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Two cylindrical cavities of diameter to depth ratioL/D = 0.71 andL/D = 2.5 were

investigated by numerical modelling. The flow was modelled using three different ap-

proaches at free-stream Mach numbers 0.235 and 0.3. These models were an inviscid

flow prediction, a viscous flow prediction, where the dissipation was given only by

the laminar viscosity and by the numerical dissipation, anda turbulent flow predic-

tion, where the energy dissipation at the small scales of turbulence was modelled by

Detached Eddy Simulation (DES). Single domain decomposition (SDD) and recursive

domain decomposition (RDD) MPI parallelization algorithms were developed along

with the DES model to run mesh refined tests. The parallelization efficiency of the

two methods was investigated and the advantages and disadvantages of these were

shown. The mesh-converged results of theL/D = 0.71 cylindrical cavity have been

compared to experiment. Two counter-rotating convective vortices at the cavity down-

stream edge were found. The vortex core locations at variousstreamwise planes were

located using streamlines of the spanwise and flow-normal time mean velocity compo-

nents. The radiating pressure field directivity in theL/D = 0.71 andL/D = 2.5 was

investigated at a 5L radial distance from the cavity centre. The twoL/D configurations

are characterized by a similar upstream directivity. TheL/D = 0.71 cavity is louder

and displays a secondary downstream peak. In the spanwise plane, the acoustic wave

from theL/D = 2.5 cavity is asymmetric whereas it is symmetric in theL/D = 0.71

cavity. “Rossiter modes” and duct modes are found to co-exist in the cylindrical cavity.

The Power Spectral Density (PSD) of the wall pressure from experiment and compu-

tation over the Mach number range 0 to 0.235 show an amplification of these modes at

coincidence for theL/D = 0.71 cavity.
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Chapter 1

Introduction

1.1 Context

Advances in jet noise reduction have considerably increased the importance of noise

from the engine fan and the airframe as a significant contribution to the overall aircraft

noise, especially during landing (McPike, 1993). Civil airframes often feature recesses

or grooves to accommodate service hatches and other ancillary equipment. The flow

in these cavity-shaped recesses is unsteady and, at typicallanding speeds, may feature

large-scale instabilities. The most acoustically active airframe components in a civil

aircraft are the high lift systems and the landing gear. Nonetheless, other components,

such as fuel vents and the ailerons, also contribute to the overall noise emissions.

In an aircraft fuel tank, as fuel is supplied to the engines, air is let in through a vent to

balance the tank internal pressure. This avoids any vacuum in the fuel tank that could

stop the fuel flow or cause the tank to implode. The design and location of fuel vents

vary among aircraft. Fuel vents are often cut in the underside wing skin. Alternatively,

these are located on the wing trailing edge, as in Cessna 210s. Although the amplitude

of fuel vent noise is relatively low, it happens to be over a frequency range higher than

the one of high lift systems noise, therefore it is perceivedby a ground observer as

louder with respect to what its amplitude in decibel would suggest, due to the dB(A)

weighting (Cambianoet al., 2006). The fuel vent represents a niche of the broader

subject of cylindrical cavity flows.

A cylindrical open cavity placed one metre downstream of thewing leading edge is

herein investigated as an initial low fidelity fuel vent model of a wide-body civil air-
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Figure 1.1: Cylindrical cavity flow.

craft. Past cavity aeroacoustic investigations mainly focussed on rectangular enclo-

sures, due to the savings in computational time that can be achieved by the use of a

Cartesian mesh. This study contributes to the literature byconsidering the cylindri-

cal cavity flow. Figure1.1 shows a schematic of the cylindrical cavity subject of the

present study and the geometrical parameters.

1.2 Aims

The body of work of this thesis aims to extend the current understanding of the mecha-

nisms that drive the unsteadiness in cylindrical cavity flowby a numerical approach. It

aims to identify the instabilities that are likely to develop in such a cavity at typical air-

craft landing speeds. The experimental work byGaudet & Winter(1973), Hiwadaet al.

(1983) andHering et al. (2006) on cylindrical cavity has shown that non-symmetric

vortex structures can be found in this flow. The focus is to identify possible driving

mechanisms that are responsible for the observed asymmetric flow pattern.

To achieve such knowledge, the existing in-house CFD code atthe University of Le-

icester is developed to use high performance computing clusters. Such development

2
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1.3 Methodology

represents a strong attractor for industry, as it offers the opportunity to reduce the time-

scales of a typical industrial design.

The small body work on cylindrical cavity flow as compared to rectangular cavity flow

over the past 30 years drives the interest of this research. The outcomes of the research

will help future studies in terms of reliability and accuracy.

1.3 Methodology

An existing time-dependent in-house CFD flow solver is used to model the cylindrical

cavity flow. The code is an explicit finite-volume solver thatimplements a Detached

Eddy Simulation turbulent model validated and developed byEl-Dosoky(2009). The

author developed the MPI recursive domain decomposition algorithm to use the code

on high performance computing clusters to allow numerically expensive simulations

to run.

The flow solver linearises the convective flux vector by the Godunov method. The

interface fluxes normal to the finite-volume unit cell boundaries are estimated by the

approximate Riemann solver based onRoe(1981). The Monotone Upwind Scheme

for Conservation Laws (MUSCL) interpolation ofVan Leeret al. (1987) is used to

achieve up to a third-order accurate spatial reconstruction.

The velocity vector gradients are computed by the Gauss divergence theorem using a

staggered grid built across the cell interfaces.

The turbulent closure model is by a hybrid RANS/LES model. The RANS model

consists on thek − ω model proposed byMenter (1992). The Yoshizawa(1986)

one-equation SGS model is used to solve the LES turbulent closure as proposed by

Dahlström & Davidson(2003). A blending function proposed byMenter (1992) is

used at the RANS/LES interface. The present model is driven by a mesh-based eddy

viscosityµt andρk/ω by the blending function.

The author developed the RDD parallelization algorithm anddeployed the flow solver

on HPC distributed-memory clusters.
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1.4 Thesis outline

This thesis is divided into eight chapters. The first chaptergives the context of this

work in terms of industrial and scientific interests drivingthe research. It then gives

the the aims and objectives of this work and the expected outcomes.

The second chapter present the geometrical and the flow parameters that are given

both in dimensional and non-dimensional form. It also proposed a literature review

on cavity flow from the available literature. A classification based on geometrical and

physical parameters is given to put the present study in the context of the open litera-

ture. The instability driving mechanisms and the modellingapproaches of cylindrical

cavity flows are reviewed.

The third chapter explains the different numerical models used to study the cylindrical

cavity flow. The time-marching scheme used in the simulationand the relation between

the Reynolds Averaged Navier-Stokes and Large Eddy Simulation variables is also

given in this chapter. A brief discussion is presented on thestandard data format and

its post-processing.

The fourth chapter describes the code parallelization algorithms developed to run the

code in the High Performance Computing (HPC) facilities. The performances of two

algorithms is tested in terms of speed-up and parallelization efficiency.

In the fifth chapter, the physical domain discretization approach is explained for the

selected cylindrical cavity flow configuration of chapter three. The mesh skewness

is evaluated as a controlling parameter to the finite volume discretization. The free-

stream boundary conditions used in the simulation are defined in this chapter.

The sixth chapter presents the results from the numerical models of the cylindrical

cavity flow. The numerical data are divided into the time-averaged flow, the time-

dependent aerodynamic flow, and the radiating near-field pressure. The latter is in-

vestigated in terms of time-dependent data (dynamic pressure fluctuation) and time-

averaged data (near-field Sound Pressure Level). The numerical results from a 9.6

million cells mesh of the 0.71 aspect ratio deep cavity configuration are compared

with available experimental data. The time-averaged velocity components and time-

dependent pressure are investigated to characterize the cylindrical cavity instability as

a function of the free-stream velocity. The predicted approaching boundary layer is

compared with experiment.
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1.4 Thesis outline

Chapter seven, the conclusions, reports the achievements and the implications of the

research for the scientific community. Finally, chapter eight deals with the future of

cylindrical cavity flow research and the ways to overcome some of the limitations of

this study.
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Chapter 2

Cylindrical cavity test case description

and background

2.1 Introduction

This chapter gives the geometry of the test case of this studyas well as the flow param-

eters. These variables are organized into non-dimensionalquantities that described the

cavity flow as proposed byColonius(2001).

This chapter aims to give background information about the cylindrical cavity flow

presented in the available literature. A classification of the cylindrical cavity flow

is proposed based on the existing rectangular cavity flow classification proposed by

Roecket al.(2004). The flow instability and the flow acoustic interaction as influenced

by the cavity geometry and inflow conditions are herein described. The flow modelling

of the cavity flow is herein briefly described by means of the different approaches to

study the acoustic near-field and the source region. Finallya brief description to study

the acoustic far-field is given.

2.2 Geometry and flow parameters

Figure1.1shows the schematic of a cylindrical cavity flow. The cylindrical cavity has

a diameterL and a depthD, and it is fabricated as a recess into a flat plate. The air flow

is characterized by the free-stream velocityu∞, the free-stream speed of soundc∞ and
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2.2 Geometry and flow parameters

the free-stream kinematic viscosityν∞. The boundary layer that develops on the flat

plate is characterized by a boundary layer of thicknessδ and momentum thicknessθ.

In figure1.1, the Cartesian coordinates(x, y, z) are centred at the bottom of the cavity.

The x axis coincides with the streamwise direction of the flow, they axis coincides

with the spanwise direction and thezwith the wall normal direction. The aerodynamic

instability is discussed in chapter6 with respect to this system of coordinates.

To discuss the near-field acoustic predictions, a more convenient auxiliary reference

system in spherical coordinates(ψ, φ, z) is used. The origin of the spherical reference

system(ψ, φ, r) is the centre of the cavity open end.

The following coordinate transformations relate the two coordinate systems:



x = r cosψ cosφ

y = r cosψ sinφ

z= r sinψ + D

(2.1)



r =
√

x2 + y2 + (z− D)2

φ = arctan
(

y
x

)

ψ = arcsin

(
z√

x2+y2+(z−D)2

) (2.2)

Two cylindrical cavities are modelled in this thesis. In a cylindrical cavity, the charac-

teristic lengthL and widthW are both equal to the diameter.Block (1976) showed that

in rectangular cavities whereL = W, the flow is characterized by important spanwise

structures. The three dimensionality of the flow structuresadds to the modelling effort.

The cavity diameterL = 100 mm and two cavity depth are chosen,D = 40 mm and

D = 140 mm. These geometrical parameters were selected in consultation with Airbus

France to be representative of a low fidelity model of a aircraft fuel vent. The different

configurations are selected to evaluate the influence of the cavity depth on the flow

instability.

Two free-stream flow velocities are analysed,u∞ = 80 m/s andu∞ = 102 m/s. These

correspond to typical landing speeds of a wide-body civil aircraft. The flow is con-

sidered at International Standard Atmosphere (ISA) groundconditions. These are: a

free-stream temperatureT∞ = 288.15 K, a free-stream pressurep∞ = 101325 Pa, an
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2.3 Non-dimensional parameters

air densityρ∞ = 1.225 kg/m3, a free-stream speed of soundc∞ = 340.3 m/s, and a

kinematic viscosityν∞ = 1.461× 10−5 m2/s.

A fully turbulent boundary layer approaches the cavity. Theboundary layer momen-

tum thicknessθ is 1.35 mm atu∞ = 80 m/s and is 1.29 mm atu∞ = 102 m/s. It is

assumed that the growth rate upstream of the cavity is not affected by any pressure

gradient.

The cavity wall and the flat plate around it are modelled as impermeable adiabatic

walls. It is assumed that the flow is not subject to any external heat source nor to

external forces and it is a non-reactive flow.

2.3 Non-dimensional parameters

Colonius(2001) rearranged the dimensional flow parameters in section2.2 into the

corresponding non-dimensional parameters:L/W, L/D, L/θ, Reθ = u∞θ/ν∞, M∞.

By definition, the characteristic length to width ratioL/W = 1 as the cavity is cylindri-

cal. The two different diameter to cavity depth ratios areL/D = 2.5 andL/D = 0.71,

to resolve the changes in the fuel vent pattern associated tothe cavity depth at the given

test conditions.Block (1976) andAhuja & Mendoza(1995) showed that, for rectangu-

lar cavities,L/W = 1 represents a limit that separates a three-dimensional cavity from

a two-dimensional ones.

To account for the influence of the incoming boundary layer thickness on the cavity

flow instability, two differentReθ are selected,Reθ = 8850 andReθ = 10750. The

remaining two non-dimensional quantities,L/θ and the Mach numberM∞, are selected

in the simulation asL/θ = 65 atM∞ = 0.3, andL/θ = 62 atM∞ = 0.235.

Charwatet al. (1961) studied a wide range of non-dimensional parametersL/D, L/θ,

Reθ, M∞ in a rectangular cavity flow. He showed that in the range of non-dimensional

parameters selected in this study, the cavity flow is open andit is characterized by a

major recirculation zone within the cavity and by an unsteady stagnation point on the

downstream cavity wall.
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2.4 Cylindrical cavity unsteady aerodynamics

2.4 Cylindrical cavity unsteady aerodynamics

Cavities can be classified into different types depending on their length to depthL/D

or length to widthL/W ratios. These types differ from each other in the way the

aeroacoustic noise is generated and radiated. A classification of cavity flow is given in

Roecket al. (2004) for rectangular cavities and it is used in this thesis to classify the

cylindrical cavity flow.

2.4.1 Classification onL/D: deep cavity and shallow cavity flow

In shallow cavities,L/D > 1, there can be more than one recirculation zone. For longer

cavitiesL/D > 5, there can be a reattachment of the flow to the bottom of the cavity.

Due to this flow pattern, the broadband noise dominates the acoustic field. Periodic

components are present in the acoustic field but are of relatively small amplitude. To

model such cavity flow, Direct Numerical Simulations (DNS) or Large Eddy Simula-

tions (LES) can capture the broad-band spectrum of acoustically active flow structures.

Other modelling approaches, such as Reynolds Averaged Navier Stokes (RANS) meth-

ods, are likely to give rather approximate predictions, dueto the lack of information

on the small scales of turbulence (Wanget al., 2004).

Shallow cylindrical cavities may display a complex azimuthal recirculation in the en-

closure, as shown experimentally byGaudet & Winter(1973), Hiwadaet al. (1983)

and byDybenkoet al. (2006). Hiwadaet al. (1983) show by wall pressure measure-

ments that, for 1.5 < L/D < 2.5, a cylindrical cavity may feature a diagonal outflow, in

which mass ejection is uneven about the cavity mid-span. Thepreferential side of mass

ejection switches from left to right of the mid-span, leading Hiwadaet al. (1983) to

define this regime as a switch flow. For 2.5 < L/D < 5, Hiwadaet al.(1983) identify a

different flow regime that they refer to as flapping flow, due to fluctuations in the shear

layer that spans the cavity open end.

Deep rectangular cavities are characterized by one or two recirculation zones that take

part in a flow-resonant feed-back loop the tonal contributions from which dominate

over the broad-band noise. The most dominant tones in the noise spectrum are typically

the second and third cavity feed-back resonances. The radiated acoustic field has a

directivity peak around 50◦ azimuth with respect to the inflow direction.
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2.4 Cylindrical cavity unsteady aerodynamics

The flow in deep cylindrical cavitiesL/D < 1.5 is generally stable and symmetric with

respect to the streamwise direction.Gaudet & Winter(1973) identified this behaviour

using oil flow visualization and by streamline tracing over the cavity walls.

2.4.2 Classification onL/W: two-dimensional and three-dimensional

flow

Early experimental work byMaull & East(1963) highlighted the presence of spanwise

structures in cavity flows. A classification based on length to width ratio was first made

by Block (1976). Based on her experimental research, she made a distinction between

cavities where the acoustic field is two-dimensional, atL/W < 1, or three-dimensional,

at L/W > 1. These findings were confirmed by the extensive research ofAhuja &

Mendoza(1995). They found also that changing the width of the rectangularcavity

does not affect the resonance frequencies but the overall sound pressure level decreases

by up to 15 dB in three-dimensional cavities. The main conclusion from this research

is that, for rectangular cavities ofL/W < 1, it is possible to compare two-dimensional

computational aeroacoustic results with experimental ones. ForL/W > 1 geometries,

the directivity and noise spectrum from two-dimensional numerical models can be used

by an appropriate amplitude scaling factor to predict the acoustic far-field.

2.4.3 Classification on mean flow pattern: open and closed cavity

flow

Figure2.1(a)and2.1(b)show a schematic of the open cavity flow and of the closed

cavity flow respectively.

An open cavity flow is characterized by a main recirculation within the enclosure and

possibly one or two secondary recirculations on the cavity floor. The flow separates at

the cavity leading edge and reattaches at the cavity trailing edge, as shown in figure

2.1(a). In a closed cavity flow, the flow separates at the cavity leading edge and reat-

taches on the cavity floor. It then separates from the cavity floor further downstream

and reattaches on the downstream wall. The upstream separation and reattachment

points are the ends of a finite streamline that delimits an upstream flow recirculation
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Figure 2.1: Two-dimensional sketch of mean cavity flow pattern.

region, close to the upstream cavity corner. Similarly, a larger recirculation is found

near the downstream cavity wall.

The transition between the open and closed cavity regimes isgenerally associated to

the length to depth ratio (Heller et al., 1971; Rockwell & Naudascher, 1978). At low

subsonic speeds, the criticalL/D that separates the open and closed cavity regimes is

shown bySarohia(1977) to bedcrit = L/D ≈ 7−8 for rectangular cavities. In practice,

dcrit varies depending on a number of factors, among which the mostinfluential ones

are the free stream Mach number,M∞, and the width to depth ratio,W/D (Atvarset al.,

2009; Plentovichet al., 1993; Stallings Jr. & Wilcox Jr., 1987). At L/D ∼ dcrit , a cavity

can display intermittently both the open and closed flow patterns. When the cavity

flow is closed for the majority of time, the enclosure is defined as transitionally closed.

When the cavity flow is open for the majority of time, this is defined as transitionally

open. The transition between open and closed regimes for cylindrical cavities is not

readily documented in the open literature, possibly because the three-dimensional and

unsteady nature of this flow prevents an analogous simple two-dimensional description

of the flow spanning the open end.

Stallings Jr. & Wilcox Jr.(1987) studied the effect of the width to length ratio,W/L, on

the flow over a cavity. They studied the centreline pressure distribution on the floor of a

cavity of constant length and depth and variable width. As the cavity width decreases,

the flow switches from transitionally open to transitionally closed atW/D = 5 when

dcrit = 13. In cavities where 3< W/D < 4 the transition corresponds to adcrit = 12. A

further decrease in width gives a closed cavity flow. As the cavity width decreases, the
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2.5 Cylindrical cavity noise

value ofdcrit decreases. These studies illustrate the importance of taking into account

the three-dimensional character of cavity flows.

Stallings Jr. & Wilcox Jr.(1987) and laterCrooket al. (2007) investigated the three-

dimensionality by measuring the lateral pressure gradients across the rear face of a rect-

angular cavity at supersonic flow speeds and using oil flow visualization techniques. It

was found that, in a closed cavity, the pressure gradients are caused by the formation

of vortices along the side walls as the flow expands into the cavity near the leading

edge.

In open cavities, large lateral pressure gradients occur, although their magnitude is con-

siderably less than that in closed cavity flow. The results ofStallings Jr. & Wilcox Jr.

(1987) indicated that the side wall vortices are absent in open cavities, while a more

recent investigation byAtvarset al. (2009) shows longitudinal shoulder vortices run-

ning along the floor of an open subsonic compressible cavity.Still, the effects of cavity

width on the pressure distribution for open cavities are smaller compared to those in

closed cavities. Increasing the width in open cavities generally results in an increase

in wall pressure on the cavity rear face and on the rear portion of the cavity floor.

2.5 Cylindrical cavity noise

The frequency content of cavity noise contains both broad-band components, intro-

duced by the turbulence in the shear layer that separates at the upstream cavity cor-

ner, and tonal components due to a feed-back coupling between the flow field and

the acoustic field.Rossiter(1964) was one of the first researchers who described this

feedback mechanism based on shadowgraphic observations ona number of different

rectangular cavities. He concluded that the periodic flow pattern in the cavity can be

described by a four step procedure:

I Vortices shed from the leading edge of the cavity are convected downstream along

the shear layer until they reach the trailing edge of the cavity.

II At the trailing edge, the vortices interact with the downstream wall of the cavity

and this causes the generation of acoustic waves. A part of these acoustic waves

radiate above the cavity to the acoustic far-field.
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III Pressure waves radiate inside the cavity in the upstreamdirection until they reach

the leading cavity edge.

IV When reaching the upstream wall of the cavity, the pressure waves cause the shed-

ding of a new vortex at the leading edge. The pressure waves influence the spacing

between the different vortices and thus also determine the frequency of thisfeed-

back phenomenon.

Based on experimental results,Rossiter(1964) derived the following semi-empirical

formula for the Strouhal numberS tof this periodic phenomenon:

S t=
f L
u∞
=

n− α
M∞ + u∞/uconv

(2.3)

where f is tonal frequency,L is the length of the cavity,n ∈ N the mode number,M∞
the free stream Mach number,u∞ the free stream velocity,uconv the convection velocity

of the vortices, andα a factor to account for the lag time between the passage of a vor-

tex and the emission of a sound pulse at the cavity trailing edge. The model proposed

by Rossiter(1964) does not provide numerical values forα and the ratiou∞/uconv.

They are treated as empirical constants, depending on the lengthL to depthD ratio of

the cavity. They are determined byRossiter(1964) by a best fit to the measured data.

The flow-acoustic resonance frequencies obtained from evaluating (2.3) with n ≥ 1 are

not an harmonic sequence, although some harmonics may be found in experimental

spectra (Samimyet al., 2004).

Equation (2.3) was subject to several empirical improvements for rectangular cavity

flow over the years by several authors (Alvarezet al., 2004; Bilanin & Covert, 1973;

Block, 1976; Colonius, 2001; Covert, 1970; Grace, 2001; Graceet al., 2004; Heller &

Bliss, 1975; Heller et al., 1971; Howe, 1997; Rockwell & Naudascher, 1978; Rowley

& Williams, 2006; Tam & Block, 1978).

The formula ofBlock (1976) accounts for the effect of the bottom reflected acoustic

wave and it is given by:

S t=
f L
u∞
=

n

M∞
(
1+ 0.514

L/D

)
+ u∞/uconv

(2.4)
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2.5 Cylindrical cavity noise

Czechet al. (2006) propose a correction that accounts for the circular edge shape in

cylindrical cavities, which replaces the characteristic lengthL in (2.3) with Lcorr, that

is a function of the cavity diameterL:

Lcorr =

√
π

2
L (2.5)

The formula ofBlock (1976) with the correction byCzechet al. (2006) is used in this

thesis.Czechet al.(2006) use the original formulation ofRossiter(1964) in their work

to fit experimental data on cylindrical cavity wall pressurefluctuations.

Cylindrical cavities can feature purely acoustic modes in addition to the Rossiter type

flow-acoustic resonance. These takes the form ofHelmholtz(1895) resonances and

duct modes (Rayleigh, 1894). It is expected that high-amplitude tones are gener-

ated when the natural frequency of the flow-acoustic feed-back loop coincides with

an acoustic mode (Marsdenet al., 2008).

The duct modes are the acoustic resonance of a pipe open at oneend and closed at the

other end.Rayleigh(1894) gives an expression for this configuration that includes the

length of the pipe (H) and its radius (r). For a pipe closed at one end, the acoustic

resonant modes are given by:

f = n
c

4(H + αr)
(2.6)

n = 1, 3, 5, ..., 2k + 1, k ∈ N is an odd integer number that identifies the harmonic of

each acoustic resonant mode in a pipe with one open end.α is a constant parameter.

Rayleigh(1894) defined by asymptotic arguments the rangeπ/4 < α < 8/ (3π) and

proposedα = 0.82 for the real case of a finite length pipe.Nomuraet al. (1960)

and laterNorris & Sheng(1989) found in different ways a more accurate value for

α. Nomuraet al. (1960) proposedα = 0.8217 andNorris & Sheng(1989) proposed

α = 0.82159. The value fromNorris & Sheng(1989) is used in this thesis.

