. In spite of recent adgestia LES wall boundary
closures (i & Hamed, 2008, the lower computational cost of DES for modelling
geometry-induced flow separation motivates the developwfethis technique. The
complexity associated with modelling the RANS-LES integlan DES is counter-
balanced by the reduction in close-walls mesh resolutiqaired by this model. This
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2.7 Modelling cavity flows and parallelization

makes the DES suitable for the simulations presented ithtbss and makes the code
suitable for future industrial applications.

High performance computing allows to simulate larger systéhan what can be done
on a scalar machind.¢ng et al,, 2004). Specifically, mesh-refined test cases of the
order of 10 million cells were recently used to simulate ¢hdemensional rectangular
cavity flows, to obtain predictions with a greater spectraadth in both frequency
and wave-number spacatyarset al., 2009 Bres & Colonius2008. The main driver
is to better render in the simulation the process of dissipaif the energy from the
dominant scales of motion inside the enclosure. These Ergkes are the ones that
are selectively amplified by the open cavity fluid dynamidabgdity mechanism. The
early models for such a kinetic energy dissipation procelsd simply on numerical
viscosity. A better representation of this process inwwlkesolving, at least in part,
some of the cascading of the modal energy to the smallerssoataotion.

Advances in code parallelization and in multi-processaodivare development allow
nowadays the modelling of representative industrial geoaseby conventional Com-
putational Fluid Dynamics (CFDQhenet al., 2004 Longet al,, 2004). Different chal-
lenges are nonetheless posed by computational aeroasoustiarger computational
domain with respect to conventional CFD is required to nesalfull wavelength of the
radiated noise. A more accurate, less dissipative #ident non-reflective boundary
condition needs to be applied to correctly evaluate the dndge of the pressure fluc-
tuations in the near-field acoustic domain. High-order lagsigpation and dispersion
schemes have lowered the cost of aeroacoustic models toeagfandable level.
Simulations that resolve the flow-turbulence interactitiva characterize a turbulent
cavity flow cannot be run on a single processor or on a smaleshraemory cluster.
Nowadays, large shared memory clusters are less populanarelexpensive as com-
pared to large distributed memory clusters, where thousaipgrocessors are intercon-
nected, or to vector machines, where vectorization of tleeains further reduces the
computational time. For instance, to resolve the relewange scales of motion with a
Detached Eddy Simulation approach, a refined mesh of 6 tol®mdells is required.
This mesh simply cannot fit in 4 GB of RAM of a single processad,aeven if it did,
the computational time would exceed 460 days. Thereforpettorm the numerical
modelling within a suitable time-scale, it is essential totghe numerical work on a
High Performance Computing (HPC) cluster, using Messagsifa Interface (MPI).
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2.8 Aeroacoustic approaches

Open Multi-Processing (OpenMP) is more user-friendly asgared to MPI, but it can
be used only in a shared memory cluster and reduces the fregdparallelization
allowed to the user. Over the past few years, these limitatltave prompted the
scientific community to move to MPI, to exploit the Tera-flgpsrformance of such
systems.

MPI enhances the scaling performance of CFD codes and aitopesform production
runs on the largest computer facilities in the world. It gates numerical predictions
of significantly larger spectral resolution than from usatlger currently available par-
allelization methods.

2.8 Aeroacoustic approaches

The flow above and within the cavity enclosure is generalydgid into three regions
to simplify its modelling: a source region, the acousticrAeggld and the acoustic
far-field. The source region coincides with the cavity arsdsiirrounding extending
radially outwards from the enclosure by up to one wavelemjtthe radiated noise
lowest significant frequency. The acoustic near-field edseup to five wavelengths,
beyond which lies the acoustic far-field. The source regeam @nly be modelled by
the methods described in sectid1.

In the acoustic near-field, Bfowcs Williams & Hawkings(1969 acoustic analogy
does not decouple acoustic refraction and reflectiéeces from the noise generation
process. Alternative approaches to predict aerodynansemothe non-homogeneous
acoustic near-field are by solving the discrete Euler eqoatieither the linear LEE
proposed byBogeyet al. (2002 or the non-linear NLEEchroder & Ewert2005,

or the Acoustic Perturbation Equation (APE) proposedEkert & Schroder(2004).
These approaches are not being pursued in the current wirkyaare more appropri-
ate for near-field noise predictions from acoustically caotgources in an underlying
steady mean flow, whereas this investigation focuses orviegdhe flow unsteadi-
ness that is producing aerodynamic noise.

The acoustic far-field correspond to a region where the wguaten fully describes
the flow.
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2.9 Conclusion

2.9 Conclusion

The cylindrical cavity geometry and inflow conditions to iaded by numerical mod-
elling have been defined. These are stated in terms of thelinoersional parameters
proposed byColonius(2001]) that are relevant to identify the cavity flow unsteadiness.
A literature review on cylindrical cavity flow has been conthd to identify the flow
regime of the test cases. Following the classification pseddyRoecket al. (2004

on rectangular cavities, the cylindrical cavities subgddhis study are open. A sym-
metric flow organization is expected in th¢D = 0.71 cavity whereas an asymmetric
one is expected in the/D = 2.5 cavity. The flow is three-dimensional. To model
such complex cavity flow, a parallel three-dimensional flolver that includes a DES
turbulent model is used, to achieve mesh converged resaltsimorten time-scale as
compare to Direct Numerical Simulation.
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Chapter 3

Methodology

3.1 Introduction

This chapter explains the numerical model of the Euler eqonathe Navier-Stokes
equations and the DES turbulence model equations useddytstel cylindrical cavity.
The boundary conditions used in theffdrent simulation are also described in this
chapter. The validation of the flow solver doneBlyDosoky (2009 is analysed with
respect to the flow instability that characterize the flowjsatof this study. A brief
description of the data format and post-processing is aigpgsed in this chapter.

3.2 Inviscid numerical model

3.2.1 Euler equations

The conservative form of the time-dependent Euler equaign
0 U+V -Fe=0 (3.1)
ot ° '

whereU is the conservative variable vector ahare the inviscid flux vector. They are
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3.2 Inviscid numerical model

defined as:
P pu
U=|pu| F=| puu+pl (3.2)
pe pu(e+ p/p)

whereu is the fluid velocity vector with components eis the specific internal energy,
p is the static pressure amds the identity matrix. In equatior8(2), the rows relate to
the conservation of mass, momentum, and energy, resplgctive

eis related to the fluid temperatufeand velocityu by

1 1
e= mRT-ﬁ- EU'U (33)

whereR is the specific gas constant. Temperature, pressure antydaresrelated by
the equation of state for a perfect gas. This is:

p = pRT (3.4)

In this work, air is assumed a perfect gas.

Subtracting the divergence of the conservation of momerftom the time deriva-
tive of the conservation of maskighthill (1961) obtained an inhomogeneous wave
equation where the sources of noise are on the right hand side

0%’ =V-V.-T (3.5)
whereT is the Lighthill stress tensor, defined as
T=pueu+(p-cip)l (3.6)
andc,, is the speed of sound in the unperturbed medium at rest.

3.2.2 Finite-volume flux vector discretization

The physical domain is discretized by an assembly of topo#dly rectangular control
volumesV,, where subscrigtindicates thé™ control volume in the non-uniform mesh.
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3.2 Inviscid numerical model

Integrating equation3(1) over each control volum¥; gives

N v+ f V-FadV=0 (3.7)
Vi at Vi

Assuming a stationary computational domain and applyiegdhauss divergence the-
orem, equation3.7) can be written as:

2qu|V+9§FC-nds:o (3.8)
ot Jy, S
Let
U = 2 f Udv (3.9)
b Vi \Y .
Nfaces
ﬁ Fc- ndS = Z Fc,k . ni,kSi,k (310)
Si k=1

whereN;acesiS the number of faces in the control volundg Si is thek™ face ofV;
andn;y is its inwards normal.
Equation 8.7) can be written in a compact form as:

oU;

Viﬁ + Ri =0 (311)

whereU; is the mean value of the conservative variable vector ovecéfi volumeV;
andR; is the residual generated from the discretized terms ascejual to

Ntaces

R = Z Fek - NikSik (3.12)
k=1

To solve the Euler equations, the residual oper&on equation 8.12 needs to lin-
earise the flux vectdf.. The Godunov method, or Flux Berence Splitting, is used.
Interface fluxes normal to the finite-volume unit cell bounels are estimated by the
approximate Riemann solver basedRwe(1981). TheRoe(1981)’s approximate Rie-
mann solver is first-order accurate in space, since theisolistprojected on each cell
as a piecewise constant statiréch 1988. To reduce the excessive artificial dissipa-
tion of the first order method/an Leeret al. (1987 replaced the piecewise constant
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3.2 Inviscid numerical model

state assumption with a quadratic reconstruction, leatdireghigher order spatial re-
construction, the Monotone Upwind Scheme for Conservdtams (MUSCL) inter-
polation. FollowingManna(1992), the codicients in the reconstruction are chosen to
give a third-order accurate reconstruction of the spatdlignts in regions of smooth
flow. This reconstruction uses four contiguous cells in tineation of the reconstruc-
tion, thus to connect two computational blocks a minimumnaf tayers of ghost cells
are required to make the flow solver block independ&weby (1984 proved that a
Total Variation Diminishing (TVD) scheme is fiicient to achieve numerical stability.
As a monotonic scheme is TVD, then the MinMod limiter is imuged to achieve a
monotonic behaviour in regions of model flow discontingti®etails of the imple-
mentation of these schemes are giveEkDosoky(2009.

At the computational domain boundaries, a frame of one gbelsideep is used to
preserve the second-order accurate reconstruction inotimaic interior.

3.2.3 Boundary Conditions

The computational domain is divided into independent cammpnal blocks. Each
block is surrounded by ghost cells. The ghost cells along:tmputational domain
outer boundaries are generated in the code by mirroringrgtariterior cell about the
boundary plane along the external boundaries of the cortipng domain. Along
inter-block boundaries, the first and the second interibrgemmetries of the abutting
block define the ghost cell rind, which is two cells deep alangnter-block boundary.
The flow states of the first and second interior cell of the tatgiblock are copied into
the newly defined ghost cells. Boundary flow states are intpwsthe ghost cells.

Inviscid Wall

An impermeability condition is imposed at the physical waundaries. This corre-
sponds tas - n = 0 at the boundarg between the first interior cell and the ghost cell,
wheren is the inward normal vector t8. This is numerically achieved imposing

Up = Uphy — Z(Uphy' n) n (3.13)
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3.2 Inviscid numerical model

where the subscrigthy denotes the flow state at the first interior cell dnthe flow
state at the ghost cell.
The flow state in the boundary cell is:

Pphy

Up = Pl (3.14)

Pphyephy+Pphy/2(Ub *Up — Uphy - Uphy)

Non-reflective far-field

The far-field condition switches between a subsonic inflowdition and a subsonic
outflow condition, depending on the value of the inner flonoedly component nor-
mal to the surface boundary, according to CFD General Nwteé8lystem standard as
described in chapte3.7. Robust and accurate Non-Reflective Boundary Conditions
(NRBC) are crucial in computational aeroacoustic applcest (Hu, 2004). To obtain

a non-reflective boundary condition, a 3D extension of theatteristic based bound-
ary condition ofGiles (1990 is used as irGivoli (1997). To limit the non-physical
reflections caused by the numerical scheme, the followingemture is followed, de-
pending on whether the flow is entering or exiting the comfportal domain boundary.
At the far-field, the mean flow parameters need to satisfyexreete free stream con-
dition:

p Poo
T =T (3.15)
u U

Consider the one-dimensional flow in the direction of thermtary outward unit nor-
mal n. The incoming Riemann invariai is defined from the free-stream condition

as:
2C

_7_1

R =uU,-n (3.16)

wherec,, is the free stream speed of sound,= VyRT...
The outgoing Riemann invariaR" is defined from the first interior cell towards the
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3.2 Inviscid numerical model

surface of the computational domain boundary as:

v-1

wherecpy is the speed of sound at the computational domain interigr= /YR Tony.
The speed of sounfts) and the normal velocity componefuts - n) of the incoming
wave at the boundary interfaces are defined as:

1

s = VT (R" —R) (3.18)
R -R

Us-n = > (3.19)

Consider the sign of the surface normal velocity componentn. This can be either
positive or negative. This determines whether an outflownoindow condition is to
be used locally at the far-field boundary.

The outflow condition is used whetg - n > 0 is:

Uy = [uphy—(uphy-n)n]+(us-n)n (3.20)
A

o = [M) (3.21)
Y Pphy
02

b = ‘% (3.22)

The inflow condition is used wherg - n < 0 is:

Uy = [Uo—(Us-N)N]+(us-n)n (3.23)
Y 2\ 71

oy = (p""cs) (3.24)
Y Peo

by = peCs (3.25)
Y
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3.2 Inviscid numerical model

The conservative variable vector that is imposed at thetgledlss:

Pb
Up = PpUp (3.26)

1 1
7-1Pb + 3PUp - Up

Subsonic inflow

The subsonic inflow boundary condition is formulated foliogvthe same characteris-
tics based approach as for the far-field boundary conditioa three-dimensional flow.
Four characteristic wavdg, to A5) move towards the domain interior. It is therefore
necessary and fiicient to impose four conditions at a subsonic inflow bounddiry
is common practice to impose the flow dengpy = p..) and the flow velocity vector
(us = U.). The subscripto is used in this section to identify the reference inflow state
A similar approach to the non-reflective far-field conditisrfollowed. In equation
(3.16), the speed of sound is estimated using the remaining owdgiaracteristics,

for which:

Peo = Pphy (3.27)
and consequently
Y WL (3.28)
Poo

Equations 8.18 and @.19 definecs andus - n. Then equations3(23, (3.24 and
(3.25 are used with equatior3(27) to estimatdpy, Uy, py), from which the conserva-
tive variable vectolJy, is obtained by equatiord(26).

Subsonic outflow

In the subsonic outflow condition, only one characteristavevis moving towards
the domain interiof1,), therefore only one condition is applied. The domain back-
pressure is imposed. In an Euler model and for zero pressadeegt boundary layers,
this pressure coincides with the free-stream one.
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3.2 Inviscid numerical model

Equation 8.18 reduces to:

P + /P
cs= | ( on) (3.29)
Pphy 2

Equation 8.19 reduces to:

¥ VP + \/_
Us - N = Uphy- N+ \/7 P Pony (3.30)
equations .20, (3.21) and @.22 are then used to specity,, o, and p,. Equation
(3.26 is now fully defined and it is used to specify the consenetiariable vector in
the subsonic outflow condition at the ghost cells.

3.2.4 Validation

The three-dimensional Euler flow solver was validate@&biposoky(2009 with three
test cases of progressing level offaiulty: a shock-tube problem, a supersonic flow
on a wedge and a spherical expansion. The shock-tube prafdesists on the de-
velopment of a normal shock wave propagating from left thtrdue to pressure and
density diference imposed at the starting condition. The computdtbmaain was
divided into four zones to test the inter-block boundary oamication. The result
shows a good agreement with respect to the analytical salatid displays only 2.5%
error close to the sharp discontinuiti€d-Dosoky, 2009 comparing to the analytical
solution byHirsch (1988. The supersonic flow on the wedge is characterized by an
inflow condition atM,, = 2 that approaches a 1@edge and results into a supersonic
flow at the outlet. The analytical solution is obtained bysaj the Rankine-Hugoniot
equations. The oblique shock is well-captured by the nuwakmodel with only a
0.3% error in the degree angle and its reflection on the mofsliv and interaction
with the expansion wave is also captured correctly, as sHowal-Dosoky (2009.
The spherical expansion is a three-dimensional equivalahie the shock-tube prob-
lem, where a small sphere of a high density and pressuretis éefpand in a cube of
lower density and pressure. Non-dimensional energy anslityguiots are compared
to the reference analytical solutionToro (1999 and show similar result to those of a
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3.3 Direct numerical simulation

shock tube problenmE]-Dosoky, 2009. No spurious reflection is found across the in-
ternal boundary of the multi-block computational domaitimer where this is crossed
by the advancing shock wave, nor where this is crossed bydhtact discontinuity.
The cylindrical cavity model is characterized by a circidharp edge, where a contact
discontinuity is given by the élierence in the velocity above and below the separation
point. Pressure waves expand in a domain where the directitdme propagation is
not normal to any computational cell face. The test casebextibyEl-Dosoky(2009
show the ability of the numerical method to perform well i ghresence of contact
discontinuities or non-normal pressure waves, indicativag the method is adequate
for modelling the flow past a cylindrical cavity, where siatiflow features are present.

3.3 Direct numerical simulation

3.3.1 Navier-Stokes equations

The time-dependent Navier-Stokes equations for a nortiveaadiabatic flow under
no external force are: 5

aU +V-(Fc+F)=0 (3.31)
Equation 8.31) contains the conservative variables vediiceind the inviscid flux vec-

tor F defined in equation3(2). The viscous flux vectdf, is defined as:

F, = - (3.32)

T'U—kTVT

The viscous stress tensor= y (Vu+u® V —2/3IV - u), y is the molecular viscos-
ity, kr the thermal conductivity and is the absolute temperature. Bf = 0, equa-

tion (3.31) becomes equatior3(2).

The system of second-order partiaffdrential equations3(31) requires auxiliary al-

gebraic relations for the molecular viscosity and the treconductivity that are mod-
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elled as: 32
_ 6
w =1.458x 10" —(T +1109) [kg/ms] (3.33)
YR
kr = —(y ~1pr [W/mK] (3.34)

wherey is the specific heat ratid? is the specific gas constant aRd is the Prandtl
number.

3.3.2 Finite-volume viscous flux vector discretization

Applying the finite-volume approximation given in equati$7), the viscous flux
vectorF, is modelled as

Ntaces
é F, - nds = Z Fv,k : ni,kSi,k (335)
Si k=1

Following the same discretization procedure as in sect#?.d, the finite-volume
discretized Navier-Stokes equations is equati®i 1) where the residudR; is given
by the sum of the two terms:

Nfaces Nfaces

R = ; Fek - NikSik + kZ;‘ Fuk - NikSik (3.36)

To discretize the viscous fluxes, an estimate of the vel@eityor gradients is required.
To compute this, a staggered grid is built across the caiates where these gradi-
ents are estimated. The flow state at the surface boundang afew control volume
and its normals are obtained from the mesh geometry and liearetocity vector gra-
dient is estimated using the Gauss divergence theoremgiMais up to a second-order
accurate reconstruction of the gradierEsDosoky, 2009.

3.3.3 Boundary conditions

In the direct numerical simulations, a no-slip conditiommposed at the physical wall
boundaries and a subsonic non-reflective far-field boundanglition at the domain
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outer boundaries. At the inflow boundary of the cavity flow siations, the laminar
inflow profile of appendiA is used.

