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Abstract

The scheduling of tasks in rea-time, resource-constrained embedded systems is
typically performed using a simple scheduler. Scheduling algorithm is the key scheduler
component which determines the way in which tasks can be executed to meet their
timing constraints. To ensure precise task scheduling, the right decisions about the
scheduler implementation have to be made. It has been argued that there is a wide gap
between scheduling theory and its practical implementation which must be bridged to
achieve a meaningful validation of embedded systems.

The work described in this thesis attempts to address this gap by proposing a smple
(generic) technique, called the Scheduler Test Case (STC), which provides the facility
to explore how a particular real-time scheduler implementation can be expected to
behave under a range of both normal and abnormal operating conditions. The primary
focus of this thesis is on single-processor embedded systems employing Time-Triggered
Co-operative (TTC) architectures. The technique proposed is a testing method which
helps facilitate an empirical “black-box” comparison between the behaviour of a set of
representative implementation classes of the TTC scheduling agorithm. The key
criterion against which scheduler behaviour is weighed up is the system predictability
manifested by predictable task execution sequence, low timing jitter and unplanned-
error handling capabilities. The implementation costs (including CPU, memory and
power requirements) involved in creating each scheduler are aso considered for
distinguishing between the different TTC implementations.

The STC technique is then extended to provide a practical means for assessing the
behaviour of multi-processor embedded designs employing Shared-Clock (S-C)
scheduling architectures and TTC agorithm on the Controller Area Network (CAN)
hardware protocol. In this part of the study, the STC technique explores the impact of
using particular implementations of the S-C scheduler on the overall timing behaviour
of multi-processor embedded systems. In addition to jitter behaviour which is measured
empirically, the STC evaluates the communication behaviour by assessing the message
latencies between any two communicating nodes in the network and the time frame
required by the network to detect a temporary node failure. The results are expressed
using mathematical equations. Moreover, the implementation costs (including network
utilisation and memory overheads) are also considered to differentiate between the
compared S-C schedulers.

The thesis finally concludes by discussing the overall findings of this project and
making some proposals for future work in the area concerned with in the project.
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Chapter 1

| ntroduction

1.1 Introduction

This introductory chapter provides a general overview of the work carried out during
the course of this PhD project. It discusses the scope of this research and explains the
aim of the studies detailed in the remainder of thisthesis.

1.2 What is an embedded system?

Unlike general-purpose desktop computers, an embedded system is a special-purpose
computer system which is designed to perform a small number of dedicated functions
for a specific application (Sachitanand, 2002; Ali, 2004; Kamal, 2003). An embedded
system might contain one or more programmable chips such as a microcontroller,
microprocessor or digital signal processor (Pont, 2001). The word “embedded”
indicates that the computer unit (e.g. microprocessor) is fully surrounded by the device
it controls, and is invisible to the user of the device. An embedded system usually
consists of hardware, software and perhaps mechanical or other components, and can be
a small part of a larger system or machine (Barr, 1999; Kamal, 2003). In desktop
computer systems, the user usually interacts with the software application through a set
of highly-capable input / output devices such as keyboard, mouse, and coloured screen.
In contrast, embedded systems have no such sophisticated interface devices: instead,
they interact with the surrounding environment through a set of simple components
such as switches, small keypads, light-emitting diodes (LEDs) and so on.

Historically, the first computer system, recognised as an embedded system, was the
Apollo Guidance Computer developed in 1959 to control the Apollo spacecraft (Hall,
2000). The first successful commercial minicomputer was the PDP-8 produced by
Digital Equipment Corporation in 1965 (Bell and Newell, 1971). In 1971, Intel released
the first commercial single-chip microprocessor, the Intel 4004, which was primarily
used in calculators and small systems (Bellis, 2007). Although this single-chip had
replaced hardwired circuitry, external memory and support chips were till required
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with the microprocessor unit until 1980s, when microcontrollers were developed to
integrate all components of a microprocessor system into a single chip (Axelson, 1994;
Bolton, 2000). Since then, many commercial companies have become involved in the
development of embedded microcontrollers to meet the increasingly growing demand of
modern technology, e.g. Atmel, Philips, Intel, Infineon, Texas Instruments, Microchip
and Motorola. Examples of different processor platforms used nowadays in the design
of embedded systems are: 8051 (Pont, 2001), ARM (ARM, 2001), PIC (Huang, 2004),
MIPS (Chow, 1989), PowerPC (Chakravarty and Cannon, 1994), Atmel AVR (Khnel,
2006), MPC555 (Bannatyne, 2004) and C16x (Siemens, 1996).

People in the 21% century may not realise the fact that without the emergence of
embedded technology their life would have become harder. This is because most
electrical devices people use nowadays are utilising embedded processors. Examples of
such devices are: microwave ovens, TVs, VCRs, DVDs, mobile phones, MP3 players,
washing machines, air conditions, handheld calculators, printers, digital watches, digital
cameras, automatic teller machines (ATMs) and medical equipments (Barr, 1999;
Bolton, 2000; Fisher et al., 2004; Pop et al., 2004; Kamal, 2003). Figure 1-1 shows

examples of the wide ranging use of embedded systems in modern applications.

Telephone phone

S e

Microwave
oven

Figure 1-1: Examples of applications using embedded systems.

In a recent publication by ABB Corporate Research (2006), Christoffer Apneseth has
reported that the need for embedded microprocessors arises mainly because general-
purpose computers, like PCs, generally exceed the cost of the majority of products that
utilise embedded systems, and are not capable of meeting the requirements that
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embedded systems should have such as reliability, product-size limitation, real-time

performance and power-consumption constraints (Apneseth, 2006).

1.3 Embedded systems market

Since embedded systems are ubiquitous, their market size today is estimated 100 times
larger than the size of desktop market (Eggermont, 2002). This scale was expected to
grow exponentially within the next ten years or so (Graef et al., 2003).

In a report developed by Ravi Krishnan (from BBC research group) in June 2005, the
worldwide embedded systems market was estimated at $45.9 billion in 2004 and
expected to grow a an average annual growth rate of 14% over the next five years to
reach $88 billion by 2009. This tota figure was broken down as follows: embedded
software market is expected to grow from about $1.6 billion in 2004 to $3.5 billion by
2009 at an average annual growth rate of 16%, embedded hardware market is expected
to grow from about $40.5 billion in 2004 to $78.7 billion by 2009 at an average annual
growth rate of 14.2%, and embedded board revenues will increase from about $3.7
billion in 2004 to about $6 by 2009 at an average annual growth rate of 10% (see
Krishnan, 2005). Figure 1-2 shows the evolution in the worldwide embedded markets
from 2003 through to 2009.

! Reliability means that the system is able to provide the service to the user whenever requested
(Sommerville, 2007).
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Figure 1-2: Global embedded systems market, 2003 — 2009 (Sour ce: BBC Research Group).

1.4 The need for predictability in embedded systems

Besides the application types listed in Section 1.2, which can be viewed as “non-
critical” systems, embedded technology has also been used to develop “safety-critical”
systems in which failures can have very serious impacts on human safety. For example,
incorrect operation of such systems may endanger human lives or cause catastrophic
consequences. Safety-critical systems are typically used in the development of
aerospace, automotive, railway, military and medical applications (Redmill, 1992;
Profetaet al., 1996; Storey, 1996; Konrad et al., 2004).

The utilisation of embedded systems in safety-critical applications requires that the
system should have real-time operations to achieve correct functionality and/or avoid
any possibility for detrimental consequences. Real-time systems are computer systems
which must react (respond) to events in the environment within limited time boundaries
(Barr, 1999; Buttazzo, 2005). Real-time behaviour can only be achieved if the system is
able to perform predictable and deterministic processing (Stankovic, 1988; Pont, 2001;
Buttazzo, 2005; Phatrapornnant, 2007). More clearly, a given system is described as
real-time if it is able to complete the execution of particular activities within specific
time intervals. In another word, the system should guarantee that a particular set of
activities (e.g. calculating the required throttle settings to control speed in an auto-driver
system) will always be completed within (for example) 4 ms or a precisely 3 ms

periods. In situations where the system is unable to meet these time constraints, then the
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whole application is not smply slower than would be expected, it tends to be entirely
useless (Pont, 2001). As aresult, the correct behaviour of areal-time system depends on
the logical correctness of the output results as well as the time at which these results are
produced (Avrunin et al., 1998; Kopetz, 1997).

Overall, real-time systems can be divided into two main classes. soft-real-time and
hard-real-time systems (Buttazzo, 2005). In soft-real-time systems, timing constraints
have to be “generally” met, and failure to do so may only result in reduced system
performance but does not cause serious damages or jeopardise correct behaviour. In
contradt, in hard-real-time systems such as those related to safety-critical applications,
timing constraints must be “deterministically” met in order to achieve correct operations
or avoid harmful consequences. For example, consider the Brake-by-Wire system
designed for modern passenger cars (Hedenetz and Belschner, 1998), the brake
actuators may be required to respond within a fixed amount of time after the brake pedal
is pressed. If the system fails to respond within this time bound, then there could be a
danger that the vehicle may not stop in time before crashing into another vehicle
causing serious damage and possibly loss of passenger lives (Ayavoo, 2007). Another
example is an aircraft auto-pilot system in which rapid reactions, involving (for
example) rudder, elevator, aileron and engine settings, are necessarily required to keep
the aircraft staying on its path. In situations where the system cannot (for example)
adjust the rudder setting in millisecond time-scale, the plane may oscillate unpleasantly
or even crash in more severe circumstances (Pont, 2001).

In such real-time embedded applications, it is important to predict the timing behaviour
of the system to guarantee that the system will behave correctly and as a result the life
of the people using the system will be saved. Many researchers indicate that, whilst the
most important property of a desktop computing system is its speed, the most important
property in a real-time computing system is predictability (Kontak, 1988; Stankovic,
1988; Halang and Stoyenko, 1990). Thisis clearly stated by Buttazzo (2005) as:

“ ... rather than being fast, a real-time computing system should be predictable’

Hence, predictability is the key characteristic in real-time embedded systems.
Predictability can simply reflect the ability to determine, in advance, exactly what the
system will do at every moment of time in which it is running and hence determine
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whether the system is capable of meeting all its timing constraints. According to this
definition, building an embedded application with highly-predictable system behaviour
IS, in most cases, a non straightforward process as will be discussed in the next section.

1.5 Challenges in building predictable embedded systems

Embedded systems engineering is viewed as a branch of systems engineering discipline
where engineers are concerned with all aspects of the system development including
hardware and software engineering. Therefore, activities such as specification, design,
implementation, validation, deployment and maintenance will all be involved in the
development of an embedded application.

A design of any system usually starts with ideas in people’s mind. These ideas need to
be captured in requirements specification documents that specify the basic functions and
the desirable features of the system. The system design process then determines how
these functions can be provided by the system components. Figure 1-3 illustrates the life
cycle of a system development process.

Requirement System and Integration and Operation and
quirer —> Software —>»| Implementation [—3» gratk e
definition design Testing Maintenance

Figure 1-3: The system development life cycle (adapted from Sommerville, 2007).

For successful design, the system requirements have to be expressed and documented in
avery clear way. Inevitably, there can be numerous ways in which the requirements for
a simple system can be described: this may involve structured natural language, models
or graphical representations, formal specification techniques, etc. (Sommerville, 2007).

Once the system requirements have been clearly defined and well documented, the first
step in the design process is to design the overall system architecture. Architecture of a
system basically represents an overview of the system components (i.e. sub-systems)
and the interrelationships between these different components. Since embedded
engineers are concerned with hardware and software design aspects of the system, they
must decide on both the hardware and the software architectures of the intended design.
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This thesis is mainly concerned with the software architectures for embedded designs.
Douglass (2004) defines architecture as: “ the set of strategic design decisions that affect
the structure, behaviour, or functionality of the system as a whole” .

Clear documentation of the software architecture is paramount as it helps the developers
consider key design aspects of the system early in the design process. Since they
provide a high-level representation of the system, software architectures allow the
developers to establish discussions about the system requirements and begin to predict
how the system will operate after implementation (Sommerville, 2007). Determining
the most appropriate architecture is a key requirement in the design and implementation
processes of a given system. More specifically, embedded systems are often designed
and implemented as a collection of processes (called tasks) which share the system
resources and interact with the system and/or environment in which they operate. The
various possible system architectures are then characterised in terms of these tasks. For
example, if the tasks are invoked periodically under the control of timer, the system
architecture may be described as time-triggered (Kopetz, 1997; Albert, 2004).
Alternatively, if the tasks are invoked as a response to aperiodic external events, then
the system architecture may be described as event-triggered (Nissanke, 1997; Albert,
2004). These are the two fundamental architectures used in the design of embedded
systems. More details are provided later in Section 2.5.

Once the software architecture is identified, the process of implementing that
architecture should take place. This can be achieved using a lower-level system
representation such as an operating system or a scheduler. Scheduler is a very simple
operating system for an embedded application (Pont, 2001). As with desktop operating
systems, the scheduler has the responsibility to manage the computational and data
resources in order to meet all temporal and functional requirements of the system
(Mwelwa, 2006). A vital role of the scheduler is to organise the operation of the tasks
running in the system, so as to guarantee that all timing requirements will be met.
Building the scheduler would require a scheduling algorithm which simply provides the
set of rules that determine the order in which the tasks will be executed by the scheduler
during the system operating time. It is therefore the most important factor which
influences predictability in the system, as it is responsible for satisfying timing and
resource requirements (Buttazzo, 2005). However, the actual implementation of the
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scheduling algorithm on the embedded microcontroller has an important role in
determining the functional and temporal behaviour of the embedded system.

In view of all these different representations for a simple embedded design, the main
challenge is to ensure that the various system representations are all matching up and
the system would maintain its required behaviour whilst moving between
representations. For example, Marwedel (2006) noted that when a system is modelled,
each system model views a particular aspect of the system and it is not possible to
ensure complete consistency between the various models; although some tools available
nowadays can help perform partial consistency checking between the different models.
As a consequence, ensuring predictability of the system, whilst translating between its
various representations, would require further techniques to be applied at different
stages in the development process. This is clearly underlined by Buttazzo (2005) as:

“... one safe way to achieve predictability is to investigate and employ new
methodologies at every stage of the development of an application, from design to
testing.”

1.6 The focus of this thesis

The work described in this thesis seeks to address the process of translating between
various possible representations of an embedded system and ensuring predictability
during this process. However, the thesis is not attempting (by any mean) to match all
system representations which cannot be possible in a single study. Instead, it is mainly
concerned with translating between the high-level representation of the system, in terms

of its scheduler, and the actual software implementation for that scheduler.

Given that a scheduling “algorithm” is the set of rules that, a every moment in the
system run-time, determines which task must be allocated the resources to execute, the
scheduler “implementation” is the process of transforming these rules into an executable
source code (Sommerville, 2007; Koch, 1999). The source code can hence be viewed as
the lower-level software representation of the system which practically dictates its
functional and temporal behaviour.
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Inevitably, there are many possible behaviour patterns one can get from a very simple
software design, not least because of the various possible ways in which the source code
for this design can be implemented. Therefore, it has been widely accepted that there is
a ‘one-to-many’ mapping between a scheduling algorithm and its software
implementations in practical real-time embedded designs (e.g. Baker and Shaw, 1989;
Katcher et al., 1993; Koch, 1999). As a consequence, any — even comparatively small —
changes at the implementation stage of a scheduler can have a profound impact on the
behaviour of the system which implements this scheduler (see Section 3.3 for more
details).

Despite this, the topic of scheduler implementation is rarely considered in detail (Cho et
al., 2007). In aresearch conducted by Katcher and his colleges (Katcher et al., 1993), it
was argued that there is a wide gap between scheduling theory and its implementation
in operating system kernels running on specific hardware platforms, where this gap
must be bridged for meaningful validation of areal-time application. Katcher et al. have
also noted that the implementation of a particular algorithm can introduce costs which
must be taken into account when validating the timing properties of areal-time system.

The aim of this thesis is to bridge the gap between scheduling algorithms and practical
scheduler implementations in real-time embedded systems. A main goal isto ensure that
precise timing predictions made at the design stage of a system are not lost in the
process of creating or maintaining a practical system implementation, thereby ensuring
that the implemented scheduler matches the original design specifications and hence

meets the user’ s requirements.

To address these issues, this study proposes the use of “scheduler test cases’ as a way
for recording and distinguishing the impact of different (scheduler) implementations on
the behaviour of embedded systems. The Scheduler Test Case (STC) technique
proposed is intended to allow those implementing a system to gain a full understanding
of its characteristics by exploring the ways in which the various implementations of the
system scheduler can be expected to behave under arange of both normal and abnormal
operating conditions.
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Note that the particular focus of this study is on resource-constrained, embedded
systems which employ time-triggered co-operative (TTC) architectures. These
architectures are reviewed in Section 2.8.3. However, the study also considers multi-
processor embedded designs which are based on TTC algorithm and a Shared-Clock (S-
C) scheduling protocol. These architectures are reviewed in Section 8.4.3.

1.7 Thesis contributions

The main contributions of this thesis are summarised as follows:

- A technique for employing a set of generic Scheduler Test Cases (STCs) is
developed and implemented with the intention to facilitate a “black box”
comparison between the behaviour of different Time-Triggered Co-operative
(TTC) scheduler implementations in single-processor, resource-constrained
embedded systems.

- An extension to the STC technique is proposed to allow assessing the behaviour of
(distributed) multi-processor embedded designs implemented using a wide range of
Shared-Clock (S-C) scheduling architectures built on the Controller Area Network
(CAN) protocol.

- A set of standard forms (i.e. representative implementation classes) of TTC
schedulers (for single-processor embedded systems) and TTC-SCC schedulers (for
multi-processor embedded systems) are fully documented, classified and compared

using a systematic approach.

- The development of a flexible (adaptive) TTC architecture that provides extremely
predictable task scheduling is described and evaluated. This is aimed towards
implementing a“perfect” TTC scheduler.

- A range of data coding techniques are developed to reduce transmission jitter and,
hence, increase the predictability of multi-processor embedded networks that
employ TTC-SCC scheduling protocols.



Chapter 1: Introduction 12

1.8 Thesis layout

The remaining chapters of this thesis are organised as follows:

Part B reviews previous work carried out in the areas concerned with in this thesis. It
begins, in Chapter 2, by providing essential background material that is necessary to
understand the work presented in the remaining chapters of the thesis. It mainly focuses
on scheduling algorithms used in real-time embedded systems which have severe
resource constraints and require highly-predictable system behaviour. Following this
chapter, a more detailed literature review of the previous work in this area is provided.
This includes the work on real-time scheduler implementations, with a particular focus
on the TTC scheduling algorithm (Chapter 3) and possible ways to match scheduling
algorithms and scheduler implementations using generic techniques (Chapter 4). By the
end of Part B, the limitations in previous work to address the problems considered in

thisthesis are clarified.

Part C presents the work carried out in this project for single-processor embedded
system implementations. It begins, in Chapter 5, by reviewing a wide range of
representative implementation classes for TTC scheduling algorithm. Chapter 6 then
describes the STC technique developed in this project to document (and assess) the
various TTC scheduler implementations. In Chapter 7, the STC technique is applied to
the reviewed TTC scheduler implementations and the output results are presented and
analysed. The experimental methodology used to obtain the results is also outlined in
this chapter.

Part D considers the work carried out in this project for multi-processor embedded
system implementations. This study begins, in Chapter 8, by reviewing various network
and scheduling protocols used to implement multi-processor embedded systems which
have severe resource constraints and highly-predictable behaviour requirements. The
focus in this chapter will particularly be on systems employing Controller Area
Network (CAN) communication protocol and Shared-Clock (S-C) scheduling protocol.
The next three chapters then follow the same layout as in the single-processor study. In
particular, Chapter 9 reviews a wide range of representative implementation classes for
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S-C scheduling protocol as implemented with TTC algorithm on CAN network (the
resulting system will be referred to as TTC-SCC scheduler). Chapter 10 describes a
possible modification to the STC technique to alow documenting (and assessing) the
various TTC-SCC scheduler implementations. In Chapter 11, the modified STC
technique is applied to the reviewed TTC-SCC scheduler implementations and the
output results are presented and analysed. The methodology used to obtain the results is
outlined at the beginning of this chapter.

Part E contains the discussion and conclusions of the thesis. In particular, Chapter 12
summarises the work presented in the previous chapters and discusses the overall
findings of the project. Finally, Chapter 13 draws the overall thesis conclusions and
suggests some work for future research projects.

Part F contains Appendices which provide supplementary materials and summarise
additional work which has been carried out during the course of this project, but is
indirectly related to the studies presented in the thesis chapters.

1.9 Conclusions

This introductory chapter has discussed the overall theme of the work described in this
PhD thesis. It provided an introduction to embedded systems and discussed the
challenges involved in the process of creating a predictable embedded application.

The discussions indicated that, despite the importance of scheduling algorithms in
managing the operation of real-time embedded systems, scheduler implementations
have a major role in determining the actual run-time behaviour of the system: however,
there is «ill a wide gap between scheduling algorithms and their practical
implementations which must be addressed to achieve correct validations of embedded
systems.

Based on these discussions, the main goal and key contributions of this thesis were
stated, and the layout for the remaining chapters provided.
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Chapter 2
Real-time scheduling algorithms

2.1 Introduction

As previously noted, this thesis is mainly concerned with the process of translating
between scheduling algorithms and scheduler implementations in practical real-time
embedded systems which employ time-triggered software architectures. This chapter
introduces the concepts of scheduling and discusses scheduling algorithms which are
widely used in the design of real-time, resource-constrained embedded systems when
highly-predictable system behaviour is a key requirement. The chapter begins by
providing some essential background material and definitions.

2.2 Tasks

The most important software entity of the real-time embedded system is the process or
task which is a computation that is executed by the CPU in a sequential manner
(Buttazzo, 2005). Most embedded systems are assembled from collections of tasks. For
example, complex systems (such as aircraft control) may have hundreds of tasks,
possibly distributed across a number of CPUs. see Section 2.11 . However, the tasks
executed by a single CPU may still need to exchange data between them and access
shared resources, e.g. ports, serial interfaces, digital-to-analogue converters, and so
forth. The interaction between the various tasks depends on the method of scheduling
that is employed: thisis discussed further shortly.

Real-time tasks are divided into three main categories:

- Periodic tasks: tasks implemented as functions which are called at regular
intervals (e.g. every millisecond or every 100 milliseconds) during some or al of
the time that the system is active. Periodic tasks usually have critical timing
constraints which must be met precisely (Cottet, 2002). Figure 2-1 shows an
example of a periodic task. Note that the task is ready at a, must complete its
execution before d; (wherei = 1, 2, 3, ..., n) and iscalled every T interval.
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Figure 2-1. Sequencefor aperiodic tak. Thefigureisadapted from (Buttazzo, 2005).

- Aperiodic tasks. tasks implemented as functions which may be activated if a
particular event takes place. For example, an aperiodic task might be activated
when a switch is pressed, or a character is received over a serial connection.
Timing constraints for aperiodic tasks can be less critical than those for periodic
tasks (Cottet, 2002). Figure 2-2 shows an example of an aperiodic task.

A

— | —

al di a2 d2 Time

Figure 2-2: Sequencefor an aperiodic task. Thefigure isadapted from (Buttazzo, 2005).