From equation (2.6), the Strouhal number of the acoustic resonant modes is:

S t=
f L
u∞
=

n
M∞

1
4D/L + 2α

(2.7)

Rona(2007) solved the Helmholtz equation within a rectangular and within a cylin-

drical cavity to seek the acoustic resonant modes in these two configurations. For a
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Table 2.1: Cylindrical cavity natural circular wavenumbers,ξl,mR.
m 0 ±1 2 3

l = 0 − 0 0 0
l = 1 1.2556 2.4048 3.5180 4.6123
l = 2 4.0793 5.5201 6.8661 8.1576

cylindrical cavity,Rona(2007) found that symmetric and anti-symmetric modes can

be encountered in this geometry, in addition to axial acoustic modes. The Helmholtz

equation is taken as having the general trial solution:

pθ = Aθ cos(mθ − αm) + Bθ cos(−mθ − βm) (2.8)

Rona (2007) seeks a particular form of equation (2.8) that satisfies the solid wall

boundary condition at the cavity barrel and findspr = Ar Jm (ξr), whereAr is the am-

plitude of the radial acoustic pressure fluctuation, independent fromr, andJm is the

mth order Bessel function of the first kind. This is solved using the following relation

for the Bessel functions:
Jm (ξR)

Jm+1 (ξR)
=

ξR
m+ 1

(2.9)

Equation (2.9) can be solved numerically forξ, to determine the wavenumbers that

satisfy the radial component of the Helmholtz equation witha cylindrical rigid wall as

boundary condition.Rona(2007) gives numerical solutions of the first three radial and

azimuthal mode wavenumbers, which is reported in table2.5.

The acoustic mode frequencies are given by the following formula (Rona, 2007):

fl,m,n =
c

2π

[
ξ2

l,m+

(nπ
D

)2
]1/2

(2.10)

wherel, m andn are integers≥ 0 andξl,m is obtained from table2.5 by dividing the

stated values by the cylinder radiusR= 0.5L.

Equation (2.10) shows mathematically that non-symmetric azimuthal instabilities can

be supported in a cylindrical cavity geometry, extending the original principal compo-

nent analysis ofRayleigh(1894) that is limited to axial modes only.
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2.6 Aerodynamic field

Gaudet & Winter(1973) investigated the cylindrical cavity flow at differentL/D ra-

tios using oil flow visualization. The experiments were doneat constantM∞ = 0.118,

ReL = 400000 and inflow boundary layer to diameter aspect ratioδ/L = 0.24. L/D

varied from 0.746 to 25.L/D > 4 results in a closed cavity flow regime character-

ized by a symmetric recirculation upstream the reattachment line. DecreasingL/D

changes the flow into the open cavity flow shown in figures2.2and2.3. L/D = 3.45 in

figure 2.2(a)-(a) is representative of the flapping condition also described by Hiwada

et al. (1983). The switch flow condition is reached atL/D = 2.13 as shown in figure

2.2(c), where an asymmetric recirculation is found in the enclosure and results into a

asymmetric convection on one side of the cavity.Hiwadaet al. (1983) andDybenko

& Savory (2008) recently studied extensively the flow that result from aL/D = 2.13

cylindrical cavity. As the aspect ratio reduces further, a symmetric recirculation is

found in the enclosure, as shown in figure2.2(d). Although aL/D = 0.746 oil flow

visualization is reported inGaudet & Winter(1973), it is not reported in this thesis.

The oil flow visualization was limited by the effect of gravity on the oil and a deeper

cylindrical cavity flow was not studied.

Hiwadaet al.(1983) also studied the effect of a cylindrical hole on the drag coefficient

and on the heat transfer coefficient at variousL/D at constant free-stream velocity and

boundary layer thickness. Figure2.4shows the wall pressure fluctuation sampled over

20 second using a pressure probe. The resulting pressure coefficient of the symmetric

and asymmetric flow is shown in figure2.5. Hiwada et al. (1983) usedH for the

cavity depth andD for the cavity diameter. The aspect ratioL/D in this thesis is

related to the work by Hiwada et al. byL/D = 1/(H/D)Hiwada. Different regimes are

responsible for the resulting wall pressure fluctuation.L/D = 10 is the statistically

steady condition that correspond to a closed cavity with a symmetric recirculation

in the upstream wall.L/D = 2.5 andL/D = 3.33 correspond to the flapping open

cavity flow. L/D = 2.5 andL/D = 1.67 are switch asymmetric open cavity flows

andL/D < 1.25 is a symmetric open cavity flow. In this experiment, the asymmetric

recirculation was found atL/D = 2.5, as shown in figure2.5(b). The switch between a

symmetric recirculation and an asymmetric one happened atL/D ≈ 3 as it was inferred

by the pressure coefficient (Cp) in figure 2.5(a). L/D = 1 resulted into a symmetric
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2.6 Aerodynamic field

(a) L/D = 3.45 (b) L/D = 2.13

(c) L/D = 1.67 (d) L/D = 0.93

Figure 2.2: Oil-film flow visualization of cylindrical cavity at variousL/D at M∞ =
0.118,ReL = 400000 andδ/L = 0.24 (Gaudet & Winter, 1973). Cavity inner domain.
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2.6 Aerodynamic field

(a) L/D = 3.45 (b) L/D = 2.13

(c) L/D = 1.67 (d) L/D = 0.93

Figure 2.3: Oil-film flow visualization of cylindrical cavity at variousL/D at M∞ =
0.118,ReL = 400000 andδ/L = 0.24 (Gaudet & Winter, 1973). Cavity outer domain.
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2.6 Aerodynamic field

Figure 2.4: Wall pressure fluctuation varying 1.25 < L/D < 10 from Hiwadaet al.
(1983). M∞ = 0.074,ReL = 111300 andδ/L = 0.72. L/D = 1/(H/D)Hiwada.

patter ofCp due to the symmetric flow recirculation at this flow regime. This result

was confirmed byMarsdenet al. (2008) at L/D = 1 andM∞ = 0.235.

Dybenko & Savory(2008) recently repeated the experiment byHiwadaet al. (1983)

and studied the Power Spectral Density (PSD) that results from the wall pressure fluctu-

ation at three aspect ratios(h/D)Dybenko= 0.2, 0.47 and 0.7 that correspond toL/D = 5,

2.13 and 1.43 byL/D = (h/D)−1
Dybenko. In figure2.6, a vertical shift by 20dB is applied

to each PSD. The loudest cylindrical cavity flow correspondsto the deepest cavity con-

figuration atL/D = 1.43. The experiments were done in a close circuit wind tunnel

where the PSD of the background noise was comparable among the three test cases.

The results were therefore not conclusive due to this limitation. Comparing the PSD of

theL/D = 2.13 shallow cavity with the PSD fromL/D = 1.43, it can be inferred that

in a deeper cavity tonal components are more dominant in the spectrum compared to

a shallower cavity.Dybenko & Savory(2008) did not find any evidence of concurrent

hydrodynamic and acoustic instabilities as the frequency peak does not correspond to
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2.6 Aerodynamic field

(a) L/D = 2.7

(b) L/D = 2

(c) L/D = 1

Figure 2.5: Pressure coefficient at varyingL/D from Hiwadaet al. (1983). M∞ =
0.074,ReL = 111300 andδ/L = 0.72.
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2.7 Modelling cavity flows and parallelization

Figure 2.6: Wall pressure fluctuation PSD fromDybenko & Savory(2008). M∞ =
0.08,ReL = 130000 andδ/L = 0.72. h/D = 0.2, 0.47 and 0.7 in the legend corresponds
to L/D = 5, 2.13 and 1.43 respectively.

any of the instability modes described in section2.5

2.7 Modelling cavity flows and parallelization

The experimental work byDybenkoet al. (2006) and byHering et al. (2006) and

the numerical work byGrottadaurea & Rona(2007a,b) shows that cylindrical cavi-

ties develop a rather unique flow instability that is fundamentally different from the

well-documentedRossiter(1964) mechanism. The presence of cylindrical cavity ge-

ometries on airframes motivates the investigation and characterization of this peculiar

instability mechanism.

From the available literature on rectangular cavities (Colonius & Lele, 2004), it is

known that the momentum thicknessθ at the cavity leading edge plays an important

role in the selection of the modes and in governing the shear layer growth rate that
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2.7 Modelling cavity flows and parallelization

spans an open cavity (Charwatet al., 1961; Colonius & Lele, 2004; Rowley et al.,

2002; Tam, 2004). The importance ofθ on the mode selection of rectangular cavities

is shown byColoniuset al. (1999) on a mode map.

Direct numerical simulation (DNS) of compressible flow is still limited to low Reynolds

number and high Mach number models. For a fully three-dimensional simulation, the

total number of floating point operations to resolve all the relevant scales of motion

in the flow and to cover at least one wavelength of the radiatedsound in the compu-

tational domain is of the order ofRe3
∞/M

4
∞ (Crighton, 1975). DNS is more suitable

to validate an aeroacoustic method that includes a turbulence closure model than to

perform a full-scale simulation.

A Large Eddy Simulation (LES) (Chow & Gao, 2004; Piomelli et al., 1997; Schröder

& Ewert, 2005; Seroret al., 2001) is an attractive choice to model flows of industrial

interest. It provides good information on the noise sourcesto compute both the broad-

band spectrum and the single tones in the radiated noise. However, the computational

effort due to the stringent near-wall grid resolution requiredby a high-Reynolds num-

ber flow is a major obstacle to the routine use of LES in these types of flow (Wang

et al., 2004).

Time-dependent numerical prediction used in geometries ofindustrial interest can be

obtained by hybrid RANS/LES, as inArunajatesan & Sinha(2003). A Detached Eddy

Simulation (DES) was performed byHedgeset al. (2002) and an Unsteady-RANS

(URANS) bySinger & Guo(2004). A careful choice of the turbulent closure model can

be done a priori if the instability mechanism driving the flowof interest is known. The

URANS approach provides the lowest level of flow detail and accuracy (Wanget al.,

2004), though it is the least computationally demanding approach among URANS,

DES and LES and it can be effective in capturing the large-scale fluid motion and its

associated sound (Rona, 2006).

Spalart(2000) offered an overview of the methods available in CFD to model the flow

at different regimes and their advantages and limitations in termsof computational cost

and numerical mesh requirements. In spite of recent advantages in LES wall boundary

closures (Li & Hamed, 2008), the lower computational cost of DES for modelling

geometry-induced flow separation motivates the development of this technique. The

complexity associated with modelling the RANS-LES interface in DES is counter-

balanced by the reduction in close-walls mesh resolution required by this model. This
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2.7 Modelling cavity flows and parallelization

makes the DES suitable for the simulations presented in thisthesis and makes the code

suitable for future industrial applications.

High performance computing allows to simulate larger systems than what can be done

on a scalar machine (Long et al., 2004). Specifically, mesh-refined test cases of the

order of 10 million cells were recently used to simulate three-dimensional rectangular

cavity flows, to obtain predictions with a greater spectral breadth in both frequency

and wave-number space (Atvarset al., 2009; Brès & Colonius, 2008). The main driver

is to better render in the simulation the process of dissipation of the energy from the

dominant scales of motion inside the enclosure. These largescales are the ones that

are selectively amplified by the open cavity fluid dynamic instability mechanism. The

early models for such a kinetic energy dissipation process relied simply on numerical

viscosity. A better representation of this process involves resolving, at least in part,

some of the cascading of the modal energy to the smaller scales of motion.

Advances in code parallelization and in multi-processor hardware development allow

nowadays the modelling of representative industrial geometries by conventional Com-

putational Fluid Dynamics (CFD) (Chenet al., 2004; Longet al., 2004). Different chal-

lenges are nonetheless posed by computational aeroacoustics. A larger computational

domain with respect to conventional CFD is required to resolve a full wavelength of the

radiated noise. A more accurate, less dissipative and efficient non-reflective boundary

condition needs to be applied to correctly evaluate the amplitude of the pressure fluc-

tuations in the near-field acoustic domain. High-order low dissipation and dispersion

schemes have lowered the cost of aeroacoustic models to a more affordable level.

Simulations that resolve the flow-turbulence interactionsthat characterize a turbulent

cavity flow cannot be run on a single processor or on a small shared memory cluster.

Nowadays, large shared memory clusters are less popular andmore expensive as com-

pared to large distributed memory clusters, where thousands of processors are intercon-

nected, or to vector machines, where vectorization of the operations further reduces the

computational time. For instance, to resolve the relevant large scales of motion with a

Detached Eddy Simulation approach, a refined mesh of 6 to 8 million cells is required.

This mesh simply cannot fit in 4 GB of RAM of a single processor and, even if it did,

the computational time would exceed 460 days. Therefore, toperform the numerical

modelling within a suitable time-scale, it is essential to port the numerical work on a

High Performance Computing (HPC) cluster, using Message Passing Interface (MPI).
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2.8 Aeroacoustic approaches

Open Multi-Processing (OpenMP) is more user-friendly as compared to MPI, but it can

be used only in a shared memory cluster and reduces the freedom in parallelization

allowed to the user. Over the past few years, these limitations have prompted the

scientific community to move to MPI, to exploit the Tera-flopsperformance of such

systems.

MPI enhances the scaling performance of CFD codes and allowsto perform production

runs on the largest computer facilities in the world. It generates numerical predictions

of significantly larger spectral resolution than from usingother currently available par-

allelization methods.

2.8 Aeroacoustic approaches

The flow above and within the cavity enclosure is generally divided into three regions

to simplify its modelling: a source region, the acoustic near-field and the acoustic

far-field. The source region coincides with the cavity and its surrounding extending

radially outwards from the enclosure by up to one wavelengthof the radiated noise

lowest significant frequency. The acoustic near-field extends up to five wavelengths,

beyond which lies the acoustic far-field. The source region can only be modelled by

the methods described in section2.7.

In the acoustic near-field, aFfowcs Williams & Hawkings(1969) acoustic analogy

does not decouple acoustic refraction and reflection effects from the noise generation

process. Alternative approaches to predict aerodynamic noise in the non-homogeneous

acoustic near-field are by solving the discrete Euler equations, either the linear LEE

proposed byBogeyet al. (2002) or the non-linear NLEE (Schröder & Ewert, 2005),

or the Acoustic Perturbation Equation (APE) proposed byEwert & Schröder(2004).

These approaches are not being pursued in the current work asthey are more appropri-

ate for near-field noise predictions from acoustically compact sources in an underlying

steady mean flow, whereas this investigation focuses on resolving the flow unsteadi-

ness that is producing aerodynamic noise.

The acoustic far-field correspond to a region where the wave equation fully describes

the flow.
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2.9 Conclusion

The cylindrical cavity geometry and inflow conditions to be studied by numerical mod-

elling have been defined. These are stated in terms of the non-dimensional parameters

proposed byColonius(2001) that are relevant to identify the cavity flow unsteadiness.

A literature review on cylindrical cavity flow has been conducted to identify the flow

regime of the test cases. Following the classification proposed byRoecket al. (2004)

on rectangular cavities, the cylindrical cavities subjectof this study are open. A sym-

metric flow organization is expected in theL/D = 0.71 cavity whereas an asymmetric

one is expected in theL/D = 2.5 cavity. The flow is three-dimensional. To model

such complex cavity flow, a parallel three-dimensional flow solver that includes a DES

turbulent model is used, to achieve mesh converged result ina shorten time-scale as

compare to Direct Numerical Simulation.
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Chapter 3

Methodology

3.1 Introduction

This chapter explains the numerical model of the Euler equation, the Navier-Stokes

equations and the DES turbulence model equations used to study the cylindrical cavity.

The boundary conditions used in the different simulation are also described in this

chapter. The validation of the flow solver done byEl-Dosoky(2009) is analysed with

respect to the flow instability that characterize the flow subject of this study. A brief

description of the data format and post-processing is also proposed in this chapter.

3.2 Inviscid numerical model

3.2.1 Euler equations

The conservative form of the time-dependent Euler equations is:

∂

∂t
U + ∇ · Fc = 0 (3.1)

whereU is the conservative variable vector andF are the inviscid flux vector. They are
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3.2 Inviscid numerical model

defined as:

U =



ρ

ρu

ρe


F =



ρu

ρu ⊗ u + pI

ρu (e+ p/ρ)


(3.2)

whereu is the fluid velocity vector with componentsui, e is the specific internal energy,

p is the static pressure andI is the identity matrix. In equation (3.2), the rows relate to

the conservation of mass, momentum, and energy, respectively.

e is related to the fluid temperatureT and velocityu by

e=
1

γ − 1
RT+

1
2

u · u (3.3)

whereR is the specific gas constant. Temperature, pressure and density are related by

the equation of state for a perfect gas. This is:

p = ρRT (3.4)

In this work, air is assumed a perfect gas.

Subtracting the divergence of the conservation of momentumfrom the time deriva-

tive of the conservation of mass,Lighthill (1961) obtained an inhomogeneous wave

equation where the sources of noise are on the right hand side:

�
2ρ′ = ∇ · ∇ · T (3.5)

whereT is the Lighthill stress tensor, defined as

T = ρu ⊗ u +
(
p− c2

∞ρ
)
I (3.6)

andc∞ is the speed of sound in the unperturbed medium at rest.

3.2.2 Finite-volume flux vector discretization

The physical domain is discretized by an assembly of topologically rectangular control

volumesVi, where subscripti indicates thei th control volume in the non-uniform mesh.
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3.2 Inviscid numerical model

Integrating equation (3.1) over each control volumeVi gives

∫

Vi

∂U
∂t

dV +
∫

Vi

∇ · FcdV = 0 (3.7)

Assuming a stationary computational domain and applying the Gauss divergence the-

orem, equation (3.7) can be written as:

∂

∂t

∫

Vi

UdV +
�

Si

Fc · ndS = 0 (3.8)

Let

Ui =
1
Vi

∫

Vi

UdV (3.9)

�

Si

Fc · ndS =

Nf aces∑

k=1

Fc,k · ni,kSi,k (3.10)

whereNf aces is the number of faces in the control volumeVi, Si,k is thekth face ofVi

andni,k is its inwards normal.

Equation (3.7) can be written in a compact form as:

Vi
∂Ui

∂t
+Ri = 0 (3.11)

whereUi is the mean value of the conservative variable vector over the cell volumeVi

andRi is the residual generated from the discretized terms and it is equal to

Ri =

Nf aces∑

k=1

Fc,k · ni,kSi,k (3.12)

To solve the Euler equations, the residual operatorRi in equation (3.12) needs to lin-

earise the flux vectorFc. The Godunov method, or Flux Difference Splitting, is used.

Interface fluxes normal to the finite-volume unit cell boundaries are estimated by the

approximate Riemann solver based onRoe(1981). TheRoe(1981)’s approximate Rie-

mann solver is first-order accurate in space, since the solution is projected on each cell

as a piecewise constant state (Hirsch, 1988). To reduce the excessive artificial dissipa-

tion of the first order method,Van Leeret al. (1987) replaced the piecewise constant
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state assumption with a quadratic reconstruction, leadingto a higher order spatial re-

construction, the Monotone Upwind Scheme for ConservationLaws (MUSCL) inter-

polation. FollowingManna(1992), the coefficients in the reconstruction are chosen to

give a third-order accurate reconstruction of the spatial gradients in regions of smooth

flow. This reconstruction uses four contiguous cells in the direction of the reconstruc-

tion, thus to connect two computational blocks a minimum of two layers of ghost cells

are required to make the flow solver block independent.Sweby(1984) proved that a

Total Variation Diminishing (TVD) scheme is sufficient to achieve numerical stability.

As a monotonic scheme is TVD, then the MinMod limiter is introduced to achieve a

monotonic behaviour in regions of model flow discontinuities. Details of the imple-

mentation of these schemes are given inEl-Dosoky(2009).

At the computational domain boundaries, a frame of one ghostcell deep is used to

preserve the second-order accurate reconstruction in the domain interior.

3.2.3 Boundary Conditions

The computational domain is divided into independent computational blocks. Each

block is surrounded by ghost cells. The ghost cells along thecomputational domain

outer boundaries are generated in the code by mirroring the first interior cell about the

boundary plane along the external boundaries of the computational domain. Along

inter-block boundaries, the first and the second interior cell geometries of the abutting

block define the ghost cell rind, which is two cells deep alongan inter-block boundary.

The flow states of the first and second interior cell of the abutting block are copied into

the newly defined ghost cells. Boundary flow states are imposed in the ghost cells.

Inviscid Wall

An impermeability condition is imposed at the physical wallboundaries. This corre-

sponds tou · n = 0 at the boundaryS between the first interior cell and the ghost cell,

wheren is the inward normal vector toS. This is numerically achieved imposing

ub = uphy− 2
(
uphy · n

)
n (3.13)
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where the subscriptphy denotes the flow state at the first interior cell andb the flow

state at the ghost cell.

The flow state in the boundary cell is:

Ub =



ρphy

ρphyub

ρphyephy+ ρphy/2
(
ub · ub − uphy · uphy

)


(3.14)

Non-reflective far-field

The far-field condition switches between a subsonic inflow condition and a subsonic

outflow condition, depending on the value of the inner flow velocity component nor-

mal to the surface boundary, according to CFD General Notation System standard as

described in chapter3.7. Robust and accurate Non-Reflective Boundary Conditions

(NRBC) are crucial in computational aeroacoustic applications (Hu, 2004). To obtain

a non-reflective boundary condition, a 3D extension of the characteristic based bound-

ary condition ofGiles (1990) is used as inGivoli (1991). To limit the non-physical

reflections caused by the numerical scheme, the following procedure is followed, de-

pending on whether the flow is entering or exiting the computational domain boundary.

At the far-field, the mean flow parameters need to satisfy a reference free stream con-

dition: 

p

T

u


=



p∞

T∞

u∞


(3.15)

Consider the one-dimensional flow in the direction of the boundary outward unit nor-

mal n. The incoming Riemann invariantR− is defined from the free-stream condition

as:

R− = u∞ · n −
2c∞
γ − 1

(3.16)

wherec∞ is the free stream speed of sound,c∞ =
√
γRT∞.

The outgoing Riemann invariantR+ is defined from the first interior cell towards the
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surface of the computational domain boundary as:

R+ = uphy · n +
2cphy

γ − 1
(3.17)

wherecphy is the speed of sound at the computational domain interior,cphy =
√
γRTphy.

The speed of sound(cS) and the normal velocity component(uS · n) of the incoming

wave at the boundary interfaces are defined as:

cS =
γ − 1

4
(
R+ − R−

)
(3.18)

uS · n =
R+ − R−

2
(3.19)

Consider the sign of the surface normal velocity componentuS · n. This can be either

positive or negative. This determines whether an outflow or an inflow condition is to

be used locally at the far-field boundary.

The outflow condition is used whereuS · n > 0 is:

ub =
[
uphy−

(
uphy · n

)
n
]
+ (uS · n) n (3.20)

ρb =


ρ
γ

phyc
2
S

γpphy



1
γ−1

(3.21)

pb =
ρbc2

S

γ
(3.22)

The inflow condition is used whereuS · n ≤ 0 is:

ub = [u∞ − (u∞ · n) n] + (uS · n) n (3.23)

ρb =

(
ρ
γ
∞c2

S

γp∞

) 1
γ−1

(3.24)

pb =
ρbc2

S

γ
(3.25)
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The conservative variable vector that is imposed at the ghost cell is:

Ub =



ρb

ρbub

1
γ−1 pb +

1
2ρub · ub


(3.26)

Subsonic inflow

The subsonic inflow boundary condition is formulated following the same characteris-

tics based approach as for the far-field boundary condition for a three-dimensional flow.

Four characteristic waves(λ2 to λ5) move towards the domain interior. It is therefore

necessary and sufficient to impose four conditions at a subsonic inflow boundary. It

is common practice to impose the flow density(ρS = ρ∞) and the flow velocity vector

(uS = u∞). The subscript∞ is used in this section to identify the reference inflow state.

A similar approach to the non-reflective far-field conditionis followed. In equation

(3.16), the speed of sound is estimated using the remaining outgoing characteristicsλ1

for which:

p∞ ≡ pphy (3.27)

and consequently

c∞ =

√
γ

pphy

ρ∞
(3.28)

Equations (3.18) and (3.19) definecS anduS · n. Then equations (3.23), (3.24) and

(3.25) are used with equation (3.27) to estimate(ρb, ub, pb), from which the conserva-

tive variable vectorUb is obtained by equation (3.26).

Subsonic outflow

In the subsonic outflow condition, only one characteristic wave is moving towards

the domain interior(λ1), therefore only one condition is applied. The domain back-

pressure is imposed. In an Euler model and for zero pressure gradient boundary layers,

this pressure coincides with the free-stream one.
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Equation (3.18) reduces to:

cS =

√
γ

ρphy

(√
p∞ +

√
pphy

)

2
(3.29)

Equation (3.19) reduces to:

uS · n = uphy · n +
√
γ

ρ

√
p∞ +

√
pphy

γ − 1
(3.30)

equations (3.20), (3.21) and (3.22) are then used to specifyub, ρb and pb. Equation

(3.26) is now fully defined and it is used to specify the conservative variable vector in

the subsonic outflow condition at the ghost cells.