No-slip wall

The no-slip condition corresponds to= 0 at the boundans; between the most
interior cell and its ghost cell. This is numerically acree\by imposingl, = —Uppy in
the ghost cell. The flow state at the ghost cell is:

Pphy

Ub =| —pUpny (3.37)

PEphy
3.4 Detached Eddy Simulation

3.4.1 Governing equations

To reduce the computationdtert in modelling high Reynolds number flows, the flow
variables of DNSu, that are varying in time and space, are split into two conepis)
an averaged one and a fluctuating one’.

u=u+u (3.38)

Depending on the form of averaging adopted, two main-streatihods are developed
to solve the Navier-Stokes equations: the Large Eddy SimounldLES) method and
the Reynolds-Averaged Navier-Stokes (RANS) method. In B8 average is for-
mally given by the convolution of the continuous variablg, t) with a filtering kernel
G (Xi —):

1.0 = [Ge-yuE.0dy (3.39)

To model the &ects of the small eddiag on the averaged flow, most industrial ap-
plication in CFD use a sub-grid scale model (SGS) in whichfilbering kernel is
matched to the computational grid. THeshizawa(1986 one-equation LES model is
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based on this assumption to solve the large scales of mati@och caseG is defined
as the top-hat filterl(u et al, 2008 and is given by:

G5 =909 = x (5 -k (3.40

whereH is the heavy-side function; is the filtering width of celi, x; is the cell centre
position andy is the position vector. In the Yoshizawa one-equation LES@ha\; is

the cubic root of the cell volumé;, A = VV;.

In RANS, the averaga is taken with respect to time. The short-time average Navier
Stokes equations are obtained by averaging in tiloeer time intervalt that is longer
than the turbulent flow fluctuations and shorter than the flawation not related to
turbulence. This gives:

(n+1/2)At

u (X, nAt) = — f u(x,7)dr (3.41)
At Jin-1/2)at

wheren € IN andN is the set of all natural numbers.

Applying the average in equatio.88 to the Navier-Stokes equations, given in sec-

tion 3.3.1, they reduce to:

e
8—€+V-(p—u) -0 (3.42)
9 (pu) T ST BT ST
T+V~(pu®u+pl+pu gw-7) =0 (3.43)
d(p& + ipu - _ 1.
( ;t )+V-(;ﬂh0+u®§pu'-u') =
V-|U-(r-puew) -k VT - puh| (3.44)

In equation 8.44), 1/2u’ - v’ is the average turbulent kinetic ener‘g_;y In equations
(3.43 and B.44, pu’ ® U’ is the Reynolds stress tensor. This is modelled by the
Boussinesq approximatioigwnsend1976 with analogy to viscous stress tensor as:

_ _ 2 \ 2 =
t:—pu'®u':,ut(Vu+U®V—§IV-u)—§Iﬁk (3.45)

In equation 8.44), pu’l’ is the turbulent heat flux vector and it is modelled to be
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proportional to the temperature gradiewiicox, 2002):

0 = pu'hy = _HCpor (3.46)
Pry
The system of equation8.42-(3.44) is not closed due to the presence of the extra
variablesl?andpt. To close this system, an additional equation is requiratirilates
k to the other averaged variables. The derivationkfos obtained from the scalar
product of the Navier-Stokes conservation of momentumoresquations multiplied
by the fluctuating velocity vectar’. Averaging this equation, the transport equation
for kiis:
@+V(ﬁ—t-u’+}pu’u’~u’+p’u’ =
ot 2
—pU - wV-Uu-t:weV-u- -Vp+pV-u (3.47)

The Yoshizawa(1986 one-equation SGS model is used to solve equaBati/(in the
LES model.Dahlstrom & Davidsori2003 proposed the following equations to model
the transport equation of the kinetic energy:

D (ﬁEs GS)

_ 2 _
Dt =t:u®V- Cch-;s +V. [(,UI + U'k,ut,LEs) Vkses] (3.48)

where YDt is the material operator Dt = §/ot +u - V andt is the turbulent stress
tensor, given by:

_ . 2 _ 2 _
t= Mt LES (VU +UuU®V - éV : Ul) - §5k5(33| (349)
The eddy viscosity, | s iS given by:

Mt LES = ECSA ESGS (3-50)

In equations 3.48 and @3.50, C; andCy are the Yoshizawa constants and are related
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to the Smagorinsky constant by:

C3 0.25
5) (3.51)

Csmag = (C_d

The Smagorinsky constant ranges from 0.065 to 0.2 and iwihiik is takenCgsmag =

0.1. The corresponding Yoshizawa constants used in this naod€l, = 0.046,Cy4 =

1.0, andoy = 1.0.

In the RANS model used in this work, two equations are defimeddse equations
(3.42-(3.44 and B.47). Two mainstream closure models are used in RANS, these are
thek— e and thek— w models, depending on the equation that is used to solveiequat
(3.47). In this equation, the viscous dissipation of turbulergéashstress : U’ ® V is
proportional to the average dissipation rate per unit raass

t:uweV=pe=uVu :Vu (3.52)

The same term can also be written in terms of the averagefspeicbulence dissipa-
tion ratew and the average turbulent kinetic enekoys:

t:weV=pko (3.53)

Menter(1992 developed a shear stress transport model (SST) that cechtiie qual-
ities of the two RANS models into the— «-SST model, which is the RANS model
used in this work. Its derivation is reported Et-Dosoky (2009. This model gives
more accurate results in regions of separated flow and it i® reoitable to model
cavity flow than the standatd— w model ofWilcox (2002.

Thek — w-SST closure model is given by:

D (okrans) — _ = I
| Dt _) =t:U® YV~ B Pkrangs + V - | (i + Tidtirans) Vkrans| (3.54)
D (pw) -
([;)t =ypt U@V - BP0 + V- [(u + ooprang VO +

(1~ F) 200 =Vhems Vs (3.5

Cross-dffusion term
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Ok () ,8 ,8* Y
_ Jeit Tw1K2
k-w,1]085| 05 | 0.075]| 0.09 ﬁl \/;—*2
_ P2 T w2K
k—¢2| 1.0 | 0.856| 0.0828| 0.09 T F

Table 3.1: Turbulence closure model fiogents.
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wheret is given by equatior3.49 substitutingzseswith krans The blending function
F is used to couple the constants used inkhew and thek — e models:

(3.56)

The constants are given in tal8el andx = 0.41 is the Von Karman constant. The
compound subscript in the constants designates the modabli@3.1, for instance,
o = 0.85.

The blending functior is given by:

VKraNs 5OQJIJ 4p—0—w2ERANS]}4

0.09wYy " pwy? CDy.,y?

Fi= tanh{min (3.57)

max(

_ 1_- _
CDy, = maX(ZpO'wszkRANS- Vo, 10-20) (3.58)

wherey is the distance from the closest wall to the cell center.
The turbulent eddy viscosiiy: ransiS given by:

p_alERANS
max(a@, Si F2)

(3.59)

Mt RANS =

wherea; = 0.31 andS;] is the magnitude of the strain rate tenSgr= 1/2(Vu + U® V).
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3.4 Detached Eddy Simulation

The functionF, is defined as:

F, = tanh

max(

2 VkRA_NS, 400u J] (3.60)
0.0%0y’~ pwy?

Carefully considering the ferent averaging in the LES given by equati839 and

in the RANS models given by equatioB.41), it is possible to blend the two models

into a Detached Eddy Simulation (DES). The aim is to overctimeeconstraint of the

LES model in the near-wall region by switching to the less patationally expensive

RANS model.

The transport equation for the turbulent kinetic energylmamritten as:

/5E3/2

A

— —t:u®V- [rﬁ*aZma—r) Cq +V- [+ o) VK| (3.61)

where the eddy viscosity is obtained by blending the eddgogsy from the LES
model of equation3.50 and the RANS model of equatioB.59):

e = Tpirans+ (1= T) pries (3.62)

The blending functio” is defined as:

I' = tanh

(3.63)

vk 50q4)]
0.090Yy" pwy?

max(

LetI'(y — 0) = limy_,oI" be the value that the blending function takes in the closé wal
region. By applying De L'Hopital’'s theorem to equatidhg3), in the limit ofy — O,
tanh(e0) — 1 andI'(y - 0) — 1. Depending on the value &f, three regions are
identified: a RANS region wheré — 1 and equations3(54) and @.55) are recovered
andk = kgans a LES region where equatioB.48) is recovered anét = k s, and
finally a so-called interface-region where the two modeltgbuate to solve equation
(3.61).

Thew transport equatior3(55 is solved in all three regions to guarantee continuity in
the computation but its result is not used in the LES region.

Equations 8.42), (3.43, (3.44), (3.55 and @.61) can be rearranged in the compact
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3.4 Detached Eddy Simulation

form:
0

aU+V-(FC+FV)+S:O (3.64)
where the conservative variable vectdrthe convective flux vectdf., the turbulent
flux vectorF, and the turbulent source term vec®are given byChen-Chuan Fan

(2002 as:
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pu®u+ pl

pu(e+plp+k)

Uk

)

~q- G~ ((+ D) T Gu + o) VK

(3.65)

0
—(t+7)

— (i + o) VK

- (/JI + O-a),ut) Vo
0

0
0

(3.66)

(3.67)

(3.68)

IB8"pka + (L—T) Capk®2/A -t : VU

Bow? +2(1 - Fy) (p_O-wZVERANS‘ VCU) Jo—ypt:UueV
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3.4 Detached Eddy Simulation

3.4.2 Finite-volume source term vector discretization
Applying equation 8.7) to the source vectds in equation 8.64), it becomes

1
S==| SV (3.69)
Vi Vi
To solve the RANA ES turbulent model, the residuR)l; in equation 8.11) is given
by the sum of the flux vectors in equatio®.10 and @.35 and the source terms of

equation 8.69:

Nfaces Nfaces

Ri = kZ_; Fei NigSik + kZ_; Fuk - NixSik + ViS (3.70)

The gradients in equatior8 68 are computed with the same approach as in section
3.3.2 Itis important to notice that the present model is driverabjesh based eddy
viscosity; related to the cell volume by the definition of the averagimgquation
(3.39. In the RANS region the turbulent production tetmu’ ® V is saturated with

an upper-bound term equivalent to 20 times the destrucﬂeimn[i*,@E. Menter(1992
introduced this correction to prevent the unrealistic toud of eddy viscosity during
the computation.

3.4.3 Boundary Conditions
Wall model

Consider the following relation for the first interior cglhy:

Uphy - N (3.71)
|Uphy — tnn| (3.72)

Un

Ut

whereu, is the signed normal of the velocity component normal to el svall and
U is the norm of the tangential velocity component. The follaywelation are applied
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3.4 Detached Eddy Simulation

at the solid wall:

— — vy-1 _ _
Tsw = Tphy(l+ Pri——— uphy'uphy) (373)
— Pph
Psw = R'Iriy (3.74)
Sw
T3
w = 1458x10°—% (3.75)

(TSW + 1104)

whereT, is the adiabatic wall temperatuier; = 0.89 is the turbulent Prandtl number,
psw iS the corresponding wall adiabatic density andhe corresponding molecular
viscosity.

The third order approximate law of the wall Bpalding(1961) is used to estimate the
friction velocity u, at the first interior point:

C(kun)? )

f(y",u") =u" —y" + exp(—«B) |exp(ku") — 1 — ku* 5 5

(3.76)

wherex = 0.41 andB = 5.0 are the Von K&arman constan@sterlund 1999.
It is assumed that the first interior cell satisfies equatingj, therefore the following
relations are used:

PswyU

yr=yl . = (3.77)
i H1Uppy
ut = Uy, (3.78)
These lead to the following equation:
f (Ujny) =0 (3.79)

Equation 8.79 is solved using the Newton-Raphson methBdseholder1953 to
estimate the value mfghy. U, is given by:

u, = — (3.80)

T +
uphy

The value ofy;hy is calculated using equatioB.77). Depending on the value g’ghy,
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3.4 Detached Eddy Simulation

the wall model boundary condition switches between a rmo{stiundary condition
region, and a law of the wall boundary condition. The limitvieeen the two conditions
is chosen to bg{;hy < 4.7, that corresponds to the laminar sublayer thickness ifiya fu
developed turbulent boundary layer under a zero pressacdiegit Schlichting 1968).

At y;hy < 4.7, in the no-slip condition the ghost cell flow stétes:

Pb = Psw (3.81)
Up = —Upny (3.82)
kk = O (3.83)
— 60)ul,phy

Wp = By (3.84)

Menter (1992 gave the limit values fok andw asy" — 0 of equations3.83 and
(3.84). psw is given from equation3.74) ands from equation 3.56).

At Yo, > 47, the wall model byRona & BrooksbanK2002 is used to evaluate the
ghost cell tangential velocity correctian

] 7+(1Kf) (3.85)
y+h -5
o,( péo )l (3.86)

Fromu, the ghost cell flow statk in the wall model condition is:

N
Il

exp— max

Pb = Psw (3.87)

Uy = (Uphy— Unn) (1= 20) — Upn (3.88)

ky, = —= (3.89)
G

= — 3.90

“ Tow B3/xy ( )

wherek, andewy, are obtained from a compressible near wall approximatiowgox
(2002, u. is from equation3d.80), andTyis from equation3d.73. «is the Von Karman
constant ang* is given in table3.1

The wall distance of the first interior cell stronglffects the predicted boundary layer
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3.4 Detached Eddy Simulation

velocity at the first interior cell, via equatioB.89. In an under-resolved mesh, where
Yohy ~ 30, the resulting profile may lead to an under estimate of ¢hacity profile mo-
mentum thickness and its growth rate, leading tédilties in estimating skin friction
drag and surface heat transfer. To prevent sufficdities, a mesh refined test case,
discussed in sectiofi4, has a computational grid designed to a valuggfz 10. The
small value ofy;hy leads toz ~ 1 and equation3.88) returnsu, = —Upn,. This pro-
duces a non-physical flow re-laminarization. To avoid tlisdition a diferent model

is implemented. This model estimates the value of the gledkstamgential velocity to
account for a second-order velocity gradient correctiaéwall normal direction.

Let the tangential velocity vecta and its normal be defined as:

Ut
e = — 3.92
|u| ( )

where index 1 indicates the first interior cells. Assumingt titne tangential velocity
satisfy the log law of the wall byon Karman(1954), a tangential velocity component
Uyt IS defined by

1, (Yo T Yo
K

2 yghyz B yghyl

Upt = Utarget — Ur— (3.94)
Kk yghMZ + yghxl
where index 2 indicates the second interior cells.
Aty > 4.7, equation .88 is replaced by
Up = Upt€& — UnN (3.95)

Non-reflective far-field extension

The non-reflective far-field boundary condition of sect®B.3is extended to include

a condition fork andw. A simple zeroth-order extrapolation is used. For the in-
flow condition(us - n > 0), ky = Kk, andwy, = w., Whereas for the outflow condition
(Us - n < 0), ky = kphy andwp = wphy.
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3.5 Time integration

3.4.4 Validation

El-Dosoky(2009 validated the viscous flow solver against the three-dinogras com-
plex flow that occurs near a wing-body junction. The flow exBitarge streamwise
vortical structures thatfBect the wall boundary layers. A horseshoe vortex develops at
the junction and grows further downstream. Detailed expenital data are available
in the ERCOFTAC databasBévenport & Simpsoi1990 andFleminget al. (1993)
under case number 8. The measurements includes the meaityala all Reynolds
stresses at several streamwise and flow-normal positiomss t€st case is a good
candidate to validate the flow solver and its applicationht® piresent test case. The
interaction between the approaching boundary layer andihg-body results into a
three-dimensional vortex that grows along the streamwrsetion. Although the con-
figuration results into a steady flow and conventional RANSlel@an be used, the
time-dependent flow model gave predictions with a level aéidisimilar to the ones
obtained using a full Reynolds stress model or second ordenent closure, as stated
by El-Dosoky(2009.

An unsteady horseshoe vortex can be found downstream oirthaar cavity edge as
found experimentally bysaudet & Winte(1973 in a deep cylindrical cavity flow. A
steady horseshoe vortex was also found in a shallow clodetagal cavity in the
upstream corneiGaudet & Winter(1973 also make the hypothesis that two counter-
rotating vortices are shed corresponding to the cavity doveam edge. The numerical
model needs to be able to capture the vortex growth rate aasvebrtex core position
with a suitable engineering accuracy. These aspects wekietbbyEl-Dosoky(2009

in the wing-body junction test case.

3.5 Time integration

To solve the discrete ordinaryftBrential vector equatior3(11), an explicit multi-stage
time step integration is used. This scheme is numericalyaphrequires a small com-
putational memory and is designed to preserve the totedtwan diminishing proper-
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3.6 Combining the short-time RANS average and the LES averagin the
RANS/LES model

ties of the spatial dierentiation scheme. It is implemented as follows:

Ul =urn
FORk=1m
Uk = U2 — 1/ (m—k+ 1) At/VR*? (3.96)
END
Ut =y
wheremdenotes the number of stages of the Runge-Kutta schemetaedime level.

The stability of this scheme is restricted by tBeurant, Friedrichs & Lewy1928
condition.

3.6 Combining the short-time RANS average and the
LES average in the RANSLES model

LES and RANS variables can be combined in hybrid schemes eed@in conditions
that relate to the scheme’s spatial and temporal disctitiza

Applying equation 8.9) to a flow state variablé (y, 7) and taking the LES average of
equation 8.39 gives:

7 L 5[5y rondy -

1 1 —
fViZmAdvzvi(f}vi:(f(xi,r)> (3.97)
Where(f} is the volume average ovef = AxAyAz of the filtered variabléf), (f) is

f (y, 7) filtered over the filtering length = +/V;, andx; is the cell center.
Let V; be a near-cubic cell. The filtering length in this cell is

A = JAXAYAZ ~ AX ~ Ay ~ Az (3.98)
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3.7 Data format and post-processing

In this cell,<f§ = (f) if a top hat filter is used. Let

def

f0u1) = (6 0) = (F 6, 0) ~ f(x,1) (3.99)

Sampling at a generic time\t, wheren is a natural number ansk is a finite time step
gives

def

f (xi, nAt) = f f (xi,7) 6 (NAt — 7) dr (3.100)

wheres is the Dirac delta functionf (x;, nAt) is the finite-volume time-discrete LES
average off (y, 7).

Applying equation 8.9) to a flow state variabld (y, r) and taking the RANS average
of equation 8.41), it follows:

LA [ [ rgaa-

Alt ( f(y,r) ) :Aitff_(xi,f)dr (3.101)

where At in equation 8.10]) coincides with the time step and is called short time
average.

Substitute equatior8(99 into equation 8.10]) at timenAt.

Equations 8.100 and @.10]) can be applied to any conservative variable of the con-
servative variable vectdd but the non-linear terms related w6 and its gradient are
modelled in diferent waysKeatinget al. (2006 discussed the importance of the mod-
elling of the interface RAN&ES region and its implication in favourable, adverse, and
zero-pressure gradient turbulent boundary layer charowldimulations. In the inter-
face region, a controlled forcing mechanism was introdduoeshhance the production
terms in the computation of the shear-stress. The model instils thesis does not
implement such control.

3.7 Data format and post-processing

The CFD data are stored in a compact, binary file to facilitheeexchange of data
between sites and applications, and to help stabilize ttievang of aerodynamic data.
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3.7 Data format and post-processing

The CFD General Notation System (CGNS) is an open sourceaat It is self-
descriptive, well-documented, and administered by amniatéonal steering committee
since 1999 Bushet al,, 2007. This steering committee is made up of international
representatives from government and private industrg dlso an American Institute
of Aeronautics and Astronautics (AIAA) Recommended Pcacti

Data stored in CGNS format are proven to be long lasting, eastore, easy to share
between sites and collaborators, and easily extensiblectade almost any type of
additional data.

CGNS data are generally associated with compressiblewssibow (i.e., the Navier-
Stokes equations), but the standard is also applicablebi@sis such as inviscid and
potential flows. The CGNS standard includes the followinuetyof data:

1. Structured, unstructured, and hybrid grids. This wosustructured grids.

2. Flow solution data, which may be nodal, cell-centredefeentred, or edge-
centred. This work uses cell-centred solution data.