- Sporadic tasks: tasks implemented as functions which are called repestedly at
variable intervals. However, the minimum interval between any two successive
occurrences of the sporadic task is known. Figure 2-3 shows an example of a
gporadic task. Note that the task is called at variable periods with the minimum

value of Tp,.
A <4“——Tm—>

| l | Il | Il | Il g
al dl a2 d2 a3 d3 a4 d4 Time

Figure 2-3: Sequencefor a sporadic task.
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2.3 Timing constraints

For any type of tasks running in a real-time system, timing constraints are often a key
concern. Tasks can be divided — according to the implications of missing their timing
constraints — into two main classes: soft and hard. In particular, atask is said to be soft
if meeting its timing constraints is desirable for performance, but missing these
constraints does not affect the correctness of the system behaviour. In contrast, atask is
said to be hard if missing its timing constraints can result in harmful consequences or
misbehaviour of the system (Buttazzo, 2005).

The typical timing constraints associated with each task in real-time systems are:

Release time: the time after which atask can start its execution. This parameter is
sometimes called request time, ready time, or arrival time.

Deadline: the time before which atask must complete its execution.

Some other timing parameters, which are used to characterise tasks in real-time systems,
are:

- Start time: the time at which atask starts its execution.

- Completion time: the time at which atask completes its execution. This parameter
is also called finishing time.

Execution time: the time taken by the processor to execute a task without

interruption. This parameter is also called computation time.

Lateness: the delay between the deadline and the completion time. A task is
considered late if its lateness value is positive.

2.4 Jitter

Jitter is a term which describes variations in the timing of activities (Wavecrest, 2001).
For some periodic tasks, such variations are more important than the absolute deadline.
For example, suppose that some activity should occur at times.

t={1.0ms, 2.0 ms, 3.0ms, 4.0 ms, 5.0 ms, 6.0 ms, 7.0 ms, ...}.
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Suppose, instead, that the activity occurs at times:
t={11.0ms, 12.0 ms, 13.0 ms, 14.0 ms, 15.0 ms, 16.0 ms, 17.0 ms, ...}.

In this case, the activity has been delayed (by 10 ms). For some applications — such as
data, speech or music playback (for example) — this delay may make no measurable
difference to the user of the system. However, suppose that — for a data playback system
— same activities were to occur as follows:

t={1.0ms, 2.1 ms, 3.0ms, 3.9 ms, 5.0ms, 6.1 ms, 7.0 ms, ...}.

In this case, there is a variation in the activity timing which is referred to as jitter. In
real-time embedded systems, various system activities are identified as tasks that need
to be performed at precise timing without delays or, more importantly, jitter.

The present work is concerned with implementing highly-predictable embedded
systems. As previously introduced, predictability is one of the most important objectives
of real-time embedded systems which can simply be defined as the ability to determine,
in advance, exactly what the system will do at every moment of time in which it is
running. One way in which predictable behaviour manifests itself isin low levels of task
jitter. As jitter is used in this study as a way of assessing timing behaviour, previous
work inthisareais briefly reviewed in this section and later in Section 2.9. This section,
in particular, discusses the impact of jitter on the performance of real-time embedded

systems.

Jitter is a key timing parameter that can have detrimental impacts on the performance of
many applications, particularly those involving period sampling and/or data generation
(e.g. data acquisition, data playback and control systems: see Torngren, 1998). The need
for high-speed systems has enforced the embedded processors to operate in multi-
gigahertz frequency range, and reliable operation of such high-frequency systems would
require substantial understanding of timing jitter characteristics (Ong et al., 2004). For
example, Cottet and David (1999) show that — during data acquisition tasks — jitter rates
of 10% or more can introduce errors which are so significant that any subsequent
interpretation of the sampled signal may be rendered meaningless. Similarly, Jerri
(1977) discusses the serious impact of jitter on applications such as spectrum analysis
and filtering. Also, in control systems, jitter can greatly degrade the performance by
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varying the sampling period (Torngren, 1998; Marti et al., 2001b). The serious impacts
of jitter on a wide range of applications have been discussed in a number of previous
studies (e.g. Jerri, 1977; Hong, 1995; Stothert, 1998; Gulliver and Ghinea, 2007;
Phatrapornnant, 2007). For example, Gulliver and Ghinea (2007) exemplify that
applications — such as distributed multimedia communications — are highly sensitive to
jitter, where the presence of even low amounts of jitter may result in a severe
degradation in perceptual video quality.

2.5 Software architectures

Embedded systems are composed of hardware and software components. The success of
an embedded design, thus, depends on the right selection of the hardware platform(s) as
well as the software environment used in conjunction with the hardware. The selection
of hardware and software architectures of an application must take place at early stages
in the development process (typically at the design phase). Hardware architecture relates
mainly to the type of the processor (or microcontroller) platform(s) used and the
structure of the various hardware components that are comprised in the system: see
Mwelwa (2006) for further discussion about hardware architectures for embedded

systems.

Provided that the hardware architecture is decided, an embedded application requires an
appropriate form of software architecture to be implemented. To determine the most
appropriate choice for software architecture in a particular system, this condition must
be fulfilled (Locke, 1992):

“The [ software] architecture must be capable of providing a provable prediction of the
ability of the application design to meet all of its time constraints.”

Since embedded systems are usually implemented as collections of real-time tasks, the
various possible system architectures may then be determined by the characteristics of
these tasks. In general, there are two main software architectures which are typically
used in the design of embedded systems:

- Event-triggered (ET): tasks are invoked as a response to aperiodic events. In this
case, the system takes no account of time: instead, the system is controlled purely

by the response to external events, typically represented by interrupts which can
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arrive at anytime (Bannatyne, 1998; Kopetz, 1991b). Generally, ET solution is
recommended for applications in which sporadic data messages (with unknown
regquest times) are exchanged in the system (Hsieh and Hsu, 2005).

- Time-triggered (TT): tasks are invoked periodically at specific time intervals
which are known in advance. The system is usually driven by a global clock which
is linked to a hardware timer that overflows at specific time instants to generate
periodic interrupts (Bennett, 1994). In distributed systems, where multi-processor
hardware architecture is used, the global clock is distributed across the network
(via the communication medium) to synchronise the local time base of all
processors. In such architectures, time-triggering mechanism is based on time-
division multiple access (TDMA) in which each processor-node is allocated a
periodic time slot to broadcast its periodic messages (Kopetz, 1991b). TT solution
can suit many control applications where the data messages exchanged in the
system are periodic (Kopetz, 1997).

To better explain the differences between the TT and ET software architectures,
consider the following example (Pont, 2001). A hospital doctor is required to look after
agroup of serioudly ill patients overnight, with a support of some nursing staff. With ET
solution, the doctor might arrange to go to sleep and only if a significant problem occurs
with one patient a nurse can waken him up to deal with the problem. An alternative
solution to thisis TT in which the doctor might set his alarm to ring every hour. When
the alarm rings, the doctor wakes up and begins to check the status of all patients in
sequence before going to sleep for the rest of the hour.

Many researchers argue that ET architectures are highly flexible and can provide high
resource efficiency (Obermaisser, 2004; Locke, 1992). However, ET architectures allow
several interrupts to arrive at the same time, where these interrupts might indicate (for
example) that two different faults have been detected at the same time. Inevitably,
dealing with an occurrence of several events at the same time will increase the system
complexity and reduce the ability to predict the behaviour of the ET system (Scheler
and Schroder-Preikschat, 2006). In more severe circumstances, the system may fail
completely if it is heavily loaded with events that occur a once (Marti, 2002). In
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contragt, using TT architectures helps to ensure that only a single event is handled at a
time and therefore the behaviour of the system can be highly-predictable.

To make this point clearer, reconsider the hospital doctor example. With a TT solution,
where the doctor visits all patients at hourly intervals, each patient will be checked and
appropriate treatment is hence arranged before serious problems arise. With this
process, the doctor’s workload is spread out equally throughout the night making all
patients survive without difficulty. On the contrary, using ET solution may cause
serious problems. For example, assume that a minor problem occurs with one patient
while the doctor is asleep and the nursing staff decide not to waken the doctor but to
solve the problem themselves. Few hours later, several patients have minor problems
after which the nurses decide to wake the doctor up to look at those problems. Once the
doctor sees the patients, he realises that some of them have severe complications and
they need surgery. One implication of this processis that before the doctor can deal with
the first patient, the second one gets very close to death, and so on.

Since highly-predictable system behaviour is an important design requirement for many
embedded systems, TT software architectures have become the subject of considerable
attention (e.g. see Kopetz, 1997). In particular, it has been widely accepted that TT
architectures are a good match for many safety-critical applications, since they can help
to improve the overall safety and reliability (Allworth, 1981; Storey, 1996; Nissanke,
1997; Bates; 2000; Obermaisser, 2004). For example, Time-Triggered Group (TTG) —
established by Airbus, Audi, Delphi, Honeywell, PSA Peugeot Citroén, Renault and
TTTech companies — promotes cross-industry technologies for a TT solution on many
safety-critical industries including aerospace, railway and automotive where safety
requirements must be satisfied at low cost (TTA-Group, 2007). In the automotive
industry, as an example, TT architectures have been recently accepted as a generic
solution for highly dependable systems such as X-by-Wire systems (see Ayavoo, 2006;
Mwelwa, 2006). The main reason why the TT approaches are preferred in such
applications is that they result in systems which have very predictable and deterministic
behaviour. Liu (2000) highlights that TT systems are easy to validate, test, and certify
because the times related to the tasks are deterministic.
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Moreover, it was pointed out that fault tolerance (which requires a proper synchronism
of the redundant component) can be easily achieved with TT systems without requiring
additional CPU overhead (Scheler and Schroder-Preikschat, 2006). Detailed
comparisons between the TT and ET concepts were performed by Kopetz (1991a and
1991b), Albert (2004) and Scheler and Schroder-Preikschat (2006). Scheler and
Schroder-Preikschat (2006) went further to outline a method which helps describing the
real-time system independent of its architecture and therefore eases the process of
migrating between TT and ET architectures later in the development process. Before
wrapping up this discussion, it should be noted that in some applications, a mix of TT
and ET system architectures can be an optimal design solution (for more details see Pop
et al., 2002).

Over recent years, the ESL researchers have considered various ways in which TT
architectures can be employed in low-cost embedded systems (see ESL, 2008 for the
full list of ESL publications). The techniques described in these studies have involved
the development of software for industry-standard commercial-off-the-shelf (COTS)
hardware platforms, such as the 8051 microcontroller (Pont, 2001), ARM processor
(Pont and Mwelwa, 2003) or PC platform (Pont et al., 2003). For example, Pont (2001)
provides a wide range of design pattern’ collections to support the software
development of embedded systems which are based on TT architectures. Recently, in
(Mwelwa, 2006), a tool to support pattern-based code generation of TT embedded
systems is developed and assessed. More recently, Phatrapornnant (2007) looked at
ways in which dynamic voltage scaling (DVS) techniques — for reducing system power
consumption — can be incorporated in simple TT scheduling algorithms,

Nonetheless, previous work in this area has also focused on the development of multi-
processor designs. For such designs, it has been demonstrated that a “ Shared-Clock” (S

2 patterns describe a solution to a frequently recurring design problem that can be applied in different
contexts. Thefirst “ pattern language” was described by Christopher Alexander, an architect who intended
to link between architectural problems and good design solutions (Pont, 2001). Software patterns are
hence used in software systems to facilitate design reuse by providing developers with previousy
successful design solutions (see Mwelwa, 2006 for more information).
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C) architecture provides a simple and low-cost software framework for TT systems
without requiring specialised hardware (Pont, 2001). S-C protocols are further discussed
in Chapter 8.

2.6 Schedulers

As previously noted, most embedded systems involve several tasks that share the
system resources and communicate with one another and/or the environment in which
they operate. For many projects, akey challenge is to work out how to schedule tasks so
that they can meet their timing constraints. This process requires an appropriate form of
scheduler®. A scheduler can be viewed as a very simple operating system which calls
tasks periodically (or aperiodically) during the system operating time. Moreover, as
with desktop operating systems, a scheduler has the responsibility to manage the
computational and data resources in order to meet all temporal and functional
requirements of the system (Mwelwa, 2006).

According to the nature of the operating tasks, any real-time scheduler must fall under
one of the following types of scheduling policies:

Pre-emptive scheduling: where a multi-tasking process is allowed. In more
details, a task with higher priority is allowed to pre-empt (i.e. interrupt) any lower
priority task that is currently running. The lower priority task will resume once the
higher priority task finishes executing. For example, suppose that — over a
particular period of time — a system needs to execute four tasks (Task A, Task B,
Task C, Task D) asillustrated in Figure 2-4.

® Note that schedulers represent the core components of “Real-Time Operating System” (RTOS) kernels.
Examples of commercial RTOSs which are used nowadays are: VxWorks (from Wind River), Lynx (from
LynxWorks), RTLinux (from FSMLabs), eCos (from Red Hat), and QNX (from QNX Software
Systems). Most of these operating systems require large amount of computational and memory resources
which are not readily available in low-cost microcontrollers like the ones considered in this study.
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Figure 2-4: A schematic representation of four taskswhich need to be scheduled for execution on a
single-processor embedded system.

Assuming a single-processor system is used, Task C and Task D can run as required
where Task B is due to execute before Task A is complete. Since no more than one task
can run at the same time on a single-processor, Task A or Task B has to relinquish
control of the CPU. In pre-emptive scheduling, a higher priority might be assigned to
Task B with the consequence that — when Task B is due to run — Task A will be
interrupted, Task B will run, and Task A will then resume and complete (Figure 2-5).
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Figure 2-5: Pre-emptive scheduling of Task A and Task B in the system shown in Figure 2-4: Task
B, here, isassigned a higher priority.

- Co-operative (or “non-pre-emptive’) scheduling: where only a single-tasking
process is allowed. In more details, if a higher priority task is ready to run while a
lower priority task is running, the former task cannot be released until the latter one
completes its execution. For example, assume the same set of tasks illustrated in
Figure 2-4. In the simplest solution, Task A and Task B can be scheduled co-
operatively. In these circumstances, the task which is currently using the CPU is
implicitly assigned a high priority: any other task must therefore wait until this task
relinquishes control before it can execute. In this case, Task A will complete and
then Task B will be executed (Figure 2-6).
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Figure 2-6. Co-operative scheduling of Task A and Task B in the system shown in Figure 2-4.
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- Hybrid scheduling: where a limited, but efficient, multi-tasking capabilities are
provided (Pont, 2001). That is, only one task in the whole system is set to be pre-
emptive (this task is best viewed as “highest-priority” task), while other tasks are
running co-operatively (Figure 2-7). In the example shown in the figure, suppose
that Task B is ashort task which has to execute immediately when it arrives. In this
case, Task B is set to be pre-emptive so that it acquires the CPU control to execute

whenever it arrives and whether (or not) other task is running.
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Figure 2-7: Hybrid scheduling of four-tasks: Task B isset to be pre-emptive, where Task A, Task C
and Task D run co-oper atively.

Overall, when comparing co-operative with pre-emptive schedulers, many researchers
have argued that co-operative schedulers have many desirable features, particularly for
use in safety-related systems (Allworth, 1981; Ward, 1991; Nissanke, 1997; Bates,
2000; Pont, 2001). For example, Bates (2000) identified the following four advantages

of co-operative scheduling over pre-emptive alternatives:
- The scheduler is simpler.
- The overheads are reduced.
- Testing is easier.

- Certification authorities tend to support this form of scheduling.

Similarly, Nissanke (1997) noted: “[Pre-emptive] schedules carry greater runtime
over heads because of the need for context switching - storage and retrieval of partially
computed results. [Co-operative] algorithms do not incur such overheads. Other
advantages of co-operative algorithms include their better understandability, greater
predictability, ease of testing and their inherent capability for guaranteeing exclusive

access to any shared resource or data.”

Many researchers still, however, believe that pre-emptive approaches are more effective
than co-operative alternatives (Allworth, 1981; Cooling, 1991; Bannet, 1994). This can
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be due to different reasons. As in (Pont, 2001), one of the reasons why pre-emptive
approaches are more widely discussed and considered is because of confusion over the
options available. Pont gave an example that the basic cyclic scheduling, which is often
discussed by many as an alternative to pre-emptive, is not a representative of the wide

range of co-operative scheduling architectures that are available.

Moreover, one of the main issues that concern people about the reliability of co-
operative scheduling is that long tasks can have a negative impact on the responsiveness
of the system. Thisis clearly underlined by Allworth (1981):

“[The] main drawback with this co-operative approach is that while the current process
is running, the system is not responsive to changes in the environment. Therefore,
system processes must be extremely brief if the real-time response [ of the] systemis not
to be impaired.”

However, in many practical embedded systems, the process (task) duration is extremely
short. For example, calculations of one of the very complicated algorithms, the
proportional integral differential (PID) controller, can be carried out on the most basic
(8-bit) 8051 microcontroller in around 0.4 ms: this imposes insignificant processor load
in most systems — including flight control — where 10 ms sampling rate is adequate
(Pont, 2001). Pont has also commented that if the system is designed to run long tasks,
“this is often because the developer is unaware of some simple techniques that can be
used to break down these tasks in an appropriate way and — in effect — convert long
tasks called infrequently into short tasks called frequently” : some of these techniques
are introduced and discussed in Pont (2001).

Moreover, if the performance of the system is seen slightly poor, it is often advised to
update the microcontroller hardware rather than to use a more complex software
architecture. However, if changing the task design or microcontroller hardware does not
provide the level of performance which is desired for a particular application, then more
than one microcontroller can be used. In such cases, long tasks can be easily moved to
another processor, allowing the host processor to respond rapidly to other events as
required. Further discussions about multiple-processor designs, in this thesis, are
provided in Chapter 8.
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Please note that the very wide use of pre-emptive schedulers can simply be resulted
from a poor understanding and, hence, undervaluation of the co-operative schedulers.
For example, a co-operative scheduler can be easily constructed using only a few
hundred lines of highly portable code written in a high-level programming language
(such as‘C’), while the resulting system is highly-predictable (Pont, 2001).

It is also important to understand that sometimes pre-emptive schedulers are more
widely used in RTOSs due to commercial reasons. For example, companies may have
commercial benefits from using pre-emptive environments. Consequently, as the
complexity of these environments increases, the code size will significantly increase
making ‘in-house’ constructions of such environments too complicated. Such
complexity factors lead to the sale of commercial RTOS products at high prices (Pont,
2001). Therefore, further academic research has been conducted in this area to explore
alternative solutions. For example, over the last few years, the ESL researchers have
considered various ways in which simple, highly-predictable, non-pre-emptive (co-
operative) schedulers can be implemented in low-cost embedded systems (see Section
2.8.3).

2.7 Schedule design

When any type of scheduler is to be employed in a real-time system, a number of key
scheduler parameters must be determined: e.g. the task order, initial delay (i.e. phase or
offset) and period of each task. The aim with this design process is to ensure that all
tasks are able to meet their deadlines and that the simplest scheduler architecture is
employed (Gendy and Pont, 2008). It is so important to realise that inappropriate
choices of such design parameters may mean that a given task set cannot be scheduled
at all.

Automatic generation of schedules and schedulers is less common than general-purpose
code generation, but work has been done in this area too. Examples of methods used in
automatic schedule / scheduler generation include: simulated annealing (Tindell et al.,
1992), constraint programming heuristics (Ekelin and Jonsson, 2001), branch and bound
algorithm (Xu and Parnas, 1990) and genetic algorithm (Sandstrom and Norstrom,
2002): for mode details see Gendy and Pont (2008). The work described in the previous
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studies is relevant to a discussion about tool support for scheduler design. However,
none of this previous work relates directly to time-triggered architectures that form the
key focus of this study. In fact, previous studies have tended to focus on “conventional”
RTOSs (e.g. VxWorks: Sandstrém and Norstrém, 2002). Such operating systems
greatly exceed the resource requirements available in the types of processors considered
in this study.

Two recent studies within the ESL group (Gendy et al., 2007; Gendy and Pont, 2008)
have explored scheduler design for time-triggered (co-operative and hybrid)
architectures. The approach involves a “best characteristics first” search intended to
identify a good (but not necessarily optimal) set of scheduler parameters while
maintaining low levels of system power consumption.

2.8 Scheduling algorithms

2.8.1 Introduction

A key component of the scheduler is the scheduling algorithm which basically
determines the order in which the tasks will be executed by the scheduler (Buttazzo,
2005). More specifically, a scheduling algorithm is the set of rules that, at every instant
while the system is running, determines which task must be allocated the resources to

execute.

Developers of embedded systems have proposed various scheduling algorithms that can
be used to handle tasks in real-time applications. The selection of appropriate
scheduling algorithm for a set of tasks is based upon the capability of the algorithm to
satisfy all timing constraints of the tasks: where these constraints are derived from the
application requirements. Examples of common scheduling algorithms are: Cyclic
Executive (Locke, 1992), Rate Monotonic (Liu and Layland, 1973), Earliest-Deadline-
First (Liu and Layland, 1973; Liu, 2000), Least-Laxity-First (Mok, 1983), Deadline
Monotonic (Leung, 1982) and Shared-Clock (Pont, 2001) schedulers (see Rao et al.,
2008 for a smple classification of scheduling algorithms).
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This section outlines two key examples of scheduling algorithms that are widely used in
the design of real-time embedded systems when highly-predictable system behaviour is
an essential requirement: these are the rate monotonic and a form of cyclic executive.

2.8.2 Rate monotonic (RM) scheduler

The rate-monotonic (RM) (Liu and Layland, 1973) is a well-known fixed-priority
scheduling algorithm. RM is a time-triggered, pre-emptive algorithm in which task
priorities are fixed and inversely proportional to their periods. Liu and Layland
demonstrated that — with a set of n tasks — every task in the RM scheduler will meet its
deadline if the total CPU utilisation is less than or equal to n(2(1/n)-1); all tasks in the
system are independent of one another; the deadline for each task is equal to its period;
the worst-case execution time of all tasks is known; and context switching time can be
ignored* (see Liu and Layland, 1973). Asaresult, highly-predictable system behaviour
can be achieved when RM algorithm is employed in hard real-time systems. This is
simply because it provides a guarantee that all tasks will complete execution before
their deadlines, if all conditions are met. A key advantage of RM, as observed by Locke
(1992) and Bate (1998), isthat it is so flexible and as a result of its simple schedulability
definition, the only process required to schedule a new task is the recalculation of the
CPU utilisation value.

However, as with most pre-emptive schedulers, the RM algorithm may carry large
scheduling overhead due to the context switching required to store (and retrieve) the
partially computed results (Locke, 1992; Nissanke, 1997). Wendorf (1988) also
emphasised that, despite many advantages, fixed-priority schedulers may not perform
well (or even fail to meet system requirements) under overload conditions. Moreover,
even if all schedulability conditions are met, RM only provides a guarantee that each
task will execute once at some point in its execution “slots’ and does not guarantee any
more precise control over timing behaviour. For example, when a higher priority task

pre-empts a lower priority task, this may cause a delay in the output results expected

*In RM algorithm, if the number of tasks n goes to infinity, then the task set is schedulable if the total
CPU utilisation does not exceed 69% (Liu and Layland, 1973).
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from the latter task or unwanted jitter in the release time of this task. Lin and Herkert
(1996) notethat in RM scheduler:

“ Although every task must be completed before the end of each period, there is no
constraint on when in the period it must be executed. This is because the completion
time of a lower priority task in each period depends on if and when some higher priority
tasks may arrive (...). Therefore, task execution jitters are unavoidable using RM.”

Another problem with such a scheduling algorithm is that a high priority task can be
entirely blocked by alow priority task if the former requires access to a shared resource
(e.g. analogue-to-digital converter, serial port, etc) while the latter isusing it, causing an
inversion in the task priorities. Such “priority inversion” consequently produces very
high levels of task jitter and hence affects system predictability. Although priority
inversion problem can be solved using different techniques, e.g. Priority Ceiling
Protocol, (Shaet al., 1990), the impact of such techniques on jitter is not always easy to
predict (Phatrapornnant, 2007).