3.2.4 Validation

The three-dimensional Euler flow solver was validated byEl-Dosoky(2009) with three

test cases of progressing level of difficulty: a shock-tube problem, a supersonic flow

on a wedge and a spherical expansion. The shock-tube problemconsists on the de-

velopment of a normal shock wave propagating from left to right due to pressure and

density difference imposed at the starting condition. The computational domain was

divided into four zones to test the inter-block boundary communication. The result

shows a good agreement with respect to the analytical solution and displays only 2.5%

error close to the sharp discontinuities (El-Dosoky, 2009) comparing to the analytical

solution byHirsch (1988). The supersonic flow on the wedge is characterized by an

inflow condition atM∞ = 2 that approaches a 10◦ wedge and results into a supersonic

flow at the outlet. The analytical solution is obtained by solving the Rankine-Hugoniot

equations. The oblique shock is well-captured by the numerical model with only a

0.3% error in the degree angle and its reflection on the no-slip flow and interaction

with the expansion wave is also captured correctly, as shownby El-Dosoky(2009).

The spherical expansion is a three-dimensional equivalentof the the shock-tube prob-

lem, where a small sphere of a high density and pressure is letto expand in a cube of

lower density and pressure. Non-dimensional energy and density plots are compared

to the reference analytical solution inToro (1999) and show similar result to those of a
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shock tube problem (El-Dosoky, 2009). No spurious reflection is found across the in-

ternal boundary of the multi-block computational domain, neither where this is crossed

by the advancing shock wave, nor where this is crossed by the contact discontinuity.

The cylindrical cavity model is characterized by a circularsharp edge, where a contact

discontinuity is given by the difference in the velocity above and below the separation

point. Pressure waves expand in a domain where the directionof the propagation is

not normal to any computational cell face. The test cases studied byEl-Dosoky(2009)

show the ability of the numerical method to perform well in the presence of contact

discontinuities or non-normal pressure waves, indicatingthat the method is adequate

for modelling the flow past a cylindrical cavity, where similar flow features are present.

3.3 Direct numerical simulation

3.3.1 Navier-Stokes equations

The time-dependent Navier-Stokes equations for a non-reactive adiabatic flow under

no external force are:
∂

∂t
U + ∇ · (Fc + Fv) = 0 (3.31)

Equation (3.31) contains the conservative variables vectorU and the inviscid flux vec-

tor Fc defined in equation (3.2). The viscous flux vectorFv is defined as:

Fv =



0

τ

τ · u − kT∇T


(3.32)

The viscous stress tensorτ = µl (∇u + u ⊗ ∇ − 2/3I∇ · u), µl is the molecular viscos-

ity, kT the thermal conductivity andT is the absolute temperature. IfFv = 0, equa-

tion (3.31) becomes equation (3.1).

The system of second-order partial differential equations (3.31) requires auxiliary al-

gebraic relations for the molecular viscosity and the thermal conductivity that are mod-
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elled as:

µl = 1.458× 10−6 T3/2

(T + 110.4)
[kg/ms] (3.33)

kT =
γRµl

(γ − 1) Prl
[W/mK] (3.34)

whereγ is the specific heat ratio,R is the specific gas constant andPrl is the Prandtl

number.

3.3.2 Finite-volume viscous flux vector discretization

Applying the finite-volume approximation given in equation(3.7), the viscous flux

vectorFv is modelled as

�

Si

Fv · ndS =
Nf aces∑

k=1

Fv,k · ni,kSi,k (3.35)

Following the same discretization procedure as in section (3.2.2), the finite-volume

discretized Navier-Stokes equations is equation (3.11) where the residualRi is given

by the sum of the two terms:

Ri =

Nf aces∑

k=1

Fc,k · ni,kSi,k +

Nf aces∑

k=1

Fv,k · ni,kSi,k (3.36)

To discretize the viscous fluxes, an estimate of the velocityvector gradients is required.

To compute this, a staggered grid is built across the cell interfaces where these gradi-

ents are estimated. The flow state at the surface boundary of the new control volume

and its normals are obtained from the mesh geometry and then the velocity vector gra-

dient is estimated using the Gauss divergence theorem. Thisgives up to a second-order

accurate reconstruction of the gradients (El-Dosoky, 2009).

3.3.3 Boundary conditions

In the direct numerical simulations, a no-slip condition isimposed at the physical wall

boundaries and a subsonic non-reflective far-field boundarycondition at the domain
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outer boundaries. At the inflow boundary of the cavity flow simulations, the laminar

inflow profile of appendixA is used.

No-slip wall

The no-slip condition corresponds tou = 0 at the boundarySi,k between the most

interior cell and its ghost cell. This is numerically achieved by imposingub = −uphy in

the ghost cell. The flow state at the ghost cell is:

Ub =



ρphy

−ρuphy

ρephy


(3.37)

3.4 Detached Eddy Simulation

3.4.1 Governing equations

To reduce the computational effort in modelling high Reynolds number flows, the flow

variables of DNSu, that are varying in time and space, are split into two components,

an averaged oneu and a fluctuating oneu′.

u = u + u′ (3.38)

Depending on the form of averaging adopted, two main-streammethods are developed

to solve the Navier-Stokes equations: the Large Eddy Simulation (LES) method and

the Reynolds-Averaged Navier-Stokes (RANS) method. In LES, the average is for-

mally given by the convolution of the continuous variableu (y, t) with a filtering kernel

G (xi − y):

u (xi , t) =
∫

G (xi − y) u (y, t) dy (3.39)

To model the effects of the small eddiesu′ on the averaged flow, most industrial ap-

plication in CFD use a sub-grid scale model (SGS) in which thefiltering kernel is

matched to the computational grid. TheYoshizawa(1986) one-equation LES model is
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based on this assumption to solve the large scales of motion.In such case,G is defined

as the top-hat filter (Liu et al., 2008) and is given by:

G (xi − y) (x) =
1
∆i

H

(
∆i

2
− |xi − y|

)
(3.40)

whereH is the heavy-side function,∆i is the filtering width of celli, xi is the cell centre

position andy is the position vector. In the Yoshizawa one-equation LES model,∆i is

the cubic root of the cell volumeVi, ∆ =
3
√

Vi.

In RANS, the averageu is taken with respect to time. The short-time average Navier-

Stokes equations are obtained by averaging in timeτ over time interval∆t that is longer

than the turbulent flow fluctuations and shorter than the flow variation not related to

turbulence. This gives:

ū (x, n∆t) =
1
∆t

∫ (n+1/2)∆t

(n−1/2)∆t
u (x, τ) dτ (3.41)

wheren ∈ N andN is the set of all natural numbers.

Applying the average in equation (3.38) to the Navier-Stokes equations, given in sec-

tion 3.3.1, they reduce to:

∂ρ̄

∂t
+ ∇ · (ρ̄ū) = 0 (3.42)

∂ (ρ̄ū)
∂t
+ ∇ ·

(
ρ̄ū ⊗ ū + p̄I + ρu′ ⊗ u′ − τ̄

)
= 0 (3.43)

∂
(
ρ̄ē0 +

1
2ρ̄u′ · u′

)

∂t
+ ∇ ·

(
ρ̄ūh̄0 + ū ⊗ 1

2
ρ̄u′ · u′

)
=

∇ ·
[
ū ·

(
τ̄ − ρu′ ⊗ u′

)
− kT∇T̄ − ρu′h′

]
(3.44)

In equation (3.44), 1/2u′ · u′ is the average turbulent kinetic energyk̄. In equations

(3.43) and (3.44), ρu′ ⊗ u′ is the Reynolds stress tensor. This is modelled by the

Boussinesq approximation (Townsend, 1976) with analogy to viscous stress tensor as:

t̄ = −ρu′ ⊗ u′ = µt

(
∇ū + ū ⊗ ∇ − 2

3
I∇ · ū

)
− 2

3
I ρ̄k̄ (3.45)

In equation (3.44), ρu′h′ is the turbulent heat flux vector and it is modelled to be
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proportional to the temperature gradient (Wilcox, 2002):

q̄t = ρu′h′ = −
µtCp

Prt
∇T̄ (3.46)

The system of equations (3.42)-(3.44) is not closed due to the presence of the extra

variablesk̄ andµt. To close this system, an additional equation is required that relates

k̄ to the other averaged variables. The derivation fork̄ is obtained from the scalar

product of the Navier-Stokes conservation of momentum vector equations multiplied

by the fluctuating velocity vectoru′. Averaging this equation, the transport equation

for k̄ is:

∂
(
ρ̄k̄

)

∂t
+ ∇

(
ρ̄ūk̄− t · u′ + 1

2
ρu′u′ · u′ + p′u′

)
=

−ρu′ · u′∇ · ū − t : u′ ⊗ ∇ − u′ · ∇p+ p′∇ · u′ (3.47)

TheYoshizawa(1986) one-equation SGS model is used to solve equation (3.47) in the

LES model.Dahlström & Davidson(2003) proposed the following equations to model

the transport equation of the kinetic energy:

D
(
ρ̄k̄SGS

)

Dt
= t̄ : ū ⊗ ∇ −Cd

ρ̄k̄3/2
SGS

∆
+ ∇ ·

[(
µl + σkµt,LES

)
∇k̄SGS

]
(3.48)

where D/Dt is the material operator D/Dt = ∂/∂t + ū · ∇ and t̄ is the turbulent stress

tensor, given by:

t̄ = µt,LES

(
∇ū + ū ⊗ ∇ −

2
3
∇ · ūI

)
−

2
3
ρ̄k̄SGSI (3.49)

The eddy viscosityµt,LES is given by:

µt,LES = ρ̄Cs∆

√
k̄SGS (3.50)

In equations (3.48) and (3.50), Cs andCd are the Yoshizawa constants and are related
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to the Smagorinsky constant by:

Csmag=

(
C3

s

Cd

)0.25

(3.51)

The Smagorinsky constant ranges from 0.065 to 0.2 and in thiswork is takenCsmag=

0.1. The corresponding Yoshizawa constants used in this modelareCs = 0.046,Cd =

1.0, andσk = 1.0.

In the RANS model used in this work, two equations are defined to close equations

(3.42)-(3.44) and (3.47). Two mainstream closure models are used in RANS, these are

thek− ǫ and thek−ω models, depending on the equation that is used to solve equation

(3.47). In this equation, the viscous dissipation of turbulent shear stresst : u′ ⊗ ∇ is

proportional to the average dissipation rate per unit mass ¯ǫ:

t : u′ ⊗ ∇ = ρ̄ǭ = µl∇u′ : ∇u′ (3.52)

The same term can also be written in terms of the average specific turbulence dissipa-

tion rateω and the average turbulent kinetic energyk̄ as:

t : u′ ⊗ ∇ = β∗ρ̄k̄ω̄ (3.53)

Menter(1992) developed a shear stress transport model (SST) that combined the qual-

ities of the two RANS models into thek − ω-SST model, which is the RANS model

used in this work. Its derivation is reported inEl-Dosoky(2009). This model gives

more accurate results in regions of separated flow and it is more suitable to model

cavity flow than the standardk− ω model ofWilcox (2002).

Thek− ω-SST closure model is given by:

D
(
ρ̄k̄RANS

)

Dt
= t̄ : ū ⊗ ∇ − β∗ρ̄k̄RANSω̄ + ∇ ·

[(
µl + σkµt,RANS

)
∇k̄RANS

]
(3.54)

D (ρ̄ω̄)
Dt

= γρ̄t̄ : ū ⊗ ∇ − β∗ρ̄ω̄2 + ∇ ·
[(
µl + σωµt,RANS

)
∇ω̄

]
+

(1− F1) 2ρ̄σω2
1
ω̄
∇k̄RANS · ∇ω̄

︸                     ︷︷                     ︸
Cross-diffusion term

(3.55)
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σk σω β β∗ γ

k− ω, 1 0.85 0.5 0.075 0.09 β1

β∗
− σω1κ

2
√
β∗

k− ǫ, 2 1.0 0.856 0.0828 0.09 β2

β∗
− σω2κ

2
√
β∗

Table 3.1: Turbulence closure model coefficients.

wheret̄ is given by equation (3.49) substitutinḡkSGSwith k̄RANS. The blending function

F1 is used to couple the constants used in thek− ω and thek− ǫ models:



σk

σω

β

γ



= F1



σk1

σω1

β1

γ1



+ (1− F1)



σk2

σω2

β2

γ2



(3.56)

The constants are given in table3.1 andκ = 0.41 is the Von Kármán constant. The

compound subscript in the constants designates the model intable3.1, for instance,

σk1 = 0.85.

The blending functionF1 is given by:

F1 = tanh

min

max



√
k̄RANS

0.09ω̄y
,
500µl

ρ̄ω̄y2

 ,
4ρ̄σω2k̄RANS

CDkωy2





4

(3.57)

CDkω = max

(
2ρ̄σω2

1
ω̄
∇k̄RANS · ∇ω̄, 10−20

)
(3.58)

wherey is the distance from the closest wall to the cell center.

The turbulent eddy viscosityµt,RANS is given by:

µt,RANS=
ρ̄α1k̄RANS

max
(
α1ω̄,

∣∣∣Si j

∣∣∣ F2

) (3.59)

whereα1 = 0.31 and
∣∣∣Si j

∣∣∣ is the magnitude of the strain rate tensorSi j = 1/2(∇ū + ū ⊗ ∇).
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The functionF2 is defined as:

F2 = tanh

max

2
√

k̄RANS

0.09ω̄y
,
400µl

ρ̄ω̄y2



 (3.60)

Carefully considering the different averaging in the LES given by equation (3.39) and

in the RANS models given by equation (3.41), it is possible to blend the two models

into a Detached Eddy Simulation (DES). The aim is to overcomethe constraint of the

LES model in the near-wall region by switching to the less computationally expensive

RANS model.

The transport equation for the turbulent kinetic energy canbe written as:

D
(
ρ̄k̄

)

Dt
= t̄ : ū ⊗ ∇ −

[
Γβ∗ρ̄k̄ω̄ + (1− Γ) Cd

ρ̄k̄3/2

∆

]
+ ∇ ·

[
(µl + σkµt)∇k̄

]
(3.61)

where the eddy viscosity is obtained by blending the eddy viscosity from the LES

model of equation (3.50) and the RANS model of equation (3.59):

µt = Γµt,RANS+ (1− Γ) µt,LES (3.62)

The blending functionΓ is defined as:

Γ = tanh

max



√
k̄

0.09ω̄y
,
500µl

ρ̄ω̄y2




4

(3.63)

Let Γ(y→ 0) = limy→0 Γ be the value that the blending function takes in the close wall

region. By applying De L’Hopital’s theorem to equation (3.63), in the limit of y→ 0,

tanh(∞) → 1 andΓ (y→ 0) → 1. Depending on the value ofΓ, three regions are

identified: a RANS region whereΓ→ 1 and equations (3.54) and (3.55) are recovered

and k̄ ≡ k̄RANS, a LES region where equation (3.48) is recovered and̄k ≡ k̄LES, and

finally a so-called interface-region where the two model contribute to solve equation

(3.61).

Theω̄ transport equation (3.55) is solved in all three regions to guarantee continuity in

the computation but its result is not used in the LES region.

Equations (3.42), (3.43), (3.44), (3.55) and (3.61) can be rearranged in the compact
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form:
∂

∂t
U + ∇ · (Fc + Fv) + S= 0 (3.64)

where the conservative variable vectorU, the convective flux vectorFc, the turbulent

flux vectorFv and the turbulent source term vectorS are given byChen-Chuan Fan

(2002) as:
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U =



ρ̄

ρ̄ū

ρ̄
(
ē+ k̄

)

ρ̄k̄

ρ̄ω̄



(3.65)

Fc =



ρ̄ū

ρ̄ū ⊗ ū + p̄I

ρ̄ū
(
ē+ p̄/ρ̄ + k̄

)

ρ̄ūk̄

ρ̄ūω̄



(3.66)

Fv =



0

−
(
t̄ + τ̄

)

−q̄ − q̄t −
(
t̄ + τ̄

)
· ū − (µl + σkµt)∇k̄

− (µl + σkµt)∇k̄

− (µl + σωµt)∇ω̄



(3.67)

S =



0

0

0

Γβ∗ρ̄k̄ω̄ + (1− Γ) Cdρk̄3/2/∆ − t̄ : ∇ū

βρ̄ω̄2 + 2(1− F1)
(
ρ̄σω2∇k̄RANS · ∇ω̄

)
/ω̄ − γρ̄t̄ : ū ⊗ ∇



(3.68)
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3.4.2 Finite-volume source term vector discretization

Applying equation (3.7) to the source vectorS in equation (3.64), it becomes

Si =
1
Vi

∫

Vi

SdV (3.69)

To solve the RANS/LES turbulent model, the residualRi in equation (3.11) is given

by the sum of the flux vectors in equation (3.10) and (3.35) and the source terms of

equation (3.69):

Ri =

Nf aces∑

k=1

Fc,k · ni,kSi,k +

Nf aces∑

k=1

Fv,k · ni,kSi,k + ViSi (3.70)

The gradients in equation (3.68) are computed with the same approach as in section

3.3.2. It is important to notice that the present model is driven bya mesh based eddy

viscosityµt related to the cell volume by the definition of the averaging in equation

(3.39). In the RANS region the turbulent production termt : u′ ⊗ ∇ is saturated with

an upper-bound term equivalent to 20 times the destruction termβ∗ρ̄ω̄k̄. Menter(1992)

introduced this correction to prevent the unrealistic built-up of eddy viscosity during

the computation.

3.4.3 Boundary Conditions

Wall model

Consider the following relation for the first interior cellphy:

un = ūphy · n (3.71)

ut =
∣∣∣ūphy− unn

∣∣∣ (3.72)

whereun is the signed normal of the velocity component normal to the solid wall and

ut is the norm of the tangential velocity component. The following relation are applied
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3.4 Detached Eddy Simulation

at the solid wall:

T̄sw = T̄phy

(
1+ Prt

γ − 1

2γRT̄phy
ūphy · ūphy

)
(3.73)

ρ̄sw =
p̄phy

RT̄sw
(3.74)

µl = 1.458× 10−6 T̄3/2
sw(

T̄sw+ 110.4
) (3.75)

whereT̄sw is the adiabatic wall temperature,Prt = 0.89 is the turbulent Prandtl number,

ρ̄sw is the corresponding wall adiabatic density andµl the corresponding molecular

viscosity.

The third order approximate law of the wall bySpalding(1961) is used to estimate the

friction velocityuτ at the first interior point:

f
(
y+, u+

)
= u+ − y+ + exp(−κB)

[
exp

(
κu+

)
− 1− κu+ −

(κu+)2

2
−

(κu+)3

6

]
(3.76)

whereκ = 0.41 andB = 5.0 are the Von Kàrmàn constants (Österlund, 1999).

It is assumed that the first interior cell satisfies equation (3.76), therefore the following

relations are used:

y+ ≡ y+phy =
ρ̄swyut

µlu+phy

(3.77)

u+ ≡ u+phy (3.78)

These lead to the following equation:

f
(
u+phy

)
= 0 (3.79)

Equation (3.79) is solved using the Newton-Raphson method (Householder, 1953) to

estimate the value ofu+phy. uτ is given by:

uτ =
ut

u+phy

(3.80)

The value ofy+phy is calculated using equation (3.77). Depending on the value ofy+phy,
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3.4 Detached Eddy Simulation

the wall model boundary condition switches between a no-slip boundary condition

region, and a law of the wall boundary condition. The limit between the two conditions

is chosen to bey+phy ≤ 4.7, that corresponds to the laminar sublayer thickness in a fully

developed turbulent boundary layer under a zero pressure gradient (Schlichting, 1968).

At y+phy ≤ 4.7, in the no-slip condition the ghost cell flow stateb is:

ρ̄b = ρ̄sw (3.81)

ūb = −ūphy (3.82)

k̄b = 0 (3.83)

ω̄b =
60µl,phy

βy2
(3.84)

Menter(1992) gave the limit values for̄k and ω̄ asy+ → 0 of equations (3.83) and

(3.84). ρ̄sw is given from equation (3.74) andβ from equation (3.56).

At y+phy > 4.7, the wall model byRona & Brooksbank(2002) is used to evaluate the

ghost cell tangential velocity correctioñu:

ũ = z̃+

(
1− z̃
κu+

)
(3.85)

z̃ = exp−max

0,

y+phy− 5

20


 (3.86)

From ũ, the ghost cell flow stateb in the wall model condition is:

ρ̄b = ρ̄sw (3.87)

ūb =
(
ūphy− unn

)
(1− 2̃u) − unn (3.88)

k̄b =
u2
τ√
β∗

(3.89)

ω̄b =

√
T̄phy

T̄sw

uτ
β∗3/4κy

(3.90)

wherek̄b andω̄b are obtained from a compressible near wall approximation byWilcox

(2002), uτ is from equation (3.80), andT̄sw is from equation (3.73). κ is the Von Kàrmàn

constant andβ∗ is given in table3.1.

The wall distance of the first interior cell strongly affects the predicted boundary layer
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3.4 Detached Eddy Simulation

velocity at the first interior cell, via equation (3.88). In an under-resolved mesh, where

y+phy ≈ 30, the resulting profile may lead to an under estimate of the velocity profile mo-

mentum thickness and its growth rate, leading to difficulties in estimating skin friction

drag and surface heat transfer. To prevent such difficulties, a mesh refined test case,

discussed in section6.4, has a computational grid designed to a value ofy+phy ≈ 10. The

small value ofy+phy leads tõz ≈ 1 and equation (3.88) returnsūb = −ūphy. This pro-

duces a non-physical flow re-laminarization. To avoid this condition a different model

is implemented. This model estimates the value of the ghost cell tangential velocity to

account for a second-order velocity gradient correction inthe wall normal direction.

Let the tangential velocity vectorut and its normal be defined as:

ut = uphy,1 − unn (3.91)

et =
ut

|ut|
(3.92)

where index 1 indicates the first interior cells. Assuming that the tangential velocity

satisfy the log law of the wall byVon Kármán(1954), a tangential velocity component

ubt is defined by

utarget = uτ


1
κ

ln


y+phy,1 + y+phy,2

2

 + B

 (3.93)

ubt = utarget− uτ
2
κ

y+phy,2 − y+phy,1

y+phy,2 + y+phy,1

(3.94)

where index 2 indicates the second interior cells.

At y+phy > 4.7, equation (3.88) is replaced by

ub = ubtet − unn (3.95)

Non-reflective far-field extension

The non-reflective far-field boundary condition of section3.2.3is extended to include

a condition fork andω. A simple zeroth-order extrapolation is used. For the in-

flow condition(uS · n ≥ 0), kb = k∞ andωb = ω∞, whereas for the outflow condition

(uS · n < 0), kb = kphy andωb = ωphy.
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3.5 Time integration

3.4.4 Validation

El-Dosoky(2009) validated the viscous flow solver against the three-dimensional com-

plex flow that occurs near a wing-body junction. The flow exhibits large streamwise

vortical structures that affect the wall boundary layers. A horseshoe vortex develops at

the junction and grows further downstream. Detailed experimental data are available

in the ERCOFTAC database (Devenport & Simpson(1990) andFleminget al.(1993))

under case number 8. The measurements includes the mean velocity and all Reynolds

stresses at several streamwise and flow-normal positions. This test case is a good

candidate to validate the flow solver and its application to the present test case. The

interaction between the approaching boundary layer and thewing-body results into a

three-dimensional vortex that grows along the streamwise direction. Although the con-

figuration results into a steady flow and conventional RANS model can be used, the

time-dependent flow model gave predictions with a level of detail similar to the ones

obtained using a full Reynolds stress model or second order moment closure, as stated

by El-Dosoky(2009).

An unsteady horseshoe vortex can be found downstream of the circular cavity edge as

found experimentally byGaudet & Winter(1973) in a deep cylindrical cavity flow. A

steady horseshoe vortex was also found in a shallow closed cylindrical cavity in the

upstream corner.Gaudet & Winter(1973) also make the hypothesis that two counter-

rotating vortices are shed corresponding to the cavity downstream edge. The numerical

model needs to be able to capture the vortex growth rate as well as vortex core position

with a suitable engineering accuracy. These aspects were tackled byEl-Dosoky(2009)

in the wing-body junction test case.