3. Multi-zone interface connectivity, both one to one andreset. This work uses
the one to one connectivity.

4. Boundary conditions.

5. Flow model specification, including the equation of statecosity and thermal
conductivity models, turbulence models, multi-speciesnaistry models, and
electromagnetics. In this work, the equation of state, tkeous and thermal
conductivity models, and the turbulence models are spdcifie

6. Time-dependent flow, including moving and deforming grid his work uses
the time-dependent flow option only.

7. Dimensional units and non-dimensionalization inforigrat This work uses the
standard international units and a dimensional model.

8. Reference states.
9. Convergence history.

10. User-defined data.
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3.8 Conclusion

The CGNS standards have been recently extended to taketageanom a parallel
input/output interface.Hauser(2008 proposes a new parallel interface and provides
a prototype implementation of the CGNS libraries. He alsmvjgles some prelimi-
nary evaluation performance of the parallel output file eystieveloped increasing
the number of zones to be written. A beta version is availah#er the latest CGNS
libraries version 2.5.

The in-house CFD code employs a scalar version of the CGN& s, version 2.4.

It was therefore necessary to develop a parallel data lblision and gathering archi-
tecture within the CFD code for the parallel runs. This isuwdtoented in sectiod.3.

3.8 Conclusion

This chapter described the numerical models used to stedgylindrical cavity flow.
The validation of the flow solver done til-Dosoky (2009 showed the ability of the
numerical method to capture the contact discontinuitiespaessure waves propagat-
ing oblique to the computational mesh. The method is fouretadte to model the
flow past a cylindrical cavity, where similar flow featureg @resent. The horseshoe
vortex found in the interaction between an approaching tagnlayer and the wing-
body in the DES simulation bil-Dosoky (2009 can also be found downstream the
cylindrical cavity circular edge. The turbulent model herproposed is expected to
describe the flow unsteadiness in the cylindrical cavityd¢ase.
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Chapter 4

Code parallelization using MPI

4.1 Introduction

This chapter describes the parallelization algorithm uis¢lde flow solver. Two dter-
ent approaches have been implemented: a single domain gesdian and a recursive
domain decomposition. The performance of the two algoridienstudied by means
of the parallelization #iciency and the speed-up.

4.2 Single domain decomposition

The computational domain is built as an assembly of indi@idhree-dimensional,
curvilinear and topologically orthogonal in tig j, k) computational zones. A two
cell deep layer of ghost cells surrounds each zone where poib® connectivity in-
formation is updated at each Runge-Kutta time integrattmmes with updated ghost
cells are independent and can be integrated in parallel.

As described in sectio®.7, multi-processors HPC clusters are nowadays extensively
used to solve CFD problems. Specifically mediai20 x 10°cells) and largg> 30x 10°cells)
CFD test cases cannot be run without modern HPC facilitibs.tlvo main stream par-
allelization methods are Message Passing Interface (MflGpen Multi-Processing
(OMP). MPI for code parallelization is highly recommendeithwespect to OMP be-
cause it is more flexible and does not need a shared-mematecihe flow solver

is parallelized using MPI and it was tested on two distriduteemory HPC clusters.
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4.2 Single domain decomposition

Considering a single zone of computational domain, givennilimber of processors
available in the cluster, each zone is sliced into blockaglg hence the name single
domain decomposition (SDD). Tlkedirection is chosen as it coincides with the outer-
most variable pointer for a given zone in the FORTRAN prograng language, such
as forU (i, j,k). Variables belonging to &-slice are contiguous in memory and are
faster to be sent and received among other processors,yaddhet need bfiiering.
During the initialization of a test-case, three MPYPE arrays are defined to reduce
the overhead related to exchanging data across the diswilmmemory architecture,
respectively foik, j and ani planes. In the most general case, each processor sends
and receives fouk-planes during each Runge-Kutta time step as well as theame
contour ofj-plane and-plane data. The latter originates from the multi-blockmec:
tivity.

SDD was implemented using MPI assuming the processor metodny stficient to
include all the computational variables of all zones of tHeDQoroblem during run
time. SDD can also be implemented using OMP on shared-meahaster but works
for small CFD computations on the distributed memory platf® used in this work.
Figure4.1shows a simple 2D domain divided into three computatioradhs. A blue
dashed edge, a red continuous edge and a black dash-dot redgsed to identify
these zones that are denoted as zone 1, 2 and 3k-@lirection coincides with the
vertical direction in this example. The zones are evenlgdiaut have dferent aspect
ratios, giving a diterent number of cells along thedirection. In this example, only
two processors, 0 and 1, are used. A dotted line separatesthgutational blocks
computed by processors 0 and 1 respectively. To computeothective fluxes using
the flow solver, as described in paragr&B.2 four contiguous cells are needed in all
directions. Green hashing is used in figdréto highlight the data that are transferred
from processor 0 to processor 1 at each Runge-Kutta stepséatien3.5). In this
example, a symmetric situation characterizes the procdssall the cells of zone 1,
computed by processor 0, are transferred to processor 1lllae @ell of processor
1 of zone 2 are transferred to processor 0. This is a bottlesiagation for the SDD
implementation, as processors 0 and 1 spend more time imBgoig ghost cells
information than in doing the computation.

SDD is generally representative of the best parallelinasivategy for a low number
of zones that are characterized by a large number of cells.
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4.3 Recursive domain decomposition

Zone 1

Zone 3

Zone 2 Kk

Figure 4.1: Exchanged cells between processor 0 and paycesgsgreen.

4.3 Recursive domain decomposition

SDD required a large memory consumption and its inter-bmakmunication over-
head limits it to a small CFD computation. Recent HPC clisstee assembled to
minimize the communication time among processors but coenmores do not have
more memory than an ordinary home desktop. Nowadays shagatbny cluster are
also being replaced by large distributed memory HPC clastier use these clusters to
their full potential a more complex parallelization statés implemented.

In a recursive domain decomposition (RDD), the computatidomain is built by an
assembly of three-dimensional, curvilinear and topolalyamrthogonal zone§, j, k),
like SDD. In RDD, each zone is a unit that is allocated to actetégroup (or sub-
cluster) of processors to compute it. Each unit is then dlmeerk planes and thus
distributed to each processor in this sub-cluster. The mg@aitocation benefits from
the division of the computational domain in these units.

As described in paragrapgh?, independent operations represent one of the enablers
for code parallelization. If possible, it is important toplament asynchronous input
and output interfaces to reduce the overall computatiomeg.t

To take advantage of the multi-zone division, the input ® ¢bmputation is divided
into three parts:

I Sequential reading of the size of each zone. The zone sibeoedcast to all
processors.
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4.3 Recursive domain decomposition

Table 4.1: RDD code variables

Communication

Handler MPI_COMM _WORLD | blockcomm | mastercomm
Identifier myproc myprocblock | myprocmaster
Number of

processors nprocs nprocsblock | nprocsmaster

il Asynchronous reading of the zone geometry and flow datas d@ata is shared
only among the processors allocated to one or the other zone.

iii Sequential reading of the connectivity and the boundanyditions of all the zones.

Each sub-cluster of processors is defined by this proceduoptimize the load bal-
ance with respect to the ratio of the total number of cellsr die total number of
processors. Two communicatorgtdrent from the default MPCOMM _WORLD are
defined to reduce the communication overhead: a block conoaman and a master
communicator. The communicators are blazknm and mastecomm as stated in
table4.1

The block communicator allows the information to be exclehm the group ded-
icated to compute each zone. This causes the code to scéde Wwéh increasing
number of blocks than SDD, within limits.

The master communicator is used to exchange the conngatifermation among the
zones. This is then simultaneously sent to all the procesdaach group.

The solution is written in CGNS format and the writing is seqtial in processor 0
only.

Let nprocsbe the total number of processors allocated to the problesmaanes
be the total number of computational zones that divide thepdational domain.

A processor cluster of sizeprocsblockis allocated to each zone depending on its
total number of cell to achieve load balance. In each groupladks, the proces-
sor myprocblock = 0 define the block master and is univocally identified using
myprocmasterin mastercomm. The following relations characterize the variables
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4.3 Recursive domain decomposition

in table4.1
0 < myproc< nprocs—1 (4.2)
nprocsmaster< nzones (4.2)
nprocsblock < nprocs (4.3)

Equationd.lis the standard relation that characterize the MPI stanciam@municator
MPI_COMM _WORLD and it is extended also to blodomm and mastecomm as:

0 < myprocblock < nprocsblock— 1 (4.4)

0 < myprocmaster< nprocsmaster— 1 (4.5)

Equation4.2reduces tmmprocsmaster= nzonesf nprocs> nzones This condition

is generally satisfied for medium and large CFD problems,revitlee computational
domain is divided into dferent zones but it is not required in the implemented RDD.
Equation4.3reduces tomprocsblock = nprocs only if nzones= 1. If the all compu-
tational domain is not divided into zones than RDD coincidél SDD.

Table 4.2 gives the code implementation of RDD. The variables areghogable
4.1 left andright are respectively the previous and the next processor to erigen
processomyprocblockof a generic group.

As each zone is a separate from any other and no data are stdlhedorocessors of a
given cluster of the zone, a zone interface must be defindtipnogessor to gather the
connectivity information of other zones. To minimize th@adi to create and exchange
this zone interface array, the data are first exchanged sionasters and then across
the blocks as described in the pseudo-code of #ldéines 11-14).

Figures4.2 (a-c) show how RDD is applied to the example described ineedt2
The three computational zones are divided between six psoce. Zone 1 is assigned
to processors 0 and 3 only, zone 2 to processors 1 and 4 onlyosred3 to processors
2 and 5 only. Processors 0 and 3 do not have any geometry nod#itanof the zones
2 nor 3. A zone interface array is therefore needed to sh&elock boundary cell
data among the processors. This zone interface array is opabg the hashed cells
in figure4.2(a)and is present in all processors. As each zone is indepefrdenbne
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&

1$

14:

1$

15:
16:

Table 4.2: RDD code implementation

Exchange data across block interfadeplanes)

left = myprocblock— 1

right = myprocblock+ 1

SENDRECYV 2k_planes frome ftto right on blockcomm
SENDRECYV 2k_planes fronright to le ft on blockcomm

Collect zone interface data from each block on block nraste
IF myprocblock=0

FORmype= 1, nprocsblock- 1

RECV zoneinterfacedata frommypeon blockcomm

END
ELSE

SEND zoneinterfacedata to O on bloclcomm
ENDIF

Broadcast zone interface data across all masters (natenj@ocessors idle)

FORmype= 0, nprocsmaster- 1
BCAST zonenterfacedata frommypeon mastercomm
END

Each block master broadcast received zone interfaceadabas its block

BCAST zoneinterfacedata from O on blockcomm
Run the flow solver on each block

U _block= Ug_block+RK 6U _block
GOTO1
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AN NI
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(a) Master boundary interface (green box)
W P

(b) Local exchange of boundary interface céty Local boundary cells exchange in green
inred (3— 0),(4— 1), (5- 2). (0-3),1—-4),(2-5).

Figure 4.2: Recursive domain decomposition.
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4.4 Parallelization performance

another, the communication in figude2(c) and within the same zone is happening
simultaneously.

The data of the zone is mapped in memory of all the process@goup therefore
it can be sent and received in any of this processors withsingua bidfer, as it is in
SDD implementation. A green hashing is used in figdu2(c)is used to identify the
cell data sent from processor 0 to 3, from 1 to 4, and from 2 #s5. In figure4.2(b)

a red continuous line identifies the cells exchanged in edmtklihat are needed to
fill the interface block-let. All the information is gatherén the master processor of
each block, namely 0, 1 and 2 in the example. After gathehiegriformation in these
processors, it is exchanged among master processors tteupdaone interface data.
Finally the zone interface data is asynchronously sentémther processors of each
group, 3, 4, and 5 in this example.

The data size of communication in RDD is larger than in SDDwEleer, a larger
number of processors can be used with RDD, leading to a smadmory requirement
per processor compared to SDD.

The RDD parallelization is also more flexible in terms of apgbility because it allows
to even up the computational load among processors in thaidomith uneven block
sizes. ldentifying the smaller zone in the multi-zone cotapanal domain, it can be
used as a base to divide the other zones akmswthat roughly all processors compute
a similar number of cells. A large part of the communicatiappens asynchronously
and RDD is applicable to large computational domains. Irctiveent implementation,
RDD is limited by the extent of the zone interface data, wisch memory map that is
allocated in the memory of all processors

4.4 Parallelization performance

For a given CFD problem, it is possible to evaluate the paladtion performance
of the code on a given HPC cluster by using two parameterscdale speed-up and
the parallelization #iciency. LetT, be the time needed to perform one time step that
corresponds to two Runge-Kutta sub-iterations using tlde om one processor of the
HPC cluster, and, the time to perform the same time step by the parallelizee cod
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4.4 Parallelization performance

Nprocs | To[sec] | Tp[sec] | Sp | n[%]
1 90.19 | 90.19 1 100
2 90.19 | 45.53 | 1.98| 99.04
4 90.19 | 23.69 | 3.81| 95.18
8 90.19 | 13.55 | 6.66| 83.2
16 90.19 9.23 | 9.77| 61.07

Table 4.3: SSD performance on the CINECA cluster.

more than one processor. The speec(&@ is defined as
Sp=To/Tp (4.6)
The parallelization ﬁciency(np) of the algorithm is

np = Sp/nprocs 4.7)

The ideal situation corresponds3g = nprocsfor any number of processors. A super-
linear speed-u®, > nprocscan be achieved by parallelization due to cache aligning.
The speed-up growth is limited by the communication time laythe load balance.
The performance of SSD, described in secon4.2 was tested at the HPC cluster at
CINECA, Bologna, Italy. The performance of RDD was testedwa different HPC
clusters at CINECA and at HECToR, Edinburgh, United Kingdofme results are
documented in tables.3and4.4.

The values in table4.3and4.4 are obtained with a computational mesh of 1.4 million
cells divided into six zones.

The SDD parallelization performs well up to 8 processorstasvn in the value from
table4.3. The lower parallelizationféciency with 16 processors is due to the overhead
related to the data exchanged versus the data computedtbpemessor. Essentially,
there are not enougkplanes to distribute to each processor in the cavity mdusl t
was used to develop the MPI, which used a 1.4 million cellgsmsma@omputational
mesh.

Comparing tablet.3 with table4.4, the valueT, is much smaller in the second table.
The scalar code was extensively optimized before the neallpbzation strategy was
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4.4 Parallelization performance

CINECA HECToOR
Nproos | Tolsec] | Tplsecl| S, | n[%] | Tolsec]| Tolsec]| S, | n[%]
1 46.45 46.45 1 100 54.38 54.38 1 100
2 46.45 27.46 | 1.69 | 84.58| 54.38 29.19 | 1.863| 93.15
6 46.45 10.36 | 4.48 | 74.73| 54.38 10.11 | 5.379| 89.65
12 46.45 6.22 7.47 | 62.23| 54.38 5.45 | 9.978| 83.15
24 46.45 4,78 9.72 | 40.49| 54.38 3.06 | 17.77| 74.05
36 46.45 4.5 10.32| 28.67| 54.38 2.24 | 24.28| 67.44
54 — — — — 54.38 1.8 30.21| 55.95
72 — — — — 54.38 1.6 33.99| 47.21

Table 4.4: RDD performance on CINECA and on HECTOR clusters.

implemented. The computational time was reduced by 50%ihyiredting recursive
operation and simplifying memory access. The lower timeifgeation on a scalar
machine at the CINECA cluster can be explained by the aggeesptimization done
by the Intel compiler.

Figures4.3 (a,b) are obtaining using the values from talde3and4.4. These show
that using RDD enables to distribute the computation ongetanumber of processors
than with SDD, as stated in sectidn3. The code speed-up is close to linear for a
low number of processor using SDD, as shown in figh&a) The dficiency of
SDD rapidly decreases towards zero as the number of prasassoeases, as shown
in figure4.3(a) The faster communication system provided by the HECToRtetu
gives a better performance with RDD than the BCX CINECA dust
Figure4.3(a)shows that the SDD code on the CINECA cluster scales a |¢ttibthan
the RDD code for up to 16 processors. The parallelizatiboiency advantage is about
10%, as shown in figur4.3(b) This diference is due to the communication overhead
of SDD. This is lower than RDD. The scalability of the code etbr on HECToR,
where the minimum bi-section bandwidth is 4.1/BThis allows to absorb the extra
communication overhead of RDD, leading to a maieceent parallel computation on
nprocs> 8. Specifically, by sub-dividing a relatively small problémio more zones,
the ratio of communication versus computation increases level where a further
reduction in computational time by domain sub-divisionas achieved.

The relatively small 1.4 million cells size of the problemmited the scalability test
to 72 processors using RDD. RDD is designed for medium am I&FD problems,
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Figure 4.3: Parallelization performance offeient HPC clusters.
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4.5 Conclusion

where each processors works on a block of adequate size*db 1@ cells. SDD
cannot be tested on a problem larger thaxn 20 cells due to high memory demand
of the DES flow solver, described in paragrdpi. In the mesh-refined CFD test case,
analysed in paragragh4, that consists of 10° cells, a minimum of seven zones were
used to satisfy the memory constrain of a single proces$m.DES model of a three-
dimensional computation requires a fine mesh in region cdrseed flow to describe
the small eddies therein. This can be computed only usinRDE implementation.
A low fidelity model, as the one used in this analysis, can gimme information on
trends and mean flow parameters but is ndficent to describe the small structure
interaction that is typical of turbulent flow simulationsDR is the only applicable
MPI implementation to solve medium and large CFD problenth tie University of
Leicester in-house code.

4.5 Conclusion

The algorithms used to parallelism the flow solver were Imedesscribed. The perfor-
mances of the two algorithms shows that the RDD perform&bethen the number
of processors used in the computation increases. The kE#eradvantage from a
decrease in the memory consumption associated with it. ®plyrtion of the compu-
tational domain is needed in each processor in this later. cas
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Chapter 5

Computational domain

5.1 Introduction

At present a ‘black box’ grid generator able to produce atat#p mesh does not exist
(Lohner, 2001). Commercial grid generators such as GAMBIT, that emplayise

automatic grid generation, are often used in industrial CHEZe author does not use
such a generator, due to the relatively simple geometryisstindy. The major advan-
tage to generate the computational grid with in-house sofws the ability to control

the stretching ratio and the mesh skewness. In this chdbéemesh used in the com-
putation is described in terms of number of cells and contutal domain size. The

mesh skewness is also analysed. The flow parameters at thddgiconditions are

given and the non-reflectivity of the boundaries is alsoistlid

5.2 Euler and DNS

The computational domains used in Euler and DNS simulaaomgdentical. The aim
of the simulations is to identify the instability mode thaives the cylindrical cavity
flow. Different boundary condition are used in the two simulationg. fEsulting flow
field is influenced by the introduction of a finite boundarydayhickness in the DNS
as discussed in secti@3.

The computational domain outside the cavity isA18&184L x9.6L, as shown in figure
5.1 A large domain of the order of 2D is used to resolve at least one full acoustic
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5.2 Euler and DNS

Figure 5.1: Computational mesh.

wavelength of the radiating sound. A preliminary Euler dimtion suggested a low
frequency mode instability in the deep cylindrical cavigwl (Grottadaurea & Rona
20073. The computational domain is the smallest that allows passte the radiating
pressure field from the hydrodynamic pressure due to thepwantial flow at the
cavity open end as suggested Gplonius & Lele(2004. Specifically, the domain
boundaries are located far enough so that the radiatingymess dominant across
them.