An alternative to this scheduling algorithm is the time-triggered co-operative (TTC)
scheduler.

2.8.3 Time-triggered co-operative (TTC) scheduler: Cyclic executive

A key defining characteristic of a time-triggered (TT) system is that it can be expected
to have highly-predictable patterns of behaviour. This means that when a computer
system has a time-triggered architecture, it can be determined in advance — before the
system begins executing — exactly what the system will do at every moment of time
while the system is operating. Based on this definition, completely defined TT
behaviour is — of course — difficult to achieve in practice. Nonetheless, approximations
of this model have been found to be useful in a great many practical systems. The
closest approximation of a “perfect” TT architecture which is in widespread use
involves a collection of periodic tasks which operate co-operatively (or “non-pre-
emptively”). Such atime-triggered co-operative (TTC) architecture has sometimes been
described as a cyclic executive (e.g. Baker and Shaw, 1989; Locke, 1992).

According to Baker and Shaw (1989), the cyclic executive scheduler is designed to
execute tasks in a sequential order that is defined prior to system activation; the number



Chapter 2: Real-time scheduling algorithms 31

of tasks is fixed; each task is allocated an execution slot (called a minor cycle or a
frame) during which the task executes; the task — once interleaved by the scheduler —
can execute until completion without interruption from other tasks; all tasks are periodic
and the deadline of each task is equal to its period; the worst-case execution time of all
tasks is known; there is no context switching between tasks; and tasks are scheduled in a
repetitive cycle called major cycle. The major cycle can be defined as the time period
during which each task in the scheduler executes — at least — onece and before the whole
task execution pattern is repeated. This is numerically calculated as the lowest common
multiple (LCM) of the periods of the scheduled tasks (Baker and Shaw, 1989; Xu and
Parnas, 1993). Koch (1999) emphasised that cyclic executive is a “proof-by-
construction” scheme in which no schedulability analysis is required prior to system

construction.

Figure 2-8 illustrates the (time-triggered) cyclic executive model for a simple set of four
periodic tasks. Note that the final task in the task-group (i.e. Task D) must complete
execution before the arrival of the next timer interrupt which launches a new (major)
execution cycle.

Task A

Task D Task B

Task C

Figure 2-8: A time-triggered cyclic executive model for a set of four periodic tasks (adapted from
Kalinsky, 2001).

In the example shown, each task is executed only once during the whole major cycle
which is, in this case, made up of four minor cycles. Note that the task periods may not
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always be identical as in the example shown in Figure 2-8. When task periods vary, the
scheduler should define a sequence in which each task is repeated sufficiently to meet
its frequency requirement (Locke, 1992).

Figure 2-9 shows the general structure of the time-triggered cyclic executive (i.e. time-
triggered co-operative) scheduler. In the example shown in this figure, the scheduler has
a minor cycle of 10 ms, period values of 20, 10 and 40 ms for the tasks A, B and C,
respectively. The LCM of these periods is 40 ms, therefore the length of the major cycle
in which all tasks will be executed periodically is 40 ms. It is suggested that the minor
cycle of the scheduler (which is also referred to asthe tick interval: see Pont, 2001) can
be set equal to or less than the greatest common divisor value of all task periods
(Phatrapornnant, 2007). In the example shown in Figure 2-9, this value is equal to 10
ms. In practice, the minor cycle is driven by a periodic interrupt generated by the
overflow of an on-chip hardware timer or by the arrival of events in the external
environment (Locke, 1992; Pont, 2001). The vertical arrows in the figure represent the

points at which minor cycles (ticks) start.

A

Major cycle

\ 4

4 Minor A
cycle

0 10 20 30 40 t(ms)

Figure 2-9: A general structure of the time-triggered co-operative (TTC) scheduler.

Overall, TTC schedulers have many advantages. A key recognisable advantage is its
simplicity (Baker and Shaw, 1989; Liu, 2000; Pont, 2001). Furthermore, since pre-
emption is not allowed, mechanisms for context switching are, hence, not required and,
as a consequence, the run-time overhead of a TTC scheduler can be kept very low
(Locke, 1992; Buttazzo, 2005). Also, developing TTC schedulers needs no concern
about protecting the integrity of shared data structures or shared resources because, at a
time, only one task in the whole system can exclusively use the resources and the next
due task cannot begin its execution until the running task is completed (Baker and
Shaw, 1989; Locke, 1992).
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Since all tasks are run regularly according to their predefined order in a deterministic
manner, the TTC schedulers demonstrate very low levels of task jitter (Locke, 1992;
Bate, 1998; Buttazzo, 2005) and can maintain their low-jitter characteristics even when
complex technigques, such as dynamic voltage scaling (DVS), are employed to reduce
system power consumption (Phatrapornnant and Pont, 2006). Therefore, as would be
expected (and unlike RM designs, for example), systems with TTC architectures can
have highly-predictable timing behaviour (Baker and Shaw, 1989; Locke, 1992). Locke
(1992) underlines that with cyclic executive systems “ it is possible to predict the entire
future history of the state of the machine, once the start time of the system is determined
(usually at power-on). Thus, assuming this future history meets the response
requirements generated by the external environment in which the systemisto be used, it
isclear that all response requirements will be met. Thusit fulfils the basic requirements
of a hard real time system.”

Provided that an appropriate implementation is used, TTC architectures can be a good
match for a wide range of low-cost embedded applications. For example, previous
studies have described — in detail — how these techniques can be applied in various
automotive applications (e.g. Ayavoo et al., 2006; Ayavoo, 2006), a wireless (ECG)
monitoring system (Phatrapornnant and Pont, 2004; Phatrapornnant, 2007), various
control applications (e.g. Edwards et al., 2004; Key et al., 2004; Short and Pont, 2008),
and in data acquisition systems, washing-machine control and monitoring of liquid flow
rates (Pont, 2002). Outside the ESL group, Nghiem et al. (2006) described an
implementation of PID controller using TTC scheduling algorithm and illustrated how
such architecture can help increase the overall system performance as compared with
alternative implementation methods.

However, TTC architectures have some shortcomings. For example, many researchers
argue that running tasks without pre-emption may cause other tasks to wait for
sometime and hence miss their deadlines. However, the availability of high-speed,
COTS microcontrollers nowadays helps to reduce the effect of this problem and, as
processor speeds continue to increase, non-pre-emptive scheduling approaches are
expected to gain more popularity in the future (Baruah, 2006).
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Another issue with TTC systems is that the task schedule is usually calculated based on
estimates of Worst Case Execution Time (WCET) of the running tasks. If such
estimates prove to be incorrect, this may have a serious impact on the system behaviour
(Buttazzo, 2005). Further discussions on possible solutions to this problem are provided
later in Section 2.10.

One recognised disadvantage of using TTC schedulers is the lack of flexibility (Locke,
1992; Bate, 1998). Thisis simply because TTC is usually viewed as ‘table-driven’ static
scheduler (Baker and Shaw, 1989) which means that any modification or addition of a
new functionality, during any stage of the system development process, may need an
entirely new schedule to be designed and constructed (Locke, 1992; Koch, 1999). This
reconstruction of the system adds more time overhead to the design process. however,
with using tools such as those developed recently to support “automatic code
generation” (Mwelwa et al., 2006; Mwelwa, 2006; Kurian and Pont, 2007), the work
involved in developing and maintaining such systems can be substantially reduced.

Another drawback of TTC systems, as noted by Koch (1999), is that constructing the
cyclic executive model for alarge set of tasks with periods that are prime to each other
can be unaffordable. However, in practice, there is some flexibility in the choice of task
periods (Xu and Parnas, 1993; Pont, 2001). For example, Gerber et al. (1995)
demonstrated how a feasible solution for task periods can be obtained by considering
the period harmonicity relationship of each task with all its successors. Kim et al.
(1999) went further to improve and automate this period calibration method. Please also
note that using a table to store the task schedule is only one way of implementing TTC
algorithm where, in practice, there can be other implementation methods (Baker and
Shaw, 1989; Pont, 2001). For example, Pont (2001) described an alternative to table-
driven schedule implementation for the TTC algorithm which has the potential to solve
the co-prime periods problem and also simplify the process of modifying the whole task
schedule later in the development life cycle or during the system run-time (more details
about this type of implementation are presented in Chapter 5).

Furthermore, it has also been reported that along task whose execution time exceeds the
period of the highest rate (shortest period) task cannot be scheduled on the basic TTC
scheduler (Locke, 1992). As previously discussed (see Section 2.6), one solution to this
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problem is to break down the long task into multiple short tasks that can fit in the minor
cycle. Also, possible alternative solution to this problem is to use a Time-Triggered
Hybrid (TTH) scheduler (Pont, 2001) in which a limited degree of pre-emption is
supported. One acknowledged advantage of using TTH scheduler is that it enables the
designer to build a static, fixed-priority schedule made up of a collection of co-operative
tasks and a single (short) pre-emptive task (Phatrapornnant, 2007). Note that TTH
architectures are not covered in the context of this thesis. For more details about these
scheduling approaches, see (Pont, 2001; Maaita and Pont, 2005; Hughes and Pont, in
press; Phatrapornnant, 2007).

Please note that later in this thess, it will be demonstrated how, with extra care at the
implementation stage, one can easilly deal with many of the TTC scheduler limitations
indicated above.

2.9 Jitter in scheduling algorithms

Having discussed the impact of jitter on the performance of real-time embedded systems
(Section 2.4), this section goes on to review some previous work that attempted to deal
with jitter in scheduling systems. Note that during the scheduler design process, while
the schedule parameter set ensures that all tasks can be scheduled, inappropriate
decisions may still lead (for example) to high levels of task jitter.

Recently, Dr. Teera Phatrapornnant, has carried out a detailed research on possible
sources of jitter (Phatrapornnant, 2007). A brief summary of his findings is presented
here.

Overall, jitter isa common problem which faces the developers of modern systems. For
example, in digital wireless communication systems, jitter can be found in the form of a
phase noise of the local oscillator. In practice, noise may come from the power supply
lines or interference from other nearby signals. Such noise may have a direct impact on
timing margins and, consequently, limit the system performance. In high-speed-digital
systems, jitter can arise from crosstalk, caused by electromagnetic interference (EMI)
along acircuit or a cable pair. Another example affected by EMI is a high-speed optical

transmitter which converts data from electrical to optical format at speeds of 10
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Gigabits per second. EMI can cause excessive clock jitter that may lead to errorsin the
optical transmitted data. To overcome this type of jitter, a suggested solution is to
enclose the transmitter oscillator in a metal shield.

Jitter is also a common problem in the implementations of real-time control systems. In
control systems, there are three main processes performed: sampling, control
computation, and actuation. Delays in the operation of these processes can result in
degraded performance and hence instability of the system. The main source of such
delays is the scheduling algorithm employed. An example of this can be the dynamic
scheduling (as opposed to static scheduling such as that used in RM and TTC) where
activities such as context switches can cause delays to the operating tasks. Moreover,
since the three main processes in the control loop execute in a sequential manner,
variation in their execution times may lead to sampling jitter and sampling-actuation
delays.

In ideal real-time systems, tasks must be scheduled and executed very precisely. In
practice, however, accurate executions may not be achievable: not least because of
inappropriate selection of the scheduling algorithm or due to imperfect implementations
of the designed scheduler (thisissue is further highlighted in Chapter 3). Such imprecise
executions of the tasks can, in turn, result in considerable amounts of jitter and hence

cause areduction in the overall system performance.

In real-time tasks, jitter can be associated with different parameters such as release time,
execution time and finishing time. For example, every task is ideally required to begin
execution immediately after it is released. If the task execution deviates from its ideal
release time, then this time deviation (variation) is described as release jitter. Similarly,
execution jitter and finishing jitter describe the deviation of the execution duration and
the completion time of the task, respectively.

Real-time systems are typically made up of periodic (and possibly aperiodic) tasks. As
an example, in many real-time control systems, sampling and actuating tasks are run
periodically and have hard timing constraints. These tasks are expected to execute
repeatedly at their own periods. Figure 2-10 illustrates a periodic task that is intended to
run with period T;. The task is characterised by its starting time s, finishing time f and
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deadline d. The figure shows that delays in 53 and s;3 (and variations in the task
durations: i.e. fi — s, wherei =1, 2, 3, ...) mean that these tasks show evidence of jitter
in both release and completion times. For deterministic execution of a periodic task,
intervals between its successive execution times must be kept constant (i.e. P; = P,
wherei=1,2,3, ...).

Figure2-10: Task period jitters (adapted from Mart, 2002).

When TTC architectures (which represent the main focus of this thesis) are employed,
possible sources of task jitter can be divided into three main categories:

- Scheduling overhead variation.
- Task placement.

. Clock drift.

The overhead of a conventional (non-co-operative) scheduler arises mainly from context
switching. However, in some TTC systems the scheduling overhead is comparatively
large and may have a highly variable duration due to code branching or computations
that have non-fixed lengths. As an example, Figure 2-11 illustrates how a TTC system
can suffer release jitter as aresult of variations in the scheduler overhead (this relates to
DVS system).

e »le »le
Period \ Period A Period

Speed

Over Task Over
head Task Overhead head Task
Task Overhead

Figure2-11: Releasejitter caused by variation of scheduling overhead (Phatrapor nnant, 2007).

Even if the scheduler overhead variations can be avoided, TTC designs can still suffer
from jitter as aresult of the task placement. To illustrate this, consider Figure 2-12. In
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this schedule example, Task C runs sometimes after A, sometimes after A and B, and
sometimes alone. Therefore, the period between every two successive runs of Task Cis
highly variable. Moreover, if Task A and B have variable execution durations (as in
Figure 2-10), then the jitter levels of Task C will even be larger.

Task Task | Task
Period Period Pen(id
A 4

Speed

Task Task Task Task Task [Task Task | Task

Figure 2-12: Releasejitter caused by task placement in TTC schedulers.

For completeness of this discussion, it is also important to consider clock drift as a
source of task jitter. In the TTC designs, a clock “tick” is generated by a hardware
timer that is used to trigger the execution of the cyclic tasks (Pont, 2001). This
mechanism relies on the presence of a timer that runs at a fixed frequency. In such
circumstances, any jitter will arise from variations at the hardware level (e.g. through
the use of alow-cost frequency source, such as a ceramic resonator, to drive the on-chip
oscillator: see Pont, 2001). In the TTC scheduler implementations considered in this
study, the software developer has no control over the clock source. However, in some
circumstances, those implementing a scheduler must take such factorsinto account. For
example, in situations where DV'S is employed (to reduce CPU power consumption), it
may take a variable amount of time for the processor’s phase-locked loop (PLL) to
stabilise after the clock frequency is changed (see Figure 2-13). As discussed elsewhere,
it is possible to compensate for such changes in software and thereby reduce jitter (see
Phatrapornnant and Pont, 2006; Phatrapornnant, 2007).
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Figure 2-13: Clock drift in DVS systems (Phatrapor nnant, 2007).

As ageneral summary, jitter in embedded systems has been found to arise due to clock
drift, branching in the code, the scheduling algorithm employed, or as a consequence of
using specific hardware (Sanfridson, 2000). In real-time systems, where real-time
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schedulers are employed, the jitter is mainly considered at task level (e.g. release time),
and most concern about task jitter has been in the context of scheduling (Lin and
Herkert, 1996). For example, standard scheduling algorithms based on fixed timing
constraints (e.g. fixed periods and deadlines) can induce jitter if atask is blocked in a
high-load situation: to deal with such issues, a range of flexible solutions have been
proposed for use a run-time (Marti, 2001a). In distributed systems, reducing the
variations in message transmission times can help to reduce the jitter levels (Nolte et al .,
2001; Nolte et al., 2002; Nolte, 2003; Nahas and Pont, 2005). Jitter in multi-processor
systems is further discussed in Chapter 10.

2.10 Error detection and error recovery mechanisms

So far, it has been assumed that the system always operates correctly. Of course, this
may not always be the case. For example, TTC architectures employ static scheduling
and no task pre-emption. The schedule is calculated based on estimates of task “worst
case execution time” (WCET). If such estimates prove to be incorrect, the problem may
not even be detected in a basic TTC implementation. In hard real-time systems, it is
essential to monitor the execution times of all tasks and detect overrun situations in
which the estimated WCET of atask is exceeded (Burns and Wellings, 2007a). Such a
task overrun error may have serious impact on system behaviour. For example, as
Buttazzo (2005) has noted: “[Co-operative] scheduling is fragile during overload
stuations, since a task exceeding its predicted execution time could generate (if not
aborted) a domino effect on the subsequent tasks.”

As many researchers have observed (Becker et al., 2003; Becker and Gergeleit, 2001,
Domaratsky and Perevozchikov, 2000; Engblom et al., 2001; Gergeleit and Nett, 2002;
Kirner and Puschner, 2003; Liu and Layland, 1973; Nett et al., 1996; Puschner, 2002),
determining the WCET of tasks is rarely straightforward. This is therefore a significant
concern and — if implementing a TTC scheduler — the user needs to appreciate this
potential risk, and understand precisely how the scheduler will behave if such an error
occurs. It should be noted that lack of knowledge about WCET is a problem which faces
the developers of many embedded systems (not just those based on TTC). For example,
as Gergeleit and Nett (2002) have noted: “Nearly all known real-time scheduling
approaches rely on the knowledge of WCETs for all tasks of the system.”
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One simple solution to this problem is to err on the side of caution when employing
WCET estimates, thereby reducing the chances of an overrun occurrence. Typical
“safety margins’ used in thisway are said to be around 20% (Vallerio and Jha, 2003).

Such an approach is simple and can be effective, but inevitably adds to costs. An
aternative is to be slightly more conservative when estimating WCET values (e.g. add
5% to accurate estimates) and then extend the scheduler (or add additional hardware) in
such a way that (at run time) any overrunning tasks can be shut down, and/or the
schedule can be adjusted (Gendy and Pont, 2008). Such an approach also allows
dealing with error-related overruns (for example, tasks which overrun because of a
hardware-related error). In these circumstances, the problem can be addressed (at least
in part) by employing some form of “watchdog timer” (e.g. Ganssle, 1992) in a
“scheduler watchdog” design (e.g. Pont and Ong, 2003). Alternatively, greater control
over the system behaviour can be obtained by using a “task guardian” (Hughes and
Pont, 2004).

The use of task guardians in TTC scheduler implementation will be considered in more
detail in Chapter 5.

2.11 Scheduling multi-processor embedded systems

In the case of multi-processor embedded systems, where tasks are distributed across a
number of CPUs communicating with each other, the need for effective network
protocol as well as scheduling algorithm is essential. Further details about scheduling
methods for multi-processor embedded systems which have severe resource constraints
and require high predictability are provided later in Chapter 8.

2.12 Conclusions

This chapter described in detail the various elements required to build a scheduler for
real-time embedded systems. The particular focus was on systems which have severe
resource constraints and require high levels of timing predictability. All necessary
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definitions have been provided to help understand the scheduling theory which is the
central topic of the studies detailed in this thesis.

The chapter began by discussing how embedded systems can be built from scratch. As
the chapter moved on, various techniques and architectures used to build a scheduler
were described and compared. It was emphasised that scheduling algorithms are key
elements in scheduling systems which dictate the way in which real-time tasks must
operate during the system run-time. Two particular scheduling algorithms — that provide
high predictability — have been outlined and compared in detail. These algorithms are:
rate monotonic and time-triggered co-operative (as a form of cyclic executive)
schedulers.

The discussions indicated that for the type of embedded systems considered in this
project, no scheduling algorithms can be competitive to time-triggered co-operative
(TTC) schedulers. This was mainly due to their simplicity, low resource requirements
and extreme predictability they can offer. The chapter, however, discussed major
problems that can affect the performance of TTC schedulers and reviewed some
previously-suggested solutions to overcome such problems. Note that ways to deal with
some of these problems will be considered in more detail later in thisthesis.



Chapter 3

Real-time scheduler implementations

3.1 Introduction

In Chapter 1, it was noted that once the design specifications of a system are clearly
defined and then turned into appropriate design elements, the system implementation
process can take place by translating those designs into software and hardware
components. People working on the development of embedded systems are often
concerned with the software implementation of the system in which the system
specifications are converted into an executable system (Sommerville, 2007; Koch,
1999). For example, Koch interpreted the implementation of a system as the way in

which the software program is arranged to meet the system specifications.

Chapter 2 provided an overview of a number of effective schedule design techniques
and scheduling algorithms used to implement the software architecture of an embedded
design. This chapter moves on to discuss the challenges encountered in the process of
translating between scheduling algorithms and scheduler implementations in practical
real-time embedded systems. It also reviews previous work in the area of scheduler
implementations and discusses the main drawbacks and limitations of this work. Please
note that the main focus of the discussions is on software methods for scheduler

implementations.

3.2 Choice of the programming language

3.2.1 Introduction

Having decided on the software architecture of the embedded design, the next key
decision to be made is the choice of programming language to implement the embedded
software (including the scheduler code). The choice of programming language is an
important design consideration as it plays a significant role in reducing the tota
development time (Grogono, 1999). This section discusses the key challenges faced by
an embedded programmer to select a suitable programming language for their
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implementations. The section summarises the main motivations behind using ‘C
programming language to implement software codes for the designs considered in this
study. Please note that a detailed overview of the available programming languages is
provided in Appendix B.

3.2.2 Choosing alanguage for embedded systems

Overall, it has been widely accepted that the low-level Assembly language suffers high
development costs and lack of code portability, and only very few highly-skilled
Assembly programmers can be found today (see Barr, 1999 and Walls, 2005). If the
decision is therefore made not to use the Assembly language due to its inevitable
drawbacks, there is no scientific way to select the most optimal high-level programming
language for a particular application (Sammet, 1969; Pont, 2002). Instead, people tend
to discuss the important factors which should be considered in the choice of a language.
For example, Sammet (1969) indicated that a major factor in selecting a language is the
language suitability to solve the particular classes of problems for which it is intended,
and the type of the actual user (i.e. user professionalism). It has also been noted by
Sammet that factors such as availability on the desired computer hardware, history and
previous evaluation, implementation consequences of the language are also key factors
to consider in language selection process. However, Sammet stressed that a successful
choice can only be made if the language includes the required technical features.

Specifically, when choosing a language for embedded systems, the following factors
must be considered (Pont, 2003):

- Embedded processors normally have limited speed and memory, therefore the

language used must be efficient to meet the system resource constraints.

- Programming embedded systems require a low-level access to the hardware. For
example, there might be a need to read from/ write to particular memory locations.

Such actions require appropriate accessing mechanisms, e.g. pointers.

- The language must support the creation of flexible libraries, making it easy to re-
use code components in various projects. It is also important that the developed
software should be easily ported and adapted to work on different processors with

minimal changes.
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- The language must be widely used in order to ensure that the developer can
continue to recruit experienced professional programmers, and to guarantee that
the existing programmers can have access to information sources (such as books,

manuals, websites) for examples of good design and programming practices.

3.2.3 The ‘C’ programming language

Of course, there is no perfect choice of the language. However, the chosen language is
required to be well-defined, efficient, supports low-level access to hardware, and
available for the platform on which it is intended to be used. Against all of these factors,
C language scores well, hence it turns out to be the most appropriate language to
implement software for small (low-cost) embedded systems like the ones considered in
this project. Pont (2003) sated that “ C's strengths for embedded system greatly
outweigh its weaknesses. It may not be an ideal language for developing embedded
systems, but it is unlikely that a ‘ perfect’ language will be created” .

The key features of the C language can be summarised as follows:
- Ciseasy to learn and program by both skilled and unskilled programmers.
- Itisvery popular as many experienced C programmers can be found today.

- It has well-proven compilers available for aimost every embedded processor in use
today (e.g. 8-, 16-, 32-bit or more).