3.5 Time integration

To solve the discrete ordinary differential vector equation (3.11), an explicit multi-stage

time step integration is used. This scheme is numerically cheap, requires a small com-

putational memory and is designed to preserve the total variation diminishing proper-
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3.6 Combining the short-time RANS average and the LES average in the
RANS/LES model

ties of the spatial differentiation scheme. It is implemented as follows:

U0
i = Un

i

FORk = 1,m

Uk
i = U0

i − 1/ (m− k+ 1)∆t/VRk−1

END

Un+1
i = Um

i

(3.96)

wheremdenotes the number of stages of the Runge-Kutta scheme andn the time level.

The stability of this scheme is restricted by theCourant, Friedrichs & Lewy(1928)

condition.

3.6 Combining the short-time RANS average and the

LES average in the RANS/LES model

LES and RANS variables can be combined in hybrid schemes under certain conditions

that relate to the scheme’s spatial and temporal discretization.

Applying equation (3.9) to a flow state variablef (y, τ) and taking the LES average of

equation (3.39) gives:

1
V i

∫

Vi

∫
1
∆

H

(
∆

2
− |xi − y|

)
f (y, τ) dydV =

∫

Vi

1
∆
〈 f 〉∆dV =

1
Vi

〈
f̄
〉

Vi =
〈

f̄ (xi, τ)
〉

(3.97)

Where
〈

f̄
〉

is the volume average overVi = ∆x∆y∆z of the filtered variable〈 f 〉, 〈 f 〉 is

f (y, τ) filtered over the filtering length∆ = 3
√

Vi, andxi is the cell center.

Let Vi be a near-cubic cell. The filtering length in this cell is

∆ =
3
√
∆x∆y∆z≈ ∆x ≈ ∆y ≈ ∆z (3.98)
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3.7 Data format and post-processing

In this cell,
〈

f̄
〉
= 〈 f 〉 if a top hat filter is used. Let

f̂ (xi , t)
def
=

〈
f̄ (xi, t)

〉
≈ 〈 f (xi, t)〉 ≈ f̄ (xi , t) (3.99)

Sampling at a generic timen∆t, wheren is a natural number and∆t is a finite time step

gives

f̂ (xi , n∆t)
def
=

∫
f̂ (xi, τ) δ (n∆t − τ) dτ (3.100)

whereδ is the Dirac delta function.f̂ (xi , n∆t) is the finite-volume time-discrete LES

average off (y, τ).

Applying equation (3.9) to a flow state variablef (y, τ) and taking the RANS average

of equation (3.41), it follows:

1
V i

1
∆t

∫

Vi

∫
f (y, τ) dtdV =

1
∆t

∫ (
1
V i

∫

Vi

f (y, τ) dV

)
dτ =

1
∆t

∫
f̄ (xi, τ) dτ (3.101)

where∆t in equation (3.101) coincides with the time step and is called short time

average.

Substitute equation (3.99) into equation (3.101) at timen∆t.

Equations (3.100) and (3.101) can be applied to any conservative variable of the con-

servative variable vectorU but the non-linear terms related tou′ and its gradient are

modelled in different ways.Keatinget al.(2006) discussed the importance of the mod-

elling of the interface RANS/LES region and its implication in favourable, adverse, and

zero-pressure gradient turbulent boundary layer channel flow simulations. In the inter-

face region, a controlled forcing mechanism was introducedto enhance the production

terms in the computation of the shear-stress. The model usedin this thesis does not

implement such control.

3.7 Data format and post-processing

The CFD data are stored in a compact, binary file to facilitatethe exchange of data

between sites and applications, and to help stabilize the archiving of aerodynamic data.
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3.7 Data format and post-processing

The CFD General Notation System (CGNS) is an open source software. It is self-

descriptive, well-documented, and administered by an international steering committee

since 1999 (Bushet al., 2007). This steering committee is made up of international

representatives from government and private industry. It is also an American Institute

of Aeronautics and Astronautics (AIAA) Recommended Practice.

Data stored in CGNS format are proven to be long lasting, easyto store, easy to share

between sites and collaborators, and easily extensible to include almost any type of

additional data.

CGNS data are generally associated with compressible viscous flow (i.e., the Navier-

Stokes equations), but the standard is also applicable to sub-sets such as inviscid and

potential flows. The CGNS standard includes the following types of data:

1. Structured, unstructured, and hybrid grids. This work uses structured grids.

2. Flow solution data, which may be nodal, cell-centred, face-centred, or edge-

centred. This work uses cell-centred solution data.

3. Multi-zone interface connectivity, both one to one and over-set. This work uses

the one to one connectivity.

4. Boundary conditions.

5. Flow model specification, including the equation of state, viscosity and thermal

conductivity models, turbulence models, multi-species chemistry models, and

electromagnetics. In this work, the equation of state, the viscous and thermal

conductivity models, and the turbulence models are specified.

6. Time-dependent flow, including moving and deforming grids. This work uses

the time-dependent flow option only.

7. Dimensional units and non-dimensionalization information. This work uses the

standard international units and a dimensional model.

8. Reference states.

9. Convergence history.

10. User-defined data.
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3.8 Conclusion

The CGNS standards have been recently extended to take advantage from a parallel

input/output interface.Hauser(2008) proposes a new parallel interface and provides

a prototype implementation of the CGNS libraries. He also provides some prelimi-

nary evaluation performance of the parallel output file system developed increasing

the number of zones to be written. A beta version is availableunder the latest CGNS

libraries version 2.5.

The in-house CFD code employs a scalar version of the CGNS libraries, version 2.4.

It was therefore necessary to develop a parallel data distribution and gathering archi-

tecture within the CFD code for the parallel runs. This is documented in section4.3.

3.8 Conclusion

This chapter described the numerical models used to study the cylindrical cavity flow.

The validation of the flow solver done byEl-Dosoky(2009) showed the ability of the

numerical method to capture the contact discontinuities and pressure waves propagat-

ing oblique to the computational mesh. The method is found adequate to model the

flow past a cylindrical cavity, where similar flow features are present. The horseshoe

vortex found in the interaction between an approaching boundary layer and the wing-

body in the DES simulation byEl-Dosoky(2009) can also be found downstream the

cylindrical cavity circular edge. The turbulent model herein proposed is expected to

describe the flow unsteadiness in the cylindrical cavity test case.
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Chapter 4

Code parallelization using MPI

4.1 Introduction

This chapter describes the parallelization algorithm usedin the flow solver. Two differ-

ent approaches have been implemented: a single domain decomposition and a recursive

domain decomposition. The performance of the two algorithmare studied by means

of the parallelization efficiency and the speed-up.

4.2 Single domain decomposition

The computational domain is built as an assembly of individual three-dimensional,

curvilinear and topologically orthogonal in the(i, j, k) computational zones. A two

cell deep layer of ghost cells surrounds each zone where outer zone connectivity in-

formation is updated at each Runge-Kutta time integration.Zones with updated ghost

cells are independent and can be integrated in parallel.

As described in section2.7, multi-processors HPC clusters are nowadays extensively

used to solve CFD problems. Specifically medium
(
≤ 20× 106cells

)
and large

(
> 30× 106cells

)

CFD test cases cannot be run without modern HPC facilities. The two main stream par-

allelization methods are Message Passing Interface (MPI) and Open Multi-Processing

(OMP). MPI for code parallelization is highly recommended with respect to OMP be-

cause it is more flexible and does not need a shared-memory cluster. The flow solver

is parallelized using MPI and it was tested on two distributed-memory HPC clusters.
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4.2 Single domain decomposition

Considering a single zone of computational domain, given the number of processors

available in the cluster, each zone is sliced into blocks along k, hence the name single

domain decomposition (SDD). Thek-direction is chosen as it coincides with the outer-

most variable pointer for a given zone in the FORTRAN programming language, such

as forU (i, j, k). Variables belonging to ak-slice are contiguous in memory and are

faster to be sent and received among other processors, as they do not need buffering.

During the initialization of a test-case, three MPITYPE arrays are defined to reduce

the overhead related to exchanging data across the distributed memory architecture,

respectively fork, j and ani planes. In the most general case, each processor sends

and receives fourk-planes during each Runge-Kutta time step as well as the relevant

contour of j-plane andi-plane data. The latter originates from the multi-block connec-

tivity.

SDD was implemented using MPI assuming the processor memoryto be sufficient to

include all the computational variables of all zones of the CFD problem during run

time. SDD can also be implemented using OMP on shared-memorycluster but works

for small CFD computations on the distributed memory platforms used in this work.

Figure4.1shows a simple 2D domain divided into three computational blocks. A blue

dashed edge, a red continuous edge and a black dash-dot edge are used to identify

these zones that are denoted as zone 1, 2 and 3. Thek-direction coincides with the

vertical direction in this example. The zones are evenly sized but have different aspect

ratios, giving a different number of cells along thek-direction. In this example, only

two processors, 0 and 1, are used. A dotted line separates thecomputational blocks

computed by processors 0 and 1 respectively. To compute the convective fluxes using

the flow solver, as described in paragraph3.2.2, four contiguous cells are needed in all

directions. Green hashing is used in figure4.1to highlight the data that are transferred

from processor 0 to processor 1 at each Runge-Kutta step (seesection3.5). In this

example, a symmetric situation characterizes the processor 1. All the cells of zone 1,

computed by processor 0, are transferred to processor 1 and all the cell of processor

1 of zone 2 are transferred to processor 0. This is a bottleneck situation for the SDD

implementation, as processors 0 and 1 spend more time in exchanging ghost cells

information than in doing the computation.

SDD is generally representative of the best parallelization strategy for a low number

of zones that are characterized by a large number of cells.
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4.3 Recursive domain decomposition

0
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0

1

1

0 k

Zone 3

Zone 1

Zone 2

Figure 4.1: Exchanged cells between processor 0 and processor 1 in green.

4.3 Recursive domain decomposition

SDD required a large memory consumption and its inter-blockcommunication over-

head limits it to a small CFD computation. Recent HPC clusters are assembled to

minimize the communication time among processors but computer cores do not have

more memory than an ordinary home desktop. Nowadays shared memory cluster are

also being replaced by large distributed memory HPC clusters. To use these clusters to

their full potential a more complex parallelization strategy is implemented.

In a recursive domain decomposition (RDD), the computational domain is built by an

assembly of three-dimensional, curvilinear and topologically orthogonal zones(i, j, k),

like SDD. In RDD, each zone is a unit that is allocated to a selected group (or sub-

cluster) of processors to compute it. Each unit is then sliced overk planes and thus

distributed to each processor in this sub-cluster. The memory allocation benefits from

the division of the computational domain in these units.

As described in paragraph2.7, independent operations represent one of the enablers

for code parallelization. If possible, it is important to implement asynchronous input

and output interfaces to reduce the overall computational time.

To take advantage of the multi-zone division, the input to the computation is divided

into three parts:

i Sequential reading of the size of each zone. The zone size isbroadcast to all

processors.
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4.3 Recursive domain decomposition

Table 4.1: RDD code variables

Communication
Handler MPI COMM WORLD block comm mastercomm
Identifier myproc myprocblock myprocmaster
Number of
processors nprocs nprocsblock nprocsmaster

ii Asynchronous reading of the zone geometry and flow data. This data is shared

only among the processors allocated to one or the other zone.

iii Sequential reading of the connectivity and the boundaryconditions of all the zones.

Each sub-cluster of processors is defined by this procedure to optimize the load bal-

ance with respect to the ratio of the total number of cells over the total number of

processors. Two communicators different from the default MPICOMM WORLD are

defined to reduce the communication overhead: a block communicator and a master

communicator. The communicators are blockcomm and mastercomm as stated in

table4.1.

The block communicator allows the information to be exchanged in the group ded-

icated to compute each zone. This causes the code to scale better with increasing

number of blocks than SDD, within limits.

The master communicator is used to exchange the connectivity information among the

zones. This is then simultaneously sent to all the processors of each group.

The solution is written in CGNS format and the writing is sequential in processor 0

only.

Let nprocsbe the total number of processors allocated to the problem and nzones

be the total number of computational zones that divide the computational domain.

A processor cluster of sizenprocsblock is allocated to each zone depending on its

total number of cell to achieve load balance. In each group ofblocks, the proces-

sor myprocblock ≡ 0 define the block master and is univocally identified using

myprocmasterin mastercomm. The following relations characterize the variables
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4.3 Recursive domain decomposition

in table4.1:

0 ≤ myproc≤ nprocs− 1 (4.1)

nprocsmaster≤ nzones (4.2)

nprocsblock≤ nprocs (4.3)

Equation4.1is the standard relation that characterize the MPI standardcommunicator

MPI COMM WORLD and it is extended also to blockcomm and mastercomm as:

0 ≤ myprocblock≤ nprocsblock− 1 (4.4)

0 ≤ myprocmaster≤ nprocsmaster− 1 (4.5)

Equation4.2 reduces tonprocsmaster= nzonesif nprocs> nzones. This condition

is generally satisfied for medium and large CFD problems, where the computational

domain is divided into different zones but it is not required in the implemented RDD.

Equation4.3reduces tonprocsblock= nprocs, only if nzones= 1. If the all compu-

tational domain is not divided into zones than RDD coincideswith SDD.

Table 4.2 gives the code implementation of RDD. The variables are those in table

4.1. le f t and right are respectively the previous and the next processor to a generic

processormyprocblockof a generic group.

As each zone is a separate from any other and no data are storedin the processors of a

given cluster of the zone, a zone interface must be defined in all processor to gather the

connectivity information of other zones. To minimize the time to create and exchange

this zone interface array, the data are first exchanged across masters and then across

the blocks as described in the pseudo-code of table4.2(lines 11-14).

Figures4.2 (a-c) show how RDD is applied to the example described in section 4.2.

The three computational zones are divided between six processors. Zone 1 is assigned

to processors 0 and 3 only, zone 2 to processors 1 and 4 only andzone 3 to processors

2 and 5 only. Processors 0 and 3 do not have any geometry nor flowdata of the zones

2 nor 3. A zone interface array is therefore needed to share inter-block boundary cell

data among the processors. This zone interface array is madeup by the hashed cells

in figure4.2(a)and is present in all processors. As each zone is independentfrom one
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4.3 Recursive domain decomposition

Table 4.2: RDD code implementation

!$ Exchange data across block interfaces (k planes)
1: le f t = myprocblock− 1
2: right = myprocblock+ 1
3: SENDRECV 2k planes fromle f t to right on blockcomm
4: SENDRECV 2k planes fromright to le f t on blockcomm

!$ Collect zone interface data from each block on block master
5: IF myprocblock= 0
6: FORmype= 1, nprocsblock− 1
7: RECV zoneinterfacedata frommypeon blockcomm
6: END
8: ELSE
9: SEND zoneinterfacedata to 0 on blockcomm
10: ENDIF

!$ Broadcast zone interface data across all masters (non-master processors idle)
11: FORmype= 0, nprocsmaster− 1
12: BCAST zoneinterfacedata frommypeon mastercomm
13: END

!$ Each block master broadcast received zone interface dataacross its block
14: BCAST zoneinterfacedata from 0 on blockcomm

!$ Run the flow solver on each block
15: U block= U0 block+RK δU block
16: GO TO 1
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(a) Master boundary interface (green box)
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(b) Local exchange of boundary interface cells
in red (3→ 0), (4→ 1), (5→ 2).
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(c) Local boundary cells exchange in green
(0→ 3), (1→ 4), (2→ 5).

Figure 4.2: Recursive domain decomposition.
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4.4 Parallelization performance

another, the communication in figure4.2(c) and within the same zone is happening

simultaneously.

The data of the zone is mapped in memory of all the processors of a group therefore

it can be sent and received in any of this processors without using a buffer, as it is in

SDD implementation. A green hashing is used in figure4.2(c) is used to identify the

cell data sent from processor 0 to 3, from 1 to 4, and from 2 to 5.As . In figure4.2(b),

a red continuous line identifies the cells exchanged in each block that are needed to

fill the interface block-let. All the information is gathered in the master processor of

each block, namely 0, 1 and 2 in the example. After gathering the information in these

processors, it is exchanged among master processors to update the zone interface data.

Finally the zone interface data is asynchronously sent to the other processors of each

group, 3, 4, and 5 in this example.

The data size of communication in RDD is larger than in SDD. However, a larger

number of processors can be used with RDD, leading to a smaller memory requirement

per processor compared to SDD.

The RDD parallelization is also more flexible in terms of applicability because it allows

to even up the computational load among processors in the domain with uneven block

sizes. Identifying the smaller zone in the multi-zone computational domain, it can be

used as a base to divide the other zones alongk so that roughly all processors compute

a similar number of cells. A large part of the communication happens asynchronously

and RDD is applicable to large computational domains. In thecurrent implementation,

RDD is limited by the extent of the zone interface data, whichis a memory map that is

allocated in the memory of all processors

4.4 Parallelization performance

For a given CFD problem, it is possible to evaluate the parallelization performance

of the code on a given HPC cluster by using two parameters: thecode speed-up and

the parallelization efficiency. LetT0 be the time needed to perform one time step that

corresponds to two Runge-Kutta sub-iterations using the code on one processor of the

HPC cluster, andTp the time to perform the same time step by the parallelized code on
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4.4 Parallelization performance

Nprocs T0 [sec] Tp [sec] Sp η [%]
1 90.19 90.19 1 100
2 90.19 45.53 1.98 99.04
4 90.19 23.69 3.81 95.18
8 90.19 13.55 6.66 83.2
16 90.19 9.23 9.77 61.07

Table 4.3: SSD performance on the CINECA cluster.

more than one processor. The speed-up
(
Sp

)
is defined as

Sp = T0/Tp (4.6)

The parallelization efficiency
(
ηp

)
of the algorithm is

ηp = Sp/nprocs (4.7)

The ideal situation corresponds toSp = nprocsfor any number of processors. A super-

linear speed-upSp > nprocscan be achieved by parallelization due to cache aligning.

The speed-up growth is limited by the communication time andby the load balance.

The performance of SSD, described in section2.7 4.2, was tested at the HPC cluster at

CINECA, Bologna, Italy. The performance of RDD was tested ontwo different HPC

clusters at CINECA and at HECToR, Edinburgh, United Kingdom. The results are

documented in tables4.3and4.4.

The values in tables4.3and4.4are obtained with a computational mesh of 1.4 million

cells divided into six zones.

The SDD parallelization performs well up to 8 processors, asshown in the value from

table4.3. The lower parallelization efficiency with 16 processors is due to the overhead

related to the data exchanged versus the data computed by each processor. Essentially,

there are not enoughk-planes to distribute to each processor in the cavity model that

was used to develop the MPI, which used a 1.4 million cells coarse computational

mesh.

Comparing table4.3 with table4.4, the valueT0 is much smaller in the second table.

The scalar code was extensively optimized before the new parallelization strategy was
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4.4 Parallelization performance

CINECA HECToR
Nprocs T0 [sec] Tp [sec] Sp η [%] T0 [sec] Tp [sec] Sp η [%]

1 46.45 46.45 1 100 54.38 54.38 1 100
2 46.45 27.46 1.69 84.58 54.38 29.19 1.863 93.15
6 46.45 10.36 4.48 74.73 54.38 10.11 5.379 89.65
12 46.45 6.22 7.47 62.23 54.38 5.45 9.978 83.15
24 46.45 4.78 9.72 40.49 54.38 3.06 17.77 74.05
36 46.45 4.5 10.32 28.67 54.38 2.24 24.28 67.44
54 — — — — 54.38 1.8 30.21 55.95
72 — — — — 54.38 1.6 33.99 47.21

Table 4.4: RDD performance on CINECA and on HECToR clusters.

implemented. The computational time was reduced by 50% by eliminating recursive

operation and simplifying memory access. The lower time periteration on a scalar

machine at the CINECA cluster can be explained by the aggressive optimization done

by the Intel compiler.

Figures4.3 (a,b) are obtaining using the values from tables4.3 and4.4. These show

that using RDD enables to distribute the computation on a larger number of processors

than with SDD, as stated in section4.3. The code speed-up is close to linear for a

low number of processor using SDD, as shown in figure4.3(a). The efficiency of

SDD rapidly decreases towards zero as the number of processors increases, as shown

in figure 4.3(a). The faster communication system provided by the HECToR cluster

gives a better performance with RDD than the BCX CINECA cluster.

Figure4.3(a)shows that the SDD code on the CINECA cluster scales a little better than

the RDD code for up to 16 processors. The parallelization efficiency advantage is about

10%, as shown in figure4.3(b). This difference is due to the communication overhead

of SDD. This is lower than RDD. The scalability of the code is better on HECToR,

where the minimum bi-section bandwidth is 4.1 TB/s. This allows to absorb the extra

communication overhead of RDD, leading to a more efficient parallel computation on

nprocs> 8. Specifically, by sub-dividing a relatively small probleminto more zones,

the ratio of communication versus computation increases toa level where a further

reduction in computational time by domain sub-division is not achieved.

The relatively small 1.4 million cells size of the problem limited the scalability test

to 72 processors using RDD. RDD is designed for medium and large CFD problems,
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Figure 4.3: Parallelization performance on different HPC clusters.
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4.5 Conclusion

where each processors works on a block of adequate size of 104 to 105 cells. SDD

cannot be tested on a problem larger than 2× 106 cells due to high memory demand

of the DES flow solver, described in paragraph3.4. In the mesh-refined CFD test case,

analysed in paragraph6.4, that consists of 9×106 cells, a minimum of seven zones were

used to satisfy the memory constrain of a single processor. The DES model of a three-

dimensional computation requires a fine mesh in region of separated flow to describe

the small eddies therein. This can be computed only using theRDD implementation.

A low fidelity model, as the one used in this analysis, can givesome information on

trends and mean flow parameters but is not sufficient to describe the small structure

interaction that is typical of turbulent flow simulations. RDD is the only applicable

MPI implementation to solve medium and large CFD problems with the University of

Leicester in-house code.

4.5 Conclusion

The algorithms used to parallelism the flow solver were herein described. The perfor-

mances of the two algorithms shows that the RDD performs better when the number

of processors used in the computation increases. The latteralso advantage from a

decrease in the memory consumption associated with it. Onlya portion of the compu-

tational domain is needed in each processor in this later case.
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Chapter 5

Computational domain

5.1 Introduction

At present a ‘black box’ grid generator able to produce acceptable mesh does not exist

(Löhner, 2001). Commercial grid generators such as GAMBIT, that employ semi-

automatic grid generation, are often used in industrial CFD. The author does not use

such a generator, due to the relatively simple geometry of this study. The major advan-

tage to generate the computational grid with in-house software is the ability to control

the stretching ratio and the mesh skewness. In this chapter,the mesh used in the com-

putation is described in terms of number of cells and computational domain size. The

mesh skewness is also analysed. The flow parameters at the boundary conditions are

given and the non-reflectivity of the boundaries is also studied.

5.2 Euler and DNS

The computational domains used in Euler and DNS simulationsare identical. The aim

of the simulations is to identify the instability mode that drives the cylindrical cavity

flow. Different boundary condition are used in the two simulations. The resulting flow

field is influenced by the introduction of a finite boundary layer thickness in the DNS

as discussed in section6.3.

The computational domain outside the cavity is 18.4L×18.4L×9.6L, as shown in figure

5.1. A large domain of the order of 20L is used to resolve at least one full acoustic
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5.2 Euler and DNS

Y
X

Z

Figure 5.1: Computational mesh.

wavelength of the radiating sound. A preliminary Euler simulation suggested a low

frequency mode instability in the deep cylindrical cavity flow (Grottadaurea & Rona,

2007a). The computational domain is the smallest that allows to separate the radiating

pressure field from the hydrodynamic pressure due to the near-potential flow at the

cavity open end as suggested byColonius & Lele(2004). Specifically, the domain

boundaries are located far enough so that the radiating pressure is dominant across

them.

The computational domain boundaries are chosen so that the spurious waves in the

far-field do not affect the self-sustained instability mechanism in the cavityflow.

The domain is discretized using a topologically orthogonalthree-dimensional(i, j, k)

curvilinear mesh. Curvilinear coordinates are used to mapi and j into the streamwise

directionx and spanwise directiony, where the cells of the central zone are barrelled.
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5.2 Euler and DNS

The cells are elongated along the 45◦ angle to meet rectilinear axes at the computational

domain boundary.

A simple O-type mesh cannot be used to solve the cylindrical cavity flow with a Carte-

sian flow solver without modifications.Shuret al. (2003) used a barrelled zone sur-

rounded by an O-type mesh for a three-dimensional DNS of jet noise. This technique

removes the geometrical singularity of a conventional cylindrical mesh at the origin.

A similar approach is used in this study of the cylindrical cavity.