The computational domain boundaries are chosen so thaptireogs waves in the
far-field do not &ect the self-sustained instability mechanism in the calaty.

The domain is discretized using a topologically orthogdahed¢e-dimensiond(i, j, k)
curvilinear mesh. Curvilinear coordinates are used to i@l j into the streamwise
directionx and spanwise directiop) where the cells of the central zone are barrelled.
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5.2 Euler and DNS

The cells are elongated along the 4hgle to meet rectilinear axes at the computational
domain boundary.

A simple O-type mesh cannot be used to solve the cylindreaty flow with a Carte-
sian flow solver without modificationsShuret al. (2003 used a barrelled zone sur-
rounded by an O-type mesh for a three-dimensional DNS ofgesten This technique
removes the geometrical singularity of a conventionalnoyjiical mesh at the origin.
A similar approach is used in this study of the cylindricalita

A constant stretching rati@;) is used in the conformal mapping in the radial direction
and in the flow normal direction. A constant spacing is usétiérazimuthal direction
along the cavity walls. In the computational domaing 1.05. The round i error
introduced by a 5% stretching is often acceptahftEhfier, 20017).

100 equi-spaced cells are used around the cavity walls. Anveamal distance\z =
2.94 x 1073L is used at the first cell and 12 cells are used within the bayndger
thickness in the coarse DNS test case, 24 in the refined test 44 Cells are used in
the z direction outside the cavity, 37 cells within the cavity hret./D = 0.71 deep
cavity and 19 cells in the/D = 2.5 shallow cavity. A mesh refined test case was used
in the shallow cavity test case, with 24 cells within the taeénd 48 cells outside.
Along the radius from the cavity axis, 40 cells are used irhbmatses. The cells in
the centred barrelled zone are 225. In the flow normal direction, the total number
of cells is varied to investigate the numerical convergesfdbe results, as discussed
in section6.3. 13 and 14 cells are used to discretize the inflow boundamsr laythe
wall-normal direction aRe, = 10750 andRe, = 8850 respectively. .4 million cells
are used inthé/D = 0.71 cavity model and.26 million cells in thelL./D = 2.5 model

in the first under resolved test case. The 1.4 million ceBsd¢ase was refined further
to achieve mesh convergence to 2.6 million cells and to Olizomicells.

The refined test case in sectibrBuses a cell size off ~ 30 aty = —2L upstream of
the cavity leading edge. The introduction of the wall fuanotgiven in sectior8.4.3
was necessary to achieve an estimate of the friction vglaodl boundary layer growth
rate at the cavity leading edge.

In LES simulations, the cell should be ideally of cubic shapgive AX ~ Ay ~ Az
The smallest scales of turbulence are modelled by the Snmsggrconstant and the
dissipation at these scales is assumed to be isotropic.€llsarcthe cavity neighbour-
hood aim to achieve this condition.
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5.2 Euler and DNS
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Figure 5.2:k-plane skewness over the cavity open end

A limiting factor in the three-dimensional CFD computatsas the cell deformation
produced by the stretching away from the cavity. Highlytstred cells introduce dis-
persion and dissipation errors. Stretching is necessagstive the acoustic near-field
using a limited number of cells but this leads to unwantetdstedwness. The cavity
acoustic far-field is where the radiated pressure fluctnatmmplitude decays geomet-
rically as| o r=2, wherer is a the radial distance from the noise sources origin and
| the sound wave intensity. The main noise source is ofteriddcat the downstream
cavity corner.

The mesh az > 0 is generated by reproducing the meslz at 0. All z > 0 planes
have the samgx, y) coordinates. The cell skewnegs) in anyz > 0 plane, shown in
figure5.2 is investigated.

It is defined as
_ max(idal, lidal)

71 indl d2)

(5.1)
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5.3 DES

whered; andd, are the diagonals of the lower face of computationalicg¢lk and are:
di = Xispje1 —Xij @anddy = X 11— Xis1,j, WNEreXi j, Xisaj, Xi j+1, Xi+1,j+1 are the position
vectors of the face vertices.

The four corners of the central zone, in red in figbrg is where the skewness has the
maximum value of @12. The numerical instability and the numerical dissipaamd
dispersion errors associated to the skewness and thengtigeteas investigated byou

et al. (2006. It was found that the skewness increases the numeridalbitisy and
that it is enhanced in highly stretched meshes. The anaisissuggested that, when
possible the mesh has to be aligned with the flow directioretiuce the numerical
error associated with the angle between the mesh lines antloilu direction. The
maximum value of the skewness found in this mesh is congidaeceeptable for the
order of accuracy of the scheme used in the simulations. é&skéwness is an index of
the local mesh deformation, it is best minimized throughbetdomain. An advantage
of the generated computational mesh is the modest defammatithe cells around the
perimeter of the cylinder. The skewness at these positgdese to 0, which helps to
resolve the growing shear-layer around the cylindrical.wal

5.3 DES

By domain decomposition, the computational domain of figudds divided into six
zones. The six zones have a similar number of cells to evethewomputational load
among the processors in the MPI implementation of the code.

Previous numerical investigations of this cylindricalitgeonfiguration byGrottadau-
rea & Rona(2007ab) showed that a computational domain of sizel18 13L x 9 L
outside the cavity is required to resolve at least one fubluatic wavelength of the
radiating sound. Therefore a domain of 18 13 L x 9 L was used.

Given the physical constraint in secti@®, the wall friction velocity is estimated to
givez" = 1. Athin boundary layer approaches the cavity and it wasddbatAz ~ 4.1
um corresponds to the value zit = 1. Bennett(2005 andEI-Dosoky (2009 used a
CFL < 0.4, this value was found to give a numerically stable companafor the
explicit in-house CFD code. To meet this condition, a timepgit = 3.7 nswould be
necessary. This cannot be used in the simulation, due toiteese computation that
corresponds to such a small time step. A 64 million cells aateponal mesh would be
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5.3 DES

necessary to achieve a well-resolved LES three dimensmaodekl of the cylindrical
cavity test-case. The introduction of a wall model is therefnecessary to reduce the
computational cells by allowing larger volume cells to bedislose to the walls.

The 14 million cells, used in thé/D = 0.71 cavity model, and the.26 million cells,
used in theL/D = 2.5 model, consisted in 128 cells around the cavity circunmese
The mesh skewness over the cavity opening was investigatethanimized inGrot-
tadaurea & Ron#&2007h. The first cell center in the boundary layer corresponds to
zt = 30 and a wall function is used to impose the no-slip condiierdescribed in
section3.4.3

The mesh convergence of th¢D = 0.71 predictions was investigated by running a
2.6 million cells mesh refined test case. 256 equi-spaced paiat used around the
cavity circumference in this test case.

The code was run over 72 processors at the supercomputbtigadHECTOR and
BCX. HECToR is a 11,328 AMD 2.8 GHz Opteron processors ctustgivering 59
Tflops at peak, located in Edinburgh, UK. BCX is a 1280 OptdBM Quad Core 2.6
GHz processors cluster, located in CINECA, Bologna, ITeliers 27 Tflops at peak.
The mesh refined test of@million cells case was able to resolve a higher instability
mode compared to the coarse4 inillion cells case. This instability is discussed in the
experimental comparison in sectiétv. A third level mesh refinement of 9.2 million
cells was needed to validate this numerical result. Thisiste of 2.41 million cells
inside the cavity and 6.82 million cells outside the cav@84 equi-spaced points are
used around the cavity walls. The barrelled zone ix®3® cells. 30 cells are used
within the boundary layer thickness in the wall normal dil@e. 120 cells are used
in the normal direction and 122 cells are used along tltethe block boundaries
outside the cavity. The computational domain is divided sgven zones in this final
test-case, to allow the variable space that corresponcctozme to fit in the memory
of its designated processor in the computer cluster. Thidiune size computation
cannot be run in less than seven computers, due to memoryctiest The MPI
implementation is essential in this simulation.

The mesh skewness reduces by 10% with each successive rfisement step. The
numerical results are expected to benefit from this progressduction in skewness.
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5.4 Free-stream values in the boundary condition

5.4 Free-stream values in the boundary condition

5.4.1 Euler and DNS

In the far-field, two flow statefu.., p«., T) are used foM,, = 0.235 andM,, = 0.3.
These are (102,0,0)" m/s, 101325 Pa, 2985 K and (800, 0)" m/s, 101325 Pa and
29815 K. At the inflow,u = u, andp = p, = 1.225kg/m?°. At the outflow, the
reference pressure 5= Pe.

The free-stream parameters were chosen in consultatitmAuibus France and are
representative of those found in a civil aircraft at landifigpe International Standard
Atmospheric (ISA) condition applies to this flow.

5.4.2 DES

Only theL/D = 0.71 deep cavity configuration &., = 0.235 was studied using the
DES scheme. The computational expense limits the total eumipossible runs to
only one test for the mesh refined case.

The flow conditions are those of the Euler and DNS tests, glao consultation
with Airbus France. Parallel wind-tunnel measurementseveenducted at the DIMI
wind tunnel for an almost dynamically similar mod&egngyuan & Biondini2007
Verdugoet al, 2009. The limitation in the wind tunnel maximum speed were such
that onlyL/D, L/60 andRg are matched. The experiment were dondlat = 0.118
and compressibilityféects are neglected in the flow comparison.

The free-stream flow state is

Ueo (80,0,0) s

Peo 101325Pa

To | = 29815K (5.2)
Keo 0.24n?/<

Weo 7255s1

The inflow turbulent boundary layer profile and the free strealues ofk and w
are detailed in the appendB« The turbulent boundary layer mean velocity profile is
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5.5 Boundary condition sensitivity analysis

obtained by the formula dRonaet al. (2009. This formula used explicitly the value
of the friction velocity, the free-stream velocity and theubdary layer thickness as
input to determine the mean velocity profile that is used atitiflow condition. At
the outflow, only the back pressupe = p. is imposed under the assumption of a
streamwise zero pressure gradient flow.

5.5 Boundary condition sensitivity analysis

The non-reflective boundary conditions described in ses02.3and3.4.3are anal-
ysed. The sensitivity of the numerical solution with respecthese boundary con-
ditions is studied through the near-field sound pressuid [BPL). This is evaluated
using the root mean square pressure fluctuation obtaineddrgging 25 frames that
are evenly distributed in time around one characteristiopeof the cavity instability.
Figureb.3is obtained using the inviscid flow simulationMt, = 0.3 in the deep cavity
test case. This is characterized by a high amplitude preskiotuation as discussed
in section6.2.3and reported irGrottadaurea & Ron&0073. Figure5.3 shows a
monotonic reduction of the SPL from the enclosure towardstimputational domain
through-flow boundaries. It indicates that the boundaryddwmns allow the passage
of the outgoing pressure waves with no appreciable refiectitinor spurious waves
are found at the domain upper edges, as indicated by the ehiatige contours shape
from convex to concave close to these edges.

The linear assumption used to obtain the non-reflective tumtbary condition can-
not be simultaneously satisfied in the two direction at thgeeof the computational
domain. This causes a localized pressure wave reflectioarttsnthe computational
domain interior due to the pressure gradient set to zeroéndimection. These waves
are of small amplitude compared to the main instability madd do not greatly af-
fect the numerical solution. Moreover, the mesh is very seat the outer domain
boundary. This introduces a locally high numerical dissgraand further reduces the
propagation of these reflected waves in the computatiormabgéio Close to the outer
domain boundaries, the numerical dissipation induced byrtesh coarsening gives a
behaviour similar to the introduction of a sponge zone.
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5.5 Boundary condition sensitivity analysis

Figure 5.3: Near-field SPL on the= 0 plane. SPLj, = 60 dB re 20nPa, SPlyay =
200 dB re2QuPa, ASPL=5dB.
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5.6 Summary

5.6 Summary

The meshes used in the numerical model were described irs teie number of

cells and computational domain sizes. The mesh skewnesala@snalysed and it
was found to benefit to a 10% reduction when a finer mesh is U$eznon-reflectivity

of the boundary conditions was studied by evaluating the &&hg the computational
boundaries. No spurious reflection of significant amplitwas found in the computa-
tion.
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Chapter 6

Aeroacoustic predictions

6.1 Introduction

This chapter presents time-dependent numerical simak&bbthe unsteady pressure
near-field of a cylindrical cavity of length and depth rdtiD = 0.71 andL/D = 2.5,
tested at free-stream Mach numbers 0.235 and 0.3. Simusatice presented from
solving the Euler equations, which gives an inviscid modet] the discretized Navier-
Stokes equations without turbulence modelling, which g&eiscous model that uses

a laminar inflow boundary layer &g, = 8424 atM,, = 0.235 and ofRg, = 11260 at

M., = 0.3 for bothL/D test cases. All models use the same computational domadin tha
extends & upstream and downstream of the cavity, 8ither side of the cavity, and

9 L above it. TheCFL number is smaller than®in all the models and it represents a
very large constraint in the mesh-refined test cases in gwus flow simulations.

6.2 Inviscid model

At the start of the computation, the flow within the enclosigrat rest while the flow
above it is uniform at the free-stream velocity. The inwisoiodel uses the mesh
described in sectiof.2 The inflow conditiongp.., U, P) are uniform and arg,, =
1.225 kgm?, p., = 101325 Pa, and., = (1021,0,0)" m/s atM,, = 0.3 andu,, =
(80,0,0)" m/s atM,, = 0.235. A vortex sheet spans across the enclosure opening,
separating the stagnant flow from the free-stream. In padine numerical dispersion
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6.2 Inviscid model
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Figure 6.1: Sketch of the cavity flow in the inviscid model.

and dissipation in the flow solver generates numerical gisgthat thickens the vortex
sheet as it stretches above the enclosure. This is sketchgaiie6.1 The resulting
inflected velocity profile is similar to that of a shear-laged grows Kelvin-Helmholtz
type convective instabilitiesBfadshawet al, 1960. The interaction of this finite-
thickness vortex sheet with the downstream cavity corndgrasubject of the study in
these simulations, as reported@nottadaurea & Roné20073.
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6.2 Inviscid model

6.2.1 Time-averaged flow

Figures6.2(a)and6.3(a)show the mean streamwise velocity component at the cavity
opening in theL/D = 0.71 andL/D = 2.5 cavities at,, = 80 nys and atu,, = 100
my/s respectively. Figure6.2(b)}(d) and 6.3(b)}(d) show the streamlines in the two
configurations in the planegL = 0, y/L = -0.25 andy/L = 0.25. The averages
are obtained as the algebraic mean of 54 frames and 35 frasgsatively over one
characteristic period of cavity oscillation.

The mean streamwise velocity component decreases asyitetigtover the cavity
open end of the deep cavity configuration and its minimum ig/at= 0.2. Given
the strong asymmetric patten in the enclos@eoftadaurea & Ron&0073, a corre-
sponding strong asymmetry would be expected in the cavigewegion downstream
the cavity trailing edge. This strong asymmetric behaviswshown in figures.2(a)
only close to the cavity edge gt> 0. Further downstream, the flow regains the sym-
metry of the free-stream inflow condition. The loss of mormemgiven by the cavity
reduces the streamwise velocity in the wake region.

The asymmetry in the streamwise velocity component sugglest the flow enters the
cavity only on one side in the region © y/L < 0.5 and is ejected from the other
side—0.5 < y/L < 0. This is confirmed by figure6.2(c) and6.2(d) in which the
streamlines are pointing towards the cavity bottom in treel/L = —0.25 in the
region—0.1 < z/L < 0.1 whereas are pointing upwards in the plafie = 0.25 in
the same region. The flow separates at the cavity leading éxlgang a vortex sheet
that spans across the regiefl.1 < z/L < 0.1. A similar asymmetric recirculation in
aL/D = 2 cylindrical cavity was observed experimentallylgringet al. (2006 and
by Dybenkoet al. (20096.

The vortex core is located afL = 0.1 andz/L = —-0.4 in the planey = 0, whereas it
is located atx = 0 andz/L = —0.7 in the planey/L = —0.25. The diferent locations
of the vortex core indicate that the vortex tube is bent inlxard upward in the flow
past the cavity. Thisféect is mainly due to thefiect of the numerical viscosity. The
‘viscous’ layer is characterized by afidirent thickness over the cavity opening and
therefore the convective velocity isftérent at diferenty = constant planes.

The flow in theL/D = 2.5 cavity is mainly symmetric with respect to the cavity cente
about the spanwise plaiye= 0, as shown ir6.3(a) The flow enters the cavity in the
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6.2 Inviscid model
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Figure 6.2: Asymmetric recirculation fromlaD = 0.71 deep cavity aM,, = 0.235.
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6.2 Inviscid model

spanwise central area at abetil2 < y/L < 0.2 and is ejected from the cavity sides
-0.5 < y/L < -0.25 and 025 < y/L < 0.5. A higher velocity magnitude is found
in these areas compared to th&D = 0.71 predictions, as shown by figurés3(b)to
6.3(d) The streamlines are pointing downwards only in the phaee0, reducing the
streamwise momentum transport into the cavity and leavimglaer momentum over-
flow across its open end. In the wake region, the flow is symmatrd accelerates
towards the centreline to balance the conservation of nfagsher above the enclo-
sure, the flow is at constant free-stream velocity. A bourdexas found inside this
cavity with the core angled at about°4ith respect to the streamwise direction. The
bound vortex core is located ét/L,y/L,z/L) (0.25,0,-0.1) and (0, +0.25, -0.27).
The numerical predictions indicate that the recirculapattern inside the enclosure is
similar atM,, = 0.235 andM,, = 0.3 and is more dependent upon the cavity geometry.

6.2.2 Aerodynamic instability

Figures6.4(a)and 6.4(b) show instantaneous streamlines and pressure iso-surfaces
in the enclosure in th&/D = 2.5 shallow cavity. The symmetric recirculation is
confirmed also by these instantaneous images atMatk 0.235 andM,, = 0.3. The
interaction between the fluctuating vortex sheet predibtethe Euler model and the
cavity trailing edge produces pressure waves as predigtedebaerodynamic noise
generation theory oPowell (1964). The frequency that characterizes these pressure
waves phase-locks the vortex sheet fluctuation, producsgfasustained instability.
The numerical predictions suggest that the recirculatettepn inside the enclosure is
independent from the free-stream velocity but it is reldtethe cavity geometry. The
L/D = 2.5 cavity flow is found to have a dominant instability modeSdt= 0.833 at

M., = 0.235 and aSt= 1.448 atM,, = 0.3. The maximum velocity in the upstream
direction inside the enclosure is approximatealy= -24 nys atM,, = 0.235 and

u = -40 nys atM,, = 0.3. The near-field pressure fluctuation peak directivity is
shown byGrottadaurea & Ron&0073 to be 1353 from the free-stream direction in
the two cases. Figu@5shows an instantaneous flow visualization of tH® = 0.71
deep cavity aM,, = 0.235. Streamlines and pressure iso-surfaces are used tb deta
the flow in this configuration. As highlighted in sub-sect@®g.1, the flow shows an
asymmetric pattern. The flow enters the cavity@b < y/L < 0 and it is ejected from
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(a) Mean streamwise velocity component in tfi® Streamlines in the enclosure in thel = 0
z/L = 0.4 plane. Velocity is given in fis. plane.
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(c) Streamlines in the enclosure in tiy¢L = (d) Streamlines in the enclosure in thd = 0.25
—-0.25 plane. plane.