- Materials (such as books, training courses, code examples and websites) that

discuss the use of the language are all widely available.
- It has efficient run-time performance.

- It isa hardware-independent programming language which allows the programmer
to concentrate only on the algorithm instead of the hardware on which the program

will operate.

- It is a mid-level language with both high-level features (such as support for
functions and modules) and low-level features (such as access to hardware via
pointers) that alows the programmer to interact easily with the underlying
hardware without sacrificing the benefits of using high-level programming.
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For more details, refer to (Barr, 1999; Grogono, 1999; Jones, 2002; Brosgol, 2003;
Pont, 2003; Fisher et al., 2004; Ciocarlie and Simon, 2007).

Moreover, since C was recognised as the de facto language for coding embedded
systems including those which are safety-related (Jones, 2002; Pont, 2002; Walls,
2005), there have been attempts to make C a standard language for such applications by
improving its safety characteristics rather than promoting the use of safer languages that
are less popular (such as Ada). For example, The UK-based Motor Industry Software
Reliability Association (MISRA) has produced a set of guidelines (and rules) for the use
of C language in safety-critical software: such guidelines are well known as “MISRA
C”. For more details, see (Jones, 2002).

3.2.4 Why does ‘C’ overwhelm other languages?

When comparing C to other alternative languages such as C++ or Ada, the following
observations have been made. C++ is a good dternative to C as it provides better
abstraction for data and offers better Object-Oriented (O-O) programming style, but
some of its features may cause degradation in program efficiency (Barr, 1999). Also,
such a new generation O-O language is not readily available for the small embedded
systems, primarily because of the overheads inherent in the O-O approach, e.g. CPU-
time overhead (Pont, 2003).

Despite that Ada was the foremost language that provided full support for concurrent
and real-time programming, it has not gained much popularity (Brosgol, 2003) and has
rarely been used outside the areas related to defence and aerospace applications (Barr,
1999; Ciocarlie and Simon, 2007). Unlike C, not many programmers nowadays are
professional in Ada, therefore only a small number of embedded systems are currently
developed in this language (Ciocarlie and Simon, 2007). In addition, despite their
approved efficiency, Ada's compilers are not widely available for small embedded
microcontrollers and usually need hard work to accept the program; especially by new
programmers (Dewar, 2006). Indeed, both Ada and C++ have too large demand on low-
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cost embedded systems resources (e.g. memory requirements) and therefore they cannot
be suitable languages for such applications® (Walls, 2005).

In a survey carried out recently by Embedded Systems Design (ESD) in 2006, it was
shown that the majority of existing and future embedded projects to which the survey
applied were programmed (and likely to be programmed) in C. In particular, the figures
show that for 2006 projects, 51% were programmed in C, 30% in C++, and less than 5%
were programmed in Ada. The survey shows that 47% of the embedded programmers

were likely to continue to use C in their next projects. See Figure 3-1 for further details.
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Figure 3-1: Programming languages used in embedded system pr ojects surveyed by ESD in 2006.
Thefigureisderived from the data provided in (ESD, 2006).

®> However, despite the indicated limitations of Ada, there has recently been a great deal of work on
assessing a new version of Ada language (i.e. Ada-2005) to widen its application domain (see Burns,
2006; Taft et al., 2007). It has been noted that Ada-2005 — once standardised —will have enough power to

overwhelm the use of C and its descendants in embedded systems programming (Brosgol and Ruiz,
2007).
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3.3 Scheduling algorithms and scheduler implementations

3.3.1 Introduction

As discussed in Chapter 2, implementing the software architecture of an embedded
design requires a simple form of operating system such as a scheduler. It was also noted
that the core component of a scheduler is the scheduling algorithm which mainly
determines the run-time execution order of the application tasks executed by the
scheduler. In Chapter 2, a range of widely-used scheduling algorithms in the
development of embedded systems were listed and two key algorithms discussed in
more detail.

The discussion in Chapter 2 remarked that when high predictability is an important
design feature of the embedded system, time-triggered co-operative (TTC) schedulers
can be a good design solution, if an appropriate implementation is used. This section
discusses the differences and relationships between scheduling algorithms and scheduler
implementations in practical real-time embedded systems, with a particular focus on

software implementations.

The implementation of schedulers isamajor problem which faces designers of real-time
scheduling systems (for example, see Cho et al., 2005). In their useful publication, Cho
and colleges clarified that the well-known term scheduling is used to describe the
process of finding the optimal schedule for a set of real-time tasks, while the term
scheduler implementation refers to the process of implementing a physical (software or
hardware) scheduler that enforces — at run-time — the task sequencing determined by the
designed schedule (Cho et al., 2007).

Generally, it has been argued that there is a wide gap between scheduling theory and its
implementation in operating system kernels running on specific hardware, and for any
meaningful validation of timing properties of real-time applications, this gap must be
bridged (Katcher et al., 1993).

3.3.2 The ‘one-to-many’ relationship

To begin to address the gap between scheduling algorithms and scheduler
implementations, it must be noted that the relationship between any scheduling
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algorithm and the number of possible implementation options for that algorithm — in
practical designs — has generally been viewed as ‘one-to-many’, even for very simple
systems (Baker and Shaw, 1989; Koch; 1999; Pont, 2001; Baruah, 2006; Pont et al.,
2007; Phatrapornnant, 2007).

For example, the cyclic executive is a very simple scheduling algorithm in widespread
use which can, in practice, be implemented using several forms. In (Baker and Shaw,
1989), it was stated that task schedule in cyclic executive can be constructed either by a
pre-processor, manually, or using a table of actions that is generated offline and
interpreted by the executive. Pont (2001) provided an alternative implementation in
which the task schedule in the cyclic executive system can be constructed and/or
modified at run-time, allowing more flexibility and responsiveness to system changes.
Various possible ways to implement software for a cyclic executive scheduler were
discussed in (Kontak, 1988; Baker and Shaw, 1989; Pont, 2001). In the same way, Koch
(1999) has viewed the cyclic executive as one of only four high-level software
architecture families® used in real-time systems, where each of these architectures can,
in practice, have many variations. In (Pont et al., 2007), it was clearly mentioned that if
someone was to use a particular scheduling architecture, then there are many different
implementation options which can be available. This clam was also supported by
Phatrapornnant (2007) by noting that the TTC scheduler (which is a form of cyclic
executive) is only an algorithm where, in practice, there can be many possible ways to

implement such an algorithm.

Of course, the one-to-many relationship is not only limited to the cyclic executive. For
example, Baruah (2006) has demonstrated how the Earliest-Deadline-First’ (EDF)
algorithm (Liu, 2000) — which often schedules tasks pre-emptively in single-processors
— can be implemented using other forms, such as using non-pre-emptive scheduling

® These architecture families are: [1] cyclic executive, [2] concurrent task systems activated by events, [3]
message passing systems, and [4] client-server systems. For more details, see (Koch, 1999).

" In EDF system, the task priorities are dynamically allocated, at each time instant, so that the task with
the closest deadline will be assigned the highest priority to run first (Liu, 2000).
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architectures upon multi-processor platforms. Section 3.4 (and Appendix C) reviews
studies which looked at various possible ways for implementing scheduling algorithms
including fixed-priority schedulers.

The project described in this thesis was mainly concerned with linking scheduling
algorithms and their software implementations. Therefore, the term “scheduler
implementation” used in the context of this thesis will refer to the process of
implementing scheduler in software in which the scheduling algorithm is translated into
a general-purpose executable source code (using C language).

It is worth noting that the source code of a scheduler may be implemented using an
appropriate collection of “software design patterns’ (see Section 3.5.3 for more
information). Mwelwa (2006) discussed in detail how a design pattern can have almost
an infinite number of implementation options and therefore the relationship between
any pattern and its implementation is best described as “one pattern, many
implementations’. Figure 3-2 illustrates how a simple TTC algorithm can be
implemented using a range of software patterns, each of which is related to a different
scheduler implementation (eg. TTC-1, TTC-2, etc) and has a number of Pattern
Implementation Examples (PIES) associated with different hardware platforms (e.g.
8051, c167 or ARM microcontroller). This example can provide the basis for
understanding the one-to-many relationship between a scheduling algorithm and its
software implementation in practical real-time embedded systems.
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Figure 3-2: The one-to-many relationship between the TTC scheduling algorithm and its
implementations using patterns. Thisfigureisadapted from (Mwewa, 2006).
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3.3.3 The importance of scheduler implementation process

Overall, the scheduling algorithm can only be viewed as a “high-level” mathematical
description of the scheduling policy, and the scheduler behaviour can only be defined
through the implementation process of this algorithm (e.g. through the source code
implementation which is the executable software product par excellence at the moment:
see Bloomfield et al., 2004). The scheduler source code can hence be described as the
lower-level software representation of the system which has the responsibility of
determining the functional and temporal behaviour of the system in practical use.

Avrunin et al. (1998) underlined that the performance of a real-time system depends
crucially on implementation details that cannot be captured at the design level, thusit is
more appropriate to evaluate the real-time properties of the system after it is fully
implemented. This simply means that ensuring predictability in system behaviour would

reguire an additional care to be taken during the (software) coding process.

3.4 General scheduler implementation approaches

3.4.1 Scheduler implementations in Ada

Early work on software scheduler implementation is referred back to 1980s when
researchers attempted to implement scheduling systems using Ada programming
language. Many researchers began by identifying the main shortcomings and limitations
of the original Ada definitions (i.e. Ada, 1980) to fulfil the requirements of real-time
embedded systems, especially those which have hard timing constraints. For example, it
was widely accepted that despite many useful advantages of Ada in supporting software
engineering principles, Ada language was yet fragile in supporting the software
development for real-time scheduling systems (Burns and Wellings, 1987; Cornhill and
Sha, 1987; Locke and Vogel, 1987; McCormick, 1987; Borger et al., 1988; LeGrand,
1988; Baker and Shaw, 1989). This had, in turn, driven researchers to explore
techniques which can address the real-time deficiencies of Ada. For example, many
studies proposed useful extensions to Ada language to enable it facilitate a real-time
software programming (Burns and Wellings, 1987; Locke and Vogel, 1987;
McCormick, 1987; Cornhill et al., 1987; Borger et al., 1988; LeGrand, 1988; Baker and
Shaw, 1989). Some of thiswork isreviewed here.
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McCormick (1987) discussed a number of limitations in Ada task timing which made it
inadequate to fulfil the requirements of hard real-time scheduling systems. e.g.
nondeterminism of the Ada tasking model. One maor problem which received a
particular concern was the inability of Adato detect and hence deal with the situations
of task overruns. McCormick therefore proposed a method for providing finer control of
task timing to circumvent such an Ada limitation with only little impact on the existing
language definitions. In another study, Cornhill et al. (1987) proposed some
modifications to the existing Ada language to support the implementation of hard real-
time, fixed-priority scheduling algorithms such as rate monotonic.

LeGrand (1988) discussed the main features of Ada in supporting real-time task
scheduling and outlined main committee and research activities in this area
Goodenough and Sha (1988) described one way in which priority ceiling protocol can
be implemented in Ada to address the priority inversion problem in fixed-priority
schedulers. In (Kontak, 1988; Baker and Shaw, 1989), possible ways for implementing
cyclic executive scheduling algorithm in Ada language were presented (see Section 3.5
for more details). Moreover, there has been some effort made towards developing tools
for automatic Ada code generation for real-time scheduling systems (for more details,
see Cross |1 et al., 1989).

Later on, Sha and Goodenough (1990) explored alternative ways for implementing rate
monotonic scheduling algorithms using Ada model. Burns (1991) reviewed the results
in the application of scheduling algorithms to hard real-time systems (including both
static and dynamic algorithms) with a particular consideration to Ada tasks scheduling.
Baker and Pazy (1991) provided an overview of alater generation of Ada (i.e. Ada-9X)
and discussed the changes that this version brought to the Ada priority scheduling
model. The practicality of using pre-emptive, priority-based scheduling techniques in
on-board space application, using Ada (i.e. Ada-83 and Ada-9X) as the implementation
language, was studied by the European Space Agency (ESA) in the early 1990s (Bailey
et al., 1993). In (Vardanega, 1996), the design and implementation of pre-emptive,
priority-based scheduler to use for on-board satellite control systems were presented.

Over the last years, people in the Real-Time Systems (RTS) Group, The University of
York, UK, have been greatly involved in the design and implementation of real-time
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scheduling systems using Ada language. For example, Burns (1999) began to describe
Ada tasking features which are designed specifically for safety-critical, hard real-time
systems (i.e. Ravenscar Profile). Real and Wellings (1999a) studied the impact of using
Ada to implement inheritance priority ceiling protocol on the task schedulability. Real
and Wellings (1999b) described the importance of mode-change support in real-time
systems in which the system functionality can vary as the operation progresses, and
discussed how this feature can be implemented safely in Ada.

McElhone and Burns (2000) discussed requirements for adaptive real-time systems and
demonstrated how adaptivity can be achieved (in Ada system) by using spare resource
capacity to schedule optional computations. Burns (2001) suggested new modifications
to Adalanguage to allow the implementation of non-pre-emptive schedulers. Bernat and
Burns (2001) demonstrated how Ada tasking facilities enables the implementation of
flexible scheduling schemes in which hard deadlines must always be met and any spare
capacity (typically CPU resources) must be used to maximise the total utility of the
application (see Davis et al., 1995). Burns et al. (2003a) described how Ada can be used
to implement a form of round-robin scheduling algorithm in which tasks are executed in
acircular queue and each task is allocated a bounded time slot for execution. Burns and
WEellings (2003) and Burns et al. (2004) described possible extensions to Ada language
to facilitate the implementation of non-fixed-priority scheduling algorithms such as
EDF.

Overall, the RTS group has shown a great deal of interest in implementing flexible real-
time systems using Ada (e.g. Burns and Wellings, 2002; Burns et al., 2003a; Burns and
WEellings, 2003; Burns et al., 2003b; Wellings, 2003; Burns et al., 2004). However, it
has been emphasised that most of the mechanisms explored and applied in these studies
are incorporated in Ada-2005 standard (Burns, 2006): for Ada-2005 user manual, see
(Taft et al., 2007). The use of Ada-2005 in real-time implementations has also been
discussed in a range of papers published by RTS group (e.g. Burns and Wellings,
2007b; Zerzelidis et al., 2007; Wellings and Burns, 2007a; Wellings and Burns, 2007b).
For the full list of RTS publications, see RTS (2008).
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3.4.2 Scheduler implementations in ‘'C’

As remarked in Section 3.2, despite the strengths of Ada, C remains the most popular
means of developing software for real-time and embedded systems. Therefore, C has
been extensively used in the implementation of real-time schedulers and operating
systems for embedded applications. In general, C was adopted in the software
development of almost all operating systems (including RTOSs) in which schedulers are
the core components (Laplante, 2004).

In Michael Barr’s book on embedded systems programming (i.e. Barr, 1999), it was
noted that C is the main focus of any book about embedded programming. Therefore,
most of the sample codes presented in Barr’s book — for both schedulers and operating
systems — were written in C and the key focus of the discussion was on how to use C
language for ‘in-house’ embedded software development. However, some of the
example code presented later in the book was written in C++ while Assembly language
was avoided as much as possible. In (Barr and Massa, 2006), possible ways for
implementing the eCos and the Embedded Linux, as a small and a large open-source
operating systems (respectively), in C language were discussed. Other books which
discuss the use of C language in the software implementation of real-time embedded
systems include (Ganssle, 1992; Brown, 1994; Sickle, 1997; Zurell, 2000; Labrosse ,
2000; Samek, 2002; Barnett et al., 2003; Laplante, 2004).

More specifically, in the field of embedded systems development, using C language to
implement the software code for particular scheduling algorithms is quite common. For
example, Mooney et al. (1997) described a strategy for implementing a dynamic run-
time scheduler using both hardware and software components: the software part was
implemented using C language. Kravetz and Franke (2001) described an alternative
implementation of Linux operating system scheduler using C programming. It was
emphasised that the new implementation can maintain the existing scheduler behavior /
semantics with very little changes in the existing code.

Rao et al. (2008) discussed the implementation of a new pre-emptive scheduler
framework using C language. The study basically reviewed and extracted the positive
characteristics of existing pre-emptive algorithms (e.g. rate monotonic, EDF and LLF)
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to implement a new robust, fully pre-emptive real-time scheduler aimed at providing
better performance in terms of timing and resource utilisation.

As will be shown in the next section (Section 3.5), the ESL researchers have been
greatly concerned with developing techniques and tools to support the design and
implementation of reliable embedded systems, mainly using C programming language.

3.5 TTC scheduler implementations

3.5.1 Introduction

From the previous section, it can be clearly seen that pre-emptive scheduling
architectures have received a widespread attention by embedded systems developers
and researchers while non-pre-emptive schedulers have almost been ignored. More
specifically, the software implementations of time-triggered co-operative (TTC)
scheduling architectures and their implications in practical real-time embedded systems
have rarely received any coverage. This is an unfortunate trend because TTC
architectures are widely used in practical embedded applications (see Section 2.8.3) and
— as a consequence of the resource, timing, and power constraints — the implementation
of such designs is often far from trivial. For example, Pont (2001) has provided a
general discussion of the challenges involved in practical implementations of TTC
architectures. Previous work on the implementation of such systems is reviewed in this

section.

3.5.2 Early work on TTC scheduler implementations

Some early work concerning the implementation of TTC architectures (in the Ada
programming language) was carried out by Baker and Shaw (1989). Baker and Shaw
began by outlining the problems in Ada which impose challenges on such type of work.
For example, tasks in Ada usually execute indefinitely and non-periodically, and the
tasking system is based on nondeterministic event-triggered scheduling approach. The
authors then demonstrated how such and other limitations in Ada language can be
solved to facilitate the implementation of a cyclic executive (that is periodic and time-
triggered-based) scheduler in such a programming language.
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The work by Baker and Shaw also proposed and evaluated two standard methods
(within Ada) to implement a code for cyclic executive scheduler: one method was based
on using delay statement while the other was based on using timer interrupts. The paper
then described several ways in which the task overrun problemsin TTC systems can be
addressed in Ada language.

3.5.3 Recent work on TTC scheduler implementations

Recently, the ESL researchers have widely considered the implementation process of
TTC schedulers on a broad range of low-cost embedded microcontroller platforms. An
early work in this area was carried out by Pont (2001) which described techniques for
implementing TTC architectures using a comprehensive set of “software design
patterns’ written in C programming language. The resulting “pattern language” was
referred to as “PTTES® Collection” which contained more than seventy different
patterns.

Pont has demonstrated that the main aim with this language was to facilitate a reliable
implementation of TT systems in low-cost, resource-constrained embedded applications
with a particular focus on TTC architectures. Since then, as experience in this area has
grown, this pattern collection has expanded and subsequently been revised in a series of
ESL publications (e.g. Pont and Ong, 2003; Pont and Mwelwa, 2003; Mwelwa et al.,
2003; Mwelwa and Pont, 2003; Pont et al., 2003; Pont and Banner, 2004; Mwelwa et
al., 2004; Kurian and Pont, 2005; Kurian and Pont, 2006b; Pont et al., 2006; Wang et
al., 2007).

One main objective of introducing patterns was to describe various ways in which
simple embedded software can be implemented in practical systems. For example, Pont
(2001) and Kurian and Pont (2007) introduced a range of different patterns which
describe some of the possible ways in which a TTC scheduler can be implemented. It
was illustrated how these implementations have significant differences in their resource

8 PTTES stands for Patterns for Time-Triggered Embedded Systems.
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requirements (e.g. data and code memory overhead). Note that an overview of these and

some other TTC implementations will be provided later in this thesis.

Another example of studiesthat considered the implementation process of TTC systems
is awork carried out by Key et al. (2003) which addressed the problems, and possible
solutions, when attempting to implement TTC architectures in Assembly language.

In (Nahas et al., 2004), a low-jitter TTC scheduler framework was described and
compared with an early scheduler implementation (as in Pont, 2001) that took no
account of the impact of scheduler overhead variation on the timing behaviour of the
co-operative tasks running in the system.

Phatrapornnant and Pont (2004a and 2004b) looked at ways for implementing low-
power TTC schedulers by applying “dynamic voltage scaling” (DVS) algorithm. In
(Phatrapornnant and Pont, 2006), the authors went further to describe techniques which
can maintain low jitter behaviour when the DVS algorithm is employed in a TTC
system to reduce the system power consumption. The study also considered ways in
which the low-jitter DV S algorithm on TTC can be applied using arange of System-on-
Chip (SoC) embedded platforms (in addition to the COTS microcontroller platforms).

In another project, Hughes and Pont (2004 and ‘in press’) described an implementation
of TTC schedulers with a wide range of “task guardian” mechanisms that aimed to
reduce the impact of a task-overrun problem on the real-time performance of a TTC
system.

Moreover, Dr Michael Pont and his PhD students have also considered the design and
implementation of atime-triggered hybrid (TTH) scheduler which allows a single, time-
triggered, pre-emptive task to be scheduled in the TTC scheduling framework. This
architecture can sometimes be viewed as an extended version, or simply a modified
implementation, of the original TTC scheduler. Various ways in which such a TTH
scheduler can be implemented in practice have been described in (Pont, 2001; Maaita
and Pont, 2005; Hughes and Pont, in press; Phatrapornnant, 2007).
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For example, Maaita and Pont (2005) described two possible ways for implementing a
TTH scheduler in low-cost embedded systems. They then described a technique (called
“planned pre-emption™) that can be applied to both TTH implementations considered in
order to reduce jitter in the release time of the pre-emptive task. Hughes and Pont (in
press) described a novel TTH implementation which incorporates “task guardian”
mechanisms to deal with overruns in both the co-operative and the pre-emptive tasks
running in the system. Likewise, Phatrapornnant (2007) considered the implementation
of low-jitter DVS agorithm (developed originally for TTC architectures) on the
equivalent TTH architectures.

Note that the source codes in all the outlined scheduler implementations (unless stated)
were written in C programming language. Please also note that since 2001, the ESL
researchers have also been concerned with the implementation of TTC architectures
upon multi-processor embedded platforms. More details about the researches conducted

in this area and the results obtained are provided later in Part D.

3.6 Hardware-based scheduler implementations

For completeness of the current research, it is worth noting that there has been a great
deal of previous work on hardware-based scheduler implementation techniques. This
work is beyond the scope of this thesis. However, Appendix C reviews some of the key

studies carried out in this area

3.7 The impact of scheduler implementation decisions on
system behaviour

Considering the one-to-many mapping between the scheduling algorithm and its
implementations in practical systems, it has been widely argued that particular
implementation decisions for a given scheduler can have a profound impact on the
behaviour of the system which implements this scheduler. This section discusses such
an impact in alittle more detail and provides an illustrative example.

Katcher et al. (1993) dated that the implementation of a particular algorithm can
introduce costs which must be taken into account when validating the timing
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correctness properties of a real-time system. Katcher et al. also argued that while the
task periods (which are design parameters) are a function of the environment and the
task specification, the actual execution times of tasks are a function of the particular
implementation of the designed scheduler. In (Koch, 1999), it was reported that the
choice of particular scheduler implementation can have a major impact on the critical
success factors for area-time system.

Xu (2003) emphasised that “the simplified high-level abstraction of code” is only an
approximation of “the actual real-time software implementation” which does not take
into account al the implementation details that may affect timing. Xu also reported that,
in most cases, there is no proof that design abstractions such as specifications, models,
algorithms and protocols have the same timing properties as the actual implementation
code. Phatrapornnant (2007) noted that in the ideal case a real-time scheduler must
schedule and execute tasks precisely, where in practice (given that the scheduling
algorithm is selected properly) accurate execution of tasks cannot be achieved due to
factors such as imperfect scheduler implementation.