A constant stretching ratio(r i) is used in the conformal mapping in the radial direction

and in the flow normal direction. A constant spacing is used inthe azimuthal direction

along the cavity walls. In the computational domain,r i ≤ 1.05. The round off error

introduced by a 5% stretching is often acceptable (Löhner, 2001).

100 equi-spaced cells are used around the cavity walls. A wall-normal distance∆z =

2.94× 10−3L is used at the first cell and 12 cells are used within the boundary layer

thickness in the coarse DNS test case, 24 in the refined test case. 44 Cells are used in

the z direction outside the cavity, 37 cells within the cavity in the L/D = 0.71 deep

cavity and 19 cells in theL/D = 2.5 shallow cavity. A mesh refined test case was used

in the shallow cavity test case, with 24 cells within the cavity and 48 cells outside.

Along the radius from the cavity axis, 40 cells are used in both cases. The cells in

the centred barrelled zone are 25× 25. In the flow normal direction, the total number

of cells is varied to investigate the numerical convergenceof the results, as discussed

in section6.3. 13 and 14 cells are used to discretize the inflow boundary layer in the

wall-normal direction atReθ = 10750 andReθ = 8850 respectively. 1.4 million cells

are used in theL/D = 0.71 cavity model and 1.26 million cells in theL/D = 2.5 model

in the first under resolved test case. The 1.4 million cells test case was refined further

to achieve mesh convergence to 2.6 million cells and to 9.2 million cells.

The refined test case in section5.3uses a cell size ofz+ ≈ 30 aty = −2L upstream of

the cavity leading edge. The introduction of the wall function given in section3.4.3

was necessary to achieve an estimate of the friction velocity and boundary layer growth

rate at the cavity leading edge.

In LES simulations, the cell should be ideally of cubic shapeto give∆x ≈ ∆y ≈ ∆z.

The smallest scales of turbulence are modelled by the Smagorinsky constant and the

dissipation at these scales is assumed to be isotropic. The cells in the cavity neighbour-

hood aim to achieve this condition.
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5.2 Euler and DNS

Figure 5.2:k-plane skewness over the cavity open end

A limiting factor in the three-dimensional CFD computations is the cell deformation

produced by the stretching away from the cavity. Highly stretched cells introduce dis-

persion and dissipation errors. Stretching is necessary toresolve the acoustic near-field

using a limited number of cells but this leads to unwanted cell skewness. The cavity

acoustic far-field is where the radiated pressure fluctuations amplitude decays geomet-

rically as I ∝ r−2, wherer is a the radial distance from the noise sources origin and

I the sound wave intensity. The main noise source is often located at the downstream

cavity corner.

The mesh atz ≥ 0 is generated by reproducing the mesh atz = 0. All z ≥ 0 planes

have the same(x, y) coordinates. The cell skewness(γ1) in anyz ≥ 0 plane, shown in

figure5.2, is investigated.

It is defined as

γ1 =
max(‖d1‖, ‖d2‖)
min(‖d1‖, ‖d2‖)

− 1 (5.1)
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5.3 DES

whered1 andd2 are the diagonals of the lower face of computational celli, j, k and are:

d1 = xi+1, j+1−xi, j andd2 = xi, j+1−xi+1, j, wherexi, j, xi+1, j, xi, j+1, xi+1, j+1 are the position

vectors of the face vertices.

The four corners of the central zone, in red in figure5.1, is where the skewness has the

maximum value of 0.42. The numerical instability and the numerical dissipation and

dispersion errors associated to the skewness and the stretching was investigated byYou

et al. (2006). It was found that the skewness increases the numerical instability and

that it is enhanced in highly stretched meshes. The analysisalso suggested that, when

possible the mesh has to be aligned with the flow direction to reduce the numerical

error associated with the angle between the mesh lines and the flow direction. The

maximum value of the skewness found in this mesh is considered acceptable for the

order of accuracy of the scheme used in the simulations. As the skewness is an index of

the local mesh deformation, it is best minimized throughoutthe domain. An advantage

of the generated computational mesh is the modest deformation of the cells around the

perimeter of the cylinder. The skewness at these positions is close to 0, which helps to

resolve the growing shear-layer around the cylindrical wall.

5.3 DES

By domain decomposition, the computational domain of figure5.1 is divided into six

zones. The six zones have a similar number of cells to even outthe computational load

among the processors in the MPI implementation of the code.

Previous numerical investigations of this cylindrical cavity configuration byGrottadau-

rea & Rona(2007a,b) showed that a computational domain of size 13L x 13 L x 9 L

outside the cavity is required to resolve at least one full acoustic wavelength of the

radiating sound. Therefore a domain of 13L x 13 L x 9 L was used.

Given the physical constraint in section2.2, the wall friction velocity is estimated to

givez+ = 1. A thin boundary layer approaches the cavity and it was found that∆z≈ 4.1

µm corresponds to the value atz+ = 1. Bennett(2005) andEl-Dosoky(2009) used a

CFL ≤ 0.4, this value was found to give a numerically stable computation for the

explicit in-house CFD code. To meet this condition, a time step∆t = 3.7 nswould be

necessary. This cannot be used in the simulation, due to the intense computation that

corresponds to such a small time step. A 64 million cells computational mesh would be
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5.3 DES

necessary to achieve a well-resolved LES three dimensionalmodel of the cylindrical

cavity test-case. The introduction of a wall model is therefore necessary to reduce the

computational cells by allowing larger volume cells to be used close to the walls.

The 1.4 million cells, used in theL/D = 0.71 cavity model, and the 1.26 million cells,

used in theL/D = 2.5 model, consisted in 128 cells around the cavity circumference.

The mesh skewness over the cavity opening was investigated and minimized inGrot-

tadaurea & Rona(2007b). The first cell center in the boundary layer corresponds to

z+ = 30 and a wall function is used to impose the no-slip conditionas described in

section3.4.3.

The mesh convergence of theL/D = 0.71 predictions was investigated by running a

2.6 million cells mesh refined test case. 256 equi-spaced points are used around the

cavity circumference in this test case.

The code was run over 72 processors at the supercomputer facilities HECToR and

BCX. HECToR is a 11,328 AMD 2.8 GHz Opteron processors cluster, delivering 59

Tflops at peak, located in Edinburgh, UK. BCX is a 1280 OpteronIBM Quad Core 2.6

GHz processors cluster, located in CINECA, Bologna, IT. It delivers 27 Tflops at peak.

The mesh refined test of 2.6 million cells case was able to resolve a higher instability

mode compared to the coarser 1.4 million cells case. This instability is discussed in the

experimental comparison in section6.7. A third level mesh refinement of 9.2 million

cells was needed to validate this numerical result. This consists of 2.41 million cells

inside the cavity and 6.82 million cells outside the cavity.384 equi-spaced points are

used around the cavity walls. The barrelled zone is 96× 96 cells. 30 cells are used

within the boundary layer thickness in the wall normal direction. 120 cells are used

in the normal direction and 122 cells are used along the 45◦ in the block boundaries

outside the cavity. The computational domain is divided into seven zones in this final

test-case, to allow the variable space that correspond to each zone to fit in the memory

of its designated processor in the computer cluster. This medium size computation

cannot be run in less than seven computers, due to memory restriction. The MPI

implementation is essential in this simulation.

The mesh skewness reduces by 10% with each successive mesh refinement step. The

numerical results are expected to benefit from this progressive reduction in skewness.
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5.4 Free-stream values in the boundary condition

5.4 Free-stream values in the boundary condition

5.4.1 Euler and DNS

In the far-field, two flow states(u∞, p∞,T∞) are used forM∞ = 0.235 andM∞ = 0.3.

These are (102.1, 0, 0)T m/s, 101325 Pa, 298.15 K and (80, 0, 0)T m/s, 101325 Pa and

298.15 K. At the inflow,u = u∞ andρ = ρ∞ = 1.225 kg/m3. At the outflow, the

reference pressure isp = p∞.

The free-stream parameters were chosen in consultation with Airbus France and are

representative of those found in a civil aircraft at landing. The International Standard

Atmospheric (ISA) condition applies to this flow.

5.4.2 DES

Only theL/D = 0.71 deep cavity configuration atM∞ = 0.235 was studied using the

DES scheme. The computational expense limits the total number of possible runs to

only one test for the mesh refined case.

The flow conditions are those of the Euler and DNS tests, selected in consultation

with Airbus France. Parallel wind-tunnel measurements were conducted at the DIMI

wind tunnel for an almost dynamically similar model (Pengyuan & Biondini, 2007;

Verdugoet al., 2009). The limitation in the wind tunnel maximum speed were such

that onlyL/D, L/θ andReL are matched. The experiment were done atM∞ = 0.118

and compressibility effects are neglected in the flow comparison.

The free-stream flow state is



u∞

p∞

T∞

k∞

ω∞



=



(80, 0, 0)Tm/s

101325Pa

298.15K

0.24m2/s2

7255s−1



(5.2)

The inflow turbulent boundary layer profile and the free stream values ofk andω

are detailed in the appendixB. The turbulent boundary layer mean velocity profile is
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5.5 Boundary condition sensitivity analysis

obtained by the formula ofRonaet al. (2009). This formula used explicitly the value

of the friction velocity, the free-stream velocity and the boundary layer thickness as

input to determine the mean velocity profile that is used at the inflow condition. At

the outflow, only the back pressurep = p∞ is imposed under the assumption of a

streamwise zero pressure gradient flow.

5.5 Boundary condition sensitivity analysis

The non-reflective boundary conditions described in sections3.2.3and3.4.3are anal-

ysed. The sensitivity of the numerical solution with respect to these boundary con-

ditions is studied through the near-field sound pressure level (SPL). This is evaluated

using the root mean square pressure fluctuation obtained by averaging 25 frames that

are evenly distributed in time around one characteristic period of the cavity instability.

Figure5.3is obtained using the inviscid flow simulation atM∞ = 0.3 in the deep cavity

test case. This is characterized by a high amplitude pressure fluctuation as discussed

in section6.2.3and reported inGrottadaurea & Rona(2007a). Figure5.3 shows a

monotonic reduction of the SPL from the enclosure towards the computational domain

through-flow boundaries. It indicates that the boundary conditions allow the passage

of the outgoing pressure waves with no appreciable reflection. Minor spurious waves

are found at the domain upper edges, as indicated by the change in the contours shape

from convex to concave close to these edges.

The linear assumption used to obtain the non-reflective the boundary condition can-

not be simultaneously satisfied in the two direction at the edge of the computational

domain. This causes a localized pressure wave reflection towards the computational

domain interior due to the pressure gradient set to zero in one direction. These waves

are of small amplitude compared to the main instability modeand do not greatly af-

fect the numerical solution. Moreover, the mesh is very coarse at the outer domain

boundary. This introduces a locally high numerical dissipation and further reduces the

propagation of these reflected waves in the computational domain. Close to the outer

domain boundaries, the numerical dissipation induced by the mesh coarsening gives a

behaviour similar to the introduction of a sponge zone.
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Figure 5.3: Near-field SPL on they = 0 plane. SPLmin = 60 dB re 20nPa, SPLmax =

200 dB re20µPa, ∆SPL= 5 dB.
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5.6 Summary

5.6 Summary

The meshes used in the numerical model were described in terms of the number of

cells and computational domain sizes. The mesh skewness wasalso analysed and it

was found to benefit to a 10% reduction when a finer mesh is used.The non-reflectivity

of the boundary conditions was studied by evaluating the SPLalong the computational

boundaries. No spurious reflection of significant amplitudewas found in the computa-

tion.
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Chapter 6

Aeroacoustic predictions

6.1 Introduction

This chapter presents time-dependent numerical simulations of the unsteady pressure

near-field of a cylindrical cavity of length and depth ratioL/D = 0.71 andL/D = 2.5,

tested at free-stream Mach numbers 0.235 and 0.3. Simulations are presented from

solving the Euler equations, which gives an inviscid model,and the discretized Navier-

Stokes equations without turbulence modelling, which gives a viscous model that uses

a laminar inflow boundary layer ofReθ = 8424 atM∞ = 0.235 and ofReθ = 11260 at

M∞ = 0.3 for bothL/D test cases. All models use the same computational domain that

extends 8L upstream and downstream of the cavity, 8L either side of the cavity, and

9 L above it. TheCFL number is smaller than 0.3 in all the models and it represents a

very large constraint in the mesh-refined test cases in the viscous flow simulations.

6.2 Inviscid model

At the start of the computation, the flow within the enclosureis at rest while the flow

above it is uniform at the free-stream velocity. The inviscid model uses the mesh

described in section5.2. The inflow conditions(ρ∞, u∞, p∞) are uniform and areρ∞ =

1.225 kg/m3, p∞ = 101325 Pa, andu∞ = (102.1, 0, 0)T m/s at M∞ = 0.3 andu∞ =

(80, 0, 0)T m/s at M∞ = 0.235. A vortex sheet spans across the enclosure opening,

separating the stagnant flow from the free-stream. In practice, the numerical dispersion
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Figure 6.1: Sketch of the cavity flow in the inviscid model.

and dissipation in the flow solver generates numerical viscosity that thickens the vortex

sheet as it stretches above the enclosure. This is sketched in figure6.1. The resulting

inflected velocity profile is similar to that of a shear-layerand grows Kelvin-Helmholtz

type convective instabilities (Bradshawet al., 1960). The interaction of this finite-

thickness vortex sheet with the downstream cavity corner isthe subject of the study in

these simulations, as reported inGrottadaurea & Rona(2007a).
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6.2 Inviscid model

6.2.1 Time-averaged flow

Figures6.2(a)and6.3(a)show the mean streamwise velocity component at the cavity

opening in theL/D = 0.71 andL/D = 2.5 cavities atu∞ = 80 m/s and atu∞ = 100

m/s respectively. Figures6.2(b)-(d) and 6.3(b)-(d) show the streamlines in the two

configurations in the planesy/L = 0, y/L = −0.25 andy/L = 0.25. The averages

are obtained as the algebraic mean of 54 frames and 35 frames respectively over one

characteristic period of cavity oscillation.

The mean streamwise velocity component decreases asymmetrically over the cavity

open end of the deep cavity configuration and its minimum is aty/L = 0.2. Given

the strong asymmetric patten in the enclosure (Grottadaurea & Rona, 2007a), a corre-

sponding strong asymmetry would be expected in the cavity wake region downstream

the cavity trailing edge. This strong asymmetric behaviouris shown in figure6.2(a)

only close to the cavity edge aty > 0. Further downstream, the flow regains the sym-

metry of the free-stream inflow condition. The loss of momentum given by the cavity

reduces the streamwise velocity in the wake region.

The asymmetry in the streamwise velocity component suggests that the flow enters the

cavity only on one side in the region 0< y/L < 0.5 and is ejected from the other

side−0.5 < y/L < 0. This is confirmed by figures6.2(c) and6.2(d), in which the

streamlines are pointing towards the cavity bottom in the planey/L = −0.25 in the

region−0.1 < z/L < 0.1 whereas are pointing upwards in the planey/L = 0.25 in

the same region. The flow separates at the cavity leading edge, forming a vortex sheet

that spans across the region−0.1 < z/L < 0.1. A similar asymmetric recirculation in

a L/D = 2 cylindrical cavity was observed experimentally byHeringet al. (2006) and

by Dybenkoet al. (2006).

The vortex core is located atx/L = 0.1 andz/L = −0.4 in the planey = 0, whereas it

is located atx = 0 andz/L = −0.7 in the planey/L = −0.25. The different locations

of the vortex core indicate that the vortex tube is bent inward and upward in the flow

past the cavity. This effect is mainly due to the effect of the numerical viscosity. The

‘viscous’ layer is characterized by a different thickness over the cavity opening and

therefore the convective velocity is different at differenty = constant planes.

The flow in theL/D = 2.5 cavity is mainly symmetric with respect to the cavity center,

about the spanwise planey = 0, as shown in6.3(a). The flow enters the cavity in the
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6.2 Inviscid model

(a) Mean streamwise velocity component in the
z/L = 1.4 plane. Velocity is given in m/s.

(b) Streamlines in the enclosure in they/L = 0
plane.

(c) Streamlines in the enclosure in they/L =
−0.25 plane.

(d) Streamlines in the enclosure in they/L = 0.25
plane.

Figure 6.2: Asymmetric recirculation from aL/D = 0.71 deep cavity atM∞ = 0.235.
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6.2 Inviscid model

spanwise central area at about−0.2 < y/L < 0.2 and is ejected from the cavity sides

−0.5 < y/L < −0.25 and 0.25 < y/L < 0.5. A higher velocity magnitude is found

in these areas compared to theL/D = 0.71 predictions, as shown by figures6.3(b)to

6.3(d). The streamlines are pointing downwards only in the planey = 0, reducing the

streamwise momentum transport into the cavity and leaving ahigher momentum over-

flow across its open end. In the wake region, the flow is symmetric and accelerates

towards the centreline to balance the conservation of mass.Further above the enclo-

sure, the flow is at constant free-stream velocity. A bound vortex is found inside this

cavity with the core angled at about 45◦ with respect to the streamwise direction. The

bound vortex core is located at(x/L, y/L, z/L) (0.25, 0,−0.1) and (0,±0.25,−0.27).

The numerical predictions indicate that the recirculationpattern inside the enclosure is

similar atM∞ = 0.235 andM∞ = 0.3 and is more dependent upon the cavity geometry.

6.2.2 Aerodynamic instability

Figures6.4(a) and 6.4(b) show instantaneous streamlines and pressure iso-surfaces

in the enclosure in theL/D = 2.5 shallow cavity. The symmetric recirculation is

confirmed also by these instantaneous images at bothM∞ = 0.235 andM∞ = 0.3. The

interaction between the fluctuating vortex sheet predictedby the Euler model and the

cavity trailing edge produces pressure waves as predicted by the aerodynamic noise

generation theory ofPowell (1964). The frequency that characterizes these pressure

waves phase-locks the vortex sheet fluctuation, producing aself-sustained instability.

The numerical predictions suggest that the recirculation pattern inside the enclosure is

independent from the free-stream velocity but it is relatedto the cavity geometry. The

L/D = 2.5 cavity flow is found to have a dominant instability mode atS t = 0.833 at

M∞ = 0.235 and atS t= 1.448 atM∞ = 0.3. The maximum velocity in the upstream

direction inside the enclosure is approximatelyu = −24 m/s at M∞ = 0.235 and

u = −40 m/s at M∞ = 0.3. The near-field pressure fluctuation peak directivity is

shown byGrottadaurea & Rona(2007a) to be 135◦ from the free-stream direction in

the two cases. Figure6.5shows an instantaneous flow visualization of theL/D = 0.71

deep cavity atM∞ = 0.235. Streamlines and pressure iso-surfaces are used to detail

the flow in this configuration. As highlighted in sub-section6.2.1, the flow shows an

asymmetric pattern. The flow enters the cavity at−0.5 < y/L < 0 and it is ejected from
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6.2 Inviscid model

(a) Mean streamwise velocity component in the
z/L = 0.4 plane. Velocity is given in m/s.

(b) Streamlines in the enclosure in they/L = 0
plane.

(c) Streamlines in the enclosure in they/L =
−0.25 plane.

(d) Streamlines in the enclosure in they/L = 0.25
plane.

Figure 6.3: Symmetric recirculation from aL/D = 2.5 shallow cavity atM∞ = 0.3.
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6.2 Inviscid model

(a) Streamlines and pressure iso-surfaces in the
enclosure,L/D = 2.5 andM∞ = 0.235.

(b) Streamlines and pressure iso-surfaces in the
enclosure,L/D = 2.5 andM∞ = 0.3.

Figure 6.4: Symmetric recirculation from aL/D = 2.5 shallow cavity.

the opposite side at 0< y/L < 0.5. The vortex sheet of finite thickness interacts with

the cavity downstream edge producing pressure waves. Theseare shown in figure6.5

by means of pressure iso-surfaces of different level. The alternating mass injection and

ejection either side locates the noise sources asymmetrically on either side of they = 0

mid-span plane. TheL/D = 0.71 cavity flow is found to have a dominant instability

mode atS t= 0.5295 atM∞ = 0.235 and atS t = 0.491 atM∞ = 0.3. The maximum

convective velocity above the bottom wall of the enclosure is approximatelyu = −50

m/s at M∞ = 0.235 andu = −63 m/s atM∞ = 0.3.

Rona(2007) proposed an analytical model of the different acoustic resonant modes

in a cylindrical cavity of infinite depth. He found both symmetric and asymmetric

cavity modes. The present simulations show that the geometry triggers the selection of

different instability modes as the diameter to depth ratio changes.

6.2.3 Radiating pressure near-field

The near-field Sound Pressure Level (SPL) from a shallow cavity configuration is char-

acterized by a low-amplitude pressure fluctuation as shown in figure6.6. SPL = 87

dB re 20µPa is predicted atx = (0, 0, 8L) at M∞ = 0.3 and SPL= 86 dB re 20µPa is

predicted atx = (0, 0, 8L) at M∞ = 0.235. Comparing figure6.6(a)and figure6.6(b),

the near-field SPL iso-contours have a different shape. The SPL has been evaluated

using 43 frames atM∞ = 0.235 and 31 framesM∞ = 0.3 over one period of oscillation
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6.2 Inviscid model

Figure 6.5: Asymmetric recirculation from a deep cavity configuration. Streamlines
and pressure iso-surfaces in the enclosure.L/D = 0.71 andM∞ = 0.235. Instantaneous
inviscid numerical prediction.
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6.2 Inviscid model

Y X

Z

87.5 dB

85 dB
87.5 dB

92.5 dB
97.5 dB

100 dB

(a) Near-field SPL iso-contours on they = 0 plane.M∞ = 0.235.
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(b) Near-field SPL iso-contours on they = 0 plane.M∞ = 0.3.

Figure 6.6: Predicted near-field SPL from aL/D = 2.5 shallow cavity configuration.
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6.3 Low Reynolds number model

in the acoustic near-field. Comparing figure6.7(a)and figure6.7(b), the SPL iso-

contours in acoustic near-field are similar. The amplitude of the pressure fluctuation

decreases monotonically towards the domain boundaries, without appreciable reflec-

tion, showing the good performance of the non-reflective boundary conditions used

in the simulation. The SPL maxima are higher compared to those from the shallow

cavity, suggesting that the azimuthal instability enhances the amplitude of the pressure

fluctuations.

The numerical model predicts that the mass ejections alternate either side of the cavity

trailing edge with respect to the streamwise direction, as shown in figure6.5. This

results in that, during each mass ejection event, mass is ejected from only one side of

the cavity. The higher pressure peak, characterizing this instability, could be related to

the more localized interaction between the vortex sheet andthe the cavity trailing edge

lip.

6.3 Low Reynolds number model

The cylindrical cavity flow that models an aircraft fuel ventat full-scale is character-

ized by a thin fully developed turbulent boundary layer approaching the enclosure. A

preliminary analysis of the effects of the inflow boundary layer momentum thickness

and boundary layer growth rate on the unsteady flow is performed by Direct Numerical

Simulation (DNS) of a model cavity with a laminar inflow boundary layer of the same

momentum thickness as the full-scale model. The results aregiven in non-dimensional

form as inGrottadaurea & Rona(2007b).

Four simulations model two cavities of aspect ratioL/D = 0.71 andL/D = 2.5 at two

free-stream Mach numbersM∞ = 0.235 andM∞ = 0.3. The approaching boundary

layer hasL/θ = 65 at M∞ = 0.3 andL/θ = 62 at M∞ = 0.235. The computational

domain of section6.2 is used that extends 8L, 8L, 9L in the streamwise, spanwise

and flow-normal directions above the cavity. The mesh is detailed in chapter5.2. At

the solid walls, the no-slip boundary condition described in section3.3.3is used. The

inflow boundary condition is given in appendixA. A non-reflective boundary condition

is applied to the remaining boundaries, where the exterior domain reference flow state

is changed to match the free-stream Mach number. The flow is let to develop from
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6.3 Low Reynolds number model

(a) Near-field SPL iso-contours on they = 0 plane.M∞ = 0.235.

(b) Near-field SPL iso-contours on they = 0 plane.M∞ = 0.3.

Figure 6.7: Predicted near-field SPL from aL/D = 0.71 deep cavity configuration.
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6.3 Low Reynolds number model

the inviscid flow prediction given in section6.2, as this is a good match in the free-

stream, along the non-reflecting boundaries. The simulations were performed on the

University of Leicester Newton cluster on one 2.2 GHz AMD Opteron processor. This

small simulation did not require the MPI parallelization but took over one month to

achieve a statistically steady state.