Figure 6.3: Symmetric recirculation fromlaD = 2.5 shallow cavity aM,, = 0.3.
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6.2 Inviscid model

0
101550 Pa

(a) Streamlines and pressure iso-surfaces in ti{p) Streamlines and pressure iso-surfaces in the
enclosurel./D = 2.5 andM,, = 0.235. enclosurel./D = 2.5 andM,, = 0.3.

Figure 6.4: Symmetric recirculation fromlaD = 2.5 shallow cavity.

the opposite side at @ y/L < 0.5. The vortex sheet of finite thickness interacts with
the cavity downstream edge producing pressure waves. Hieshown in figuré.5

by means of pressure iso-surfaces dfetent level. The alternating mass injection and
ejection either side locates the noise sources asymmigtiiceeither side of thg = 0
mid-span plane. The/D = 0.71 cavity flow is found to have a dominant instability
mode atSt= 0.5295 atM,, = 0.235 and aSt= 0.491 atM., = 0.3. The maximum
convective velocity above the bottom wall of the enclossrapproximately = —50
m/satM,, = 0.235 andu = -63 nys atM,, = 0.3.

Rona (2007 proposed an analytical model of thefdrent acoustic resonant modes
in a cylindrical cavity of infinite depth. He found both symime and asymmetric
cavity modes. The present simulations show that the gegrirejgers the selection of
different instability modes as the diameter to depth ratio obsing

6.2.3 Radiating pressure near-field

The near-field Sound Pressure Level (SPL) from a shallovtycagnfiguration is char-
acterized by a low-amplitude pressure fluctuation as shomiigure 6.6. SPL = 87

dB re 2QuPa is predicted at = (0,0,8L) at M, = 0.3 and SPL= 86 dB re 2@Pa is
predicted ak = (0,0, 8L) at M, = 0.235. Comparing figuré.6(a)and figure6.6(b),

the near-field SPL iso-contours have &elient shape. The SPL has been evaluated
using 43 frames a¥l., = 0.235 and 31 frameWl,, = 0.3 over one period of oscillation
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101800 Pa

Figure 6.5: Asymmetric recirculation from a deep cavity foiguration. Streamlines
and pressure iso-surfaces in the enclosuy® = 0.71 andM,, = 0.235. Instantaneous
inviscid numerical prediction.
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(a) Near-field SPL iso-contours on tiie= 0 plane.M., = 0.235.
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(b) Near-field SPL iso-contours on tlge= O plane.M,, = 0.3.

Figure 6.6: Predicted near-field SPL fronb 2D = 2.5 shallow cavity configuration.
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6.3 Low Reynolds number model

in the acoustic near-field. Comparing figus€/(a) and figure6.7(b) the SPL iso-
contours in acoustic near-field are similar. The amplitutigthe pressure fluctuation
decreases monotonically towards the domain boundari¢lsowti appreciable reflec-
tion, showing the good performance of the non-reflectivenidlauny conditions used
in the simulation. The SPL maxima are higher compared toetliasn the shallow
cavity, suggesting that the azimuthal instability enharibe amplitude of the pressure
fluctuations.

The numerical model predicts that the mass ejections alteither side of the cavity
trailing edge with respect to the streamwise direction, fasve in figure6.5. This
results in that, during each mass ejection event, massdatedjérom only one side of
the cavity. The higher pressure peak, characterizing tisisbility, could be related to
the more localized interaction between the vortex sheetlanthe cavity trailing edge

lip.

6.3 Low Reynolds number model

The cylindrical cavity flow that models an aircraft fuel vexttfull-scale is character-
ized by a thin fully developed turbulent boundary layer agghing the enclosure. A
preliminary analysis of thefiects of the inflow boundary layer momentum thickness
and boundary layer growth rate on the unsteady flow is peddrny Direct Numerical
Simulation (DNS) of a model cavity with a laminar inflow bouwamny layer of the same
momentum thickness as the full-scale model. The resultgiaea in non-dimensional
form as inGrottadaurea & Rong2007h.

Four simulations model two cavities of aspect ratj® = 0.71 andL/D = 2.5 at two
free-stream Mach numbeM., = 0.235 andM,, = 0.3. The approaching boundary
layer hasL/6 = 65 atM,, = 0.3 andL/6 = 62 atM,, = 0.235. The computational
domain of sectior6.2 is used that extendsL8 8L, 9L in the streamwise, spanwise
and flow-normal directions above the cavity. The mesh isildeten chapters.2 At
the solid walls, the no-slip boundary condition describedaction3.3.3is used. The
inflow boundary condition is given in appendix A non-reflective boundary condition
is applied to the remaining boundaries, where the exteoarain reference flow state
is changed to match the free-stream Mach number. The flowt i léevelop from
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(a) Near-field SPL iso-contours on tiie= 0 plane.M,, = 0.235.
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(b) Near-field SPL iso-contours on tlge= 0 plane.M,, = 0.3.

Figure 6.7: Predicted near-field SPL fronh gD = 0.71 deep cavity configuration.
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6.3 Low Reynolds number model

the inviscid flow prediction given in sectidhi2, as this is a good match in the free-
stream, along the non-reflecting boundaries. The simulatweere performed on the
University of Leicester Newton cluster on one 2.2 GHz AMD &@phn processor. This

small simulation did not require the MPI parallelizatiort ook over one month to

achieve a statistically steady state.

6.3.1 Time-averaged flow

Figures6.8(a}(d) and6.9(a}(d) show the normalized mean streamwise velocity com-
ponent of theL/D = 0.71 deep cavity configuration 8., = 0.235 andM,, = 0.3
respectively. The cavity diameter to boundary layer thedsratio in the two test
cases at the cavity leading edgd.i® = 65 andL/6 = 62 respectively. A symmetric
recirculation is predicted a#l,, = 0.235. A bound vortex inside the enclosure makes
up the main recirculation. This is centred ayl(,z/L) = (0,-1.15) at the cavity
mid-spany = 0 and its core bends slightly towards the cavity bottom ingp@nwise
direction, reachingx/L, z/L) = (0,-1.2) in the planey/L = +0.25. A secondary re-
circulation is found at the cavity trailing edge, wheyel,, = 0.2. In figures6.8(a)and
6.9(a) the flow accelerates in the= 0 plane towards the center as the flow reaches
the cavity opening. This flow velocity is caused by the seaoydecirculation that
leads the flow upwards and towards the center, accelerdtlilg iin a nozzle. The
streamwise velocity iso-contours appear to be discontisatong 45lines stemming
from the cavity perimeter. This is a numerical artefact & ithterpolation used in the
post-processing software package Tecplot. The packagmpoiates the cell-averaged
input flow state on a vertex centred mesh. At the internal daties, a zero-order
interpolation from the domain interior results in a diséonbus velocity field across
interior domain boundaries, whereas the cell-averageddtate across these bound-
aries was verified to be continuous. Figét8(a)clearly shows the asymmetric shape
of the flow recirculation within the enclosure. The flow isagd in the positive span-
wise direction from the > O side of the opening, whereas it flows into the cavity from
the opposite side. The velocity maximumMt, = 0.3 is higher than in figuré.8(a)

at M., = 0.235 and the ejection is constrained to a smaller area. Thesmonding
cavity wake is asymmetric, featuring two streamwise véjydoical maxima and a local
minimum as it develops downstream.
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(a) Normalized mean streamwise velocity comggb) Streamlines in the enclosure in thel = 0
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(c) Streamlines in the enclosure in tlygL = (d) Streamlines in the enclosure in thd = 0.25
—-0.25 plane. plane.

Figure 6.8: Symmetric recirculation fromlaD = 0.71 deep cavity aM,, = 0.235.
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6.3 Low Reynolds number model
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(a) Normalized mean streamwise velocity comgb) Streamlines in the enclosure in thel = 0
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(c) Streamlines in the enclosure in tlygl = (d) Streamlines in the enclosure in thd. = 0.25
—-0.25 plane. plane.

Figure 6.9: Asymmetric recirculation fromlaD = 0.71 deep cavity aM., = 0.3.
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6.3 Low Reynolds number model

(a) 0.31 million cells baseline mesh. (b) 50% refined mesh in the cavity.

Figure 6.10: Dimensionlegg p., iso-contours on thg = 0 plane.

Figures6.9(b)to 6.9(d) show how the main recirculation is oriented in the spanwise
direction. This is centred respectively af(,y/L,z/L) = (-0.055 -0.25, -0.65), at
(x/L,y/L,z/L) = (0,0,-1) and at ¥/L,y/L,z/L) = (0.2,0.25,-0.2).

TheL/D = 2.5 shallow cavity predictions are shown in figu@40(a)and6.10(b)
The flow model predicts a steady flow solution, indicating tihe laminar cavity is
behaving as a lightly damped system at these conditions. tilfee averaged solu-
tion coincides with that in figur&.10(a) A mesh refinement of 50% was used to
check whether the steady flow was the result of the meshecklaimerical viscos-
ity, since the Euler modelGrottadaurea & Ron&20073 of the same cavity predicts
a self-sustained instability. Although the refined meshusation better resolves the
symmetric recirculation within the cavity, it also givestaady flow, as shown in figure
6.10(b)

6.3.2 Aerodynamic instability

In the Euler simulation, it was found thafD influences the development of the un-
steady vortex structure within the cavity. This is also thsecfor the laminar simula-
tion. Figures6.11(a)and6.11(b)show the colour iso-levels of the predicted instanta-
neous pressure cfieient C p) from the laminar cavity model with/D = 0.71, during
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6.3 Low Reynolds number model

the mass ejection sequence. Figuekl(c)and6.11(d)shows the same levels during
the mass injection sequence. The prediction is charaetehy an asymmetric vortex
structure with respect to the= 0 plane, as shown by theftBrent streamwise posi-
tions of theC p maximum along the cavity shear layer in figug41(a)and6.11(b)
Vortices alternatively impinge on the cavity rear edge ®l&ft and to the right of the
y = 0 plane, producing a three-dimensional mass impingemehé¢getion sequence.
Their interaction with the solid edge produces pressureegasn asymmetric vortex
structure has been found Bleringet al. (200§ and byDybenkoet al. (2006 in their
experimental work on &/D = 2 incompressible cylindrical cavity flow &, = 0.08.
As the shear layer thickens across the cavity opening, siofigure6.12 its interac-
tion with the cavity trailing edge is weaker with respecthe vortex-edge interaction
in the Euler modelGrottadaurea & Ron&0073. In the laminar simulations, the SPL
at(x,y,2) = (0.5L,0,8L) is reduced by 3 dB foL /8 = 65 and by 22 dB fot./0 = 62
with respect to the Euler model predictions.

6.3.3 Radiating pressure near-field

In the laminar simulations, the shallow cavity does notldigpa self-sustained instabil-
ity. Therefore, a steady-state near field pressure amplitodld not be determined, as
the pressure fluctuations are characterized by a small ardelihat is quickly damped
by the numerical scheme.

The SPL is evaluated only in the deep cavity configuratioMat = 0.235 and at
M. = 0.3. Figures6.13(a)and6.13(b)show the SPL of th&./D = 0.71 deep cav-
ity configuration in the streamwise playe= 0 and in the spanwise plane = 0
at M,, = 0.235. Figures.14(a)and6.14(b)show the corresponding predictions at
M. = 0.3. The near field pressure fluctuations are characterizeddingetivity peak
(y = 60, ¢ = 0°) in the streamwise plane= 0, as shown in figuré.13(a) The radi-
ating pressure field is symmetric in the spanwise direcagrshown in figuré.13(b)
The noise sources are mainly located at the downstreanyaarter, where the SPL
seems to convergence towards, as shown in figbuE3(a)and6.14(a) The pressure
fluctuation intensity quickly drop by 50 dB as found by conipgrthe SPL at a dis-
tance ofz/L = 5.5 from the cavity downstream edge to the SPlz/t = 1.4. This
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(@) Cponthey = -0.3L plane.Cpmax = 0.26  (b) Cpon they = 0.3L plane. Cpnax = 0.26
andC pmin = —0.07. andC pmin = —0.07.

zlL
&
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(c) Cponthey = —0.3L plane.Cpmax = 0.03 (d) Cpon they = 0.3L plane. Cpmax = 0.02
andC ppin = —0.156. andC ppin = —0.156.

Figure 6.11: Pressure dbeient during mass ejection and injectidry.D = 0.71 deep
cavity wherel./6 = 65 andM,, = 0.235.Cp = (P — P«)/(0.50U2).
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(a) y =0 plane. (b) x =0 plane.

Figure 6.13: SPL inthé&/D = 0.71,L/6 = 65 cavity atM,, = 0.235. Low Reynolds
number model.
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6.3 Low Reynolds number model

(a) y =0 plane. (b) x =0 plane.

Figure 6.14: SPL in thé&/D = 0.71,L/6 = 65 cavity atM,, = 0.3. Low Reynolds
number model.

high reduction is probably not only acoustic in nature bsbafected by the hydrody-
namic field that surrounds the cavity neighbourhood. The SRlomputed using the
root mean square of the pressure fluctuation and hydrodynamai acoustic pressure
are not distinguished in the cavity near-field.

The symmetric directivity of the radiated noise suggests$ the mass impingement
and ejection of flow to the cavity trailing edge is essentiafmmetric either side the
y = 0 plane. This produces a symmetric distribution of the ne@&ces at the cavity
edge that is responsible for the symmetric far-field noisesirilar reduction in the
near-field SPL is found &, = 0.3 in figures6.14(a)and6.14(b) The cavity near-
field directivity pattern is notfdected by the higher velocity and smaller momentum
thickness, whereas the radiating pressure intensity idwaoller at the lower speed.
To a thicker boundary layer corresponds a reduction in td&atad noise. This was
also proven experimentally in a rectangular cavivakili & Gauthier (1991) used
mass-injection upstream ofM., = 1.8 rectangular cavity to control the shear flow
across the cavity to reduce or eliminate cavity oscillaiorhey observed a significant
attenuation in the cavity oscillations by upstream magsction. The thickening of the
cavity shear layer alters its stability characteristicshsthat its preferred vortex roll-
up frequency falls outside of the natural mode frequencygeaof the cavityLamp &
Chokani(1999 used either steady blowing or oscillatory blowing with aeet mass
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6.4 Detached Eddy Simulation model

flux and achieved a 10 dB reduction of the amplitude of the dami resonant mode.
These results suggest that a passive control strategy fgliradiccal cavity can be
developed based on the introduction of steady vertical inlg\around the cavity cir-
cumference.

6.4 Detached Eddy Simulation model

Detached Eddy Simulation (DES) is used to modél/® = 0.71 and aL/D = 2.5
cylindrical cavity atRg = 548000. The computational domain extends 7L and
8L in the streamwise, spanwise and flow-normal directionseesgely. The mesh is
detailed in sectiob.3 TheL/D = 0.71 geometry is studied in detail and threfelient
mesh refinement levels were tested, 1.4, 2.6 and 9.2 mileds.c

The inflow is a thin turbulent boundary layerR& = 8800. The inflow is modelled
using the analytical law of the wake Ronaet al. (2009. The profile of the turbulent
kinetic energy is obtained using the non-dimensional fdanfny Marusic & Kunkel
(2003 and the density correction at constant pressure is olatdwiwing White
(199)). Further details on how the inflow profile is generated avemin appendix
B. At the start of the computation, the flow in the computatiai@main interior is
primed with the low Reynolds number solution from secio8 to reduce the compu-
tational time required to develop a statistically statigriaES prediction with respect
to a zero-flow initial condition. The DES computation is thene-marched to allow
the turbulent inflow boundary layer to flow across the dompimshing the laminar
boundary layer from the low Reynolds number prediction detweam and out of the
computational domain, through the computational domatfieu boundary. Given
the CFL constrain and the large number of cells, all turbulent satiohs were per-
formed using multi-processor clusters, except the smdlidillion cells simulation.
This was used as the baseline to test the parallelizatidorp@snce. Simulations us-
ing the 2.6 million cell mesh were run at CINECA and on HECTdbster at HPCX,
Edinburgh. The 9.2 million cells model was run on HECToR tdadistically steady
state. The mean flow analysis and spectra were obtaineddaaime simulation at
CASPUR. Preliminary result were presented®nottadaurea & Ron&008h of the
L/D = 0.71 deep cavity and thie/D = 2.5 shallow cavity configurations. A cavity of
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Figure 6.15:L/D = 0.71 deep cavity wittRg = 548000 andV,, = 0.235. -6.9 <
x/L < 4.5 portion of the computational domaip.— p., is shown and is given in Pa.
Dashed lines are used in thie- 0 plane and solid lines are used in {hé& = 6.9 plane.
The contour spacing isp = 10 Pa.

the same aspect ratio aRy = 548000 has been testedMt, = 0.1175 byVerdugo
et al. (2009.

6.5 Mean flow description

Figure6.15shows the mean dynamic presspre p., iso-contours in thé./D = 0.71
deep cavity in the-6.9 < x/L < 4.5 portion of the computational domain at the- O
andy/L = 6.9 planes. Dashed line are used in the- O plane and solid line are
used in they/L = 6.9 plane. The flow is characterized by a pressuféedince of
88 Pa in the computational domain that is given by the presdups at the solid
wall. They = 0 plane is characterized by pressure spots downstreamuity trailing
edge that convect downstream, exiting the computatiomakdio. Those are convected
downstream and exit the computational domain. The cawty i@fluence the pressure
distribution upstream, as expected in subsonic flow.

95


Chapter3/Chapter3Figs/comparison/pressure_full.eps

6.5 Mean flow description

Figure6.16shows the mean normalized velocity iso-contours inltfie = 0.71 deep
cavity in the—-6.5 < x/L < 4.5 portion of the computational domain at tiie= 0
andy/L = 6.9 planes. The region upstream of the cawfy < x/L < 0 is shown

in figure 6.17. Dashed line are used in tlye= 0 plane and solid line are used in
they/L = 6.9 plane. The velocity vector in thg/L = 6.9 are also shown to better
render the boundary layer growth in this figure. The preseftiee cavity dects the
inflow boundary layer velocity profile with respect to thediedeveloping turbulent
boundary layer ag/L = 6.9. The velocity close to the wall is lower than the theorédtica
zero pressure gradient turbulent boundary layer profilaénpianey = 0. Only at the
edge of the boundary layer, whasex u., the wake region of the turbulent boundary
layer profile is recovered. This gives a higher approachmgidary layer momentum
thickness oL /6 = 32 as compared to the target valu® = 64.

This change in the turbulent boundary layer is unlikely ttedmine the staging to a
different instability mode with respect to the full-scale ainfie cavity but it #ects the
intensity of the tonal noise radiation.

The cavity is &ecting the boundary layer growth rate as clearly shown igdigulL7,
where in the regior-0.5 < x/L < 0 suddenly the boundary layer growth increases.
The increase in the growth rate influences the boundary fayerer upstream in the
region-4 < x/L < —0.5 to give an approaching momentum thickness larger than the
one from a zero pressure gradient boundary layer over a wsaliidwithout cavity of
the same length. At the domain boundary, the cavity doesffeattdhe boundary layer
growth and therefore the boundary layer growth is recovered

Downstream the cavity rounded edgél > 0.5, the boundary layer shows two local
maxima wherai/u,, = 1 in the region b < x/L < 0.7. This area corresponds to the
recirculation bubble downstream of the cavity corner, wtibe primary and secondary
vortices interact.