Moreover, the different implementation options of a particular scheduler would have
different resource requirements and performance results (Pont et al., 2007). Diversity of
implementations would also result in diverse complexity levels. For example, Baker and
Shaw (1989) went through different possible cases in which the implementation of a
cyclic executive scheduler requires additional complexity. Therefore, the performance
of the real-time system would critically depend on implementation details of the task
scheduler (Avrunin et al., 1998). In addition, as the system expands, the scheduler
design and implementation processes will increase in complexity and, consequently, the
impact on the entire system performance becomes more significant (Cho et al., 2007).

A very well-known example on how scheduler implementation can affect the overall
system behaviour is the widely-publicised problems encountered during the Mars
Pathfinder mission in 1997 (Jones, 1997). The Mars Pathfinder used VxWorks real-time
operating system kernel which provides pre-emptive, fixed-priority scheduling of tasks.
There were three tasks running in the system:

- A frequent bus management task (with high priority).
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- Aninfrequent meteorological data gathering task (with low priority).

- Aninfrequent communications task (with medium priority).

The pathfinder used one shared bus for passing information between different
components of the spacecraft.

Figure 3-3: Mars pathfinder spacecraft (Source: NASA Jet Propulsion Laboratory).

On arrival of the management task, it was always being blocked by the meteorological
data task for a very short time before the latter one releases the bus. This worked fine
most of the time. However, a a particular time later on, the long-running
communication task was ready to execute during the short interval while the (high
priority) management task was blocked, awaiting the (low priority) meteorological data
task. What happened is that this medium priority task pre-empted the low priority
meteorological datatask and began to execute. Consequently, the awaiting high-priority
management task was prevented from running: this caused what is known as “priority
inversion” (see Section 2.8.2). After sometime, it was detected that the data bus task had
not been executed for a while and hence a total system reset was initiated. For more

details, see (Jones, 1997). This example illustrates how an improper (or incomplete)
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implementation of the task scheduler can have the potential to jeopardise the correct
behaviour of the whole system®.

3.8 Discussion

Degspite the usefulness of the studies carried out in the area of schedulers, the topic of
scheduler implementation and its implications in practical real-time embedded systems
has not been discussed thoroughly. More specifically, while there has been a great deal
of interest in the development, assessment and refinement of real-time scheduling
algorithms, the process of translating between algorithms and implementations has not
been widely considered. This claim is supported by Cho et al. (2007) who clearly stated
that only very few researches address the architecture and the implementation of the
schedulers. The great majority of the studies reviewed during the course of this project
tend to focus mainly on design issues and only discuss implementation issues from a
high perspective without considering the potential impact a particular software
implementation would have on the actual run-time behaviour of the system
implementing the scheduler.

Moreover, despite the usefulness of the studies carried out in the area of TTC
schedulers, there are apparent limitations. For example, it can be noticed that the
number of TTC scheduler implementations developed in the ESL group has
significantly increased over the past few years. Due to the high experience gained with
TTC, this trend is expected to continue over the next few years or even grow as
concerns about predictability in real-time embedded systems is growing. Therefore, the

® Once debugged, the problem was solved by amending the software code of the spacecraft from the lab.
In more details, the access to the bus was synchronised with mutual exclusion locks (mutexes). In the
VxWorks mutex object, there was a parameter that indicates whether priority inheritance should be
performed by the mutex. This parameter, which was initially set * off’, had been set ‘on’. This caused the
low-priority meteorological data task to inherit the priority of the high-priority management task, while
the latter one is blocked, and hence complete execution before the medium-priority communication task:
thus, the priority inversion was prevented (Jones, 1997).
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need for documenting, categorising and comparing the various TTC scheduler

implementations in a systematic way becomes of vital importance.

It should also be underlined that each of the TTC scheduler implementations developed
previously was dedicated specifically to solve a particular class of problems, while have
not been assessed against other issues. This leaves a gap that when a particular TTC
scheduler is to be selected for a project, the user will not have sufficient information
about the way the system is expected to behave in the future when different operating
conditions apply. So far, there has been no attempts within the ESL group to combine
all achievementsin asingle study in which all TTC schedulers are linked and compared
systematically to help potential users understand all aspects of the TTC system and
consequently be able to decide whether (or not) to use a particular TTC scheduler
implementation in a given project.

3.9 Conclusions

Having discussed scheduling algorithms in Chapter 2, this chapter moved on to discuss
the various issues related to the process of implementing real-time schedulers in
practical embedded systems, with a particular focus on software implementation

Process.

The chapter began by discussing the process of selecting a programming language to
implement software for low-cost, resource-constrained embedded designs like those
dealt with in this project. The key features of C language, which made it an appropriate
choice for such designs, were summarised.

The chapter then discussed the challenges that might arise when implementing software
for a particular scheduler. Such challenges were mainly caused by the broad range of
possible implementation options a scheduler can have in practice, and the impact of
such implementations on the overall system behaviour. It was hence noted that source
code implementation is a crucial component to take care of during the implementation

process for achieving predictable behaviour.



Chapter 3: Real-time scheduler implementations 62

A wide range of previous work on scheduler implementations, using different
programming languages, was then reviewed. This work considered various scheduling
algorithms including cyclic executive, fixed- and dynamic-priority scheduling
algorithms. The discussions then focused on previous work carried out in the area of

TTC scheduler implementations, particularly within the ESL research group.

Thereafter, the impact of scheduler implementation on system behaviour was discussed
in detail with presenting a famous example that shows how improper implementation
decisions can detrimentally affect the system operation.

Before concluding the chapter, the gaps in the previous work have been emphasised. In
summary, the topic of scheduler implementation requires further consideration, and the
work conducted in the ESL group on TTC implementations can be improved by
employing further techniques which provide a deep understanding of the scheduler

implementation process for use in future applications.



Chapter 4
L inking scheduling algorithms and scheduler

implementations

4.1 Introduction

Having discussed the relationship between scheduling algorithms and scheduler
implementations in practical real-time embedded systems, the main focus of this chapter

is on generic methods that link these two system representations in a systematic way.

In real-time operating environments, it is important to ensure that — after the scheduler
software is implemented — it will behave as required. Generally, there are two main
processes to evaluate the operation of any software-based system: validation, to ensure
that the right system is built, and verification, to ensure that the system is built right
(Boehm, 1981; Hessel, 2007). The primary purpose of the validation and verification
processes is to establish confidence that the software system is adequate for its intended
use (Sommerville, 2007). Therefore, validation and verification can hold the promise to
narrow the gap between the processes of scheduler design and scheduler
implementation in real-time, resource-constrained embedded systems.

Before beginning to review and analyse results from previous work in this area, it must
be pointed out that there has been confusion in the use of the terms “validation” and
“verification” by many people working on the evaluation of software systems. For
example, some people tend to think that “validation” and “verification” are synonyms
(Sommerville, 2007). The discussion in this chapter begins by reviewing the various
definitions for these two terms using a collection of recognised sources. The chapter
then reviews prevalent techniques for verifying software systems with a particular focus
on real-time embedded software systems. The chapter finally concludes by discussing
the limitations of these techniques in addressing the problems concerned with in this

project.
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4.2 Definitions

In the IEEE Standard Glossary of Software Engineering Terminology (IEEE Std, 1990),
validation is defined as. “ The process of evaluating a system or component during or at
the end of the development process to determine whether it satisfies specified
requirements.” Similarly, the STING software engineering glossary (STING, 1996)
defines validation as. “ The process of evaluating software at the end of the devel opment
process to ensure compliance with software requirements.” The Glossary of
Computerized System and Software Development Terminology (GCSSDT, 1995),
which is based mainly on IEEE and many other international standards, defines
software validation as. “ Determination of the correctness of the final program or
software produced from a development project with respect to the user needs and
requirements.” The National Institute of Standards and Technology (NIST, 2007)
defines validations as. “ The process of determining whether or not the standard at a

given phase of its development fulfils the established requirements.”

In contrast, verification is defined in the IEEE Standard Glossary of Software
Engineering Terminology (IEEE Std, 1990) as: “ (1) The process of evaluating a system
or component to determine whether the products of a given development phase satisfy
the conditions imposed at the start of that phase. (2) Formal proof of program
correctness.” The Glossary of Computerized System and Software Development
Terminology (GCSSDT, 1995) defines software verification as. “ The demonstration of
consistency, completeness, and correctness of the software at each stage and between
each stage of the development life cycle” The STING software engineering glossary
(STING, 1996) defines verification as. “ The process of determining whether or not the
products of a given phase in the life-cycle fulfil a set of established requirements.”
Moreover, verification is also defined in the Software Testing Glossary (STG, 2008) as:
“The process of determining whether or not the products of a given phase of the
software development cycle meet the implementation steps and can be traced to the
incoming objectives established during the previous phase.”

Degpite this, lan Sommerville (in his famous book on “Software Engineering”, Eighth
Edition, 2007) defines validation as a general process which shows that the software
meets the customer needs, while verification is the process which ensures that the
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software conforms to its specification. He also notes that a key role of the verification
process is to check that the software meets specified functional and non-functional

reguirements.

According to the discrepancy in the way validation and verification are defined, it will
not be possible to pursue the discussion in this chapter before distinguishing between
these two terms and providing a more generic definition for each term. By reviewing the
list of definitions stated above, it can be concluded that a system is said to be valid (or
validated) if its final software product meets the user’'s needs and requirements. Any
process involved in checking this is described as a validation process. In contrast, to
verify the system, it means checking whether the implementation of a system
component matches its defined specifications which have originally been derived from

the user’ s requirements.

This interpretation of the terms validation and verification might sound more
compatible with the definitions provided by Sommerville (2007). However, it does not
necessarily contradict the concepts behind the IEEE and the other international
standards definitions. For example, the IEEE, STING and STG glossaries indicate that
verification is used mainly to determine whether the products of a given development
phase satisfy the conditions imposed at the start of that phase or a the end of the
previous phase. This has clearly been asserted by Sommerville that while validation is a
general process which checks the consistency of the system — as a whole — with its
requirements, verification is a more detailed process which must be applied at each
stage in the software development process to check the conformance of that stage with
its predefined specification.

Tran (1999) makes this point clearer by noting that “ validation usually takes place at
the end of the development cycle, and looks at the complete system as opposed to
verification, which focuses on smaller sub-systems’. The same point is made in the
Glossary of Computerized System and Software Development Terminology (GCSSDT,
1995), one of which the definitions provided here are compared to, as “ Validation is
usually accomplished by verifying each stage of the software development life cycle.” In
another word, validation can be viewed as “end-to-end” verification process
(Bloomfield et al., 2004). This concept is illustrated schematically in Figure 4-1 which
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shows one possible way of including validation and verification processes in the

software development life cycle model.
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Figure4-1: Integrating validation and verification in the softwar e development life cycle (adapted
from Sommerville, 2007).

Both validation and verification (which is commonly referred to as V&V process) are
required in the evaluation of any software system to make sure that the whole software
product fulfils the system requirements and operates as the user wants it to operate. In
the IEEE Standard Glossary of Software Engineering Terminology (IEEE Std, 1990), it
is pointed out that V&V describes “The process of determining whether the
requirements for a system or component are complete and correct, the products of each
development phase fulfil the requirements or conditions imposed by the previous phase,
and the final system or component complies with specified requirements.” Sommerville
(2007) aso reported that, during and after implementation, the developed software
needs checking to ensure that it meets its specification and delivers the functionality
expected by its user, where this can only be achieved through combining validation and

verification processes together.

Since this thesis is concerned with matching scheduling algorithms and scheduler
implementations, a software verification techniqgue may be applied between the system

design and system implementation stages (see Figure 4-1).

4.3 Software verification techniques

4.3.1 Introduction

For safety-critical embedded systems, a high degree of reliability is needed for software
implementations since faults can result in catastrophes. Therefore, the validation and
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verification of software used in this type of applications poses challenges which are not
usually addressed in conventional software engineering (Dai and Scott, 1995).

Overall, verification of real-time embedded system designs was found to be typically
performed by prototyping and simulation or, more effectively, by means of formal
methods which express the behaviour of the system mathematically (Balarin et al.,
1996). Balarin and colleges underlined that prototyping is expensive and cannot be
performed until the design is amost completed and, for complex systems, simulation
becomes less effective as only limited number of patterns can be tried.

By referring to (Sommerville, 2007), there are two main approaches which can be used
for system verification: “static”, through software inspections and formal methods, and
“dynamic”, through software testing. Software inspections and formal methods are
static verification techniques simply because they check and analyse the system without
running its software on a computer, while software testing is a dynamic verification
technique that mainly examines the output of the system after running its software
implementation on a computer with test data It has been argued that any product
obtained during development (e.g. specification document or source code) can be
evaluated using satic analysis, while dynamic analysis (namely testing) almost
evaluates software code only (Bloomfield et al., 2004). In a project carried out recently
by Hessel (2007), it has been affirmed that testing is the foremost software verification
method in computer and real-time applications.

Moreover, in embedded software development, it has been argued that techniques for
“automated code generation” can be an effective way of verifying the correctness of the
implemented software: this is simply because they help to ensure that the generated
source code is error-free and matches the requirements specified at the design phase of
the system development process (Mwelwa, 2006).

This section reviews each of the outlined software verification techniques and related

research in this area.
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4.3.2 Software inspections

4.3.2.1 Introduction

According to the |IEEE Standard Glossary of Software Engineering Terminology (IEEE
Std, 1990), inspection is a“ static analysis technique that relies on visual examination of
development products to detect errors, violations of development standards, and other
problems.” Inspections (which are sometimes described as “peer reviews’) mainly
check and analyse the source code representation of the system but can also be used to
review other readable system representations such as specification document or design
diagrams. Performing inspections is highly based on previous knowledge about the
system and its application domain as well as familiarity with the programming language
used to implement its source code (i.e. program). The main goal of program inspection
isto reveal errors, omissions and anomalies. Overall, program inspection is a dedicated
verification method in which only defects in the program are detected: such defects may
include logical errors, invalid conditions or incompliance with organisational standards
(Sommerville, 2007).

4.3.2.2 Softwareinspection process

Generally, software inspection is a formal process which requires a team of people to
analyse the software component and hence find possible defects in it. The concept of
formal inspection process was first developed in the 1970s at IBM (Fagan, 1976). Fagan
suggested that a team of — at least — four people would be required for a complete
program inspection activity: e.g. “author”, who writes the source code, “reader”, to read
the program to the team, “tester”, to inspect the program from a testing point of view
and “moderator”, to organise the whole process. Moreover, it was suggested that any
inspection process would be divided into six stages: planning, by the moderator who
selects the inspection team and organises the inspection meeting, overview, by the
author who describes the objective of the written program to the team, individual
preparation, by inspection team members who study the program and begin to look for
defects, inspection meeting, where discovered defects are announced by the inspectors,
rework, by the author who corrects the identified problems and, finally, follow-up, by
the moderator who decides whether the corrected program needs a new inspection or the
defects have successfully been fixed by the author (Fagan, 1976 and 1986; Ackerman et
al., 1989; Sommerville, 2007).
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In alater study, Grady and Van Slack (1994) suggested other set of roles which offers
more flexibility to the number of inspection team members. Gilb and Graham (1993)
described alternative approaches and provided many examples and case studies based
on actual experience at well-known software development companies such as IBM,
AT&T and others. A general comment they made was that the inspection team should
be selected in such away that they can reflect different perspectives about the program.

Before any inspection process starts, the specification of the program to be inspected
must be defined accurately, the members of the inspection team must be familiar with
the organisational standards, and each member must have an up-to-date version of the
program (Sommerville, 2007). A set of defined checklists are typically used in the
ingpection process to focus the inspectors on the common errors that are likely to exist
in a particular application domain and/or a programming language. This combination of
well-structured team and checklists made the formal inspections distinguished from
other types of software reviews (Dyer, 1992). A detailed description of the inspection
theory and practice is provided in (Wheeler et al., 1996).

Although originally designed to verify the system at the code level, inspection practices
were extended to cover earlier stages of the system development life-cycle such as the
design process (Fagan, 1976 ; Ackerman et al., 1989; Grady , 1992; Gilb and Graham,
1993; Ebenau and Strauss, 1994; Cheng and Jeffery 1996). Kelly et al. (1992) reported
that defects in software requirement specifications are likely to be more than in any
other document produced later in the development process. Therefore, inspection
technigues can always be applied to verify software design and software
implementation, where design inspections check the translation of the requirements into
a software design, and code inspections check the translation of that design into a
program implementation (Dyer, 1992).

4.3.2.3 Enhancement of inspection process

Degpite their noticeable advantages, conventional inspection activities (like the ones
described earlier) are known to have a number of drawbacks. For example, Nunamaker
et al. (1991), Gilb and Graham (1993) and Harjumaa and Tervonen (1998) highlighted
the most common problems that might arise during a conventional inspection process,
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e.g. insufficient knowledge about the process or the document to be inspected,
geographical distribution of the inspection team members and possible conflicts

between the inspectors during the inspection meetings.

To deal with such problems and hence ensure the cost-effectiveness of an inspection
process, a number of computer-based tools have been developed and employed. One
recognised work in this field is that carried out by Harjumaa and Tervonen (1998) in
which a cost-effective tool — based on the World Wide Web (WWW) — was developed
to provide a set of well-defined functions for distributing the document to be inspected,
annotating it, searching related documents, choosing the checklist and gathering

ingpection statistics easily.

As previously noted, ingpections are driven from checklists of errors relate to various
application domains and programming languages. In some cases, it is possible to
automate the process of checking the program against the listed errors. This led to the
development of static analysers for different programming languages. Static analysers
are basically software tools which scan the program and detect possible errors. They
typically utilise the error detection facilities provided by the language compiler to detect
if any statement in the program produces errors or formed incorrectly. One of the main
purposes of automatic static analysis is to detect errors that might cause problems later
when the program is executed and which cannot be detected by manual inspection
activities (e.g. data whose value goes out of range). Static analysers are more effective
when used with programming languages such as C as an error-prone language whose

compilers have limited checking capabilities (for more details, see Sommerville, 2007).

4.3.24 Strengthsand weaknesses of softwar e inspections

Overall, the significant role of inspection in the software verification process has been
recognised by foremost researchers in this area. For example, Fagan (1976) has made it
clear that if errors are not detected close to their place of origin, the cost of rework as a
fraction of the overall development cost can be incredibly high. Boehm (1981) provided
data which illustrated that repairing a software error, after the software production, can
be 100 times more costly than if early error-detection mechanisms are employed.
Therefore, the use of software inspections (where errors are detected and eliminated
near the point of their introduction) helps to increase productivity and improve the
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overall quality of the produced software (Fagan, 1976 and 1986; Ackerman et al., 1989;
Dyer, 1992).

Moreover, there has been an argument that software inspection can be more effective
than testing (Section 4.3.4), due to the following advantages (Sommerville, 2007):

- Inspection allows many errorsin the system to be detected at once where there are

no worries about interactions between errors.
- Itisalow-cost process in which the software can be verified before completion.

- It helps developers consider other quality attributes of the system (e.g. poor

programming) along with finding program defects.

In addition, inspections are very cost-effective methods for software defect detection
and elimination, where between 50% and 90% of the errors in the program can be
discovered using these techniques (Fagan, 1986; Mills et al., 1987; Dyer, 1992; Gilb
and Graham, 1993). Sommerville has noted that the effort devoted to static verification
techniques generally increases as the system goes more critical, however, the effort
required for program inspection can always be 50% less than would be required for
equivalent testing process.

Despite the recognised advantages of using program inspections to verify software,
more formalised techniques will still be required to address the verification problems
that cannot be addressed by basic software inspection activities, e.g. the functional
correctness of the developed software. This has prompted software engineers to develop

formal verification techniques.

4.3.3 Formal methods

4.3.3.1 Introduction

As the complexity and criticalness of the system increase, a more detailed analysis of
the system specification and program is required for verification process. Such type of
analysis can be achieved by means of formal methods. Formal methods are primarily
based on mathematical representation of the system software which are mainly
concerned with mathematically analysing the system specification or transforming this
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specification into a semantically equivalent representation of the system (Wang and Lin,
2001; Wang, 2004; Sommerville, 2007). Note that using formal methods in the
verification process is a static approach in which a detailed analysis of the system
components is carried out without executing them on a computer.

Balarin et al. (1996) emphasised that formal verification is a set of techniques that allow
for proving mathematically that specifications are fit for a design. This process can
hence be used at various points during the software development process. For example,
formal methods can be used — at the design level —to discover errors/ omissions in the
gpecification document and at the implementation level to check that the software
program is compatible with its specification.

It is accepted that formal approaches (which incorporate formal specification and formal
verification) are well suited for safety-related systems which almost require a high
degree of reliability (Hevner et al., 1992; Bowen, 1993; Sommerville, 2007). Bowen
(1993) surveyed a number of safety-related standards in terms of their utilisation of
formal methods, e.g. 00-55 (Mod, UK), IEC880 (IEC, Europe), MIL-STD-882B / 882C
(DoD, US) and P1228 (IEEE, US).

4.3.3.2 Cleanroom development process

Formal methods have been used in various software development processes such as
VDM (Jones, 1989), Z (Spivey, 1992) and B (Wordsworth, 1996). A well-known
example of development processes which rely on formal methods is the Cleanroom
process developed by IBM and aimed at producing zero-defect software system with
high reliability (Dyer and Mills, 1981; Dyer, 1982; Currit et al., 1986; Mills et al., 1987;
Linger, 1994; Spangler; 1996). Briefly, Cleanroom software development combines
three main processes: formal method for specification and design, non-execution-based
program development, and statistically-based independent testing (Selby et al., 1987).
In the Cleanroom development process, the life cycle mainly consists of executable
product increments which all accumulate to yield the final product with full
functionality (Currit et al., 1986; Selby et al., 1987; Linger, 1994). Each software
product increment is specified formally and this specification is then transformed into
an implementation.
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Sommerville (2007) summarised the processes involved in any Cleanroom development
environment as. formal specification, in which the software is formally specified,
incremental development, in which the software is partitioned into increments to be
validated separately, structured programming, for stepwise refinement of the
specification in which only few constructs are used for systematically transforming the
specification into a source code, static verification, in which software inspections are
used to verify the software increment, and finally statistical testing, where the
integrated software increment is verified statistically using an “operational profile”
which has already been developed simultaneously with system specification. He also
suggested that three different teams would ideally be required for a Cleanroom process:
specification team, which develop the system specification and its equivalent
mathematical model, development team, which develop and verify the software using
formal approach to verification, and certification team, which develop statistical tests to
exercise the developed software for reliability certification.

Dyer (1992) pointed out that the mathematical-based design of the Cleanroom method
results in a more correctly developed software with a significantly reduced number of
errors in comparison with the level of errors assumed in conventional development
practices. He therefore suggested that the role of inspection in such a formal
development process should change from error detection only to confirmation of
software correctness. In his useful study, Dyer discussed how the use of verification-
based software inspection (instead of formal software inspection) can be more effective
in Cleanroom environments as it prevents the introduction of errors while the software
design is being constructed, thereby achieving error-free software products. Likewise,
Powell (2002) reported that inspection techniques mainly focus on quality attributes that
affect readability and maintainability where only limited amount of work on inspection
considered the functional correctness. To verify the functional correctness of software
in Cleanroom process, systematic code reading techniques were found to be more
effective than the traditional code reading techniques based on checklists (Dyer, 1992;
Jackson and Hoffman, 1994; Porter et al., 1995; Powell, 2002).