6.3.1 Time-averaged flow

Figures6.8(a)-(d) and6.9(a)-(d) show the normalized mean streamwise velocity com-

ponent of theL/D = 0.71 deep cavity configuration atM∞ = 0.235 andM∞ = 0.3

respectively. The cavity diameter to boundary layer thickness ratio in the two test

cases at the cavity leading edge isL/θ = 65 andL/θ = 62 respectively. A symmetric

recirculation is predicted atM∞ = 0.235. A bound vortex inside the enclosure makes

up the main recirculation. This is centred at (x/L, z/L) = (0,−1.15) at the cavity

mid-spany = 0 and its core bends slightly towards the cavity bottom in thespanwise

direction, reaching (x/L, z/L) = (0,−1.2) in the planesy/L = ±0.25. A secondary re-

circulation is found at the cavity trailing edge, whereu/u∞ = 0.2. In figures6.8(a)and

6.9(a), the flow accelerates in they = 0 plane towards the center as the flow reaches

the cavity opening. This flow velocity is caused by the secondary recirculation that

leads the flow upwards and towards the center, accelerating it like in a nozzle. The

streamwise velocity iso-contours appear to be discontinuous along 45◦ lines stemming

from the cavity perimeter. This is a numerical artefact of the interpolation used in the

post-processing software package Tecplot. The package interpolates the cell-averaged

input flow state on a vertex centred mesh. At the internal boundaries, a zero-order

interpolation from the domain interior results in a discontinuous velocity field across

interior domain boundaries, whereas the cell-averaged flowstate across these bound-

aries was verified to be continuous. Figure6.9(a)clearly shows the asymmetric shape

of the flow recirculation within the enclosure. The flow is ejected in the positive span-

wise direction from they ≥ 0 side of the opening, whereas it flows into the cavity from

the opposite side. The velocity maximum atM∞ = 0.3 is higher than in figure6.8(a)

at M∞ = 0.235 and the ejection is constrained to a smaller area. The corresponding

cavity wake is asymmetric, featuring two streamwise velocity local maxima and a local

minimum as it develops downstream.
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(d) Streamlines in the enclosure in they/L = 0.25
plane.

Figure 6.8: Symmetric recirculation from aL/D = 0.71 deep cavity atM∞ = 0.235.
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plane.

Figure 6.9: Asymmetric recirculation from aL/D = 0.71 deep cavity atM∞ = 0.3.
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6.3 Low Reynolds number model
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(a) 0.31 million cells baseline mesh.
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(b) 50% refined mesh in the cavity.

Figure 6.10: Dimensionlessρ/ρ∞ iso-contours on they = 0 plane.

Figures6.9(b) to 6.9(d)show how the main recirculation is oriented in the spanwise

direction. This is centred respectively at (x/L, y/L, z/L) = (−0.055,−0.25,−0.65), at

(x/L, y/L, z/L) = (0, 0,−1) and at (x/L, y/L, z/L) = (0.2, 0.25,−0.2).

The L/D = 2.5 shallow cavity predictions are shown in figures6.10(a)and6.10(b).

The flow model predicts a steady flow solution, indicating that the laminar cavity is

behaving as a lightly damped system at these conditions. Thetime averaged solu-

tion coincides with that in figure6.10(a). A mesh refinement of 50% was used to

check whether the steady flow was the result of the mesh-related numerical viscos-

ity, since the Euler model (Grottadaurea & Rona, 2007a) of the same cavity predicts

a self-sustained instability. Although the refined mesh simulation better resolves the

symmetric recirculation within the cavity, it also gives a steady flow, as shown in figure

6.10(b).

6.3.2 Aerodynamic instability

In the Euler simulation, it was found thatL/D influences the development of the un-

steady vortex structure within the cavity. This is also the case for the laminar simula-

tion. Figures6.11(a)and6.11(b)show the colour iso-levels of the predicted instanta-

neous pressure coefficient (Cp) from the laminar cavity model withL/D = 0.71, during
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6.3 Low Reynolds number model

the mass ejection sequence. Figures6.11(c)and6.11(d)shows the same levels during

the mass injection sequence. The prediction is characterized by an asymmetric vortex

structure with respect to they = 0 plane, as shown by the different streamwise posi-

tions of theCp maximum along the cavity shear layer in figures6.11(a)and6.11(b).

Vortices alternatively impinge on the cavity rear edge to the left and to the right of the

y = 0 plane, producing a three-dimensional mass impingement and ejection sequence.

Their interaction with the solid edge produces pressure waves. An asymmetric vortex

structure has been found byHeringet al. (2006) and byDybenkoet al. (2006) in their

experimental work on aL/D = 2 incompressible cylindrical cavity flow atM∞ = 0.08.

As the shear layer thickens across the cavity opening, shownin figure6.12, its interac-

tion with the cavity trailing edge is weaker with respect to the vortex-edge interaction

in the Euler model (Grottadaurea & Rona, 2007a). In the laminar simulations, the SPL

at (x, y, z) = (0.5L, 0, 8L) is reduced by 3 dB forL/θ = 65 and by 22 dB forL/θ = 62

with respect to the Euler model predictions.

6.3.3 Radiating pressure near-field

In the laminar simulations, the shallow cavity does not display a self-sustained instabil-

ity. Therefore, a steady-state near field pressure amplitude could not be determined, as

the pressure fluctuations are characterized by a small amplitude that is quickly damped

by the numerical scheme.

The SPL is evaluated only in the deep cavity configuration atM∞ = 0.235 and at

M∞ = 0.3. Figures6.13(a)and6.13(b)show the SPL of theL/D = 0.71 deep cav-

ity configuration in the streamwise planey = 0 and in the spanwise planex = 0

at M∞ = 0.235. Figures6.14(a)and6.14(b)show the corresponding predictions at

M∞ = 0.3. The near field pressure fluctuations are characterized by adirectivity peak

(ψ = 60◦, φ = 0◦) in the streamwise planey = 0, as shown in figure6.13(a). The radi-

ating pressure field is symmetric in the spanwise direction,as shown in figure6.13(b).

The noise sources are mainly located at the downstream cavity corner, where the SPL

seems to convergence towards, as shown in figures6.13(a)and6.14(a). The pressure

fluctuation intensity quickly drop by 50 dB as found by comparing the SPL at a dis-

tance ofz/L = 5.5 from the cavity downstream edge to the SPL atz/L = 1.4. This
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(d) Cp on they = 0.3L plane. Cpmax = 0.02
andCpmin = −0.156.

Figure 6.11: Pressure coefficient during mass ejection and injection.L/D = 0.71 deep
cavity whereL/θ = 65 andM∞ = 0.235.Cp= (p− p∞)/(0.5ρu2

∞).
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Figure 6.12: Dimensionless streamwise velocity on they = 0 plane.
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Figure 6.13: SPL in theL/D = 0.71, L/θ = 65 cavity atM∞ = 0.235. Low Reynolds
number model.
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Figure 6.14: SPL in theL/D = 0.71, L/θ = 65 cavity atM∞ = 0.3. Low Reynolds
number model.

high reduction is probably not only acoustic in nature but also affected by the hydrody-

namic field that surrounds the cavity neighbourhood. The SPLis computed using the

root mean square of the pressure fluctuation and hydrodynamic and acoustic pressure

are not distinguished in the cavity near-field.

The symmetric directivity of the radiated noise suggests that the mass impingement

and ejection of flow to the cavity trailing edge is essentially symmetric either side the

y = 0 plane. This produces a symmetric distribution of the noisesources at the cavity

edge that is responsible for the symmetric far-field noise. Asimilar reduction in the

near-field SPL is found atM∞ = 0.3 in figures6.14(a)and6.14(b). The cavity near-

field directivity pattern is not affected by the higher velocity and smaller momentum

thickness, whereas the radiating pressure intensity is much smaller at the lower speed.

To a thicker boundary layer corresponds a reduction in the radiated noise. This was

also proven experimentally in a rectangular cavity.Vakili & Gauthier (1991) used

mass-injection upstream of aM∞ = 1.8 rectangular cavity to control the shear flow

across the cavity to reduce or eliminate cavity oscillations. They observed a significant

attenuation in the cavity oscillations by upstream mass-injection. The thickening of the

cavity shear layer alters its stability characteristics such that its preferred vortex roll-

up frequency falls outside of the natural mode frequency range of the cavity.Lamp &

Chokani(1999) used either steady blowing or oscillatory blowing with a zero net mass
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6.4 Detached Eddy Simulation model

flux and achieved a 10 dB reduction of the amplitude of the dominant resonant mode.

These results suggest that a passive control strategy for a cylindrical cavity can be

developed based on the introduction of steady vertical blowing around the cavity cir-

cumference.

6.4 Detached Eddy Simulation model

Detached Eddy Simulation (DES) is used to model aL/D = 0.71 and aL/D = 2.5

cylindrical cavity atReL = 548000. The computational domain extends 7L, 7L and

8L in the streamwise, spanwise and flow-normal directions respectively. The mesh is

detailed in section5.3. TheL/D = 0.71 geometry is studied in detail and three different

mesh refinement levels were tested, 1.4, 2.6 and 9.2 million cells.

The inflow is a thin turbulent boundary layer atReθ = 8800. The inflow is modelled

using the analytical law of the wake byRonaet al.(2009). The profile of the turbulent

kinetic energy is obtained using the non-dimensional formula by Marusic & Kunkel

(2003) and the density correction at constant pressure is obtained following White

(1991). Further details on how the inflow profile is generated are given in appendix

B. At the start of the computation, the flow in the computational domain interior is

primed with the low Reynolds number solution from section6.3, to reduce the compu-

tational time required to develop a statistically stationary DES prediction with respect

to a zero-flow initial condition. The DES computation is thentime-marched to allow

the turbulent inflow boundary layer to flow across the domain,pushing the laminar

boundary layer from the low Reynolds number prediction downstream and out of the

computational domain, through the computational domain outflow boundary. Given

theCFL constrain and the large number of cells, all turbulent simulations were per-

formed using multi-processor clusters, except the small 1.4 million cells simulation.

This was used as the baseline to test the parallelization performance. Simulations us-

ing the 2.6 million cell mesh were run at CINECA and on HECToR cluster at HPCx,

Edinburgh. The 9.2 million cells model was run on HECToR to a statistically steady

state. The mean flow analysis and spectra were obtained for the same simulation at

CASPUR. Preliminary result were presented byGrottadaurea & Rona(2008b) of the

L/D = 0.71 deep cavity and theL/D = 2.5 shallow cavity configurations. A cavity of
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6.5 Mean flow description

Figure 6.15:L/D = 0.71 deep cavity withReL = 548000 andM∞ = 0.235. −6.9 <

x/L < 4.5 portion of the computational domain.p − p∞ is shown and is given in Pa.
Dashed lines are used in they = 0 plane and solid lines are used in they/L = 6.9 plane.
The contour spacing is∆p = 10 Pa.

the same aspect ratio andReL = 548000 has been tested atM∞ = 0.1175 byVerdugo

et al. (2009).

6.5 Mean flow description

Figure6.15shows the mean dynamic pressurep− p∞ iso-contours in theL/D = 0.71

deep cavity in the−6.9 < x/L < 4.5 portion of the computational domain at they = 0

and y/L = 6.9 planes. Dashed line are used in they = 0 plane and solid line are

used in they/L = 6.9 plane. The flow is characterized by a pressure difference of

88 Pa in the computational domain that is given by the pressure drops at the solid

wall. They = 0 plane is characterized by pressure spots downstream the cavity trailing

edge that convect downstream, exiting the computational domain. Those are convected

downstream and exit the computational domain. The cavity also influence the pressure

distribution upstream, as expected in subsonic flow.
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6.5 Mean flow description

Figure6.16shows the mean normalized velocity iso-contours in theL/D = 0.71 deep

cavity in the−6.5 < x/L < 4.5 portion of the computational domain at they = 0

andy/L = 6.9 planes. The region upstream of the cavity−5 < x/L < 0 is shown

in figure 6.17. Dashed line are used in they = 0 plane and solid line are used in

the y/L = 6.9 plane. The velocity vector in they/L = 6.9 are also shown to better

render the boundary layer growth in this figure. The presenceof the cavity affects the

inflow boundary layer velocity profile with respect to the freely developing turbulent

boundary layer aty/L = 6.9. The velocity close to the wall is lower than the theoretical

zero pressure gradient turbulent boundary layer profile in the planey = 0. Only at the

edge of the boundary layer, whereu ≈ u∞, the wake region of the turbulent boundary

layer profile is recovered. This gives a higher approaching boundary layer momentum

thickness ofL/θ = 32 as compared to the target valueL/θ = 64.

This change in the turbulent boundary layer is unlikely to determine the staging to a

different instability mode with respect to the full-scale airframe cavity but it affects the

intensity of the tonal noise radiation.

The cavity is affecting the boundary layer growth rate as clearly shown is figure 6.17,

where in the region−0.5 < x/L < 0 suddenly the boundary layer growth increases.

The increase in the growth rate influences the boundary layerfurther upstream in the

region−4 < x/L < −0.5 to give an approaching momentum thickness larger than the

one from a zero pressure gradient boundary layer over a solidwall without cavity of

the same length. At the domain boundary, the cavity does not affect the boundary layer

growth and therefore the boundary layer growth is recovered.

Downstream the cavity rounded edge,x/L > 0.5, the boundary layer shows two local

maxima whereu/u∞ = 1 in the region 0.5 < x/L < 0.7. This area corresponds to the

recirculation bubble downstream of the cavity corner, where the primary and secondary

vortices interact.

Figure6.18shows a simple sketch of the cavity mean flow. A non-uniform shear layer

spans the cavity leading edge. The cylindrical shape of the edge is such that the flow at

the cavity mid plane is convected at a slower velocity with respect to the one moving

over the sides of the cavity. At the cavity trailing edge, theflow is therefore faster at

the cavity sides and slower at the cavity center. This occursacross the cavity span,

downstream of the leading edge, atx/L > −0.5. Over the range−0.5 < x/L < 0,
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Figure 6.16: L/D = 0.71 deep cavity withReL = 548000 andM∞ = 0.235.
−6.5 < x/L < 4.5 portion of the computational domain. Normalized mean veloc-
ity iso-contours. Dashed lines are used in they = 0 plane and solid lines are used in
they/L = 6.9 plane. The contour spacing is∆u/u∞ = 0.1.
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Figure 6.17: L/D = 0.71 deep cavity withReL = 548000 andM∞ = 0.235.
−5 < x/L < 0 portion of the computational domain.. Normalized mean velocity
iso-contours. Dashed lines are used in they = 0 plane and solid lines are used in
the y/L = 6.9 plane. The contour spacing is∆u/u∞ = 0.1. Velocity vectors in the
y/L = 6.9 plane are shown at a constant∆x/L = 0.5
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N

z

x

y

Figure 6.18: Cylindrical cavity sketch. Green streamlinesare used in the shear-layer.
The secondary recirculation is highlighted using red linesand the primary recircula-
tion is highlighted using blue lines. The incoming turbulent boundary layer and the
recirculation in the enclosure are identified with black lines.
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6.5 Mean flow description

the growing shear layer in the mean flow across the cavity opening results in a time-

averaged mass injection in the enclosure. Downstream ofx/L = 0, mass ejection takes

place to balance the mass injected over the forward half of the opening.

During mass injection, the centreline flow subsides into theenclosure while the faster

side flow moves more tangential to the horizontal surface. Downstream ofx/L = 0,

the mass ejection from the cavity is pushed towards the cavity mid-plane upward. This

can be explained by the principle of conservation of momentum. Specifically, the flow

at cavity edges is faster as compared to that at the cavity center, therefore it accelerates

towards the cavity mid-plane.

As the flow accelerates towards the cavity mid-plane, like ina convergent nozzle, the

flow to the sides of it needs to expand to balance the mass flow rate. This expansion

coincides with the formation of two primary vortices at the plane x/L = 0.55. The

cores of the two primary counter-rotating vortices are pushed upwards by the nearby

mass ejection. The trajectory of the vortex cores in the downstream portion of the

cavity are highlighted in blue in figures6.18and6.19.

Downstream ofx/L = 0, there is a small flow spill outwards from the sides of the

cavity, along the cavity curve edges. This ejection cannot follow the shape of the sharp

90 degrees cavity lip, therefore it separates at the lip line, forming the two secondary

recirculations, shown in figures6.18and6.19. These first appear in the predictions

at the planex/L = 0.22 as two counter-rotating secondary vortices. These secondary

recirculations are then convected upwards by the induced velocity of the primary vor-

tices and meet at the planex/L = 0.73. The two vortices cancel one another and are not

detected in the planes 0.73 < x/L < 1 further downstream. As a result of the primary

recirculation, the cavity wake flow is characterized by three zones of low streamwise

momentum, which are along the cavity mid-plane and aty/L = ±0.45 either side of

it, as shown in figure6.19. Figure6.20shows the time averaged velocity streamlines

in the five spanwise planesx/L = (0, 0.375, 0.5, 0.65, 1). Figure6.21shows velocity

streamlines in the five streamwise planesy/L = (0,±0.25,±0.5) and on the horizontal

planez/L = 0.144.

In figures6.20(a)-(e), the streamlines are pointing upwards as the time-averagedflow-

normal velocity componentw is positive, due to the conservation of mass in the stream-

wise direction. The predicted in-plane velocity streamlines atx/L = (0, 0.375, 0.5, 0.65, 1)
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Y

Z

Figure 6.19: Cylindrical cavity mean field and vortex structure evolution.
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Figure 6.20: Streamlines and velocity vectors on spanwise planes. Only one vector
every ten is shown for clarity.
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6.5 Mean flow description

x1 x2

x/L y/L z/L y/L y/L
0.556 0.311 1.430 -0.314 1.430
0.633 0.295 1.437 -0.310 1.439
0.667 0.304 1.442 -0.310 1.442
0.7 0.309 1.442 -0.319 1.444

0.733 0.357 1.439 -0.343 1.446
0.767 0.437 1.448 -0.418 1.448
0.9 0.530 1.457 -0.544 1.467
1 0.607 1.467 -0.610 1.464

Table 6.1: Primary vortex core locations.L/D = 0.71 deep cavity atM∞ = 0.235 and
L/θ = 32.

in figure6.19indicate the presence of two essentially symmetric counter-rotating pri-

mary vortices either side of they = 0 cavity centreline. These are centred at(y/L, z/L)

= (±0.45,±0.033) in the planex/L = 0.22. The vortex cores rise above the cavity and

spread away from one another downstream, as these primary vortices grow in size, as

diagrammatically shown in figure6.18. This results in the vortex cores being centred at

(y/L, z/L) = (±, 0.45± 0.025) in the planex/L = 0.375, at(y/L, z/L) = (±0.45,±0.025)

in the planex/L = 0.5, (y/L, z/L) = (±0.45,±0.055) in the planex/L = 0.65 and at

(y/L, z/L) = (±0.65,±0.055) in the planex/L = 1.

At x/L = 0.65, figure6.20(d), two additional secondary vortices are shown external to

the counter-rotating primary vortex pair, centred at(y/L, z/L) = (±0.25,±0.15). The

position vectorsx1 andx2 of each vortex core on different spanwise planes are listed in

tables6.1and6.2. These tables summarize the positions of the primary and secondary

vortex cores and how these vary in the downstream direction.Figure6.19 explains

how the two vortex pairs interact and how the flow is shaped over the cavity opening

and downstream of the cavity edge. Figure6.19shows the roll-up of the two primary

vortices at the planex/L = 0, about a tenth of a diameter inbound from the cavity edge,

where the streamlines converge to a point. Inside the enclosure, a main recirculation

is present, as suggested by the confluence of downward streamlines on the rear cavity

wall in figure6.19. The vortex core of the main recirculation is found at(x/L, z/L) =

(−0.2,−0.5) inside the cavity. The vortex cores of the two secondary vortices are first

detected downstream of the cavity center at(x/L, z/L) = (0.6, 0.055). These are then
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(a) y = 0 plane. (b) y/L = −0.25 plane.

(c) y/L = 0.25 plane.
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(d) z/L = 0.0002 plane.

Figure 6.21: Streamlines and velocity vectors on spanwise planes. Streamlines and
velocity magnitude iso-levels from the plane above the enclosure in thez/L = 0.0002
plane. Only one vector every ten is shown for clarity. A threshold on the velocity
magnitude is applied,u/u∞ > 0.5 is not shown.
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6.5 Mean flow description

x1 x2

x/L y/L z/L y/L y/L
0.222 0.463 1.433 -0.458 1.433
0.333 0.435 1.448 -0.436 1.451
0.444 0.428 1.480 -0.451 1.489
0.556 0.406 1.518 -0.418 1.523
0.633 0.271 1.532 -0.323 1.527
0.667 0.205 1.541 -0.272 1.530
0.7 0.134 1.566 -0.078 1.561

0.733 0.066 1.575 -0.023 1.575

Table 6.2: Secondary vortex core locations.L/D = 0.71 deep cavity atM∞ = 0.235
andL/θ = 32.

shown moving inbound towards they = 0 cavity mid-span plane downstream of the

cavity trailing edge.

6.5.1 Aerodynamic instability

From the starting flow condition detailed in section6.4, the simulation is time-marched

to 26L/u∞ to allow a self-sustained cavity flow instability to develop. A fully devel-

oped instability is characterized by a statistically stationary flow. This condition is

reached at 22.4L/u∞, as indicated by the predicted wall pressure history of figure6.22,

where the predicted wall pressure oscillation over the period 7≤ tu∞/L ≤ 12 closely

matches the oscillation over the subsequent period 16.5 ≤ tu∞/L ≤ 21.5, as shown

in figure 6.22(b). Figure6.22(a)shows that the cavity wall pressure fluctuation is a

convolution of two main modes, a dominant instability mode and a lower frequency

and lower amplitude mode. In figure6.22(b), the two modes have been separated using

a low-pass and a band-pass filter, respectively. The dash-dotted line displays the low

frequency low intensity mode. The higher amplitude mode, shown by the solid line, is

the main instability mode atS t= 0.512 that is within 12 % of the first mode predicted

by the modified Rossiter equation ofBlock (1976) and within 15 % of the acoustic

resonant mode of a flanged pipe (Rayleigh, 1894). The sequence of figures6.23(a)-

(d) shows four snapshots of the flow in the enclosure and immediate surroundings. A

small portion of the full computational domain(±0.6L,±0.6L, L) is visualized near the
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Figure 6.22: Wall pressure probe located at (x/L, y/L, z/L) = (0.5, 0, 0.7), pressure is
normalized byρ∞u2

∞ and the time byL/u∞. L/D = 0.71 cavity atM∞ = 0.235 and
L/θ = 32.

cavity. The four snapshots are a time sequence that shows theinteraction of convected

vorticity at the top of the enclosure with the cavity downstream edge. The interaction

takes place over a periodT = 0.7745L/u∞. The unsteady recirculation pattern in each

snapshot is visualized by the tracing of streamlines in the Favre averaged velocity field.

The L/D = 2.5 shallow cavity is characterized by a large recirculation in the enclo-

sure. A shear layer spans across the cavity opening. In the shear flow, the streamlines

identify the presence of a downstream convecting vortex, which is shown in figure

6.23(b)centred atx = 0.35L andz = 0.875D. The convecting vortex size is smaller

with respect to the main recirculation inside the enclosure, centred at aboutx = 0.23L

and z = 0.5D. As it approaches the downstream wall in figure6.23(b), the vortex

strength appears to increase, as indicated by the packing ofthe streamlines. The inter-

action of the convected vortex with the cavity trailing edgeproduces pressure waves

(Powell, 1964) that radiate to the far-field, where they are perceived as aerodynamic

noise. TheL/D = 2.5 shallow cavity flow is found to have a dominant instability

mode atS t = 1.332 atM∞ = 0.235. The maximum reverse flow velocity inside the

enclosure isu = −37 m/s. The sequence of figures6.24(a)-(d) shows short-time av-

eraged flow snapshots from theL/D = 0.713 deep cavity simulation atM∞ = 0.235,

taken at increasing computational time. The velocity field is visualized by the tracing
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Figure 6.23: Streamlines in the short-time averaged velocity field. y = 0 plane,L/D =
2.5 shallow cavity atM∞ = 0.235 andL/θ = 32.