Figure6.18shows a simple sketch of the cavity mean flow. A non-uniforeesiiayer
spans the cavity leading edge. The cylindrical shape ofdlge & such that the flow at
the cavity mid plane is convected at a slower velocity witspext to the one moving
over the sides of the cavity. At the cavity trailing edge, tlogv is therefore faster at
the cavity sides and slower at the cavity center. This ocaaress the cavity span,
downstream of the leading edge,»dlL > —0.5. Over the range-0.5 < x/L < O,
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Figure 6.16: L/D = 0.71 deep cavity withRg = 548000 andM, = 0.235.
-6.5 < x/L < 4.5 portion of the computational domain. Normalized mean &elo
ity iso-contours. Dashed lines are used inyhe 0 plane and solid lines are used in
they/L = 6.9 plane. The contour spacingAsi/u., = 0.1.
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Figure 6.17: L/D = 0.71 deep cavity withRg = 548000 andM, = 0.235.
-5 < x/L < 0 portion of the computational domain.. Normalized mearosi&y

iso-contours. Dashed lines are used in yhe 0 plane and solid lines are used in
they/L = 6.9 plane. The contour spacing Adi/u,, = 0.1. Velocity vectors in the

y/L = 6.9 plane are shown at a constan/L = 0.5
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6.5 Mean flow description
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Figure 6.18: Cylindrical cavity sketch. Green streamliaesused in the shear-layer.
The secondary recirculation is highlighted using red liaed the primary recircula-
tion is highlighted using blue lines. The incoming turbuleoundary layer and the
recirculation in the enclosure are identified with blaclebn
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the growing shear layer in the mean flow across the cavity iogeesults in a time-
averaged mass injection in the enclosure. Downstreaxylo 0, mass ejection takes
place to balance the mass injected over the forward halfeobgening.

During mass injection, the centreline flow subsides intoeiheosure while the faster
side flow moves more tangential to the horizontal surfacewmream ofx/L = O,
the mass ejection from the cavity is pushed towards theycavd-plane upward. This
can be explained by the principle of conservation of momantipecifically, the flow

at cavity edges is faster as compared to that at the cavitgiGenerefore it accelerates
towards the cavity mid-plane.

As the flow accelerates towards the cavity mid-plane, lika convergent nozzle, the
flow to the sides of it needs to expand to balance the mass fkaw Téis expansion
coincides with the formation of two primary vortices at tHarne x/L = 0.55. The
cores of the two primary counter-rotating vortices are pdshpwards by the nearby
mass ejection. The trajectory of the vortex cores in the diokgam portion of the
cavity are highlighted in blue in figurés18and6.19

Downstream ofx/L = 0, there is a small flow spill outwards from the sides of the
cavity, along the cavity curve edges. This ejection canolttiv the shape of the sharp
90 degrees cavity lip, therefore it separates at the lip imening the two secondary
recirculations, shown in figure®.18and6.19 These first appear in the predictions
at the planex/L = 0.22 as two counter-rotating secondary vortices. These siacpn
recirculations are then convected upwards by the induckedie of the primary vor-
tices and meet at the plargl = 0.73. The two vortices cancel one another and are not
detected in the planes® < x/L < 1 further downstream. As a result of the primary
recirculation, the cavity wake flow is characterized by ¢hrenes of low streamwise
momentum, which are along the cavity mid-plane ang/at = +0.45 either side of

it, as shown in figuré.19 Figure6.20shows the time averaged velocity streamlines
in the five spanwise planegL = (0,0.3750.5,0.65, 1). Figure6.21shows velocity
streamlines in the five streamwise playgk = (0, +0.25, +0.5) and on the horizontal
planez/L = 0.144.

In figures6.20(a}(e), the streamlines are pointing upwards as the time-averdged
normal velocity component is positive, due to the conservation of mass in the stream-
wise direction. The predicted in-plane velocity streamdiatx/L = (0,0.3750.5,0.65, 1)
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Figure 6.19: Cylindrical cavity mean field and vortex sturetevolution.
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(b) x/L = 0.375 plane.

1.5 1.5

(c) x/L = 0.5 plane. (d) x/L = 0.65 plane.

(e) x/L = 1 plane.

Figure 6.20: Streamlines and velocity vectors on spanwigees. Only one vector

every ten is shown for clarity.
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6.5 Mean flow description

X1 X2
x\L | yL zZ/L | y/L y/L
0.556| 0.311 1.430 -0.314 1.430
0.633| 0.295 1.437 -0.310 1.439
0.667| 0.304 1.442 -0.310 1.442
0.7 | 0.309 1.442 -0.319 1.444
0.733| 0.357 1.439 -0.343 1.446
0.767| 0.437 1.448 -0.418 1.448
0.9 | 0.530 1.457| -0.544 1.467
1 0.607 1.467| -0.610 1.464

Table 6.1: Primary vortex core locations/D = 0.71 deep cavity aM., = 0.235 and
L/6 = 32.

in figure 6.19indicate the presence of two essentially symmetric cotnot@ting pri-
mary vortices either side of the= 0 cavity centreline. These are centredydt, z/L)

= (+0.45, +£0.033) in the planex/L = 0.22. The vortex cores rise above the cavity and
spread away from one another downstream, as these primdiyeggrow in size, as
diagrammatically shown in figug 18 This results in the vortex cores being centred at
(y/L,z/L) = (+,0.45+ 0.025 in the planex/L = 0.375, at(y/L, z/L) = (+0.45, £0.025

in the planex/L = 0.5, (y/L,z/L) = (+0.45,+0.055) in the planex/L = 0.65 and at
(y/L, z/L) = (+0.65, £0.055) in the planex/L = 1.

At x/L = 0.65, figure6.20(d) two additional secondary vortices are shown external to
the counter-rotating primary vortex pair, centredyat_, z/L) = (+0.25,+0.15). The
position vectorx; andx, of each vortex core on fierent spanwise planes are listed in
tables6.1and6.2 These tables summarize the positions of the primary arehsacy
vortex cores and how these vary in the downstream directiigure 6.19 explains
how the two vortex pairs interact and how the flow is shaped thescavity opening
and downstream of the cavity edge. Fig6r&9shows the roll-up of the two primary
vortices at the plang/L = 0, about a tenth of a diameter inbound from the cavity edge,
where the streamlines converge to a point. Inside the em@&pa main recirculation

IS present, as suggested by the confluence of downward ditnearan the rear cavity
wall in figure 6.19 The vortex core of the main recirculation is foundstL, z/L) =
(-0.2,-0.5) inside the cavity. The vortex cores of the two secondaryicestare first
detected downstream of the cavity cente(dL, z/L) = (0.6,0.055. These are then
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Figure 6.21: Streamlines and velocity vectors on spanwigees. Streamlines and
velocity magnitude iso-levels from the plane above the@nale in thez/L = 0.0002
plane. Only one vector every ten is shown for clarity. A thidd on the velocity
magnitude is applied)/u,, > 0.5 is not shown.
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X1 X2

x\L | yL zZ/L | y/L y/L
0.222| 0.463 1.433 -0.458 1.433
0.333| 0.435 1.448 -0.436 1.45]1
0.444| 0.428 1.480 -0.451 1.489
0.556| 0.406 1.518 -0.418 1.523
0.633| 0.271 1.532 -0.323 1.527
0.667| 0.205 1.541 -0.272 1.530
0.7 | 0.134 1.566 -0.078 1.561
0.733| 0.066 1.575 -0.023 1.575

Table 6.2: Secondary vortex core locatiohgD = 0.71 deep cavity aM,, = 0.235
andL/6 = 32.

shown moving inbound towards tlye= 0 cavity mid-span plane downstream of the
cavity trailing edge.

6.5.1 Aerodynamic instability

From the starting flow condition detailed in sect®#d, the simulation is time-marched
to 26L/u,, to allow a self-sustained cavity flow instability to develof fully devel-
oped instability is characterized by a statistically stadéiry flow. This condition is
reached at 22L /u,,, as indicated by the predicted wall pressure history of 6§22
where the predicted wall pressure oscillation over thegaeri< tu.,/L < 12 closely
matches the oscillation over the subsequent periol ¥6tu../L < 215, as shown

in figure 6.22(b) Figure6.22(a)shows that the cavity wall pressure fluctuation is a
convolution of two main modes, a dominant instability mode a lower frequency
and lower amplitude mode. In figuée22(b) the two modes have been separated using
a low-pass and a band-pass filter, respectively. The datbediine displays the low
frequency low intensity mode. The higher amplitude modeyshby the solid line, is
the main instability mode & t= 0.512 that is within 12 % of the first mode predicted
by the modified Rossiter equation Bfock (1976 and within 15 % of the acoustic
resonant mode of a flanged pigRayleigh 1894. The sequence of figurés23(a)

(d) shows four snapshots of the flow in the enclosure and imnediaroundings. A
small portion of the full computational doma®0.6L, +0.6L, L) is visualized near the
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(a) Original sampled signal. (b) Filtered signal. A dashed-dotted line is used
for the low frequency mode and a solid line for
the main instability mode.

Figure 6.22: Wall pressure probe located»ti(y/L,z/L) = (0.5,0,0.7), pressure is
normalized byp.,u?, and the time by./u,. L/D = 0.71 cavity atM,, = 0.235 and
L/6 = 32.

cavity. The four snapshots are a time sequence that showsénaction of convected
vorticity at the top of the enclosure with the cavity dowesim edge. The interaction
takes place over a peridl= 0.7749_/u.,. The unsteady recirculation pattern in each
snapshotis visualized by the tracing of streamlines in thed-averaged velocity field.
TheL/D = 2.5 shallow cavity is characterized by a large recirculatiothie enclo-
sure. A shear layer spans across the cavity opening. In g flow, the streamlines
identify the presence of a downstream convecting vortexchvis shown in figure
6.23(b)centred atx = 0.35L andz = 0.875D. The convecting vortex size is smaller
with respect to the main recirculation inside the enclosceatred at about = 0.23L
andz = 0.5D. As it approaches the downstream wall in fig@&.23(b) the vortex
strength appears to increase, as indicated by the packihg streamlines. The inter-
action of the convected vortex with the cavity trailing eqyeduces pressure waves
(Powell 1964 that radiate to the far-field, where they are perceived asdgaamic
noise. TheL/D = 2.5 shallow cavity flow is found to have a dominant instability
mode atSt = 1.332 atM,, = 0.235. The maximum reverse flow velocity inside the
enclosure is1 = —37 nys. The sequence of figurés24(a}(d) shows short-time av-
eraged flow snapshots from th¢D = 0.713 deep cavity simulation &fl,, = 0.235,
taken at increasing computational time. The velocity fisldisualized by the tracing
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(a) 1/4T (b) 1/2T

x/L x/L
(c) 3/4T (d)y T

Figure 6.23: Streamlines in the short-time averaged vidield. y = O plane,L/D =
2.5 shallow cavity aiM,, = 0.235 andL/6 = 32.
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of streamlines in the Favre averaged flow. The four snapshats a time-dependent
vortex structure. The vortex structure evolves over a moagér periodl = 1.853

in theL/D = 0.713 deep cavity with respect to thg¢D = 2.5 shallow cavity. Two
additional smaller recirculation zones are identified &t lottom cavity corner and
just under the leading edge of the cavity, where the upstieamdary layer separates,
as shown in figur&.23(a) The dominant instability mode correspondsStb= 0.539
intheL/D = 0.71 cavity atM,, = 0.235. The maximum reverse flow velocity inside
the enclosure is approximately = —51 nys. A similar instability to the inviscid one
(Grottadaurea & Ron&0073 is predicted by this model. The Euler model gave a
main instability mode that corresponds®d = 0.53. This suggest that the dominant
cavity flow instability is convective and inviscid in nature

Figures6.25(a}(d) show short-time averaged snapshots ofltfp = 0.713 deep cav-
ity simulation atM,, = 0.235, modelled using a computational mesh of 9.2 million
cells. This is a finer mesh compared to the 2.6 million celll gised to obtain figures
6.24(a)(d). Four snapshots are shown in fig@@5 which are evenly distributed in
time over one cavity instability characteristic peridd In this refined mesh model,
the mean flow is symmetric about the cavity mid-span. Figu2&displays the time-
evolving flow on this plane of symmetry = 0. Similarities with two-dimensional
simulations of rectangular cavities Boloniuset al. (1999, by Rowleyet al. (2002,
and byYao et al. (2004 are identified in this figures. In particular, in figuse25(a)
two small vortex structures are identified in the shear lapanning across the cavity
open end. Figuré.25(a)shows one vortex rolling-up at the cavity leading edge while
the other one is impinging at the cavity trailing edge. Theaesostructures are three-
dimensional in nature and behaviour and their interactiagh thie main recirculation
inside the cavity appears to be weaklt at 1/57. This interaction strengthens later in
the main instability mode period, as shown in figure6.25(b)to 6.25(d) where the
vortex structure shed from the leading edge is convectedhsiveam while it interacts
with the main recirculation. Small vortices are found at tlawity upstream bottom
corner, close to the floor. These result from the flow separatiduced by the main
recirculation. This pushes the flow upstream along the gdlabr and then upwards
along the cavity upstream wall. This motion segregates dl sewrculating flow re-
gion at the upstream bottom corner. As the upstream movimgdeparates from the
cavity floor, vortex structures are created that convectargs and along the cavity
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o ' ' xIL
(c) 3/47 d) T

Figure 6.24: Streamlines in the short-time averaged veldield. y = O plane,L/D =
0.713 deep cavity al,, = 0.235 andL/6 = 32. 2.6 million cells medium mesh.
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span, with either a positive or a negative spanwise corvedpeed. Figuré.25(d)
shows a small vortex located @t/L, z/L) = (0.55,1.45). The flow separates as it is
ejected from the cavity opening, due to the local adversgspire gradient. The shear-
ing of the ejected vortex over the downstream cavity lip gates aerodynamic noise,
according to the theory d?owell (1964). The flow then reattaches downstream of the
cavity, as shown in figure®.25(b)to 6.25(d)

The flow pattern from the 9.2 million cells model, shown in figei6.25(a}(d), is
similar to the one obtained from the 2.6 million cells sintida, in figures6.24(a}(d).
The 9.2 million cells refined mesh better resolves the snmtical structures across
the cavity opening and near the cavity floor. It allows to obseortex shearing over
the cavity rear edge, showing the physical process of aeardic noise generation in
the cavity through the theory &fowell (1964).

6.5.2 Radiating pressure near-field

Figures6.26(a)(d) and 6.27(a)(d) show the near-field pressure fluctuations in the
L/D = 2.5 shallow cavity and in th&/D = 0.713 deep cavity, respectively. In fig-
ures6.26(a}(d) and6.27(a)(d) only a portion of the computational domain of extent
(£7L,«7L,9L) is shown. Outside this area, the pressure waves are damptg: by
rapid mesh stretching. Contours of static pressure fluctugd’ = p — p., are shown
by ten solid linegp’ > 0) and nine dashed ling¢p’ < 0). The contour spacingp’ = 2
PainthelL/D = 2.5 shallow cavity and\p = 5 Pain theL/D = 0.713 deep cavity. In
figures6.26(a)and6.27(a) the largest amplitude time-dependent pressure fluctuatio
is shown inside the enclosure and just above the downstratitndad. These fluctua-
tions are hydrodynamic in nature and are associated to therggon of vorticity in the
shear layer spanning the cavity opening. This vorticitynjscted and ejected alterna-
tively at the cavity trailing edge and the ejected strugwanvect over the downstream
bulkhead. The pressure fluctuation associated to theskeityodiusters is shown by
small clusters of packed contour lines in figuGg6(a)and6.27(a)along the cavity
rear bulkhead. The region where hydrodynamic pressureutitions are dominant is
highlighted in figure$.26(a)and6.27(a)by a dashed line rectangle.

Outside this region, the contours of pressure fluctuatiamwdlarger structures. The
time sequence of figureg26(a}(d) and6.27(a)(d) shows these structures radiating
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Figure 6.25: Streamlines in the short-time averaged veldield. y = O plane,L/D =
0.713 deep cavity al,, = 0.235 andL/6 = 32. 9.2 million cells fine mesh.
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(c) 3/4T ) T

Figure 6.26: Pressure fluctuation iso-contours inyPa.0 plane,L/D = 2.5 shallow
cavity atM,, = 0.235 andL/6 = 32.
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Figure 6.27: Pressure fluctuations iso-contours inyPa.0 plane,L/D = 0.713 deep
cavity atM,, = 0.235 andL/6 = 32.

113


Chapter3/Chapter3Figs/8071/pprime8071_3.eps
Chapter3/Chapter3Figs/8071/pprime8071_4.eps
Chapter3/Chapter3Figs/8071/pprime8071_1.eps
Chapter3/Chapter3Figs/8071/pprime8071_2.eps

6.5 Mean flow description

away from the enclosure. The fluctuations of pressure iretf@ia are due to the cavity
acoustic radiation and the contours here describe the tcoesar-field. In figure
6.26(a) an acoustic wave-front is shown propagating in the upstrdection. The
position of this wave-front is marked by a continuous thiok arhis suggests that, in
theL/D = 2.5 cavity, the main radiation is directed upstream.

In figure6.27(a) two acoustic fronts are identified in the near-field of tH® = 0.713
deep cavity. There is a dominant upstream radiation, jketifi theL/D = 2.5 cavity,
that is accompanied by a downstream pressure front, whipkasliar to theL/D =
0.713 deep cavity.

The pressure field associated to thed = 2.5 shallow cavity is characterized by a
lower amplitude fluctuation with respect to th¢D = 0.71 deep cavity, consistently
with the previous inviscid simulations Wyrottadaurea & Ron&0073. Specifically,
the highest positive contour away from the cavity where thariield acoustic ra-
diation dominates is 15 Pa, as shown in figar26(c) The largest positive acoustic
near-field pressure fluctuation contour in th® = 0.71 predictions is 40 Pa, as shown
in figure6.27(c)

The near-field Sound Pressure Level (SPL) has been estitna@eeraging the time-
resolved pressure predictions over one fundamental peficavity flow instabilityT.

N = 43 frames are used from thgD = 2.5 shallow cavity simulation antl = 72
frames from the/D = 0.71 deep cavity simulation.

SPL = 20log(prms/ Po) (6.1)
Prms = J%; (pi - F_))Z (6-2)

In equation6.2, the reference pressurefs = 20 uPa, pims IS the root mean square
pressure fluctuation ang = (1/N) 2, p; is the ensemble averaged pressure taken
over theN frames.

Figures6.28(a)(b) and6.29(a)(b) show SPL iso-contours in the/D = 2.5 shallow
cavity and inthd./D = 0.713 deep cavity respectively. The contour spacing3PL =
5dB. Figures.28(a)and6.29(a)show the SPL iso-contours in tige= 0° plane and
figures6.28(b)and6.29(b)show the SPL iso-contours in tige= 90° plane.
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Figure 6.28: Contours of near-field SPL, dB reuP@. L/D = 2.5 shallow cavity at
M. = 0.235 andL/60 = 32.