The integration of Computer-Aided Software Engineering (CASE) environments to
support Cleanroom development process has also been considered and found to be very
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useful especially for solving complex development problems (Fuhrer et al., 1992;
Hevner et al., 1992)

Overall, it has been widely agreed that Cleanroom approach is an effective development
method for systems which have stringent safety and reliability requirements such as the
majority of real-time embedded systems (Hevner et al., 1992; Sommerville, 2007). The
Cleanroom’s ease-of-use, low-cost and effectiveness in reducing failure rate have been
proven practically in a number of studies (e.g. Selby et al., 1987; Cobb and Mills, 1990;
Linger, 1994; Stavely, 1999). For example, Cobb and Mills (1990) summarised the
results from a list of previously-conducted projects which utilised Cleanroom
development process. They show how the use of such development environments had
the potential to improve software quality and productivity in all the surveyed projects.

4.3.3.3 Formal verification of real-time embedded systems

The use of formal methods in the verification of real-time embedded systems has
received widespread consideration. For example, Dai and Scott (1995) developed a
CASE tool (called “Automation of the Verification, Validation and Testing — AVAT")
to verify real-time embedded software using the Program Function (PF) table method
(Pamas, 1994) as a widely-used formal method in industrial applications. Bradley et al.
(1996) indicated that testing only is insufficient to provide confidence that a real-time
system would always meet its deadlines and therefore formal methods would be
reguired in the verification of such systems. Authors however noted that despite that
formal methods can result in assured designs, they do not necessarily lead to assured
implementations. The study therefore proposed a formal-based technique, based on
Application Oriented Real-Time Algebra (AORTA) as a formal language, to verify

implementation of particular real-time designs.

Liu et al. (1998) described a technique with a case study to verifying safety-critical
embedded software using the practical formal method “ Structured-Object-based-Formal
Language” (SOFL). In their technique, three verification processes were applied
consecutively as to verify both functionality and safety properties of the software: data
flow reachability checking, specification testing, and rigorous proofs (see Liu et al.,
1998 for further details). Formal verification of a large-scale, fault-tolerant embedded
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system was carried out in (Shi et al., 1999) where the developed technique was based on
using CSP model-checker (Roscoe, 1994).

Clarke et al. (2000) and Cortes (2001) argued that techniques such as simulation and
testing are often insufficient as they evaluate the system performance for only selected
subsets of operating conditions. Clarke et al. (2000) hence proposed a tool which
complements simulation and testing methods for embedded systems with formal
verification methods that analyse the behaviour of the system over a large set of
operating conditions without recourse to exhaustive simulation. Cortes (2001) noted that
formal methods had extensively been used in software development as well as in
hardware verification but not widely used in embedded systems design. Consequently,
Cortes (2000) and Corteés et al. (2001) proposed a modelling formalism for real-time
embedded systems — based on Petri Net modelling language (Marwedel, 2006) — and
introduced an approach to solve the problem of formal verification of real-time
embedded systems represented in his modelling formalism.

Likewise, Xu (2003) dated that while they had been used successfully to verify
hardware designs, formal methods were rarely used to verify actual software code and
were not used at all to verify timing properties of large-scale, real-time software
implementations. Xu listed the following examples of proposed formal methods for
real-time systems: timed and hybrid automata, timed transition systems/ temporal logic,
timed Petri-nets, theorem proving techniques using PV'S to analyse real-time protocols
and algorithms and model checking. However, he underlined that such methods mainly
focus on the verification of high-level abstractions of the system but not its actual
software code. Xu proposed a “pre-run-time” scheduling framework that imposes
restrictions on the software structures to reduce the complexity of large-scale embedded
software and hence simplify the process of formally verifying its functional as well as
timing correctness properties.

Broadfoot and Broadfoot (2003) published a useful paper which attempted to link
between academic research in formal methods and their practical use in embedded
software development. They discussed the main reasons why formal verification
methods are not widely utilised in industry, some of which were the lack of scalahility,
limited accessibility to non-specialists and immaturity of the available tools and
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techniques. However, the two key problems the authors identified as the main
challenges for industrial software practices were the need for specialists who have
sound mathematical background to create the systems formal specifications and the
complexity of using available methods and tools to verify the system correctness even
after the formal specifications are developed. The study then discussed the applicability
of combining the two formal methods, namely “Cleanroom” and “CSP” (with its model
checker FDR) to overcome the outlined shortfalls. The proposed approach was then
applied to a number of industrial case studies to show its effectiveness in practical
applications.

Wang (2004) reviewed previous works on formal verification of real-time systems.
More specifically, he discussed a wide range of research papers on various topics in
formal verification including formal modelling, specification languages, verification
frameworks, state-space representations and some others.

Arons et al. (2006) noted that although simulation is not adequate to verify large,
complex embedded systems due to its limited coverage metrics of the system,
simulation techniques can still be very effective if appropriately combined with formal
verification techniques: such an approach is referred to as hybrid verification. Arons et
al. described a hybrid approach — supported by automatic tools — to improve traditional
simulation-based validation techniques for complex embedded software designs. The
approach is based on formally analysing the software program to generate a coverage
space for all feasible control paths of the program and then building architectural tests
(Section 4.3.4). Ribeiro and Fernandes (2007) proposed an approach for applying a
particular model checker (called “Spin”: Holzmann, 1997) to verify some key properties
of embedded systems, such as deadlock-freedom, where the behaviour of the embedded
system is modelled using a variant of Petri Nets modelling language.

Crocker and Carlton (2007) suggested that before any testing commences, the
correctness of the system must be verified formally to ensure that the executed software
will meet the stated requirements. Such an approach was described as “ correctness-by-
construction”. Crocker and Carlton discussed their software development tool “Perfect
Developer” which was developed in 2004 to reason about requirements and

specifications of the system by using a single formal notation for specification, design



Chapter 4: Linking scheduling algorithms and scheduler implementations 77

and refinement, followed by automatic translation of the refined design to source code.
The study moved on to investigate the applicability of this automated reasoning
approach on verifying programs written in C, as a popular implementation language for
embedded software. It was found that automated reasoning can still achieve an
acceptable degree of success in the verification of software written in conventional
programming languages such as C.

In another study, Gargantini et al. (2008) proposed a validation and verification tool that
supports high level formal analysis of model-driven embedded system designs. The tool
was based on a formal method called “ Abstract State Machine” and aimed at providing
a design and analysis environment for HW/SW co-design where both software
application and hardware architecture are described using UML model.

4.3.34 Strengthsand weaknesses of formal methods

It has been argued that formal specification is a very effective way to discover problems
in the specification which is the most common cause of system failures, and formal
verification increases the confidence in the most critical component of the system which
is the software program (Sommerville, 2007). It is also believed that formal methods are
so beneficial especially in the development of critical systems such as safety-related
embedded systems (Hevner et al., 1992; Bowen and Hinchey, 1995).

Nonetheless, the use of formal specification and corresponding formal verification is
often time-consuming and expensive, and its cost would increase as the complexity and
criticalness of the system increase (Broadfoot and Broadfoot, 2003; Sommerville,
2007). There is a feeling among some researchers that software systems can still be
effectively verified using cheaper verification techniques such as inspections and testing
(Sommerville, 2007).

Moreover, formal methods require specialised engineers with solid mathematical
expertise to create formal specification, whereas this specification is almost not
understandable by domain users. The need for specialised people to create the formal
model of a design makes it impractical to adopt formal techniques in the verification of
many software systems.
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More importantly, despite that they can lead to highly-reliable and safe systems, formal
methods do not guarantee software reliability in practical use. For example, although
they can assure matchup between formal specification and generated code, the
developers cannot guarantee matchup between their formal model and the original
system (and user) requirements (Lutz, 1993) or that the code — once running on COTS
microcontroller hardware — would behave as expected since the hardware is not
formally modelled in the system design process.

As a conseguence, it seems that dynamic verification techniques are likely to remain a
key way of checking the correctness of the system behaviour while it is operational for
the foreseeable future. In 2004, Farn Wang noted that “ in the foreseeable future, it will
be difficult to use formal techniques alone for decisive answers to complex verification
tasks.” Wang hence predicted that formal verification would be used in the future as a
superior technology to guarantee the quality of software systems but not to verify them
(Wang, 2004).

In addition (as previously noted in Chapter 1), in real-time environments, besides the
correct functionality of the software, it is essential to make sure that the system fulfils
its predefined timing constraints and hence behave deterministically. It is unlikely that
formal methods — as a static verification techniqgue — can guarantee this. Instead,
dynamic techniques (such as testing) would be required in which the developed
software is executed on a computer to check its real-time behaviour while it is
operational. As a result, software testing would remain — in many cases — the most
effective way to achieve a confidence that the systemis “completely” fit for itsintended
use, especially in real-time applications.

4.3.4 Software testing

4.3.4.1 Introduction

Software testing is an essential part in any evaluation process of software systems. In
the IEEE Standard Glossary of Software Engineering Terminology (IEEE Std, 1990),
testing is defined as “ (1) The process of operating a system or component under
specified conditions, observing or recording the results, and making an evaluation of

some aspect of the system or component. (2) The process of analyzing a software item to
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detect the differences between existing and required conditions (that is, bugs) and to
evaluate the features of the software items.” Hessel (2007) defined testing as the
process of exercising the system in a controlled environment and examine if its
behaviour complies with the requirements of the system.

It has been argued that while static analysis techniques are used to evaluate static
criteria of the software product a rest (e.g. errors in software documents), dynamic
analysis, namely testing, is used to evaluate dynamic criteria related to the properties
that can only manifest when the system is running (e.g. failure when the software does
not behave as required): see Bloomfield et al. (2004). Sommerville (2007) reported that
both processes, static and dynamic, are needed for successful verification of real-time
systems. For example, inspections can be used to verify the system in the early stages of
its development process, while testing is needed after the whole system is integrated in
order to verify the behaviour of the final system before deployment.

4.3.4.2 Testing process

Sommerville (2007) pointed out that there are two key activities for testing: component
testing, which tests particular parts of the system, and system testing, which tests the
system as a whole. In system testing, the system is checked against its functional and
non-functional requirements to ensure that the system behaves correctly for practical

use. The main objectives of software testing are:
- To ensure that the software meets its requirements.

- To discover any faults or defectsin the software.

In general, software testing cannot discover all errors but can guarantee that the
software is good enough for operational use. For complex systems, system testing is
usually divided into integration testing, which is concerned with finding problems that
arise as a result of integrating the system components, and release testing, which is
concerned with validating that the system meets the user requirements and is
dependable. For more details, refer to (Sommerville, 2007).

As the complexity of software application increases, software testing process becomes
less trivial. For example, various researchers argued that, in the software development
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process, testing can consume up to 50% of the total development cost (e.g. Singh et al.,
1997; Liu et al., 2005; Pringsulaka and Daengdej, 2006; Sommerville, 2007).

For any testing process, a set of suitable test cases must be designed. A test caseis“ (1)
A set of test inputs, execution conditions, and expected results developed for a
particular objective, such as to exercise a particular program path or to verify
compliance with a specific requirement. (2) Documentation specifying inputs, predicted
results, and a set of execution conditions for a test item.” (IEEE Std, 1990). A
comprehensive testing using every possible execution of the software is unfeasible.
Therefore, only an effective subset of possible test cases is used. For successful test
cases design, the feature of the system to be tested must be selected along with the
inputs that will execute that feature. In addition, the expected outputs of the test cases
must also be known. A general model for software testing process is illustrated in
Figure 4-2.

Design test
cases

»| Testcases [«

A 4

Prepare test .| Testdata
data 7| (test input)
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Run software Test output
7| with test data d
v
Compare
» output with +—
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Figure 4-2: Testing process model (adapted from Sommerville, 2007).

The figure shows the key elements in the testing process which include: test cases, test
data (or test input) and test output. The obtained output from the test must be compared
to the output predicted — during the test case design phase — by those who possess a full
understanding of the system and how it should operate after implementation.

Overall, test cases can be generated either manually or automatically. Many studies
however demonstrated that automating the test processes has the potential to reduce
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time, effort and costs (e.g. Cunning and Rozenblit, 1999; Rayadurgam, 2001; Tsai et al.,
2003; Do and Rothermel, 2006; Sommerville, 2007).

4.3.4.3 Test casesand test-case generation

There has been a great deal of interest on both test cases and test-case generation. For
example, Beck’s (2001) work on “extreme programming” had at heart a view that test
cases for the system should be produced early in the product life cycle. Hassel (2007)
argued that the most challenging phase in the test process is the selection and execution
of test cases. Many studies have, therefore, proposed techniques for automatically
generating the test cases (Tsai et al., 2003; Bai et al., 2002, Cunning and Rozenblit,
1999; Ince, 1987; Poston, 1986; Tai, 1993; White and Sahay, 1985; Munoz, 1988;
Singh et al., 1997; Kim et al., 1998; Hessel, 2007).

Test cases can be generated from the source code, control flow graphs, design
representations and specifications (Offutt and Liu, 1999). In specification-based test
case generation approach — which is popular and widely used — test cases are derived
from a specification model that provides a high-level abstraction of the desired system
behaviour. One advantage of using specification-based test generation (over the code-
based test generation where test cases are directly derived from the software code) is
that the output test data will be independent of any particular implementation of the
system: e.g. the source code (Offutt and Liu, 1999). This also means that test cases can
be generated earlier in the development process, even before the coding is finished,
allowing more utilisation of the time and resources.

To implement and test the specification model, formal specification languages can be
used such as Z (Spivey, 1988), VDM (Jones, 1989), and RAISE (Nielsen et al., 1988).
Once the specification model — for the application under test — is verified, test cases can
then be automatically (or manually) generated using the appropriate test-case generation
method.

There has also been work carried out in the area of testing other features of the system.
Such studies are concerned mainly with testing the “non-functional” (i.e. “quality”)
reguirements of the application software, such as scalability, reliability, maintainability,
availability and portability: a detailed list of non-functional requirements of a
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computing system is provided in (Chung et al., 2000). Just as an example, Laria (2005)
has argued that architectural decisions affect the quality of software systems and that it
is important to detect the potential risks of using particular architectures as early as
possible during the development process. Examples of widely-used approaches for
evaluating software architectures are: Architecture Tradeoff Analysis Method (ATAM:
Kazman et al., 2000) and Cost Benefit Analysis Method (CBAM: Bass et al., 2003).

4.3.4.4 Testing real-time embedded systems

Rayadurgam (2001) noted that testing is one of the most widely used V&V techniques
for verifying embedded systems. There has been a great deal of interest in generating
test cases for real-time embedded systems (Cunning and Rozenblit, 1999; Larsen et al.,
2005; Nielsen and Skou, 2003; Shere and Carlson, 1994; En-Nouaary et al., 2002;
Hessel, 2007). In real-time testing activities, testers take into account the time at which
the input parameters are supplied to the system and, therefore, the correct behaviour is

achieved when the test verifies that the output values are produced in the correct time.

Overall, the testing of real-time embedded systems has been based on creating timed
models (Clarke and Lee, 1997; Springintveld et al., 1997; En-Nouaary et al., 1998;
Cunning and Rozenblit, 1999; En-Nouaary et al., 1999; En-Nouaary et al., 2000; Larsen
et al., 2005; Hessel, 2007). Hessel (2007) noted that “ Model-based testing is a black
box testing technique where test cases are derived from a model that specifies the
expected behaviour of a system.” It was also shown that it is sometimes required to used
model checking tools (e.g. “Spin”: Holzmann, 1997 or “UPPAAL”: Larsen et al., 1997)
to ensure correctness of the specification model before moving to the implementation

stage.

In a study carried out by Cunning and Rozenblit (1999), approaches for model-based
automatic test-case generation for event-triggered, real-time embedded systems were
presented. They attempted to generate a set of test cases that provide a complete
coverage of the system requirements. The work was though based on software /
hardware codesign in contrast to that presented earlier by Chandrasekharan et al. (1985)
and Hsia et al. (1994 and 1997) which were concerned with testing software designs
only.
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En-Nouaary et al. (2000) clearly stated that the correctness of safety-critical embedded
systems can be improved by verifying the system specification and testing the system
implementation: that is to assess the conformance of the system implementation to its
specified requirements. In their paper, En-Nouaary et al. focused on testing of real-time
embedded systems. The embedded system in their study was modelled using
Communicating Timed Input Output Automata (CTIOA) model. The study also
described an approach for test-cases generation from an embedded CTIOA model.
Larsen et al. (2005) described a tool for online testing of real-time systems based on
UPPAAL model checker.

Hessel (2007) considered testing the functionality (i.e. logical and temporal correctness)
of real-time systems based on state-based formalism. In particular, he developed a test
generation tool called “COVER” which was built on UPPAAL model checker and used
the formal method “timed automata’. The tool proved to be effective in generating test
suites with full coverage and minimal cost. Hessel also provided a detailed literature
review of previous work carried out in the areas of model-based testing of timed
systems, test-case generation with coverage criteria, and tools for model-based testing.

Please note that al of this previous work is mainly based on formal modelling of the

real-time system properties.

4.3.45 Strengthsand weaknesses of softwar e testing

The strengths and weaknesses of software testing have already been discussed in the
previous sections (e.g. Section 4.3.3.4 and Section 4.3.4.1). Overall, the discussions
indicate that testing can be the most superior verification technique to achieve a
“complete” confidence in a developed real-time software product, as it verifies
properties that can only be revealed when the system is in operation. Please note that the
decision to use testing would critically depend on the type of application in which
software is used. For example, if the software is developed to operate an aircraft, then
formal verification would be the only way to ensure correct operations before the plane
fliesin the air. In such circumstances, testing would not be the appropriate verification

solution.
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However, if testing is to be applied, developing test cases with full coverage of system
requirements can often be a time-consuming and expensive process. This in turn
induces further research interest in this area, where the advantages of testing can be
utilised, but with using simple test case generation approaches in order to test only a

small set of system properties for certain purposes.

Before testing takes place, and to avoid the need for applying ordinary static verification
techniques (such as inspections and formal methods), one can use recently developed
techniques for automated software generation. Assuming that design specifications are
derived accurately from user requirements, such techniques can help guarantee matchup
between design specifications and the produced software.

4.3.5 Automated code generation

4.3.5.1 Introduction

As previously noted, the current project considers the implementation process of TTC
scheduling algorithm. One suggested approach to verify the software implementations
of such a system is to use automated code generation in the creation of scheduler code
(Mwelwa, 2006). By doing so, the generated source code is guaranteed to have zero-
defects and thus only testing will be required to verify correctness of the system
behaviour when it is operational. Automated code generation approach is reviewed in

this section.

4.35.2 Manual generation of code using software patterns

An early work on patterns, in the ESL group, has resulted in a collection of several tens
of software design patterns aimed at supporting the development of reliable TT
embedded systems (see Section 3.5.3). These patterns were documented in a structured
manner so that any developer — who wishes to use them — can refer to the relevant
publication in which the patterns are detailed. However, the process of manually
referring to pattern collection before using a pattern increases the probabilities of coding
errors and hence becomes inefficient software development method for systems that
reguire high level of reliability (Kurian and Pont, 2006a; Mwelwa, 2006). Therefore, it
was necessary to develop techniques for automatically generating source code from a
selected set of design patterns (Mwelwa et al., 2005; Mwelwa et al., 2007).
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4.3.5.3 Automating the code generation process

Overall, it has previously been argued that automated code generation holds the promise
of reducing the time and effort required to implement safety-critical systems, while at
the same time eliminating errors introduced in this stage of development (Whalen and
Heimdahl, 1999). Industries such as aerospace and automotive have made extensive
use of automatic code generation tools aimed at control and signal processing systems
(Marsh, 2003; O’ Halloran, 2000; Schatz et al., 2003): these are typical application areas
for the TTC schedulers considered in this study. Such tools are used first to model
systems and then to generate code. Originally, code was generated automatically for
prototyping platforms or PCs. More recently, code generation has become a more
practical means of generating production code for embedded hardware. It is thought that
hundreds of thousands of cars now rely on code generated using these techniques
(Marsh, 2003).

4.3.5.4 Automated code generation techniques

According to (Mwelwa, 2006), two main approaches are used in automated code
generation, model-based and pattern-based code generation. In model-based code
generation, models are used to represent the system at the abstract level thus allowing
developers to design applications based on requirements only, discuss the design ideas
among the design team, and validate the design even before it is implemented. The
Unified Modelling Language (UML), which is used for organising and communicating
design ideas, has become the de facto technology for design, analysis and modelling of
various software architectures and more recently for model-based code generation. In
model-based code generation method, source code is automatically generated from the
UML design models and therefore errors caused by hand-coding are eliminated. Other
modelling languages and frameworks which help in model-based software development
are discussed in (Mwelwa, 2006).

Mwelwa has made it clear that despite many advantages of model-based code
generation, such as the provision for software maintenance, these techniques have
limited effects in embedded system designs. This is mainly due to the limitations
experienced with UML such as inability to address timing, memory and power
constraints, and handling of periodic time-triggered tasks (note that there has recently
been significant work on extending the UML to embedded systems domain: e.g. UML



Chapter 4: Linking scheduling algorithms and scheduler implementations 86

2.0). Mwelwa has also argued that model-based code generation does not necessarily
promote software reuse where software reuse is recognised as an important factor for
improving the quality of software and reducing development costs. Therefore, pattern-
based code generation can offer an alternative method to model-based code generation.

It was argued that pattern-based code generation has the potential to produce codes with
high quality. Previous work in this area has led to the development of a tool for
“automatic” creation of systems with TTC architecture (e.g. Mwelwa et al., 2003;
Mwelwa, 2006; Mwelwa et al., 2007). Such work enables the developer to employ a
collection of “design patterns’ to support the creation of code for complete TTC
systems (including the system scheduler). Kurian and Pont (2006a) noted that pattern-
based tools provide support for automatic code generation from pattern-based designs,
where the full potential of pattern-based design was still to be fully realised in such
tools. Kurian and Pont therefore began to explore the challenges involved in engaging
tool support in the design phase of pattern-based software development.

In (Kurian and Pont, 2007) it was underlined that most previous work on pattern-based
software development had focused on the process of creating a system but not on the
post-creation project phases. The study therefore explored techniques for automatically
replacing an existing core scheduler pattern with a suitable alternative pattern in a
design after the project has been completed.

4355 Strengthsand weaknesses of automated code generation

Automated code generation can be viewed as a feed forward process which
substantially helps the developer create (or manipulate) the source code for their
application with minimal amount of time and effort. They also help to verify the
embedded software by ensuring that the implementation of the system scheduler
matches the predefined design specification.

However, automated code generation techniques cannot guarantee that the implemented
software meets the user requirements and the software product is hence validated. For
example, automated code generation techniques take no account of the possible
behaviour patterns a particular code may produce during the system operating time. In
another word, such techniques do not involve any feedback process from which the
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developer can understand (or predict) the implications of using particular source code

implementations in their system.

4.4 Discussion

The work described in this thesis is mainly concerned with software verification of real-
time schedulers as a potential means for bridging the gap between scheduling
algorithms and scheduler implementations in practical embedded systems. By going
back to Figure 1-3 in Chapter 1 (the life cycle of a system development process), it can
be clearly seen that after the system design process completes, the implementation
process should begin. As in Figure 4-1, to address the process of translating between
design and implementation of a given embedded software (e.g. scheduler), an
appropriate verification technique must be applied during this process to check whether
the resulting implementation matches the requirements specified at the end of the design
phase (which is obviously the previous phase to implementation in the development life

cycle).

Given that real-time embedded software often requires a high degree of reliability and
predictability, dynamic approaches (namely testing) remain in many cases the most
effective means for verifying that the software — after implementation — will match the

original design specifications and hence fulfil the desired user requirements.

As the literature indicates, previous work on testing and test cases was concerned
mainly with testing the detailed operations (i.e. functionality) or checking quality
attributes of a given software application.