107

Chapter3/Chapter3Figs/8025/streamline8025_3.eps
Chapter3/Chapter3Figs/8025/streamline8025_4.eps
Chapter3/Chapter3Figs/8025/streamline8025_1.eps
Chapter3/Chapter3Figs/8025/streamline8025_2.eps
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of streamlines in the Favre averaged flow. The four snapshotsshow a time-dependent

vortex structure. The vortex structure evolves over a much longer periodT = 1.853

in the L/D = 0.713 deep cavity with respect to theL/D = 2.5 shallow cavity. Two

additional smaller recirculation zones are identified at the bottom cavity corner and

just under the leading edge of the cavity, where the upstreamboundary layer separates,

as shown in figure6.23(a). The dominant instability mode corresponds toS t= 0.539

in theL/D = 0.71 cavity atM∞ = 0.235. The maximum reverse flow velocity inside

the enclosure is approximatelyu1 = −51 m/s. A similar instability to the inviscid one

(Grottadaurea & Rona, 2007a) is predicted by this model. The Euler model gave a

main instability mode that corresponds toS t = 0.53. This suggest that the dominant

cavity flow instability is convective and inviscid in nature.

Figures6.25(a)-(d) show short-time averaged snapshots of theL/D = 0.713 deep cav-

ity simulation atM∞ = 0.235, modelled using a computational mesh of 9.2 million

cells. This is a finer mesh compared to the 2.6 million cell grid used to obtain figures

6.24(a)-(d). Four snapshots are shown in figure6.25, which are evenly distributed in

time over one cavity instability characteristic periodT. In this refined mesh model,

the mean flow is symmetric about the cavity mid-span. Figure6.25displays the time-

evolving flow on this plane of symmetryy = 0. Similarities with two-dimensional

simulations of rectangular cavities byColoniuset al. (1999), by Rowleyet al. (2002),

and byYao et al. (2004) are identified in this figures. In particular, in figure6.25(a)

two small vortex structures are identified in the shear layerspanning across the cavity

open end. Figure6.25(a)shows one vortex rolling-up at the cavity leading edge while

the other one is impinging at the cavity trailing edge. The vortex structures are three-

dimensional in nature and behaviour and their interaction with the main recirculation

inside the cavity appears to be weak att = 1/5T. This interaction strengthens later in

the main instability mode periodT, as shown in figures6.25(b)to 6.25(d), where the

vortex structure shed from the leading edge is convected downstream while it interacts

with the main recirculation. Small vortices are found at thecavity upstream bottom

corner, close to the floor. These result from the flow separation induced by the main

recirculation. This pushes the flow upstream along the cavity floor and then upwards

along the cavity upstream wall. This motion segregates a small recirculating flow re-

gion at the upstream bottom corner. As the upstream moving flow separates from the

cavity floor, vortex structures are created that convect upwards and along the cavity
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Figure 6.24: Streamlines in the short-time averaged velocity field. y = 0 plane,L/D =
0.713 deep cavity atM∞ = 0.235 andL/θ = 32. 2.6 million cells medium mesh.
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span, with either a positive or a negative spanwise convection speed. Figure6.25(d)

shows a small vortex located at(x/L, z/L) = (0.55, 1.45). The flow separates as it is

ejected from the cavity opening, due to the local adverse pressure gradient. The shear-

ing of the ejected vortex over the downstream cavity lip generates aerodynamic noise,

according to the theory ofPowell(1964). The flow then reattaches downstream of the

cavity, as shown in figures6.25(b)to 6.25(d).

The flow pattern from the 9.2 million cells model, shown in figures 6.25(a)-(d), is

similar to the one obtained from the 2.6 million cells simulation, in figures6.24(a)-(d).

The 9.2 million cells refined mesh better resolves the small vortical structures across

the cavity opening and near the cavity floor. It allows to observe vortex shearing over

the cavity rear edge, showing the physical process of aerodynamic noise generation in

the cavity through the theory ofPowell(1964).

6.5.2 Radiating pressure near-field

Figures6.26(a)-(d) and 6.27(a)-(d) show the near-field pressure fluctuations in the

L/D = 2.5 shallow cavity and in theL/D = 0.713 deep cavity, respectively. In fig-

ures6.26(a)-(d) and6.27(a)-(d) only a portion of the computational domain of extent

(±7L,±7L, 9L) is shown. Outside this area, the pressure waves are damped bythe

rapid mesh stretching. Contours of static pressure fluctuation, p′ = p− p∞ are shown

by ten solid lines(p′ ≥ 0) and nine dashed lines(p′ < 0). The contour spacing∆p′ = 2

Pa in theL/D = 2.5 shallow cavity and∆p = 5 Pa in theL/D = 0.713 deep cavity. In

figures6.26(a)and6.27(a), the largest amplitude time-dependent pressure fluctuation

is shown inside the enclosure and just above the downstream bulkhead. These fluctua-

tions are hydrodynamic in nature and are associated to the generation of vorticity in the

shear layer spanning the cavity opening. This vorticity is injected and ejected alterna-

tively at the cavity trailing edge and the ejected structures convect over the downstream

bulkhead. The pressure fluctuation associated to these vorticity clusters is shown by

small clusters of packed contour lines in figures6.26(a)and6.27(a)along the cavity

rear bulkhead. The region where hydrodynamic pressure fluctuations are dominant is

highlighted in figures6.26(a)and6.27(a)by a dashed line rectangle.

Outside this region, the contours of pressure fluctuation show larger structures. The

time sequence of figures6.26(a)-(d) and6.27(a)-(d) shows these structures radiating
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(a) 1/5T (b) 2/5T

(c) 3/5T (d) 4/5T

Figure 6.25: Streamlines in the short-time averaged velocity field. y = 0 plane,L/D =
0.713 deep cavity atM∞ = 0.235 andL/θ = 32. 9.2 million cells fine mesh.
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Figure 6.26: Pressure fluctuation iso-contours in Pa.y = 0 plane,L/D = 2.5 shallow
cavity atM∞ = 0.235 andL/θ = 32.
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Figure 6.27: Pressure fluctuations iso-contours in Pa.y = 0 plane,L/D = 0.713 deep
cavity atM∞ = 0.235 andL/θ = 32.
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6.5 Mean flow description

away from the enclosure. The fluctuations of pressure in thisarea are due to the cavity

acoustic radiation and the contours here describe the acoustic near-field. In figure

6.26(a), an acoustic wave-front is shown propagating in the upstream direction. The

position of this wave-front is marked by a continuous thick arc. This suggests that, in

theL/D = 2.5 cavity, the main radiation is directed upstream.

In figure6.27(a), two acoustic fronts are identified in the near-field of theL/D = 0.713

deep cavity. There is a dominant upstream radiation, just like in theL/D = 2.5 cavity,

that is accompanied by a downstream pressure front, which ispeculiar to theL/D =

0.713 deep cavity.

The pressure field associated to theL/D = 2.5 shallow cavity is characterized by a

lower amplitude fluctuation with respect to theL/D = 0.71 deep cavity, consistently

with the previous inviscid simulations byGrottadaurea & Rona(2007a). Specifically,

the highest positive contour away from the cavity where the near-field acoustic ra-

diation dominates is 15 Pa, as shown in figure6.26(c). The largest positive acoustic

near-field pressure fluctuation contour in theL/D = 0.71 predictions is 40 Pa, as shown

in figure6.27(c).

The near-field Sound Pressure Level (SPL) has been estimatedby averaging the time-

resolved pressure predictions over one fundamental periodof cavity flow instabilityT.

N = 43 frames are used from theL/D = 2.5 shallow cavity simulation andN = 72

frames from theL/D = 0.71 deep cavity simulation.

SPL = 20 log(prms/p0) (6.1)

prms =

√√
1
N

N∑

i=1

(pi − p̄)2 (6.2)

In equation6.2, the reference pressure isp0 = 20 µPa, prms is the root mean square

pressure fluctuation and ¯p = (1/N)
∑N

i=1 pi is the ensemble averaged pressure taken

over theN frames.

Figures6.28(a)-(b) and6.29(a)-(b) show SPL iso-contours in theL/D = 2.5 shallow

cavity and in theL/D = 0.713 deep cavity respectively. The contour spacing is∆SPL=

5dB. Figures6.28(a)and6.29(a)show the SPL iso-contours in theφ = 0◦ plane and

figures6.28(b)and6.29(b)show the SPL iso-contours in theφ = 90◦ plane.
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Figure 6.28: Contours of near-field SPL, dB re 20µPa. L/D = 2.5 shallow cavity at
M∞ = 0.235 andL/θ = 32.

The L/D = 2.5 cavity shows the main acoustic radiation being in the direction of

(ψ = 126◦, φ = 0◦), as shown in figure6.28(a). In the spanwise plane, the predicted

sound wave is asymmetric with respect to the cavity mid-span, with a stronger radiation

at the azimuthal angleψ = 60◦ at φ = 90◦, as shown in figure6.28(b). At the same

radial distance, the deep cavity acoustic near-field is about 15dB re 20µPa louder

with respect to the shallow cavity. For instance, the 100 dB contour in figure6.28(b)

covers about the same position as the 115 dB contour in figure6.29(b). As noted

in the near-field pressure fluctuation contours of figure6.27(a), the deep cavity has

two preferential directivity directions for the near-fieldacoustic radiation. The SPL

contours of figure6.29(a)enable to estimate the directions of preferential radiation in

theφ = 0◦ plane. These are at an azimuthal angleψ = 114◦ in the upstream direction

and atψ = 60◦ in the downstream direction. Figure6.29(b)shows the directivity of the

deep cavity in the spanwise plane, atφ = 90◦. The contours appear to be more circular

and symmetric with respect to figure6.28(b). An easier comparison of the near-field

acoustic radiation directivity is provided by figure6.30(a-b), where the predicted SPL

from bothL/D = 0.713 andL/D = 2.5 cavities is shown at the same radial distance

r = 5L from the cavity center(x, y, z) = (0, 0,D). TheL/D = 0.713 cavity is confirmed

to be the louder flow, with two maxima of SPL= 121 dB at(ψ = 114◦, φ = 0◦) and

SPL = 118.5 dB at (ψ = 60◦, φ = 0◦), shown in figure6.30(b). A lower directivity

maximum of SPL= 104 dB is predicted at(ψ = 126◦, φ = 0◦) in theL/D = 2.5 cavity.
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Figure 6.29: Contours of near-field SPL, dB re 20µPa. L/D = 0.713 deep cavity at
M∞ = 0.235 andL/θ = 32.
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Figure 6.30: SPL atr = constant= 5L above cavity opening,φ = 0◦ [−] andφ =
90◦ [− · −].
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6.6 Comparison among numerical predictions

6.6 Comparison among numerical predictions

The Euler model and in the viscous flow simulation without a turbulence model predict

almost the same instability mode at the same the free-streamvelocity. The maximum

intensity of the radiating noise depends on the approachingboundary layer thickness.

To a growing shear layer corresponds a smaller amplitude of the radiating noise in the

near-field in theL/D = 0.71 deep cavity. An asymmetric recirculation is found in the

predictions from both models, while the predicted flows differ in the cavity wake region

downstream the cavity trailing edge. Despite the asymmetryin the flow enclosure, the

wake region in the Euler simulation is almost symmetric and the presence of a cavity

results in a decrement of the flow speed by momentum loss downstream of it.

The L/D = 2.5 cavity shows a symmetric recirculation in the enclosure and in the

cavity wake region in both simulations. A higher frequency flow unsteadiness is found

in the Euler model cavity compared toL/D = 0.71 and it is due to the cavity staging to

a higher natural mode number betweenL/D = 0.71 andL/D = 2.5. At L/D = 2.5, the

viscous flow simulations predict a damped pressure fluctuation in the enclosure. The

viscous model did not predict a sustained near-field acoustic pressure radiation.

Asymmetric or azimuthal instabilities can occur in a cylindrical cavity as shown math-

ematically byRona(2006) and experimentally byHeringet al.(2006) and byDybenko

et al.(2006). These modes arise from the freedom of the flow to revolve inside the cav-

ity barrel. Clockwise and anticlockwise motion is equally probable under ideal inflow

conditions. Any small asymmetry in the inflow or in the cylinder barrel may trigger an

azimuthal instability with a dominant clockwise or anti-clockwise wavenumber.

Fourier analysis shows the presence of an instability mode at Strouhal number 0.514 in

the most refined 9.2 million cell DES in theL/D = 0.71 deep cavity. This is close to the

dominant instability mode Strouhal number 0.532 in the Euler simulations. However,

in the DES simulation with 9.2 million cell, the second mode dominates the wall pres-

sure spectra as well as in the near-field pressure. This mode corresponds toS t= 1.02

and is close to the second Rossiter mode predicted by the formula ofBlock (1976).

Using a turbulence closure model in the DES simulations gives an asymmetric recir-

culation in theL/D = 2.5 shallow cavity atM∞ = 0.235 whereas the mean flow in the

L/D = 0.71 deep cavity is essentially symmetric about they = 0 cavity mid-span. This

symmetry is also found in experiment, as detailed in section6.7.
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6.7 Comparison with experiment from Università degli

Studi Roma Tre

This section compares the predictions from the most refined 9.2 million cell DES

of the L/D = 0.71 deep cavity tested at a cavity diameter based Reynolds number

ReL = 548000 against wind tunnel tests performed at the sameL/D ratio and Reynolds

number. In the computations, the free-stream Mach number is0.235 and is higher than

in experiment, where this is 0.1175.

6.7.1 Approaching turbulent boundary layer

Figure6.31shows the streamwise evolution of the ratio of the cavity diameter to the

boundary layer momentum thickness. The data refers to they = 0 cavity mid-span

plane, upstream of the leading edge. 200 points are extrapolated from the computa-

tional domain at∆z = constantabove the wall at the locationsx/L equal to−6.9,−6,

−5, −4, −3, −2, −1. zmax depends on the value of the boundary layer thicknessδ and

it is chosen equal to 3δ. The value of the momentum thickness is computed using the

200 values as the numerical integral of the discrete function ui/u∞ (1− ui/u∞) with re-

spect toz over the range 0≤ zi ≤ zmax. zi is theith interpolated position normal to the

wall. In the range−6 < x/L < −1, θ grows faster than in a 1/7th power law turbulent

boundary layer under zero pressure gradient, in whichθ/x = 0.036Re−0.2
x (Calvert &

Farrar, 1999). As the boundary layer thickness at the computational domain inflow

was prescribed assuming a 1/7th power law growth rate,θ approaching the cavity lead-

ing edge is higher than agreed for joint experimental and numerical work between the

University of Leicester and the Università degli Studi Roma Tre. This gives a lower

L/θ approaching the cavity leading edge with respect to the target valueL/θ = 62. The

experiment was such thatL/θ = 72 atx/L = −1, which gives a value of the momentum

thickness slightly lower as compared to the target value.

The cavity instability modes are influenced by the value of the approaching turbulent

boundary layer momentum thickness, as shown byColonius & Lele(2004) in rect-

angular cavity flows. In the cylindrical cavity, the instability mode is driven mainly

by the interaction between acoustic resonance (organ pipe type mode) and the cavity

‘Rossiter’ like modes. At the selected free stream speeds inthe simulation, a peak
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Figure 6.31: Boundary layer growth in the computational domain and comparison with
experiment approaching the cavity leading edge.y/L = 6.9 plane atu∞ = 80 m/s.

in the wall pressure spectrum corresponding to this frequency is found, as shown in

section6.7.3.

Figure6.32shows the normalized time-averaged velocity profiles predicted by the 9.2

million cell DES model along the cavity mid-span, on they = 0 plane. The pro-

files detail the boundary layer upstream of the cavity. Symbols ×, ·,+ and∗ denote

time-averaged streamwise velocity profiles atx/L equal -7, -6, -5, and -4, respectively.

The contours line denotes the power law curveu/u∞ = (z/δ)−1/7, which is given as

a reference, and the circles denote the wind tunnel measurements. In the numerical

predictions, the boundary layer displays a streamwise growing velocity defect on ap-

proach to the enclosure that is higher than the target value,represented by the 1/7th

power law. In experiment, the velocity defect is lower than the target value.

The comparison given in section6.7.2is limited by this difference in the approaching

boundary layer between experiment and computation.

6.7.2 Mean flow

Figures6.33(a), 6.33(c), 6.34(a)and6.34(c)are hot-wire streamwise velocity measure-

ments taken above and inside theL/D = 0.71 cavity atReL = 548000. Figures6.33(b),

6.33(d) 6.34(b)and6.34(d)are the time-averaged stream-wise velocity profiles from
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Figure 6.32: Boundary layer mean velocity profiles at different streamwise locations
in they = 0 plane.L/D = 0.71 deep cavity atReL = 548000.

the 9.2 million cell DES. The numerical predictions are obtained by averaging over

6000 time-dependent snapshots of the computational domain. The mean flow field is

obtained in the time-marching DES computation by adding a running average routine

to the flow solver. The predicted mean flow is then visualized using TECPLOT 360.

The measurements cover a differentu/u∞ range in experiment and in the computations.

The range of the ordinate axis has been chosen differently in experiment and computa-

tion to best resolve the respective trends within. At the same non-dimensional height

z/L, listed in the legend of each figure, the computation predicts a loweru/u∞ than

the measurements. For instance, atz/L = 0.024, the predictions of figure6.33(b)

at x/L = −0.25 (open red circles) give a span-averaged mean velocity profile of

approximately 0.53u∞, whereas the measured values at the samex/L, z/L in fig-

ure6.33(a)(open red circles) show a span-averaged mean velocity profile of approxi-

mately 0.81u∞. This difference is present at the upstream most traverse and is therefore

not just the result of different shear layer growth rates above the enclosure, but it isdue

to the different boundary layer momentum thickness approaching the model cavity

than in experiment, as documented in section6.7.1.

The eddy viscosity in the Detached Eddy Simulation plays an important role in de-

termining the streamwise growth of the inflow boundary layer. However, in the DES
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(a) Experimental values. Planex/L = −0.25 (b) Numerical values. Planex/L = −0.25

(c) Experimental values. Planex/L = 0 (d) Numerical values. Planex/L = 0

Figure 6.33: Spanwise profiles of non-dimensional time-averaged streamwise velocity
across the cavity opening.L/D = 0.71 deep cavity atReL = 0.546× 106, experimental
M∞ = 0.1175 and numericalM∞ = 0.235. Differenty-axis ranges are used to account
for the shear layer streamwise growth.
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6.7 Comparison with experiment from Università degli Studi Roma Tre

(a) Experimental values. Planex/L = 0.25 (b) Numerical values. Planex/L = 0.25

(c) Experimental values. Planex/L = 0.5 (d) Numerical values. Planex/L = 0.5

Figure 6.34: Spanwise profiles of non-dimensional time-averaged streamwise velocity
across the cavity opening.L/D = 0.71 deep cavity atReL = 0.546× 106, experimental
M∞ = 0.1175 and numericalM∞ = 0.235. Differenty-axis ranges are used to account
for the shear layer streamwise growth.
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model, the value of the eddy viscosity close to the wall is less controllable than in

standard RANS computations, as it is driven by the hybridization of the RANS and

LES models in the turbulence closure. The sensitivity of thenumerical predictions to

changes in the RANS to LES blending function was not tested. Adjusting the turbu-

lence model to reproduce the inflow boundary layer growth rate of the experiment was

not attempted, as it departs from the main aim of this work, which focuses on repro-

ducing the cavity interior flow. The author used published values of the RANS/LES

turbulence closure model, relying on the underlying calibration work ofYoshizawa

(1986) and ofMenter(1992).

Above the cavity opening, the shear layer from the detached eddy simulation com-

putation seems to grow more slowly as compared to the measured flow. Specifically,

whereas the difference between the predicted spanwise averaged mean velocity profile

at x/L = −0.25 andx/L = 0.5 atz/L = 0.024 is about 0.1u∞, as shown by the red open

circle symbols in figures6.33(b)and6.34(d), the measured spanwise averaged mean

velocity at the samez/L reduces by 0.15u∞ over the same streamwise distance above

the enclosure, as shown by figures6.33(a)and6.34(c). This difference in shear layer

growth rate is appreciable but is not as significant as to determine a large change in the

mean streamwise convection velocity. These two aspects areresponsible for the cavity

instability and the production of noise.

The three dimensionality of the flow above and inside the enclosure is confirmed by the

spanwise non-uniform velocity profile. This result in different shear layer growth rates

along the span. The streamwise distance between the shear layer separation point and

its impingement on the downstream cavity edge is maximum at the cavity mid-span,

where the flow spans over 1L. The shear layer at the cavity mid-span has therefore

more distance to grow over the cavity open end before it reaches the downstream wall

than the flow that separates at either side of they = 0 plane. This results in a greater

momentum transfer from the free-stream to the slower movingflow inside the cavity.

Therefore, at the same wall-normal distancez/L > 0, a lower streamwise velocity is

expected along the cavity mid-span compared to the cavity sides. This is confirmed ex-

perimentally and numerically in figures6.33and6.34. The spanwise profiles of time-

averaged velocity from experiment, figures6.33(a), 6.33(c), 6.34(a)and6.34(c), show

a velocity minimum in they = 0 plane, just like in the predictions of figures6.33(b),
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6.34(b), 6.33(d)and 6.34(d). This suggests an increasing flow entrainment at this

plane.

Figures6.35(a)-(f) show spanwise profiles of the non-dimensional time-averaged stream-

wise velocity at different heights above the downstream cavity bulkhead. Figures6.35(a),

6.35(c), and6.35(e)are measurements from the Università degli Studi Roma Tre and

figures6.35(b), 6.35(d), and6.35(f)are the corresponding DES numerical predictions

using a 9.2 million cell mesh. The two primary and two secondary vortices described in

section6.5give two symmetric local maxima aty/L ∼ ±0.45 in the planesx/L = 0.89

and x/L = 1.55 in the numerical investigation and in the planex/L = 1.55 in ex-

periment. In the numerical study, the numerical viscosity is probably inducing an

early flow separation at the cavity trailing edge. This results in the effect of the sec-

ondary vortices on the spanwise profile of time-averaged streamwise velocity being

more pronounced. As a result, the velocity maxima can be observed more clearly in

the numerical simulations further upstream than in the measurements.

Further downstream, atx/L = 2.55, the secondary vortices are dissipated and only the

two counter-rotating primary vortices are detected in boththe numerical predictions

of figure 6.35(f) and in the experimental profiles of figure6.35(e). Local maxima in

each experimental profile at differentz/L are found aty/L ∼ ±0.4 whereas they are

found aty/L ∼ ±0.35 in the numerical predictions. The elevation of these maxima

above the streamwise velocity of the relatively unperturbed boundary layer to the sides

of the cavity, at|y/L| > 1, at eachz/L is 0.05 ≤ ū/u∞ ≤ 0.1 in the experimental

profiles and 0.1 ≤ ū/u∞ ≤ 0.2 in the numerical predictions. The differences in the

boundary layers approaching the enclosure between experiment and computation dis-

cussed in section6.7.1are likely to be responsible for this difference. Specifically,

the fully turbulent boundary layer approaching the enclosure in experiment contains

a wide spectrum of structures. As these structures interactwith the primary vortices,

they introduce an additional degree of unsteadiness on top of the one resulting from

the tonal cavity instability. The instantaneous position of the counter-rotating primary

vortex cores are therefore like to precess in thex/L = 2.55 plane. By time averaging,

the motion of the vortex cores results in broader local maxima with a lower peak in the

measured profiles of figure6.35(e)than in figure6.35(f).
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(a) Experimental values. Planex/L = 0.89 (b) Numerical values. Planex/L = 0.89

(c) Experimental values. Planex/L = 1.51 (d) Numerical values. Planex/L = 1.51

(e) Experimental values. Planex/L = 2.51 (f) Numerical values. Planex/L = 2.51

Figure 6.35: Spanwise profiles of non-dimensional streamwise velocity over the down-
stream bulkhead.L/D = 0.71 deep cavity atReL ≈ 54.8 × 103. experimental
M∞ = 0.1175 and numericalM∞ = 0.235. Differenty-axis ranges are used to ac-
count for the shear layer streamwise growth.
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6.7.3 Unsteady flow

Figure6.36shows the non-dimensional power spectral density (PSD) that corresponds

to the wall pressure fluctuation at(x/L, y/L, z/L) = (0.5, 0,−0.35) in the L/D = 0.71

deep cavity.

The reference free-stream velocityu∞ is 40 m/s and 80 m/s in experiment and in the

numerical model, respectively. To compare experiment and computation, frequency

in the PSD is normalized by the cavity diameterL and free-stream reference velocity

u∞, which gives the Strouhal numberS t= f L/u∞. Similarly, the PSDs are normalized

by the fourth power of the free stream velocity and by the square of the free-stream

density.

The experimental data are acquired with a sampling frequency of 40 kHz over a period

tu∞/L = 952. The data is then divided into shorter intervals oftu∞/L = 47.62 that

are discrete Fourier transformed, giving a∆S texp = 0.021. The experimental power

spectra are then ensemble averaged to reduce noise. The numerical data are sampled

over a periodtu∞/L = 25.56 that corresponds to∆S tnum= 0.039.