The L/D = 2.5 cavity shows the main acoustic radiation being in the timacof

(y = 126,¢ = 0°), as shown in figuré.28(a) In the spanwise plane, the predicted
sound wave is asymmetric with respect to the cavity mid-swéh a stronger radiation
at the azimuthal anglg = 60° at¢ = 90°, as shown in figur&.28(b) At the same
radial distance, the deep cavity acoustic near-field is atbh6dB re 20uPa louder
with respect to the shallow cavity. For instance, the 100 dBtaur in figure6.28(b)
covers about the same position as the 115 dB contour in figi2@b) As noted

in the near-field pressure fluctuation contours of figar27(a) the deep cavity has
two preferential directivity directions for the near-fieddoustic radiation. The SPL
contours of figures.29(a)enable to estimate the directions of preferential radaitio
theg = 0° plane. These are at an azimuthal angle 114 in the upstream direction
and aty = 60° in the downstream direction. Figuée29(b)shows the directivity of the
deep cavity in the spanwise planegat 90°. The contours appear to be more circular
and symmetric with respect to figu6e28(b) An easier comparison of the near-field
acoustic radiation directivity is provided by figue3((a-b), where the predicted SPL
from bothL/D = 0.713 andL/D = 2.5 cavities is shown at the same radial distance
r = 5L from the cavity centefx,y, z) = (0,0, D). TheL/D = 0.713 cavity is confirmed
to be the louder flow, with two maxima of SPt 121 dB at(y = 114,¢ = 0°) and
SPL = 1185 dB at(y = 60, ¢ = 0°), shown in figure6.30(b) A lower directivity
maximum of SPL= 104 dB is predicted diy = 126°, ¢ = 0°) intheL/D = 2.5 cavity.
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Figure 6.29: Contours of near-field SPL, dB reuP@. L/D = 0.713 deep cavity at
M., = 0.235 andL/0 = 32.
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Figure 6.30: SPL at = constant= 5L above cavity openingp = 0°[-] and¢ =
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6.6 Comparison among numerical predictions

The Euler model and in the viscous flow simulation withoutrétlence model predict
almost the same instability mode at the same the free-stvetonity. The maximum
intensity of the radiating noise depends on the approadhdugdary layer thickness.
To a growing shear layer corresponds a smaller amplitudesofadiating noise in the
near-field in theL/D = 0.71 deep cavity. An asymmetric recirculation is found in the
predictions from both models, while the predicted flowfsatiin the cavity wake region
downstream the cavity trailing edge. Despite the asymnietitye flow enclosure, the
wake region in the Euler simulation is almost symmetric dredggresence of a cavity
results in a decrement of the flow speed by momentum loss dozeams of it.

TheL/D = 2.5 cavity shows a symmetric recirculation in the enclosure ianthe
cavity wake region in both simulations. A higher frequenoyfunsteadiness is found
in the Euler model cavity compareditgD = 0.71 and it is due to the cavity staging to
a higher natural mode number betwdg = 0.71 andL/D = 2.5. AtL/D = 2.5, the
viscous flow simulations predict a damped pressure fluctoati the enclosure. The
viscous model did not predict a sustained near-field acopstissure radiation.
Asymmetric or azimuthal instabilities can occur in a cyliedl cavity as shown math-
ematically byRona(2006 and experimentally bideringet al. (2006 and byDybenko
et al.(2006. These modes arise from the freedom of the flow to revolhid@the cav-
ity barrel. Clockwise and anticlockwise motion is equalipipable under ideal inflow
conditions. Any small asymmetry in the inflow or in the cylerdarrel may trigger an
azimuthal instability with a dominant clockwise or anteckwise wavenumber.
Fourier analysis shows the presence of an instability mo8&auhal number 0.514 in
the most refined 9.2 million cell DES inthgD = 0.71 deep cavity. This is close to the
dominant instability mode Strouhal number 0.532 in the Esileulations. However,
in the DES simulation with 9.2 million cell, the second moaeninates the wall pres-
sure spectra as well as in the near-field pressure. This nwdesponds t&t= 1.02
and is close to the second Rossiter mode predicted by theifarohBlock (1976.
Using a turbulence closure model in the DES simulationssgare asymmetric recir-
culation in thelL./D = 2.5 shallow cavity aMM,, = 0.235 whereas the mean flow in the
L/D = 0.71 deep cavity is essentially symmetric aboutytke0 cavity mid-span. This
symmetry is also found in experiment, as detailed in se@i@n
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6.7 Comparison with experiment from Universita degli
Studi Roma Tre

This section compares the predictions from the most refin@dnfllion cell DES
of the L/D = 0.71 deep cavity tested at a cavity diameter based Reynoldbe&um
Re = 548000 against wind tunnel tests performed at the dafDeratio and Reynolds
number. In the computations, the free-stream Mach numi@235 and is higher than
in experiment, where this isDL75.

6.7.1 Approaching turbulent boundary layer

Figure6.31shows the streamwise evolution of the ratio of the cavityrgiter to the
boundary layer momentum thickness. The data refers ty theO cavity mid-span
plane, upstream of the leading edge. 200 points are exatgabfrom the computa-
tional domain ai\z = constantabove the wall at the locationgL equal to-6.9, —6,
-5, -4, -3, -2, -1. z,,x depends on the value of the boundary layer thickidemsd

it is chosen equal to@ The value of the momentum thickness is computed using the
200 values as the numerical integral of the discrete funafifu., (1 — U;j/u.,) with re-
spect toz over the range & z < znhax z IS theith interpolated position normal to the
wall. In the range-6 < x/L < —1, @ grows faster than in a/T™" power law turbulent
boundary layer under zero pressure gradient, in whjch= 0.036Re %2 (Calvert &
Farrar 1999. As the boundary layer thickness at the computational dommdow
was prescribed assuming A7¥' power law growth rateq approaching the cavity lead-
ing edge is higher than agreed for joint experimental andevigal work between the
University of Leicester and the Universita degli Studi Roifre. This gives a lower
L/6 approaching the cavity leading edge with respect to thetasguel /6 = 62. The
experiment was such thafd = 72 atx/L = —1, which gives a value of the momentum
thickness slightly lower as compared to the target value.

The cavity instability modes are influenced by the value efdapproaching turbulent
boundary layer momentum thickness, as showrCljonius & Lele(2004 in rect-
angular cavity flows. In the cylindrical cavity, the instiélyi mode is driven mainly
by the interaction between acoustic resonance (organ pggerhode) and the cavity
‘Rossiter’ like modes. At the selected free stream speedBarsimulation, a peak
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Figure 6.31: Boundary layer growth in the computational donand comparison with
experiment approaching the cavity leading edgé. = 6.9 plane au,, = 80 nys.

in the wall pressure spectrum corresponding to this frequémnfound, as shown in
section6.7.3

Figure6.32shows the normalized time-averaged velocity profiles ptediby the 9.2
million cell DES model along the cavity mid-span, on the= 0 plane. The pro-
files detail the boundary layer upstream of the cavity. SylsiBo-, + and« denote
time-averaged streamwise velocity profilexdt equal -7, -6, -5, and -4, respectively.
The contours line denotes the power law cuwe,, = (z/6)~’, which is given as
a reference, and the circles denote the wind tunnel measmtsmin the numerical
predictions, the boundary layer displays a streamwise igigpwelocity defect on ap-
proach to the enclosure that is higher than the target vadpeesented by the/T"
power law. In experiment, the velocity defect is lower thia@ target value.

The comparison given in secti@?.2is limited by this diference in the approaching
boundary layer between experiment and computation.

6.7.2 Mean flow

Figures6.33(a) 6.33(c) 6.34(a)and6.34(c)are hot-wire streamwise velocity measure-
ments taken above and inside th® = 0.71 cavity atRg = 548000. Figure6.33(b)
6.33(d) 6.34(bjand6.34(d)are the time-averaged stream-wise velocity profiles from
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Figure 6.32: Boundary layer mean velocity profiles dfedent streamwise locations
in they = 0 plane.L/D = 0.71 deep cavity aRg = 548000.

the 9.2 million cell DES. The numerical predictions are aied by averaging over
6000 time-dependent snapshots of the computational doriiaie mean flow field is
obtained in the time-marching DES computation by addingwing average routine
to the flow solver. The predicted mean flow is then visualizadg TECPLOT 360.
The measurements cover @drentu/u,, range in experiment and in the computations.
The range of the ordinate axis has been chos@erdntly in experiment and computa-
tion to best resolve the respective trends within. At theesaomn-dimensional height
z/L, listed in the legend of each figure, the computation predicloweru/u,, than
the measurements. For instancezdt = 0.024, the predictions of figuré.33(b)

at x/L = -0.25 (open red circles) give a span-averaged mean velocitfieaf
approximately (b3u,,, whereas the measured values at the saphe z/L in fig-
ure 6.33(a)(open red circles) show a span-averaged mean velocity @affepproxi-
mately 081u,,. This difference is present at the upstream most traverse and isdteeref
not just the result of dierent shear layer growth rates above the enclosure, butueis
to the diferent boundary layer momentum thickness approaching thdehoavity
than in experiment, as documented in secéohl1

The eddy viscosity in the Detached Eddy Simulation playsnaportant role in de-
termining the streamwise growth of the inflow boundary lay¢owever, in the DES
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Figure 6.33: Spanwise profiles of non-dimensional time-ayed streamwise velocity
across the cavity opening/D = 0.71 deep cavity aRg = 0.546x 10, experimental
M, = 0.1175 and numericadll,, = 0.235. Differenty-axis ranges are used to account
for the shear layer streamwise growth.
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Figure 6.34: Spanwise profiles of non-dimensional timera&yed streamwise velocity
across the cavity opening/D = 0.71 deep cavity aRe = 0.546x 1P, experimental
M. = 0.1175 and numericall,, = 0.235. Differenty-axis ranges are used to account
for the shear layer streamwise growth.
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model, the value of the eddy viscosity close to the wall is legntrollable than in
standard RANS computations, as it is driven by the hybrithraof the RANS and
LES models in the turbulence closure. The sensitivity ofrtbmerical predictions to
changes in the RANS to LES blending function was not testetjugting the turbu-
lence model to reproduce the inflow boundary layer growth odthe experiment was
not attempted, as it departs from the main aim of this workictvfiocuses on repro-
ducing the cavity interior flow. The author used publishelliea of the RANA_ES
turbulence closure model, relying on the underlying caliimn work of Yoshizawa
(1986 and ofMenter(1992.

Above the cavity opening, the shear layer from the detacluely simulation com-
putation seems to grow more slowly as compared to the mehfome Specifically,
whereas the dierence between the predicted spanwise averaged meanyeladile
atx/L = —-0.25 andx/L = 0.5 atz/L = 0.024 is about (Lu.,, as shown by the red open
circle symbols in figure$.33(b)and6.34(d) the measured spanwise averaged mean
velocity at the same/L reduces by A5u,, over the same streamwise distance above
the enclosure, as shown by figu&83(a)and6.34(c) This difference in shear layer
growth rate is appreciable but is not as significant as tarohete a large change in the
mean streamwise convection velocity. These two aspectegpensible for the cavity
instability and the production of noise.

The three dimensionality of the flow above and inside theasuek is confirmed by the
spanwise non-uniform velocity profile. This result iifdrent shear layer growth rates
along the span. The streamwise distance between the sheas&paration point and
its impingement on the downstream cavity edge is maximurhetavity mid-span,
where the flow spans ovelL1 The shear layer at the cavity mid-span has therefore
more distance to grow over the cavity open end before it lesmthe downstream wall
than the flow that separates at either side ofytke0 plane. This results in a greater
momentum transfer from the free-stream to the slower moftovginside the cavity.
Therefore, at the same wall-normal distaizge > 0, a lower streamwise velocity is
expected along the cavity mid-span compared to the cawgssiThis is confirmed ex-
perimentally and numerically in figurés33and6.34 The spanwise profiles of time-
averaged velocity from experiment, figui@83(a) 6.33(c) 6.34(a)and6.34(c) show

a velocity minimum in they = 0 plane, just like in the predictions of figurés33(b)
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6.34(b) 6.33(d)and 6.34(d) This suggests an increasing flow entrainment at this
plane.

Figures6.35(a)(f) show spanwise profiles of the non-dimensional time-averageam-
wise velocity at diterent heights above the downstream cavity bulkhead. F3§u8&(a)
6.35(c) and6.35(e)are measurements from the Universita degli Studi Roma fide a
figures6.35(b) 6.35(d) and6.35(f) are the corresponding DES numerical predictions
using a 9.2 million cell mesh. The two primary and two secopngartices described in
section6.5 give two symmetric local maxima gfL ~ +0.45 in the planes/L = 0.89
and x/L = 1.55 in the numerical investigation and in the plaxy = 1.55 in ex-
periment. In the numerical study, the numerical viscosstypiobably inducing an
early flow separation at the cavity trailing edge. This ressinl the éfect of the sec-
ondary vortices on the spanwise profile of time-averageshsiwise velocity being
more pronounced. As a result, the velocity maxima can berebédanore clearly in
the numerical simulations further upstream than in the oreasents.

Further downstream, ai/L = 2.55, the secondary vortices are dissipated and only the
two counter-rotating primary vortices are detected in kbt numerical predictions
of figure 6.35(f) and in the experimental profiles of figuée35(e) Local maxima in
each experimental profile atfterentz/L are found aty/L ~ +0.4 whereas they are
found aty/L ~ +0.35 in the numerical predictions. The elevation of these maxi
above the streamwise velocity of the relatively unpertdribeundary layer to the sides
of the cavity, atly/L| > 1, at eachz/L is 0.05 < u/u., < 0.1 in the experimental
profiles and AL < u/u, < 0.2 in the numerical predictions. Thefiirences in the
boundary layers approaching the enclosure between expetriamd computation dis-
cussed in sectioB.7.1are likely to be responsible for thisfterence. Specifically,
the fully turbulent boundary layer approaching the enalesno experiment contains
a wide spectrum of structures. As these structures int@rdlctthe primary vortices,
they introduce an additional degree of unsteadiness onftdpeane resulting from
the tonal cavity instability. The instantaneous positibthe counter-rotating primary
vortex cores are therefore like to precess inxple = 2.55 plane. By time averaging,
the motion of the vortex cores results in broader local maxvith a lower peak in the
measured profiles of figuig 35(e)than in figure6.35(f).
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Figure 6.35: Spanwise profiles of non-dimensional stremmawelocity over the down-
stream bulkhead.L/D = 0.71 deep cavity aRg ~ 54.8 x 10°. experimental
M., = 0.1175 and numericaM,, = 0.235. Differenty-axis ranges are used to ac-
count for the shear layer streamwise growth.
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6.7.3 Unsteady flow

Figure6.36shows the non-dimensional power spectral density (PSDrtreesponds
to the wall pressure fluctuation @t/L,y/L,z/L) = (0.5,0,-0.35) in theL/D = 0.71
deep cavity.

The reference free-stream velocity is 40 nys and 80 rfs in experiment and in the
numerical model, respectively. To compare experiment amdpeitation, frequency
in the PSD is normalized by the cavity diamekteand free-stream reference velocity
U, Which gives the Strouhal numb8it= fL/u.. Similarly, the PSDs are normalized
by the fourth power of the free stream velocity and by the sgjad the free-stream
density.

The experimental data are acquired with a sampling frequei®0 kHz over a period
tu./L = 952. The data is then divided into shorter intervaldwf/L = 47.62 that
are discrete Fourier transformed, giving\& t,, = 0.021. The experimental power
spectra are then ensemble averaged to reduce noise. Theicalrdata are sampled
over a periodu.,/L = 2556 that corresponds #S t,,, = 0.039.

The dashed line in figur6.36a-b) shows a power7/3 slope. This corresponds to
the energy cascade of pressure fluctuations in the ineatmge of three-dimensional
isotropic turbulenceKolmogoroy, 1997). The measured and predicted PSD seem to
follow this slope atSt> 1.5 within limits. Specifically, the decay of pressure fluctua-
tion amplitude with frequency reported in figuBe36(a)stops atSt > 8, leading to a
flat spectrum over the range<8 St < 24 and finally to a higher energy decay. This
trend is due to two dierent aspect in the experimental acquisition. The flat spexis
related to the Kelvin-Helmholtz resonance at the frequeridiie pin-holes where the
microphones are mounted. The energy drop in the PSBt at 24 is due to the anti-
aliasing analogue filter that was used in-line with the npty@nes. The experimental
set-up is detailed iverdugoet al. (2009.

The numerical predictions &t > 8 show a sustained decay of pressure fluctuation
amplitude at increasing Strouhal numbers. This decayalysgiowever a modulation,
which is likely to be a spurious numericaffect from the error in modelling high-
frequency and high-wavenumber components with the flowesplwhich is at best
third order space accurate.
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Figure 6.36: Non-dimensional PSD of wall pressure fromlthe = 0.71 deep cavity
at a free-stream velocity of 40/s(experiment) and 80 & (Detached Eddy Simula-
tions).
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Figure 6.37: Non-dimensional PSD of cavity wall pressurevaalying free-stream
Mach numbers. Instability modes= 1,2, 3 from Block (1976 (x), acoustic reso-
nant (depth) modé). L/D = 0.71 deep cavity.

The predicted PSD in figuig 36(b)displays a higher frequency peaks ,,, = 0.51,
which is close to the first mode = 1 identified by the formula oBlock (1976. A
less intense peak is shown&t,,m = 1.05, which close to the second mode= 2
from Block (1976. In the measured PSD, two peaks are foun8 fat,, = 1.01 and
at Sbexp = 1.34, respectively. These correspond to the second mode Biock
(1976 and to the first acoustic resonant mode (depth mode). A tessse peak at
Stexp = 0.56 is close to the first mode froBlock (1976.

For a given cylindrical cavity geometry of constant aspatibi/D, the acoustic res-
onant mode is proportional to/M., as described in sectich4. Figure6.37 shows
non-dimensional PSD at varying free-stream Mach numbee ddta over the range
0.015< M, < 0.165 are from experiment and the datavat = 0.235 are from the
numerical model. The non-dimensional coordinates of thasmeement location, the
anti-aliasing filter, the sampling rate and the spectratayiag are the same as in fig-
ure6.36 The PSD prediction from the numerical model are that of BguB6 The
PSD amplitude is shown by iso-colour levels in figBt87, using the same logarithmic
scale of figures.36
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Figure6.37shows how the depth mode and the: 1, 2, 3 cavity resonant mode con-
structively interfere when their Strouhal numbers are elwsseach other. Consider
the discrete wall pressure spectraMat = 0.115, M., = 0.14 andM,, = 0.235. At
these three Mach numbers, red regions of high pressure dlimtuamplitude appear
close to the intercept of the predicted acoustic mode, shiythe line with triangles
(»), with a cavity resonant mode, shown by a line of crogsgs This mode coin-
cidence generates reinforced wall pressure fluctuationfcftience occurs between
the first acoustic depth mode and the third cavity resonaenfimmBlock (1976 at
M. = 0.115, between the first acoustic mode and the second cavapaas mode at
M. = 0.14, and between the first acoustic mode and the first cavipneed mode at
M, = 0.235.