Although there has been considerable effort made towards testing real-time embedded
software, this work was mainly based on developing a formal specification model of the
embedded design from which suitable suite of test cases can then be generated. As
previously noted, formal modelling of a system is a complicated process that requires a
specialist to describe and analyse the system specifications using mathematical
notations.
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In particular, the author found no previous work which considered the creation of test
cases to specifically address the impact of using a given scheduler software on the
operational behaviour of embedded systems, particularly when algorithms suchas TTC
schedulers are employed.

On the other hand, despite the great potential of work carried out on automated code
generation to link TTC designs and implementations, such work suffers considerable
limitations, some of which have already been discussed in Section 4.3.5.5. Moreover, it
must be noted that the automated code generation tools developed in the ESL group so
far have been proven to work successfully with simple TTC scheduler implementations
while have not been used to generate / verify codes for large-scale, complex TTC
designs like the majority of those considered in this project. This imposes the demand to
explore alternative techniques for verifying such manually-developed complex
implementations without use of any code generation tool.

45 Conclusions

This chapter reviewed general software verification methods with a particular focus on
verifying real-time embedded software. Both static and dynamic verification techniques
have been reviewed, and their advantages and disadvantages discussed.

The discussions suggest that there are inevitable limitations in previous work to address
verification problem in real-time, resource-constrained embedded systems. In particular,
none of the previous work attempted to verify the embedded software in such away that
it helps to understand the impact of using various software implementations on the
operational timing behaviour of the whole system. This fact prompts further research
interests in this area where the timing behaviour of embedded software can be verified
dynamically using simple, cheap and efficient “testing” techniques. Such techniques
would be expected to explore the impact of using particular implementation decisions
on the run-time behaviour of systems employing real-time scheduling algorithms.

The next chapters begin to describe and evaluate a testing technique developed in this
project as one way to verify software implementations for embedded systems
employing a TTC scheduling algorithm.



PART C:
SINGLE-PROCESSOR SYSTEM S



Chapter 5

TTC scheduler implementations

5.1 Introduction

As discussed in Chapter 3, the Time-Triggered Co-operative (TTC) scheduling
algorithm can have a wide range of possible implementation options, each with a
different set of distinctive features as well as behaviour patterns. Of course, it is not
feasible to cover all possible implementation options for TTC scheduler in a single
study. Thus, only a set of “representative’” examples of the various classes of TTC
implementations are reviewed in this chapter. Such a representative collection of TTC
schedulers will be used as a basis for assessing the testing technique proposed in this
project for single-processor designs.

Note that this chapter reviews six different implementations for TTC scheduler. Four
implementations have been taken / modified from studies conducted previously in the
ESL research group, where the remaining two are new TTC implementations developed
in this project. Three further implementation options, which have less distinctive
features, are outlined in Appendix D™°.

5.2 A general structure of TTC scheduler implementation

This section begins by introducing a simple approach for implementing TTC scheduler
software in low-cost embedded microcontrollers and then describes the main structure
used in the TTC implementations reviewed in this chapter.

% The work described in this chapter has been adapted from the study presented in the author’s
publications[1] and [3] listed in page xvi.
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Asin (Pont, 2001; Kurian and Pont, 2007), The majority of embedded systems run only
one program where this program usually starts to execute when power is applied to the
microcontroller and stops executing when the power is removed (or some error occurs).
Moreover, there is no operating system returned to by the program, and allowing the
program to terminate might have undesirable consequences. In order to avoid this, a
form of endless “Super Loop” is usually employed (see Listing 5-1). In the example
shown in the listing, the application has a “one-shot” task to be executed only once and
then the program will remain in the super loop doing nothing until the whole system is
reset. It is obvious that the super loop is employed mainly to “stop” the system.

int main(void)
EO_X();
while(1);
/1 Shoul d never reach here

return 1

}

Listing5-1: Useof a“ Super Loop” to avoid termination of a smple embedded application.

However, the super loop can be used as the basis for implementing a simple TTC
scheduler (e.g. Pont, 2001; Kurian and Pont, 2007). A possible implementation of such
ascheduler isillustrated in Listing 5-2.

int main(void)

{

whi | e( 1)
{
TaskA() ;
Del ay_6ms();
TaskB() ;
Del ay_6ms();

TaskC();
Del ay_6ms();
}

// Shoul d never reach here
return 1

}

Listing5-2: A very simple TTC scheduler which executes three periodic tasks, in sequence.

By assuming that each task in Listing 5-2 has a fixed duration of 4 ms, a TTC system
with a 10 ms “tick interval” has been created using a combination of super loop and
delay functions. Note that if task durations are variable, then it is almost impossible to
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achieve a precisely fixed tick interval with this approach, making the use of such a
super-loop-based scheduler inappropriate for systems which have rigid timing
constraints™.

In general, software architectures based on super loop can be seen simple, highly
efficient and portable (Pont, 2001; Kurian and Pont, 2007). However, these approaches
lack the provision of accurate timing and the efficiency in using the power resources, as

the system always operates at full-power which is not necessary in many applications.

An alternative (and more efficient) solution to this problem is to make use of the
hardware resources to control the timing and power behaviour of the system. For
example, a TTC scheduler implementation can be created using “Interrupt Service
Routine” (ISR) linked to the overflow of a hardware timer. In such approaches, the
timer is set to overflow at regular “tick intervals’ to generate periodic “ticks’ that will
drive the scheduler. The rate of the tick interval can be set equal to (or higher than) the
rate of the task which runs at the highest frequency (Phatrapornnant, 2007).

When the timer overflows and a tick interrupt occurs, the ISR will be called, and
awaiting tasks will then be activated either from the ISR directly or from a scheduler
function (this depends on the implementation class used as will be discussed in the next
sections). Moreover, when not executing ISR or scheduler functions, the system is
usually placed in a low-power sleep (“idl€”) mode in order to reduce system operating
power (Pont, 2001). Most processors have idle modes, and their use can (for example)
greatly increase battery life in embedded designs. however, use of idle modes is
common but not essential. Once entered the idle mode, the system will only wake up
when the next tick interrupt takes place.

1 'Ways in which a Super Loop approach can be used to implement a TTC system with variable task
durations are discussed in detail in Appendix D. Such an implementation is referred to as TTC-SL
scheduler.
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Figure 5-1 illustrates a general structure of the TTC scheduler implementations
considered in this chapter which is based on using the timer interrupts. The vertical
arrows in the figure represent the points at which timer interrupts and, hence, ticks
occur. The tick intervals are often numbered (starting from 0). The figure also shows
how a system is placed in the idle mode when not executing tasks.

< Major cycle >
A A Tick A A A
P interval
Idle
A B B C | mode | A B B A B
Tick 0 Tick 1 Tick 2 Tick 3 Tick 4 Time

Figure5-1: A general structure of the TTC scheduler considered in this study.

5.3 A TTC-ISR scheduler

5.3.1 Introduction

The TTC-ISR scheduler describes a very simple software implementation of the TTC
scheduling algorithm. The particular implementation discussed in this section is based
on that described in detail elsewhere (Pont, 2002; Kurian and Pont, 2007).

5.3.2 Overview of the scheduler implementation

Asthe name indicates, the basis of a TTC-ISR scheduler is an Interrupt Service Routine
(ISR) which is linked to the overflow of a hardware timer. Figure 5-2 shows how such a
scheduler can be implemented in software. In this example, it is assumed that one of the
microcontroller’s timers has been set to generate an interrupt once every 10 ms, and
thereby call the function Updat e() . This Updat e() function represents the scheduler
ISR. At the first tick, the scheduler will run Task A then go back to the while loop in
which the system is placed in the idle mode waiting for the next interrupt. When the
second interrupt takes place, the scheduler will enter the ISR and run Task B, then the
cycle continues. The overall result is a system which has a 10 ms “tick interval” and
three tasks executed in sequence (see Figure 5-3).
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BACKGROUND FOREGROUND
PROCESSING PROCESSING

10ms timer
whi | e( 1) voi d Updat e( voi d) r e

{ {
Go_To_Sl eep(); Ti ck_GtH+;

}

switch(Ti ck_G

{

case 1:
Task_A();
br eak;

case 2:
Task_B();
br eak;

case 3:
Task_C();
Tick_G = 0;

}
}

Figure5-2: A schematic representation of a smple TTC-1SR scheduler.

Whether or not the idle mode is used in TTC-ISR scheduler, the timing observed is
largely independent of the software used but instead depends on the underlying timer
hardware (which will usually mean the accuracy of the crystal oscillator driving the
microcontroller). One consequence of this is that, for the system shown in Figure 5-2
(for example), the successive function calls will take place at precisely-defined
intervals, even if there are large variations in the duration of tasks which are run from
the Updat e() function (Figure 5-3). This is very useful behaviour which is not easily
obtained with implementations based on super loop.

Major
cycle

A 4

<
<

A
Tick interval

Idle
A B | _mode | €

Tick O Tick 1 Tick 2 Tick 3 Time

Figure5-3: Thetask executions expected from the TTC-I SR scheduler code shown in Figure5-2.

The function call tree for the TTC-1SR scheduler is shown in Figure 5-4.
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Main () — | Update () | —>» Task () —> Sleep () J

Figure 5-4: Function call treefor the TTC-I1SR scheduler.

5.4 A TTC-Dispatch scheduler

5.4.1 Introduction

Implementation of a TTC-ISR scheduler requires a significant amount of hand coding
(to control the task timing), and there is no division between the “scheduler” code and
the “application” code (i.e. tasks). The TTC scheduler implementation referred to here
as a TTC-Dispatch scheduler provides a more flexible alternative. The particular
implementation discussed in this section has been adapted from an original version of
TTC scheduler described in detail in (Pont, 2001) 2.

5.4.2 Overview of the scheduler implementation

The TTC-Dispatch scheduler implementation considered in this section is characterised
by distinct and well-defined scheduler functions (see Listing 5-3).

12 The modified TTC implementation considered in this section has previously been published in the
author’s publications [4] listed in page xvii. The original TTC scheduler asin (Pont, 2001) isdescribed in
detail in Appendix D.
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voi d nmai n(voi d)

/1 Set up the schedul er

SCH I nit_T2();

/1 Init tasks

TaskA_Init();

TaskB_Init();

/1 Add tasks (5 ms ticks)

/| Parameters are <task nane>, <offset in ticks> <period in ticks>
SCH_Add_Task(TaskA, 0, 3);

SCH_Add_Task(TaskB, 1, 3);

SCH_Add_Task(TaskC, 2, 3);

/1 Start the schedul er
SCH Start();

whi | e(1)
{
SCH_Di spat ch_Tasks();
SCH_Go_To_Sl eep();
}
}

Listing 5-3: An overview of a possible TTC Dispatch scheduler implementation: see Pont (2001) for
details.

Like TTC-ISR, the TTC-Dispatch scheduler is driven by periodic interrupts generated
from an on-chip timer. When an interrupt occurs, the processor executes an Updat e()
function (see Listing 5-5). In the scheduler implementation discussed here, the
Updat e() function simply keeps track of the number of ticks. A Di spat ch() function
(Listing 5-6) will then be called, and the due tasks (if any) will be executed one-by-one.
Note that the Di spat ch() function is called from an “endless’ loop placed in the
function Mai n() : see Listing 5-3 and Figure 5-5. When not executing the Updat e()

or Di spat ch() functions, the systemwill usually enter the low-power idle mode.

In this TTC implementation, the software employs a SCH Add_Task() and a
SCH Del et e_Task() functions to help the scheduler add and/or remove tasks during
the system run-time. Such scheduler architecture provides support for “one shot” tasks
and dynamic scheduling where tasks can be scheduled online if necessary (Pont, 2001).
To add atask to the scheduler, two main parameters have to be defined by the user in
addition to the task’s name: task’s offset, and task’s period. The offset specifies the
time (in ticks) before the task isfirst executed. The period specifies the interval (also in
ticks) between repeated executions of the task. In the Di spatch() function, the
scheduler checks these parameters for each task before running it. Please note that
information about tasks is stored in a user-defined scheduler data structure: see Listing
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5-4. Boththe “sTask” datatype and the “SCH_MAX_TASKS” constant are used to create
the “Task Array” which is referred to throughout the scheduler as “sTask
SCH_t asks_{J SCH_MAX_TASKS] ". See (Pont, 2001) for further details.

/1 Total nenory per task is >>> bytes
typedef struct

/1 Pointer to the task (must be a 'void (void)' function)
void (*pTask) (void);

/1 Delay (ticks) until the function will (next) be run
/1 - see SCH Add_Task() for further details

int Del ay;

/1 Interval (ticks) between subsequent runs.

/1 - see SCH Add_Task() for further details

int Period;

} sTask;

/] Define the maxi mum nunber of tasks
#def i ne SCH_MAX_TASKS (3)

Listing 5-4: Data structurein the TTC-Dispatch scheduler.

The function call tree for the TTC-Dispatch scheduler is shown in Figure 5-5.

Main () — | Update () | —» | Dispatch ()| —>» Task () —> Sleep () J

Figure5-5: Function call treefor the TTC-Dispatch scheduler.

Figure 5-5 illustrates the whole scheduling process in the TTC-Dispatch scheduler. For
example, it shows that the first function to run (after the startup code) is the Mai n()
function. The Mai n() calls Di spat ch() which in turn launches any tasks which are
currently scheduled to execute. Once these tasks are complete, the control will return
back to Mai n() which calls Sl eep() to place the processor in the idle mode. The
timer interrupt then occurs which will wake the processor up from the idle state and
invoke the ISR Updat e() . The function calls then returns all the way back to Mai n() ,

where Di spat ch() iscalled again and the whole cycle thereby continues.

Updat e() and Di spat ch() codes for the TTC-Dispatch scheduler is shown in Listing
5-5 and Listing 5-6.
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voi d SCH Updat e(voi d)

/1 Note that an interrupt has occurred
Ti ck_count _Gt+;

/] After interrupt, reset interrupt flag (by witing “1")

TOIR = 0x01;
}

Listing 5-5: “Update” ISR of the TTC-Dispatch scheduler.
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voi d SCH Di spatch_Tasks(voi d)
{
int Index;
int Update_required = O;

/1 Need to check for a timer interrupt since this
/1 function was |ast executed (in case idle node is not being used)

/1 Disable timer interrupt
VIClntEndr = 0x10;

if (Tick_count_G > 0)
{
Tick_count_G -;
Update_required = 1;

/] Re-enable timer interrupts
VI Cl nt Enabl e = 0x10;

whil e (Update_required)

{
/1 Go through the task array
for (Index = 0; Index < SCH MAX_TASKS; | ndex++)

/1l Check if there is a task at this |location
if (SCH_ tasks_{ I ndex].pTask)

{
if (--SCH tasks_{ I ndex].Delay == 0)

/1 The task is due to run
(*SCH tasks_G I ndex].pTask)(); // Run the task

if (SCH tasks_{Jd I ndex].Period != 0)

/1 Schedul e period tasks to run again
SCH tasks_G I ndex] . Del ay = SCH_ tasks_{ I ndex] . Peri od;

}

el se

{

/1 Del ete one-shot tasks
SCH tasks_{ I ndex] . pTask = 0;
}

}

/1 Disable timer interrupt
VICIntEndr = 0x10;

if (Tick_count_G > 0)

{
Tick_count_G -;

Update_required = 1;
el se
{
Update_required = O;
}
/1l Re-enable tinmer interrupts

VI Cl nt Enabl e = 0x10;
}

Listing 5-6: Dispatch function of the TTC-Dispatch scheduler.
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5.5 Applying Dynamic Voltage Scaling (DVS)

5.5.1 Introduction

In order to reduce the CPU power consumption in TTC schedulers, a Dynamic Voltage
Scaling (DVS) approach can be employed. The particular implementation discussed in
this section — which will be referred to as TTC-DVS — has been described in detail
elsewhere (Phatrapornnant and Pont, 2006; Phatrapornnant, 2007).

5.5.2 Overview of the scheduler implementation

The full details about implementing dynamic voltage scaling in the TTC scheduler
framework have been provided in the PhD thesis written by Dr. Teera Phatrapornnant,
while he was working in the ESL research group (e.g. Phatrapornnant, 2007). A brief
summary of thiswork is presented here.

Dynamic Frequency Scaling (DFS) involves reducing the operating frequency of a
processor in order to reduce the power consumption when full performance is not
required. DFS forms the starting point for a wide range of power-saving techniques.
For example, many designs combine frequency changes and (CPU) voltage changes,
resulting in what is usually referred to a Dynamic Voltage Scaling (DVS).

When employing any approaches which build on DFS, the designer faces some
significant challenges, if precise control of system timing is an important consideration.
This is because — in modern, general-purpose processors — the CPU core and
“peripherals’ (such as atimer, UART, analogue-to-digital converter, CAN module, etc)
are tightly integrated onto a single chip, in order to maximize performance and
minimize cost. Inamost all cases, the CPU core and peripherals share acommon clock
source which is expected to remain largely fixed as the device operates. In the event of
high-frequency changes to this clock source (as occurs when DFS-based techniques are

employed) it becomes very difficult to maintain fixed timing in peripheral components
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(such as timers), with the consequence that some level of jitter in task timing is

unavoidable.

The key to applying DVS in a TTC application is the presence of dack time®
(Phatrapornnant and Pont, 2006). Under DV'S, tasks — which normally run at the same,
fixed, CPU speed — will be stretched to fill the available slack time (see Figure 5-6).
Therefore, the speed-setting policy is determined by the available slack time for a task
(or multiple tasks) in each slot.

Speed A A A
Task A Slack Time ——— TaskB
Time
Deadline of Task A
Speed A
slack time employed TaskB
Tadk A

-
Time

b—— 1Slot —m8m™

Figure5-6: Exampleillustrating the possibility of task stretchingin a dot (Phatrapor nnant, 2007).

The TTC-DVS is applicable to periodic tasks and can be implemented using a circular
array of the size equal to the number of task slots in a complete cycle to store the
required CPU speed for each task. Before running tasks, the system runs the speed-
finding process for a full cycle, hence calculates and stores the required speed values.
Such calculations need information about the WCET and deadline of each task. The
WCET is assumed to be provided by the user while the deadline of a given task is the
release time of the next task. In this algorithm, the speed is only altered once per tick
interval, causing all tasks in the same tick to run at the same speed.

Moreover, a reduced-jitter implementation of the TTC-DVS scheduler was developed
and aimed to minimise jitter in systems using this scheduler. The low-jitter TTC-DVS
scheduler includes a timer-adjustment process to load new timer values whenever the
frequency is changed. The TTC-jDV S then reduces the variation in scheduler overhead

13 Jlack time is the spare processing time during which the scheduler isin itsidle state (Davis, 1993).
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prior to the release of such tasks by means of a “jitter guardian”, which is a form of
“sandwich” delay (Pont et al., 2006). Finally, TTC-jDVS deals with the problems
caused by variations in the task duration by running all “reduced-jitter” tasks at the
same speed every time they are released. This can (for example) reduce the impact of
frequency changes on a system involving data sampling within a task.

Please note that this implementation has been described in brief. For a complete
description and code listings of the TTC-DVS scheduler implementation, refer to
Phatrapornnant and Pont (2006) and Phatrapornnant (2007).

Note that the scheduler structure used in TTC-DV S scheduler is same as that employed
in the TTC-Dispatch scheduler which is simply based on ISR Update linked to atimer
interrupt and a Dispatch function called periodically from the Main code (Section
5.4.2).

5.6 Adding Task Guardians (TGs)

5.6.1 Introduction

Despite many attractive characteristics, TTC designs can be seriously compromised by
tasks that fail to complete within their allotted periods. This section reviews a TTC
implementation which employs a Task Guardian (TG) mechanism to deal with the
impact of such task overruns. The particular implementation discussed in this section —
which will be referred to as TTC-TG — has been described in detail elsewhere (Hughes
and Pont, 2004; Hughes and Pont, in press).

5.6.2 Overview of the scheduler implementation

When dealing with task overruns, the TG mechanism is required to shutdown any task
which is found to be overrunning. The proposed solution also provides the option of
replacing the overrunning task with a backup task (if required).

The implementation is again based on TTC-Dispatch (Section 5.4). In the event of a
task overrun with ordinary Dispatch scheduler, the timer ISR will interrupt the
overrunning task (rather than the Sl eep() function). If the overrunning task keeps
executing then it will be periodically interrupted by Updat e() while all other tasks will
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be blocked until the task finishes (if ever): this is shown in Figure 5-7. Note that (a)
illustrates the required task schedule, and (b) illustrates the scheduler operation when
Task A overrun by 5 tick interval. .

interrupt

Al Bl A2 A3 Ad A5 A6 B2

interrupt
—
S

Al Bl

—-
1}
o

1 2 3 4 5 t (ms)

Figure5-7: Theimpact of task overrun on a TTC scheduler.

In order for the TG mechanism to work, various functions in the TTC-Dispatch

scheduler are modified as follows:
- Di spat ch() indicatesthat atask is being executed.

- Updat e() checks to see if an overrun has occurred. If it has, control is passed

back to Di spat ch() , shutting down the overrunning task.
If a backup task exists it will be executed by Di spat ch() .

- Normal operation then continues.

In a little more detail, detecting overrun in this implementation uses a simple, efficient
method employed in the Di spat ch() function. It simply adds a “Task_Overrun”
variable which is set equal to the task index before the task is executed. When the task
completes, this variable will be assigned the value of (for example) 255 to indicate a
successful completion. If atask overruns, the Updat e() function in the next tick should
detect this since it checks the Task_overrun variable and the last task index value. The
Updat e() then changes the return address to an End_Task() function instead of the
overrunning task. The End_Task() function should return control to Dispatch. Note
that moving control from Updat e() to End_Task() isa nontrivial process and can be
done by different ways (Hughes and Pont, 2004).
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The End_Task() has the responsibility to shutdown the overrunning task. Also, it
determines the type of function that overrun and begins to restore register values
accordingly. This process is complicated which aims to return the scheduler back to its
normal operation making sure the overrun has been resolved completely. Once the
overrun is dealt with, the scheduler replaces the overrunning task with a backup task
which is set to run immediately before running other tasks. If there is no backup task
defined by the user, then the TTC-TG scheduler implements a mechanism which turns
the priority of the task that overrun to the lowest so asto reduce the impact of any future
overrunning by this task. The function call tree for the TTC-TTG scheduler can be
shown in Figure 5-5.

Backup

Main () —> Update () — | End Task () | —» | Dispatch () | —» Task ()

Figure 5-8: Function call treefor the TTC-TG scheduler.

Please note that this implementation has been described in brief. For a complete
description and code listings of the TTC-TG scheduler implementation, refer to Hughes
and Pont (2004) and Hughes and Pont (in press).

Note that the scheduler structure used in TTC-TG scheduler is same as that employed in
the TTC-Dispatch scheduler which is simply based on ISR Update linked to a timer
interrupt and a Dispatch function called periodically from the Main code (Section
5.4.2).

5.7 Working with Multiple Timer Interrupts (MTIs)

5.7.1 Introduction

In Chapter 2, the impact of task placement on “low-priority” tasks running in TTC
schedulers was considered. The TTC schedulers described in the previous sections lack
the ability to deal with jitter in the starting time of such tasks. In order to address this
problem, a “gap insertion” mechanism that uses “Multiple Timer Interrupts’ (MTIs)

was developed and implemented in this project. The particular TTC implementation
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which employs MTI technique is called TTC-MTI scheduler and described in detail in

this section.

5.7.2 Overview of the scheduler implementation

Inthe TTC-MTI scheduler, multiple timer interrupts are used to generate the predefined
execution “slots’ for tasks. This allows more precise control of timing in situations
where more than one task executes in a given tick interval. The use of interrupts also
allows the processor to enter an idle mode after completion of each task, resulting in

power saving™.