The dashed line in figure6.36(a-b) shows a power−7/3 slope. This corresponds to

the energy cascade of pressure fluctuations in the inertial range of three-dimensional

isotropic turbulence (Kolmogorov, 1991). The measured and predicted PSD seem to

follow this slope atS t> 1.5 within limits. Specifically, the decay of pressure fluctua-

tion amplitude with frequency reported in figure6.36(a)stops atS t > 8, leading to a

flat spectrum over the range 8< S t < 24 and finally to a higher energy decay. This

trend is due to two different aspect in the experimental acquisition. The flat spectrum is

related to the Kelvin-Helmholtz resonance at the frequencyof the pin-holes where the

microphones are mounted. The energy drop in the PSD atS t> 24 is due to the anti-

aliasing analogue filter that was used in-line with the microphones. The experimental

set-up is detailed inVerdugoet al. (2009).

The numerical predictions atS t > 8 show a sustained decay of pressure fluctuation

amplitude at increasing Strouhal numbers. This decay displays however a modulation,

which is likely to be a spurious numerical effect from the error in modelling high-

frequency and high-wavenumber components with the flow solver, which is at best

third order space accurate.
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Figure 6.36: Non-dimensional PSD of wall pressure from theL/D = 0.71 deep cavity
at a free-stream velocity of 40 m/s (experiment) and 80 m/s (Detached Eddy Simula-
tions).
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Figure 6.37: Non-dimensional PSD of cavity wall pressure atvarying free-stream
Mach numbers. Instability modesn = 1, 2, 3 from Block (1976) (×), acoustic reso-
nant (depth) mode(△). L/D = 0.71 deep cavity.

The predicted PSD in figure6.36(b)displays a higher frequency peak atS t1,num= 0.51,

which is close to the first moden = 1 identified by the formula ofBlock (1976). A

less intense peak is shown atS t2,num = 1.05, which close to the second moden = 2

from Block (1976). In the measured PSD, two peaks are found atS t1,exp = 1.01 and

at S t2,exp = 1.34, respectively. These correspond to the second mode fromBlock

(1976) and to the first acoustic resonant mode (depth mode). A less intense peak at

S t3,exp= 0.56 is close to the first mode fromBlock (1976).

For a given cylindrical cavity geometry of constant aspect ratio L/D, the acoustic res-

onant mode is proportional to 1/M∞ as described in section2.4. Figure6.37shows

non-dimensional PSD at varying free-stream Mach number. The data over the range

0.015 < M∞ < 0.165 are from experiment and the data atM∞ = 0.235 are from the

numerical model. The non-dimensional coordinates of the measurement location, the

anti-aliasing filter, the sampling rate and the spectral averaging are the same as in fig-

ure 6.36. The PSD prediction from the numerical model are that of figure 6.36. The

PSD amplitude is shown by iso-colour levels in figure6.37, using the same logarithmic

scale of figure6.36.
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6.7 Comparison with experiment from Università degli Studi Roma Tre

Figure6.37shows how the depth mode and then = 1, 2, 3 cavity resonant mode con-

structively interfere when their Strouhal numbers are close to each other. Consider

the discrete wall pressure spectra atM∞ = 0.115, M∞ = 0.14 andM∞ = 0.235. At

these three Mach numbers, red regions of high pressure fluctuation amplitude appear

close to the intercept of the predicted acoustic mode, shownby the line with triangles

(△), with a cavity resonant mode, shown by a line of crosses(×). This mode coin-

cidence generates reinforced wall pressure fluctuations. Coincidence occurs between

the first acoustic depth mode and the third cavity resonant mode fromBlock (1976) at

M∞ = 0.115, between the first acoustic mode and the second cavity resonant mode at

M∞ = 0.14, and between the first acoustic mode and the first cavity resonant mode at

M∞ = 0.235.

Figure6.37shows the value of complementary experiment and numerical simulations

in unsteady aerodynamics. In experiment, it is relatively straight forward to vary the

wind-tunnel velocity over the range 0≤ u∞ ≤ 40 m/s and acquire several spectra, to

well-resolve the variation of the mode amplitudes with the inflow Mach number. How-

ever, the wind tunnel measurements could not be performed atMach numbers above

0.16, due to the rising tunnel noise floor in the measurements. As the computational

scheme used in this work is based on an approximate Riemann solver, the scheme is

not limited to low Mach numbers and in fact works better and faster at higher Mach

numbers. However, varying the Mach number in the simulations requires one com-

plete new run per Mach number, which is computationally expensive. The numerical

and experimental methods therefore complement each other well, the measurements

giving good resolution at low Mach numbers and the numericalmethod allowing to

explore the coincidence between the first acoustic mode and the first cavity resonance

mode, lying above the Mach number operational limit of the wind tunnel. By merging

the results from numerical and experimental techniques, figure6.37gives a more com-

plete picture of the effect of mode coincidence in aL/D = 0.71 deep cavity over the

range 0.1175≤ M∞ ≤ 0.235. By combining both results, a better description of the

flow physics is obtained, specifically, the measurements enable to appreciate the dif-

ference in mode amplitude at coincidence and away from this conditions, whereas the

numerical predictions resolved the coincidence between two modes that occurs above

the operating limits of the wind tunnel.
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6.8 Conclusion

In previous numerical and experimental investigations on rectangular cavities (Colo-

nius & Lele, 2004; Coloniuset al., 1999; Rossiter, 1964; Rowleyet al., 2002; Tam &

Block, 1978), the cavity mode selection is triggered by the approachingboundary layer

momentum thickness. In this study, the dominant instability mode atM∞ = 0.235 is

triggered by the coincidence between then = 1 first instability mode and the cavity

acoustic resonant mode.

The modes predicted by the formula ofBlock (1976) are satisfactory in terms of their

dependency on the Mach number. The cavity modes switching isclosely related to the

coincidence with a cavity resonant (depth) mode byRayleigh(1894).

6.8 Conclusion

This chapter analysed the different aerodynamic instabilities found in the cylindrical

cavity when varying the diameter to depth ration (L/D) and the free-stream velocity.

The cavity flow instability was found to be weakly influenced by a small change of

5% increase in the boundary layer thickness. The instability modes are closely linked

to the geometrical parameters and to the flow parameters, in particular a symmetrical

recirculation was found atL/D = 0.71 both numerically and experimentally and an

asymmetric recirculation was found atL/D = 2.5 when the turbulent model was used.

A different behaviour was found when the flow was modelled as inviscid, in particular

the numerical simulation predicted an asymmetric recirculation in theL/D = 0.71 cav-

ity. This is described in section6.6. A non-dimensional comparison of theL/D = 0.71

was done by means of time-averaged result and time-dependent results. The approach-

ing turbulent boundary layer measured in the experiment hada higher velocity with

respect to the canonical 1/7th power law close to the wall, whereas the one measured

in the computation had a lower velocity close to the wall. Themean flow was captured

qualitatively correctly but not quantitatively. The studyof the Power Spectral Density

highlighted the coincidence of the acoustic resonance modeand the “Rossiter” modes

as well as the mode selection mechanism.
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Chapter 7

Conclusion

7.1 Introduction

A time-dependent numerical investigation was performed onthe aerodynamic un-

steadiness and near-field radiating pressure from a cylindrical cavity at two aspect

ratios L/D = 0.71 andL/D = 2.5 at the Reynolds numberReL = 548000 and

ReL = 698000 and two Mach numbers of 0.235 and 0.3. The numerical data from the

mesh converged test case of theL/D = 0.71 cavity atM = 0.235 andReL = 548000

were compared with those from Università degli Studi Roma Tre wind tunnel experi-

ment. This chapter highlights the achievement of the numerical model.

7.2 Conclusion

Time-resolved numerical models of a cylindrical cavity flowpredicted symmetric and

asymmetric cavity instabilities mainly related to the diameter to depth ratio of the cav-

ity. Three different numerical approaches were used to model the flow. Thesewere

an inviscid flow prediction (Grottadaurea & Rona, 2007a), a viscous flow prediction,

in which the dissipation is associated only to the viscosityof the flow and to the nu-

merical dissipation given by the grid stretching (Grottadaurea & Rona, 2007b), and a

turbulent flow prediction, in which the energy dissipation at the small scales of tur-

bulence is modelled using Detached Eddy Simulation (Grottadaurea & Rona, 2008b).
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7.2 Conclusion

The Detached Eddy Simulation gave fundamentally different predictions than the other

two approaches.

An azimuthal instability and a recirculation with its axis at 45◦ with respect to the

streamwise direction was identified in flow averaged numerical result of the Euler

model and in the viscous flow model of theL/D = 0.71 deep cylindrical cavity. Mass

ejection and injection were predicted only on one side of thecavity. This peculiar insta-

bility was documented in the experiments ofGaudet & Winter(1973) and ofDybenko

et al.(2006) in aL/D > 2 shallow cylindrical cavity. This asymmetric pattern was also

found in a coarse mesh DES cavity simulation of 1.6 million cells. This prediction was

at odds with the available literature and the experiments byVerdugoet al. (2009) on

theL/D = 0.71 deep cylindrical cavity, where a symmetric pattern is reported. Only a

2.8 million cells finer mesh and a subsequent mesh convergence test using a 9.2 million

cells DES model were able to predict the symmetric flow observed in experiment. The

last computation used a optimized recursive MPI parallelization technique developed

by the author.

The importance of testing for mesh independence in the simulations is demonstrated

by the mode switching between the different levels of mesh refinement in theL/D

deep cylindrical cavity DES. In spite of some difference in the approaching boundary

layer momentum thickness, the refined test cases were able toshow the symmetric flow

regime observed in experiment.

The simulation helped to interpret the measured velocity distributions at various stream-

wise planes. Local velocity maxima are due to counter-rotating convective eddies gen-

erated at the cavity downstream edge. To visualize this vortex, the time-mean span-

wise and flow-normal velocity components were used to trace in-plane streamlines.

Despite the complexity associated with modelling the cylindrical cavity flow and the

uncertainty associated with using just standard DES turbulence closure parameters, the

three-dimensional DES simulations offered an improved insight of the flow by means

of time-dependent and time-averaged predictions that are well-resolved in space and

time.

The comparison between Euler and viscous flow simulations showed the significant

effect the inflow boundary layer thickness has on the near-field Sound Pressure Level.

The Euler model develops a thin numerical shear layer acrossthe cavity opening,

equivalent to having a very thin inflow boundary layer. A thinner boundary layer gives
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7.2 Conclusion

a louder near-field pressure fluctuation in a cavity flow, as found experimentally by

Dang-Guoet al. (2009) in a rectangular geometry at differentδ/L.

The time dependent predictions of the radiating pressure field in the shallow and deep

cavity configurations indicate a significant noise radiation from these flows. The acous-

tic near-field is not symmetric with respect to the cavity mid-span in theL/D = 2.5

shallow cavity. This asymmetry is most likely linked to the azimuthal instability modes

that develop in the enclosure. The mode selection in the ’hydrodynamic’ flow region

that spans the cavity opening drives the production of soundalong preferential direc-

tions in the acoustic near-field. The persistence of such asymmetric radiation in the

acoustic far-field is likely to be significant for the noise performance of cylindrical

aircraft fuel vents at landing.

The DES simulation and the experiment show that the fundamental instability mech-

anism described by Rossiter is found in a subsonic turbulentcylindrical cavity flow

and that the mode frequency can be obtained by using a correction to the characteristic

length byCzechet al. (2006) in the modified Rossiter formula ofBlock (1976).

The cylindrical cavity is characterized also by acoustic resonant modes associated with

the geometry, as described inRayleigh(1894). The interaction between the hydrody-

namic convective instabilities, the Rossiter modes, and acoustic instabilities is found

to be significant for the mode selection in the cylindrical cavity flow, as detailed in

section6.7.3.

The Power Spectral Density of the wall pressure fluctuation at varying Mach number

from Verdugoet al.(2009) was used to interpret the physics behind mode switching in

the cylindrical cavity flow. Scaled numerical predictions were used to extend the Mach

number range toM∞ = 0.235 and show how the higher intensity mode correspond

to the coincidence between the first acoustic resonant modesand the first “Rossiter”

mode. This interaction is also found in experiment atM∞ = 0.123 andM∞ = 0.145.

Marsdenet al. (2008) modelled a cylindrical cavity ofL/D = 1 at M∞ = 0.265 using

cylindrical coordinates in the enclosure and Cartesian coordinate elsewhere, and used a

high-order Lagrangian interpolation at the interface. Theadvantage of such modelling

strategy is not to include a curvilinear coordinate system in the computation and to

be able to use a high-order flow solver coupled with an analytical (exact) evaluation

of the Jacobians. Although different approaches can be sought to model a cylindrical

cavity flow to overcome the limitation associated with a low-order finite-volume flow
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7.2 Conclusion

solver, the latter is more suitable to study flow of industrial interest. The curvilinear

multi-block parallel DES code developed in this study aims to be a ready-to-use tool

to study such flows.

The MPI parallelization strategy, developed at CINECA byGrottadaurea & Rona

(2008a), was essential for running the mesh refined test-cases thatrequired a large

number of cells. A 4 GB RAM processor limited the simulationsto a maximum of 1.4

million cells test case. The recursive domain decomposition overcome this limitation

distributing only a smaller portion of the full computational domain across distributed

memory clusters. It granted the access to the most powerful distributed memory facil-

ities in Europe and represented a strong attractor for the industrial use of this code in

applications that require a high computational performance.

The algorithm includes a novel aspect by parallelization ofthe input with respect of

the flow variables and geometry parameters. Distribution ofInput/Output of existing

parallel codes represent the state of the art of MPI parallelization, a preliminary step to

achieve this is presented in this work.

The comparison of parallelization strategies in section4.4 demonstrated the advan-

tage of using this algorithm as compared to a single domain decomposition, in which a

large number of processors are used in the simulation. This algorithm represents a suit-

able candidate to further increase in parallelization efficiency, reducing the processors

communication.
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Chapter 8

Future work

Given the potential impact of asymmetric cavity instability modes on airframe noise

and the difficulties associated with its modelling, further research isrequired to deter-

mine the drivers behind mode staging, together with a betterassessment of the effects

such modes have on the radiated noise. A number of simulations at different aspect

ratios and varying the free-stream velocity is required to extend the formula ofBlock

(1976) for cylindrical cavity flows that feature such modes.

The present numerical model of the near-field cylindrical cavity flow can be used to

seek far-field noise predictions and to reconstruct the contribution of fuel vent noise

to the aircraft landing Effective Perceived Noise Level (ICAO, 2002). This requires

locating the monitoring points of a ground observer outsidethe airframe cavity follow-

ing the Chapter 3ICAO (2002) guidelines for landing noise. Considering the distance

of the ground observer prescribed byICAO (2004), stretching a single computational

domain to include the ground observer is not computationally affordable, therefore

the acoustic predictions will be obtained via a hybrid approach, which divides the

computational domain into a source region (acoustic near-field) and a propagation re-

gion (acoustic far-field), developing aFfowcs Williams & Hawkings(1969) acoustic

analogy in the simplified formulation ofDi Francescantonio(1997) andBrentner &

Farassat(1998).

As discussed in section6.7.3limitations are found in modelling the energy associated

with high frequency pressure fluctuations. Although the energy decay is captured in the

numerical simulation, a modulation is found in the power spectral density. This modu-

lation is probably associated with the use of a low-order finite-volume flow solver. This
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limitation does not affect the result herein reported but limits the use of the flow solver

only to application dominated by periodic flow phenomena of arelatively small spec-

tral breath. This aspect is considered a future point for improvement for this numerical

method.

In parallel to the author’s work,Spisso & Rona(2007) have been developing a high-

order finite-difference flow solver to upgrade the existing flow solver. The high-order

method allows to reduce dispersion and dissipation errors of the low-order solver using

the same computational mesh. Despite the complexity associated with boundary clo-

sure, such as wall boundary conditions or radiating boundary conditions, this method

gives a higher power spectral density cut-off frequency. This may help to remove the

spurious numerical modulations predicted at the high frequency end of the power spec-

tral density of aerodynamic pressure.

To retain the computational advantage of the high-order interior scheme, high-order

no-slip wall boundary conditions are required, that advance on the inviscid wall for-

mulation ofSpissoet al. (2009). The introduction of a curvilinear coordinate system

to the selected high-order finite difference scheme is also required to model a cylindri-

cal cavity. This can be achieved following the work ofVisbal & Gaitonde(1999) and

Visbal & Rizzetta(2002).

This work highlighted the importance of modelling dissipation in cylindrical cavity

flows. The Detached Eddy Simulation turbulence closure can be improved by the dy-

namic sub-grid scale model ofGermanoet al.(1991) or Lilly (1992). Despite the larger

computational cost of this model, as stated byMonti & Rona(2009), this approach will

remove some of the model constant calibration issues of the current implementation of

Detached Eddy Simulations.

A different approach is not to use a RANS wall-function and model the flow only

using LES. This was not attempted due to the difficulties associated with modelling

flow separation only with LES, where a constant value fromYoshizawa(1986) is used

for the Smagorinsky(1963)-Lilly (1966) constant. The improved dynamic sub-grid

scale model overcomes also this limitation.
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Appendix A

Laminar boundary layer inflow for

CFD

The inflow to the computational domain is imposed by solving the compressible non-

dimensional form of the Blasius equation for a laminar boundary layer. The following

equations describe the flow field (White, 1991):

f ′′′ (η) + f (η) f ′′ (η) = 0 (A.1)

Taw

T (η)
= 1+

γ − 1
2

rM (η)2 (A.2)

Equation (A.1) is the non-dimensional Blasius equation for a laminar boundary layer,

whereη = z̃
√

u∞/ (2νx̃) andu = u∞ f ′ (η). Equation (A.2) gives the adiabatic wall

temperature, whenM (η) → M∞ andT (η) → T∞. In (A.2), r is the recovery factor

andγ the specific heats ratio. For a Prandtl number(Pr) in the range 0.1 < Pr < 3, the

recovery factorr =
√

Pr.

From equations (A.1) and (A.2) and assuming the static pressurep is constant across

the boundary layer, the conservative variables distribution is known as a continuous

function of the flow-normal direction (˜z). The discretized conservative variables vector
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distributionUi is the average of the local value ofU over the cell:

Ui =
1
∆z

∫ zi+1

zi

U (z̃) dz̃ (A.3)

In the equation (A.3), it is assumed that the local variation ofU in the flow-normal di-

rection (z̃) is larger compared to that in the streamwise direction ( ˜x) and in the spanwise

direction (ỹ).
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Appendix B

Turbulent boundary layer inflow for

CFD

B.1 Mean velocity profile

The mean streamwise velocityu of a fully developed turbulent boundary layer is found

as a function of the distance from the wall in the flow-normal directionz, the friction

velocityuτ and the boundary layer thicknessδ.

In particular, letz+ = yuτ/ν be the inner scaling non-dimensional wall-normal distance,

whereν is the kinematic viscosity of the flow. To describe the mean velocity profile

in a turbulent boundary layer, similarity solutions are sought in the inner and the outer

regions. In the inner region, the following relation describes the mean velocity profile

u
uτ
= f

(
z+

)
(B.1)

In outer region, the velocity profile is described by the velocity defect law

u∞ − u
uτ

= f (η) (B.2)
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B.1 Mean velocity profile

whereη = y/δ is the outer scaling non-dimensional wall-normal distanceandu∞ is the

free-stream velocity.

Based on the existence of an overlap region between the innerand the outer regions,

Coles(1956) proposed the following additive law of the wall and law of the wake in

non-dimensional form:

u+ =
1
κ

ln z+ + B+
Π

κ
f (η)

f (η) = 1− cos(πη) (B.3)

whereu+ = u/uτ is the normalized streamwise velocity,Π is the wake parameter,κ the

von Kármán constant, andB the logarithmic law constant.

Coles(1956) determined the wake parameter as

Π = κ/2
(
u+e − κ−1 ln Reτ − B

)
(B.4)

whereReτ = δuτ/νl is the boundary layer Reynolds number andu+e = ue/uτ is the

normalized free-stream velocity.

Let

f (η) = A1η
2 + A2η

3 (B.5)

be a cubic polynomial approximation tof (η) in equation (B.3). Substituting the

boundary conditions

u|y=δ = ue (B.6)

and
∂u
∂y

∣∣∣∣∣
y=δ

= 0 (B.7)

in equation (B.3), with f (η) from equation (B.5), gives A1 = 6 [1+ 1/(6Π)] and

A2 = −4 [1+ 1/(4Π)], with Π defined by equation (B.4). The law of the wake of

equation (B.3) then becomes

u+ =
1
κ

ln z+ + B
︸       ︷︷       ︸

Log-law of the wall

+
1
k
η2 (1− η) + 2

Π

κ
η2 (3− 2η)

︸                               ︷︷                               ︸
Wake component

(B.8)
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B.2 Turbulent kinetic energy and turbulent dissipation rate

Equation (B.8) is validated over a relatively wide range of momentum thickness based

Reynolds numberReθ = ueθ/νl (Ronaet al., 2009) for z+ > 30. The author takes

κ = 0.41 andB = 5.0 to evaluate equation (B.8), as proposed byColes(1956).

At 5.4 < z+ < 30, the following relation is used in the buffer layer (White, 1991):

z+ = u+ + exp−κB
[
expκu+ − 1− κu+ −

(κu+)2

2
−

(κu+)3

6

]
(B.9)

At z+ < 5.4, the laminar sublayer is reached andz+ = u+.

Given that the free-stream Mach number of the cylindrical cavity flow test cases of

section6.4 is below 0.3, the time-averaged flow-normal velocity component of the

turbulent boundary layer is computed by assuming the flow to be incompressible and

two dimensional. The time-averaged spanwise velocity component is identical to zero

over the flat plate (v = 0). The incompressible continuity equation then becomes:

∂u(x, z)
∂x

= −
∂w(x, z)
∂z

(B.10)

Equation (B.10) is solved to obtain the mean flow-normal velocity componentw of the

turbulent boundary layer.

B.2 Turbulent kinetic energy and turbulent dissipation

rate

The turbulence intensity profile in the outer region of a fully developed turbulent

boundary layer is described by an empirical functionf3 at z+ > 150. The latter is

obtained by the interpolation of measurement byPengyuan & Biondini(2007) at the

wind tunnel of the Ente Nazionale per l’Energia e l’Ambiente(Italian national research

center for Energy and Environment) (ENEA). FigureB.1 shows the normalized turbu-

lence intensityu′2+ = u′2/u2
τ versus the normalized wall distancez+ = zuτ/ν. The data

from the ENEA wind tunnel is plotted with the symbols⋄,�,△ and◦ over the range

67 ≤ z+ ≤ 5000. The experimental predictions fromDe Graaff & Eaton (2000) are

also shown, covering the wider range 4≤ z+ ≤ 9000. Over the common range, the
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B.2 Turbulent kinetic energy and turbulent dissipation rate

# Symbol Reθ Author
1 ⋄ 4900 ENEA
2 ◦ 6050 ENEA
3 � 8250 ENEA
4 △ 8760 ENEA
5 × 5200 De Graaff-Eaton
6 + 13000 De Graaff-Eaton
7 ∗ 31000 De Graaff-Eaton
f1 − · − 5200 Marusic-Kunkel
f3 − 8760 ENEA

Table B.1: Summary table.

two data sets show a good agreement, with the spread among data sets being due to the

variation inReθ. In the measurement, the outer boundary layer was traversed, therefore

a model for the inner region is used in the simulation.Marusic & Kunkel(2003) pro-

posed an empirical formula( f1) to evaluate the turbulence intensity in the inner region

as a function ofReθ andz+.

u′2+ is analytically described by:

u′2+ =



f1 (z+,Reθ) , z+ ≤ z+inner

f2 (z+,Reθ) , z+inner < z+ < z+outer

f3 (z+,Reθ) , z+ ≥ z+outer

(B.11)

f2 is a function ofReθ andz+ and it is obtained as a gradient-matched cubic curve-fit

as proposed byMarusic & Kunkel(2003).

The turbulent kinetic energy and its specific dissipation rate are defined as:

k =
3
2

u′2+u2
τ

ω =
ρk
µt

(B.12)

At the inflow,ρ = ρ∞ = 1.225kg/m3. k andω are obtaining by equation (B.12) using
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B.2 Turbulent kinetic energy and turbulent dissipation rate

Figure B.1: Normalized turbulent intensity. Symbols and conditions are given in ta-
bleB.1.

equation (B.11).
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