Figure6.37shows the value of complementary experiment and numeiicallations
in unsteady aerodynamics. In experiment, it is relativélgight forward to vary the
wind-tunnel velocity over the range € u,, < 40 nys and acquire several spectra, to
well-resolve the variation of the mode amplitudes with thigow Mach number. How-
ever, the wind tunnel measurements could not be perform&theh numbers above
0.16, due to the rising tunnel noise floor in the measuremekgsghe computational
scheme used in this work is based on an approximate Riemdwver,sihe scheme is
not limited to low Mach numbers and in fact works better arstdaat higher Mach
numbers. However, varying the Mach number in the simulati@guires one com-
plete new run per Mach number, which is computationally espe. The numerical
and experimental methods therefore complement each otblérthe measurements
giving good resolution at low Mach numbers and the numenoathod allowing to
explore the coincidence between the first acoustic modelanfirst cavity resonance
mode, lying above the Mach number operational limit of thedviunnel. By merging
the results from numerical and experimental techniques:di§.37gives a more com-
plete picture of the fect of mode coincidence inla/D = 0.71 deep cavity over the
range 01175< M, < 0.235. By combining both results, a better description of the
flow physics is obtained, specifically, the measurementblerta appreciate the dif-
ference in mode amplitude at coincidence and away from timslitions, whereas the
numerical predictions resolved the coincidence betweemtedes that occurs above
the operating limits of the wind tunnel.
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6.8 Conclusion

In previous numerical and experimental investigationsextangular cavitiesqolo-
nius & Lele 2004 Coloniuset al., 1999 Rossitey 1964 Rowleyet al,, 2002 Tam &
Block, 1978, the cavity mode selection is triggered by the approachmgdary layer
momentum thickness. In this study, the dominant instghmibde atM,, = 0.235 is
triggered by the coincidence between the- 1 first instability mode and the cavity
acoustic resonant mode.

The modes predicted by the formulaBibck (1976 are satisfactory in terms of their
dependency on the Mach number. The cavity modes switchicigsely related to the
coincidence with a cavity resonant (depth) modeé_ayleigh(1894).

6.8 Conclusion

This chapter analysed thefidirent aerodynamic instabilities found in the cylindrical
cavity when varying the diameter to depth ratidri[@) and the free-stream velocity.
The cavity flow instability was found to be weakly influenceg dsmall change of
5% increase in the boundary layer thickness. The instaloiides are closely linked
to the geometrical parameters and to the flow parametergrticplar a symmetrical
recirculation was found dt/D = 0.71 both numerically and experimentally and an
asymmetric recirculation was foundlatD = 2.5 when the turbulent model was used.
A different behaviour was found when the flow was modelled as ivigcparticular
the numerical simulation predicted an asymmetric recatoih in theL/D = 0.71 cav-
ity. This is described in sectigh 6. A non-dimensional comparison of th¢D = 0.71
was done by means of time-averaged result and time-depemdeits. The approach-
ing turbulent boundary layer measured in the experimentehbijher velocity with
respect to the canonical7" power law close to the wall, whereas the one measured
in the computation had a lower velocity close to the wall. Tiean flow was captured
gualitatively correctly but not quantitatively. The studfythe Power Spectral Density
highlighted the coincidence of the acoustic resonance randehe “Rossiter” modes
as well as the mode selection mechanism.
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Chapter 7

Conclusion

7.1 Introduction

A time-dependent numerical investigation was performedhmn aerodynamic un-
steadiness and near-field radiating pressure from a cidaddcavity at two aspect
ratiosL/D = 0.71 andL/D = 25 at the Reynolds numbdRg = 548000 and
Re = 698000 and two Mach numbers aP35 and 8. The numerical data from the
mesh converged test case of thed = 0.71 cavity atM = 0.235 andRg = 548000
were compared with those from Universita degli Studi Rom&awind tunnel experi-
ment. This chapter highlights the achievement of the nusaknodel.

7.2 Conclusion

Time-resolved numerical models of a cylindrical cavity flpredicted symmetric and
asymmetric cavity instabilities mainly related to the de&ter to depth ratio of the cav-
ity. Three diferent numerical approaches were used to model the flow. TWese
an inviscid flow predictionGrottadaurea & Ron&0073, a viscous flow prediction,
in which the dissipation is associated only to the viscosftyhe flow and to the nu-
merical dissipation given by the grid stretchir@rottadaurea & Ron2007h, and a
turbulent flow prediction, in which the energy dissipatidrttee small scales of tur-
bulence is modelled using Detached Eddy Simulat®roftadaurea & Ron&008h.
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7.2 Conclusion

The Detached Eddy Simulation gave fundamentalffedent predictions than the other
two approaches.

An azimuthal instability and a recirculation with its axis 45° with respect to the
streamwise direction was identified in flow averaged nunaénesult of the Euler
model and in the viscous flow model of th¢D = 0.71 deep cylindrical cavity. Mass
ejection and injection were predicted only on one side otthwty. This peculiar insta-
bility was documented in the experiments@édudet & Winte(1973 and ofDybenko
etal. (2006 inaL/D > 2 shallow cylindrical cavity. This asymmetric pattern wésoa
found in a coarse mesh DES cavity simulation of 1.6 milliolsc& his prediction was
at odds with the available literature and the experiment¥drgdugoet al. (2009 on
theL/D = 0.71 deep cylindrical cavity, where a symmetric pattern iorega. Only a
2.8 million cells finer mesh and a subsequent mesh conveggeatusing a 9.2 million
cells DES model were able to predict the symmetric flow obeim experiment. The
last computation used a optimized recursive MPI parabdilin technique developed
by the author.

The importance of testing for mesh independence in the sitiouls is demonstrated
by the mode switching between theffdrent levels of mesh refinement in th¢D
deep cylindrical cavity DES. In spite of sométdrence in the approaching boundary
layer momentum thickness, the refined test cases were alletothe symmetric flow
regime observed in experiment.

The simulation helped to interpret the measured velocsirithutions at various stream-
wise planes. Local velocity maxima are due to counter-ragatonvective eddies gen-
erated at the cavity downstream edge. To visualize thieexpthe time-mean span-
wise and flow-normal velocity components were used to tragalane streamlines.
Despite the complexity associated with modelling the djiical cavity flow and the
uncertainty associated with using just standard DES terimd closure parameters, the
three-dimensional DES simulationffered an improved insight of the flow by means
of time-dependent and time-averaged predictions that aferesolved in space and
time.

The comparison between Euler and viscous flow simulatioos/etl the significant
effect the inflow boundary layer thickness has on the near-fielth& Pressure Level.
The Euler model develops a thin numerical shear layer adiessavity opening,
equivalent to having a very thin inflow boundary layer. A tign boundary layer gives
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7.2 Conclusion

a louder near-field pressure fluctuation in a cavity flow, amtbexperimentally by
Dang-Gucet al. (2009 in a rectangular geometry atftérents/L.

The time dependent predictions of the radiating pressureifiehe shallow and deep
cavity configurations indicate a significant noise radiafrom these flows. The acous-
tic near-field is not symmetric with respect to the cavity raghn in theL/D = 2.5
shallow cavity. This asymmetry is most likely linked to therauthal instability modes
that develop in the enclosure. The mode selection in therddyghamic’ flow region
that spans the cavity opening drives the production of s@lowlg preferential direc-
tions in the acoustic near-field. The persistence of suchasstric radiation in the
acoustic far-field is likely to be significant for the noiserfpemance of cylindrical
aircraft fuel vents at landing.

The DES simulation and the experiment show that the fundgaharstability mech-
anism described by Rossiter is found in a subsonic turbwgintdrical cavity flow
and that the mode frequency can be obtained by using a doméotthe characteristic
length byCzechet al. (2006 in the modified Rossiter formula @&lock (1976.

The cylindrical cavity is characterized also by acoustsoreant modes associated with
the geometry, as describedRayleigh(1894. The interaction between the hydrody-
namic convective instabilities, the Rossiter modes, amdistic instabilities is found
to be significant for the mode selection in the cylindricalitaflow, as detailed in
section6.7.3

The Power Spectral Density of the wall pressure fluctuattorasying Mach number
from Verdugoet al. (2009 was used to interpret the physics behind mode switching in
the cylindrical cavity flow. Scaled numerical predictionsre used to extend the Mach
number range tdvl,, = 0.235 and show how the higher intensity mode correspond
to the coincidence between the first acoustic resonant manttkshe first “Rossiter”
mode. This interaction is also found in experimenigt = 0.123 andM,, = 0.145.
Marsdenet al. (2008 modelled a cylindrical cavity of /D = 1 atM,, = 0.265 using
cylindrical coordinates in the enclosure and Cartesiandinate elsewhere, and used a
high-order Lagrangian interpolation at the interface. atleantage of such modelling
strategy is not to include a curvilinear coordinate systarthe computation and to
be able to use a high-order flow solver coupled with an aray{exact) evaluation
of the Jacobians. Althoughf@ierent approaches can be sought to model a cylindrical
cavity flow to overcome the limitation associated with a lowder finite-volume flow
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7.2 Conclusion

solver, the latter is more suitable to study flow of industingerest. The curvilinear
multi-block parallel DES code developed in this study aimbé a ready-to-use tool
to study such flows.

The MPI parallelization strategy, developed at CINECA Gyottadaurea & Rona
(20083, was essential for running the mesh refined test-casesdtaired a large
number of cells. A 4 GB RAM processor limited the simulatioms maximum of 1.4
million cells test case. The recursive domain decompasiiercome this limitation
distributing only a smaller portion of the full computatadrdomain across distributed
memory clusters. It granted the access to the most powasiilmited memory facil-
ities in Europe and represented a strong attractor for tthesimial use of this code in
applications that require a high computational perforneanc

The algorithm includes a novel aspect by parallelizatiothefinput with respect of
the flow variables and geometry parameters. DistributiompiiyOutput of existing
parallel codes represent the state of the art of MPI paizdiigbn, a preliminary step to
achieve this is presented in this work.

The comparison of parallelization strategies in secdchdemonstrated the advan-
tage of using this algorithm as compared to a single domaiardposition, in which a
large number of processors are used in the simulation. Tdgosithm represents a suit-
able candidate to further increase in parallelizatifiitiency, reducing the processors
communication.
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Chapter 8

Future work

Given the potential impact of asymmetric cavity instapilitodes on airframe noise
and the dfficulties associated with its modelling, further researatedgiired to deter-
mine the drivers behind mode staging, together with a baisessment of thefects
such modes have on the radiated noise. A number of simutatibdiferent aspect
ratios and varying the free-stream velocity is requiredxieed the formula oBlock
(1979 for cylindrical cavity flows that feature such modes.

The present numerical model of the near-field cylindricaityaflow can be used to
seek far-field noise predictions and to reconstruct therimriton of fuel vent noise
to the aircraft landing Hective Perceived Noise LevdlJAO, 2002. This requires
locating the monitoring points of a ground observer outsi@sirframe cavity follow-
ing the Chapter 3CAO (2002 guidelines for landing noise. Considering the distance
of the ground observer prescribed IGAO (2004, stretching a single computational
domain to include the ground observer is not computatigratfbrdable, therefore
the acoustic predictions will be obtained via a hybrid appig which divides the
computational domain into a source region (acoustic neat}fand a propagation re-
gion (acoustic far-field), developingRfowcs Williams & Hawkingg1969 acoustic
analogy in the simplified formulation ddi Francescantoni¢1997 andBrentner &
Farassaf1999.

As discussed in sectioi 7.3limitations are found in modelling the energy associated
with high frequency pressure fluctuations. Although thegydecay is captured in the
numerical simulation, a modulation is found in the powercs@e density. This modu-
lation is probably associated with the use of a low-ordetdinblume flow solver. This
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limitation does not fiect the result herein reported but limits the use of the flolweso
only to application dominated by periodic flow phenomena wdlatively small spec-
tral breath. This aspect is considered a future point forawpment for this numerical
method.

In parallel to the author’'s workSpisso & Rong2007) have been developing a high-
order finite-diterence flow solver to upgrade the existing flow solver. Thé{ugler
method allows to reduce dispersion and dissipation erfdrseedow-order solver using
the same computational mesh. Despite the complexity agsocwith boundary clo-
sure, such as wall boundary conditions or radiating bouyndanditions, this method
gives a higher power spectral density ctitfoequency. This may help to remove the
spurious numerical modulations predicted at the high feegy end of the power spec-
tral density of aerodynamic pressure.

To retain the computational advantage of the high-orderiot scheme, high-order
no-slip wall boundary conditions are required, that adeamic the inviscid wall for-
mulation ofSpissoet al. (2009. The introduction of a curvilinear coordinate system
to the selected high-order finiteftBrence scheme is also required to model a cylindri-
cal cavity. This can be achieved following the work\é$ébal & Gaitonde(1999 and
Visbal & Rizzetta(2002.

This work highlighted the importance of modelling dissipatin cylindrical cavity
flows. The Detached Eddy Simulation turbulence closure esimiproved by the dy-
namic sub-grid scale model Germancet al.(1991 or Lilly (1992. Despite the larger
computational cost of this model, as statedMignti & Rona(2009), this approach will
remove some of the model constant calibration issues ofufrerat implementation of
Detached Eddy Simulations.

A different approach is not to use a RANS wall-function and modelfiibw only
using LES. This was not attempted due to thiclilties associated with modelling
flow separation only with LES, where a constant value fiYoshizawa(1986 is used
for the Smagorinsky(1963-Lilly (1966 constant. The improved dynamic sub-grid
scale model overcomes also this limitation.
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Appendix A

Laminar boundary layer inflow for

CFD

The inflow to the computational domain is imposed by solvimg ¢compressible non-
dimensional form of the Blasius equation for a laminar barmdayer. The following
equations describe the flow fielvite, 1991):

7+t ") =0 (A1)
Taw v—-1
T - 1+ 5™ (n)? (A.2)

Equation A.1) is the non-dimensional Blasius equation for a laminar loauy layer,
wheren = ZVu,./ (2vX) andu = u.f’ (). Equation A.2) gives the adiabatic wall
temperature, wheM () —» M, andT () — T.. In (A.2), r is the recovery factor
andy the specific heats ratio. For a Prandtl numiin) in the range L < Pr < 3, the
recovery factor = VPr.

From equationsA.1) and A.2) and assuming the static pressyres constant across
the boundary layer, the conservative variables distrouis known as a continuous
function of the flow-normal directiorg]” The discretized conservative variables vector
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distributionU; is the average of the local value dfover the cell:

Zi+1
ui:if U@ dz (A.3)
Az J,

In the equationA.3), it is assumed that the local variationdfin the flow-normal di-
rection ¢) is larger compared to that in the streamwise directiga(d in the spanwise
direction ).
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Appendix B

Turbulent boundary layer inflow for

CFD

B.1 Mean velocity profile

The mean streamwise velocimof a fully developed turbulent boundary layer is found
as a function of the distance from the wall in the flow-normiactionz, the friction
velocity u. and the boundary layer thickness

In particular, lez" = yu./v be the inner scaling non-dimensional wall-normal distance
wherev is the kinematic viscosity of the flow. To describe the medoaity profile

in a turbulent boundary layer, similarity solutions are@aiin the inner and the outer
regions. In the inner region, the following relation dekes the mean velocity profile

uﬂ ~ f(2) (B.1)

T

In outer region, the velocity profile is described by the eélodefect law

Uo — U

=) (B.2)

r
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B.1 Mean velocity profile

wheren = y/é is the outer scaling non-dimensional wall-normal distaaweeu,, is the
free-stream velocity.

Based on the existence of an overlap region between the amtethe outer regions,
Coles(1956 proposed the following additive law of the wall and law oétivake in
non-dimensional form:

ut = }Inz+ +B+ Ef (n)
K K
f(n) = 1 - cos(nn) (B.3)

whereu® = u/u, is the normalized streamwise velocily,s the wake parameterthe
von Karman constant, ariélthe logarithmic law constant.
Coles(1956 determined the wake parameter as

I =x/2(u; -« *InRe - B) (B.4)

whereRe = du./v is the boundary layer Reynolds number affd= ue/u. is the
normalized free-stream velocity.
Let

f (1) = Au® + Aor® (B.5)

be a cubic polynomial approximation tb() in equation B.3). Substituting the
boundary conditions

Uly—s = Ue (B.6)
and 5
u
_ =0 B.7
s (B.7)

in equation B.3), with f () from equation B.5), givesA; = 6[1+ 1/(6I1)] and
A, = —4[1+ 1/(4I1)], with II defined by equationB.4). The law of the wake of
equation B.3) then becomes

1 1 I1
ut = ~Inz" +B +E'72 (1-n)+2—7*(3-2y) (B.8)
K K
Log-law of the wall Wake component
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B.2 Turbulent kinetic energy and turbulent dissipation rate

Equation B.8) is validated over a relatively wide range of momentum thiess based
Reynolds numbeReg, = uf/v; (Ronaet al, 2009 for z* > 30. The author takes
k = 0.41 andB = 5.0 to evaluate equatiom(8), as proposed bgoles(1956.

At 5.4 < 7z < 30, the following relation is used in the fber layer White, 1991):

(ku*)®  (ku*)®
2 6

Z" = u" + exp—«kB|expku" — 1 - «ku" — (B.9)

At z© < 5.4, the laminar sublayer is reached arnd= u*.

Given that the free-stream Mach number of the cylindricaitgalow test cases of
section6.4 is below 0.3, the time-averaged flow-normal velocity conmgranof the
turbulent boundary layer is computed by assuming the flonetmbompressible and
two dimensional. The time-averaged spanwise velocity aorept is identical to zero
over the flat plateW = 0). The incompressible continuity equation then becomes:

u(x2) _ ow(x 2
ox 0z

Equation B.10) is solved to obtain the mean flow-normal velocity componeaf the
turbulent boundary layer.

(B.10)

B.2 Turbulent kinetic energy and turbulent dissipation

rate

The turbulence intensity profile in the outer region of ayfulleveloped turbulent
boundary layer is described by an empirical functigrat z- > 150. The latter is
obtained by the interpolation of measurementgngyuan & Biondin{2007) at the
wind tunnel of the Ente Nazionale per I'Energia e I’Ambie(italian national research
center for Energy and Environment) (ENEA). Figl8d shows the normalized turbu-
lence intensityr’?* = u?/u? versus the normalized wall distanze= zu./v. The data
from the ENEA wind tunnel is plotted with the symbagiga, A ando over the range
67 < z" < 5000. The experimental predictions frdbe Grad & Eaton (2000 are
also shown, covering the wider range<4z® < 9000. Over the common range, the
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B.2 Turbulent kinetic energy and turbulent dissipation rate

# | Symbol| Re Author
1 o 4900 ENEA
2 o 6050 ENEA
3 O 8250 ENEA
4 A 8760 ENEA
5 X 5200 | De Gradt-Eaton
6 + 13000| De Gradf-Eaton
7 * 31000| De Gradt-Eaton
fi] —-- 5200 | Marusic-Kunkel
f - 8760 ENEA

Table B.1: Summary table.

two data sets show a good agreement, with the spread amangedateing due to the
variation inReg. In the measurement, the outer boundary layer was travdirssmefore

a model for the inner region is used in the simulatibfarusic & Kunkel(2003 pro-
posed an empirical formulgf;) to evaluate the turbulence intensity in the inner region
as a function oRg andz'.

u?* is analytically described by:

fi(z',Re), z" < ZiTmer
U =1 &(ZRQ). Zhe <7 < Zur (8.11)
f3 (Z+’ RQ%) > z 2 Zguter
f, is a function ofRe andz" and it is obtained as a gradient-matched cubic curve-fit

as proposed biarusic & Kunkel(2003.
The turbulent kinetic energy and its specific dissipatida eae defined as:

3
k - = 12+, 2

Suur

k
w = % (B.12)

At the inflow, p = p., = 1.225kg/n?. k andw are obtaining by equatioB(12) using
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B.2 Turbulent kinetic energy and turbulent dissipation rate

10

] N

F2+

1 10 100 1000 10000
+

Figure B.1: Normalized turbulent intensity. Symbols andditions are given in ta-
ble B.1.

equation B.11).
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