In order to implement this technique, two interrupts are required:
- Tick interrupt: used to generate the scheduler periodic tick.

- Task interrupt: used —within tick intervals —to trigger the execution of tasks.

The processisillustrated in Figure 5-9. In this figure, to achieve zero jitter, the required
release time prior to Task C (for example) is equal to the WCET of Task A plus the
WCET of Task B plus scheduler overhead (i.e. ISR Updat e() function). Thisimplies
that in the second tick (for example), after running the ISR, the scheduler waits —in idle
mode — for a period of time equals to the WCETs of Task A and Task B before running
Task C. Figure 5-9 shows that when an MTI method is used, the periods between the
successive runs of Task C (the lowest priority task in the system) are always equal.
This means that the task jitter in such implementation is independent on the task
placement or the duration(s) of the preceding task(s).

1 Note that similar results can be obtained using “sandwich delays’ (Pont et al., 2006). However, this
approach does not give such a precise control over timing and can significantly increase thelevels of CPU
power consumption. An example of TTC implementation — which employs sandwich delays to reduce
task jitter —isdescribed in detail in Appendix D: thisis called TTC-SD scheduler.
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Figure5-9: Usng MTIstoreducereleasejitter in TTC schedulers.

In general, it can be argued that the use of multiple timers to execute multiple tasks is
not practical since most embedded microcontrollers have limited number of hardware
timers (Eswaran et al., 2005). Indeed, the method described here requires no more than
two timers in total. Alternatively, one timer — with multiple channels — can adequately
do the job. Like many modern processors, the hardware used in this study to implement
this scheduler (i.e. LPC21xx microcontroller: see Section 7.2.1) supports multiple

channels per timer, allowing efficient use of the available resources.

In the implementation considered in this section, the WCET for each task is input to the
scheduler through SCH_Task_WCET() function placed in the Mai n() code. The
scheduler then employs Cal c_Sch_Mj or _Cycl e() and Cal cul ate_Task_RT()
functions to calculate the scheduler major cycle and the required release time for the
tasks, respectively (Listing 5-7). Moreover, there is no Di spatch() caled in the
Mai n() code: instead, “interrupt request wrappers’ — which contain Assembly code —
are used to manage the sequence of operation in the whole scheduler. The function call
tree for the TTC-MT]I scheduler is shown in Figure 5-10 (compare with Figure 5-5).

If Task () is the last due task in the tick

J If Task () is not the last due task in the tick
. Tick Task
Main () |—> Update () —> | Sleep () [ Update () —»| Task () |—>| Sleep () —

Figure5-10: Function call treefor the TTC-MTI scheduler (in normal conditions).

Code for the TTC-MT]I scheduler is shown in Listing 5-7 to Listing 5-9.
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int main (void)

/1 Add tasks
/1 Delay and Period values are in *ticks*
SCH_Add_Task(Task_A, 0, 1);

/1 1nput duration for tasks
/1 Val ues are in *m croseconds*
SCH_Task_WCET( Task_A, 2000);

/1 Cal cul ate the Schedul er Major Cycle
Cal c_Sch_Maj or _Cycl e( SCH_MAX_TASKS) ;

/1 Calculate the required release tine for each task
Cal cul ate_Task_RT();

/1 Start the schedul er
SCH Start();

/1 The schedul er may enter idle node at this point (if used)
SCH Go_To_Sl eep();

return O;

}

Listing5-7: “Main” function in the TTC-MTI scheduler.
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voi d SCH Ti ck_Updat e(voi d)
{
int i =0
int |ndex;

/1 Go through the task array
for (Index = 0; Index < SCH MAX_TASKS ; | ndex++)

/1l Check if there is a task at this |ocation
if (SCH_ tasks_{ I ndex].pTask)

{
if (--SCH tasks_{ I ndex].Delay == 0)

{
/1 indicate the task is to be run
runme[i ++] = I ndex;

if (SCH tasks_{ Index].Period != 0)

/1 Schedul e period tasks to run again
SCH t asks_G | ndex] . Del ay = SCH_tasks_{ I ndex] . Peri od;
}

el se

/1 Del ete one-shot tasks
SCH t asks_( | ndex] . pTask = O0;
}
}
}
}

/1 Indicate no nore tasks in runme queue
runme[i] = SCH MAX_ TASKS;

/* If there are tasks in current tick interval */
if (runme[0] != SCH MAX_TASKS)
{

/1 Setup Match Register 1 - interrupt in uS fromtick
TIMRL = SCH tasks_G runme[0]]. Rl s_tinme + 50*(runne[ 0] +1);

/1 Interrupt on match 1
TIMCR | = 0x08;
}

/1 Return to sleep
cTask = SCH Go_To_Sl eep;

/1 Reset the task index

I ndex_G = 0;
}

Listing 5-8: “Update” ISR of the Tick-Timer-Interrupt in the TTC-MTI scheduler.
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voi d SCH Task_Updat e(voi d)

/1 Run task after this function
cTask = SCH tasks_G runme[ | ndex_QG]. pTask;

/1 Setup Match Register 1 - for the next task
TIMRL = SCH_tasks_{J runne[ | ndex_G+1l] % SCH MAX TASKS].RIs_time +
50* (runne[ | ndex_Q +2);

/'l Increnent task count
I ndex_Gt++;

/1 Disable Interrupt on match 1
TIMCR &= OxFFFFFFF7;

/1 Enable Interrupt on match 1
TIMCR | = (1 & (tLong) (runne[lndex_G != SCH MAX_TASKS)) << 3;
}

Listing 5-9: “Update” ISR of the Tak-Timer-Interrupt inthe TTC-MT| SCHEDULER.

Unlike the normal Dispatch schedulers, Figure 5-10, Listing 5-8 and Listing 5-9 show
that the implementation relies on two interrupt Updat e() functions: Ti ck Updat e()
and Task Updat e(). The Ti ck Updat e() — which is called every tick interval (as
normal) — identifies which tasks are ready to execute within the current tick interval.
Before placing the processor in the idle mode, the Ti ck Updat e() function sets the
match register of the task timer according to the release time of the first due task
running in the current interval. Calculating the release time of the first task in the
system takes into account the WCET of the Ti ck Updat e() code.

When the task interrupt occurs, the Task Updat e() setsthe return address to the task
that will be executed straight after this update function, and sets the match register of
the task timer for the next task (if any). The scheduled task then executes as normal.
Once the task completes execution, the processor goes back to Sl eep() and waits for
the next task interrupt (if there are following tasks to execute) or the next tick interrupt
which launches a new tick interval. Note that the Task Updat e() code is written in
such away that it always has a fixed execution duration for avoiding jitter at the starting
time of tasks.

It is worth highlighting that the TTC-MTI scheduler described here employs a form of
“task guardians’ which help the system avoid any overruns in the operating tasks. More
specifically, the described MTI technique helps the TTC scheduler to shutdown any
overrunning task by the time the following interrupt takes place. For example, if the
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overrunning task is followed by another task in the same tick, then the task interrupt —
which triggers the execution of the latter task — will immediately terminate the overrun.
Otherwise, the task can overrun until the next tick interrupt takes place which will
terminate the overrun immediately.

The function call tree for the TTC-MTI scheduler — when a task overrun occurs — is
shown in Figure 5-11. The only difference between this process and the one shown in
Figure 5-10 is that an ISR will interrupt the overrunning task (rather than the Sl eep()
function). Again, if the overrunning task is the last task to execute in agiven tick, then it
will be interrupted and terminated by the Ti ck Update() at the next tick interval:
otherwise, it will be terminated by the following Task Updat e() .

If Task () is the last due task in the tick

l If Task () is not the last due task in the tick
Main O [— | T |l steep o [— |, T35 || Task o |—
Update () P Update ()

Figure5-11: Function call treefor the TTC-MTI scheduler (with task overrun).

Please note that the complete code for this scheduler implementation is provided later in
Appendix H.

5.8 Towards a “perfect” TTC implementation

5.8.1 Introduction

It can be noticed that each of the previous scheduler implementations was created to
deal with one particular problem in TTC algorithm. For applications which require
extremely high degree of reliability, a combinational TTC architecture — which

incorporates multiple features — can be an appropriate solution. This section describes
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the implementation of a highly flexible TTC implementation aimed towards achieving

“perfect” time-triggered behaviour in resource-constrained embedded systems™.

This new scheduler implementation will be called TTC-Adaptive scheduler in this
thesis. This is because, unlike previous schedulers, this scheduler is self-adapted to
changes in task execution times. A full description of this particular TTC
implementation is provided in this section. Note that the idea behind this
implementation has been developed from the concepts used in the implementations of
the two schedulers described in Section 5.6 and Section 5.7 with a further (substantial)
modification.

5.8.2 Overview of the scheduler implementation

The architecture of this TTC implementation was based on that used in TTC-MTI
scheduler (see Figure 5-10). The present scheduler however employs a simple, but
effective, mechanism for calculating the WCET of each task at the beginning of the
system operating period. Remember that in the previous scheduler implementations,
WCET information is input to the system by the user.

Overall, there are two different modes in which the system can operate: Calculating
Mode (CM) and Operating mode (OM). Each of these modes is described as follows.

a) Calculating mode (CM)

The system runs the calculating mode for a short period of time, allowing the scheduler
to perform an online calculation of the WCET for each co-operative task, and the
reguired release time at which the task must start its execution. That is, once the system
starts (power is up), the scheduler takes short time to measure the WCETSs and release
times of all tasks before switching into a normal operating mode. The calculating time
period must be defined by the user in “number of ticks’, based on system specifications.

> The work described in this section has been carried out in collaboration with Zemian Hughes, a
member of the ESL research group.
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The scheduler structure, described in Section 5.7.2, is used here but with some
modification (Figure 5-12).

If Task () is the last due task in the tick
l If Task () is not the last due task in the tick

. Tick Task WCET
Main O | —> Update () —>| Sleep 0 Update () —>| Task( |—> Calculation () Sleep 0

Figure 5-12: Function call tree for the TTC-Adaptive scheduler (calculating mode).

In this process, after the task is executed, SCH WCET() function is called to calculate
the WCET of the completed task and its release time required for low jitter
characteristics. The WCET of atask is measured by recording the time just before and
after the task execution (using, for example, the Timer Control Register “TCR”: see
Philips Semiconductors, 2003). The WCET is then calculated, in the “SCH WCET() "
function, by subtracting the stop time from the start time. In the same way, release time
of a task is measured by recoding the time just after the Task Updat e() function
begins to execute. The SCH_WCET() sores the maximum WCET and the maximum
release time for each task in the task array. Note that the release time of the first task in
the system is based on the worst case duration of the Ti ck Updat e() function. After
calculating the WCET of the current task, the processor is placed in the idle mode for a
very short period before the next task interrupt occurs (see Listing 5-10).

Please note that the WCET value computed in this algorithm is basically the longest
possible execution time of the task obtained during the measurement period. As
previously underlined in Section 2.10, calculating the accurate WCET of a particular
activity is often a complicated process.
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voi d SCH WCET(voi d)
{
tLong Duration;

/1 Record Stop tine
Stop_Tine = T1TC,

/1 Cal culate duration for no overrun
Duration = Stop_Tine - Start_Ting;

/1 Cal cul ate duration of Task Update
Task_Update_Duration = Start_Tinme - Rel ease_Ti ng;

/1 1f index is larger than O
if (1ndex_Q
{

/1 |f the measured WCET is larger than recorded
if (SCH_ tasks_Grunme[lndex_G - 1]].WCET < Duration)

/1 Modifiy the recorded WCET
SCH tasks_G runme[ |l ndex_G - 1]].WCET = Dur ati on+1;
/1 If release time is less than the tasks start tine
if (SCH tasks_Jrunnme[lndex_G - 1]].Req_RIs_Tm < (Rel ease_Tine))
/1 Modify the release tine
SCH tasks_G runme[l ndex_G - 1]].Req_R s_Tm = Rel ease_Ti me+2;

/] set the match register to current tinme plus little margin: this is
/| because we want the Task_Update to be called i mediately
if (runme[lndex_@G != SCH MAX_TASKS)
/] Set the timer to interrupt alnost imediately so we can run next
task
/1 Set tinmer match register to current tine + 4
TIMRL = T1TC + 4;
}
}

/1 Disable any interrupt and send the scheduler to sleep
SCH_End_Task() ;
}

Listing 5-10: WCET-calculation function in the TTC-Adaptive scheduler.

b) Operating mode (OM)

This relates to the normal operation mode of the scheduler. It is assumed here that the
user has set the duration of the calculating mode long enough to obtain a correct set of
WCET values. this must be estimated by the user based on their knowledge about the
system specifications. Once the calculation time completes, the system is switched into
the operating mode during which scheduled tasks run in their allotted time “slots’ with

no release jitter.

The function call tree for the operating mode is identical to that illustrated in Figure
5-10. Note that, without any addition to the design, the system is expected to behave in
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the same way as the TTC-MTI scheduler. This means that a very simple task guardian
mechanism is employed in which the scheduler allows an overrunning task to run until
the next task (or tick) interrupt. This solution will be called *Option 1'.

However, a more effective task guardian solution is still required. One suggested way is
to employ a mechanism which detects the overrun once occurred and shutdown the
overrunning task immediately whether or not there are scheduled tasks to run afterwards
in the same tick interval. This solution will be called ‘Option 2’. In this solution, the
scheduler employs three interrupts: “Tick” interrupt and “Task” interrupt (as before)
and a third interrupt called “Task Overrun” interrupt. The ISR functions for the Tick
and Task interrupts (i.e. Ti ck Updat e() and Task Updat e() ) are very similar to those
used in the TTC-MTI scheduler. However, the Ti ck Updat e() function here keeps
track of the number of ticks for the calculating mode. Once the calculation time (defined

by the user) is over, the scheduler switches into operating mode.

In addition to setting the match register of the task timer to be equal to the RT of the
next due task, the Task Updat e() function also sets the match register of the “task-
overrun” timer to be equal to the task release time plus the task WCET plus the duration
of the task update function. This simply implies that if a task exceeds its measured
WCET it will be interrupted immediately by a Task_Overrun_Updat e() function
which is linked to the “Task Overrun” timer interrupt. This function reports the overrun
and sends the scheduler to deep. If everything goes smoothly and no overrun occurs, an
End_Task() function is called after the completion of each task which will simply
disable the task-overrun timer interrupt and send the scheduler to deep. Note that the
Ti ck Updat e() function sets the return address after each task to be for the

End_Task() function.

Figure 5-13 and Figure 5-14 illustrate the sequence of functions in ‘Option 2’

implementation with and without overrun.
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If Task () is the last due task in the tick
l If Task () is not the last due task in the tick

Task End
—» | Sleep () | = Update () —» | Task () |—> Task () —» | Sleep () —

Tick

Main () [—> Update ()

Figure 5-13: Function call treefor the TT C-Adaptive scheduler ‘Option 2’ (normal

oper ation).
. Tick Task Overrun
Main () |—» Update () —» | Sleep () |—> Update () —» | Task () | > Update () —» | Sleep ()

Figure 5-14: Function call tree for the TTC-Adaptive scheduler ‘Option 2" (with task
overrun).

In order to offer a complete task guardian mechanism, a third solution which includes
support for backup tasks has been proposed: this is called ‘Option 3. In this solution,
once an overrun is detected, the Task_Overrun_Updat e() function will report the
overrun, set “backup” task to be the next due task to run and send the scheduler to sleep.
In the next Tick interrupt, the scheduler executes the backup task before continuing to
execute the following tasks (if any). Please note that the tasks which have already been
executed in the tick — in which the overrun took place — will not be re-executed in the
following tick. Overall, with this approach, the scheduler imposes a one-tick delay for
the whole scheduler. This can still maintain a high determinism assuming that overruns
occur very occasionally. The sequence of functions in ‘Option 3 implementation is
illustrated in Figure 5-15.

. Tick Task Overrun
Main () [—> Update () —>» | Sleep () |——> Update () —>» | Task () |—> Update () —>» | Sleep ()—|
- Tick Task Backup End
> Update 0 [ ] 51 O |7 | update 0| ™| Task ¢ || Tasko || S'eeP O

Figure 5-15: Function call treefor the TTC-Adaptive scheduler ‘Option 3' (with task
overrun).

The code for the TTC-Adaptive scheduler is shown in Listing 5-11 to Listing 5-14.
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voi d SCH Ti ck_Updat e(voi d)

{
tByte i = 0;
t Byt e | ndex;

static tWord Tick_Count = 0;

/1 1f tick is not paused (no overruns)
if (!PauseTick)

{
/1 Go through the task array
for (Index = 0; Index < SCH_MAX_TASKS - 1; |ndex++)

/1l Check if there is a task at this |ocation
if (SCH_ tasks_{ I ndex].pTask)

{
if (--SCH tasks_{ I ndex].Delay == 0)

/1 indicate the task is to be run
runme[i ++] = I ndex;

if (SCH tasks_{ Index].Period != 0)

/1 Schedul e period tasks to run again
SCH tasks_@ I ndex].Delay = SCH_ t asks_{ I ndex] . Peri od;

}

el se

/'l Del ete one-shot tasks
SCH tasks_{d I ndex] . pTask = O0;
}

}

}

/1 Indicate no nore tasks in runme queue
runme[i] = SCH MAX_ TASKS;

/* If there are tasks in current tick interval */
if (runme[0] != SCH MAX_TASKS)
{

/1 If task is O
if (runme[0] == 0)
{

/Il If release tinme is less than current tinme + 3

if (SCH tasks_§O0].Req_R s_Tm < (Tick_Update_Duration))

/1 Modify release time to be current + 3

}
}

/1 Setup Match Register 1 - interrupt in uS fromtick
TIMRL = SCH tasks_Grunme[0]].Req_R s_Tm

SCH tasks_J 0]. Req_R s_Tm = Ti ck_Updat e_Dur at i on+3;

/1 Interrupt on match 1
TIMCR | = 0x08;

/1l Reset the task index

I ndex_G = 0;
}
/1 If tick is paused, set release tine to backup task so that the backup
task runs
/1 first and then the next tasks in the schedule can carry on as nornal
el se
{

/1 Setup Match Register 1 - interrupt in uS fromtick
TIMR1L = SCH tasks_Grunme[lndex_G].Req_R s_Tm

/1 Interrupt on match 1
TIMCR | = 0x08;
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// Enable tick to run next tinme
PauseTi ck=0;

}

/1 Return to sleep
cTask = SCH Go_To_Sl eep;

/| Keep track of the nunber of ticks for the calculating node.

/1 Once the calculation time (defined by the user) conpletes, the schedul er
goes to

/Il operating (normal) node.

if (Mde_G == CALCULATI NG_MODE)

/1 If ticks is larger than calculation time
if (Tick_Count++ > CALCULATI ON_TI ME)

/1 Change node to operating node
Mbde_G = OPERATI NG_MODE;
}

}

/1 |If the schedul er goes into the operati ng node
i f (Mdde_G == OPERATI NG_MODE)

{
/1 Run End_Task after evry task
nmfask = SCH End_Task;

}

/1 Record the duation of the Tick Update
Ti ck_Updat e_Durati on = T1TC,
}

Listing5-11: “Update’ ISR of the Tick-Timer-Interrupt in the TTC-Adaptive scheduler.

voi d SCH Task_Updat e(voi d)

{
Rel ease_Ti ne = T1TC,

/1 Run task after this function
cTask = SCH tasks_J runme[ | ndex_G]. pTask;

/1 Setup Match Register 1 - for the next task
TIMR1L = SCH tasks_G runne[ | ndex_G+1]]. Req_R s_Tm

/1 Setup Match Register 2 - for WCET for end task
TIMR2 = SCH tasks_Grunme[lndex_Gg].Req_ R s_Tm +
SCH_ t asks_G runme[ I ndex_G] ] . WCET
+ Task_Update_Duration + 4;

/1 Increnent task index
I ndex_G++;

/1 Disable Interrupt on match 1
T1IMCR &= OxFFFFFFFT7;

/1 Enable Interrupt on match 1
TIMCR | = (1 & (tLong) (runne[lndex_G != SCH MAX_TASKS)) << 3;

/1 Disable Interrupt on match 2
T1IMCR &= OxFFFFFFBF;

/1 Enable WCET end_task interrupt for current task
TIMCR | = (1 & (tLong) (Mde_G == OPERATI NG_MODE)) << 6;

/1l Record start tine

Start_Time = T1TC
}

Listing 5-12: “Update’ ISR of the Task-Timer-Interrupt in the TTC-Adaptive scheduler.
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void SCH End_Task(voi d)

/1 Disable Interrupt on match 2
T1IMCR &= OxFFFFFFBF;

/] Goto Sleep

SCH _Go_To_Sl eep();
}

Listing 5-13: End-Task function in the TTC-Adaptive scheduler.

void SCH Task_Overrun_Updat e(voi d)

/] Goto sleep after ISR
cTask = SCH Go_To_Sl eep;

/1 I'ncrement task overrun flag
SCH t asks_G | ndex_G 1] . Overrun++,;

/1 1f there exists a backup task

if (SCH_ tasks_{ | ndex_G 1]. bTask)
{

// Disable task interrupt on match 1
TIMCR &= OxFFFFFFF7;

/1 Set backup task to run
SCH tasks_G I ndex_G 1] . pTask = SCH_tasks_G | ndex_G- 1] . bTask;

/1 Point index back to overruning task
I ndex_G -;

/1 Pause the next tick
PauseTick = 1;
}
}

Listing 5-14: “Update’ ISR of the Task-Overrun-Interrupt in the TTC-Adaptive scheduler.

5.9 Conclusions

This chapter reviewed a selective set of implementation classes for TTC scheduling
algorithm. The chapter began by a general overview of a simple TTC implementation
using a few lines of software code. Such an implementation provided the introduction to
a more complicated implementation options which make utilisation of the available
hardware resources, such as a hardware timer, to control the system timing in a more
precise manner. The description of various TTC scheduler implementations — which are
based on such a concept — then followed.

It has been highlighted that the majority of the TTC implementations discussed in this
chapter were taken (or adapted) from previous studies carried out in the ESL research
group. Such implementations included: TTC-ISR, TTC-Dispatch, TTC-DVS and TTC-
TG schedulers. Thereafter, two now implementations were presented which suggest
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useful additions to the range of TTC schedulers developed within the group over the
past few years. These implementations were: TTC-MTI and TTC-Adaptive schedulers.

Finally, it is important to note that this chapter provides the basis for the practical work
presented in Chapter 6 and 7, in which the reviewed TTC implementations form the
testbeds for assessing the effectiveness of the testing technique introduced in this
project for single-processor designs.



Chapter 6
Scheduler Test Cases (STCs) for TTC schedulers

6.1 Introduction

As the introduction and literature review chapters indicate, the studies detailed in this
thesis attempt to bridge the gap between scheduling algorithms and scheduler
implementations when TTC software architectures are considered. This process requires
an investigation of dedicated techniques that link between such system representations
in asystematic way. One way of doing so isto find an appropriate method which can be
applied to prove that the predictions made at the design stage of the TTC scheduler are
maintained during (and after) the scheduler implementation process. In another word,
the technique employed must provide an assurance that a practical TTC implementation
matches the underlying characteristics of the TTC algorithm, e.g. high predictability.

In Chapter 4, it has been decided that testing (as a dynamic verification technique) isthe
most effective way to check the correct behaviour of many systems and, hence, gain a
full confidence that those systems meet their desirable features. This was because
testing allows verifying properties which can only manifest during the normal operation
of the system. In TTC systems, predictable and deterministic behaviour is a key design
objective. Therefore, the system must be tested with respect to its operational timing
behaviour. To begin to address this issue, Scheduler Test Case (STC) technique has
been developed and applied in this project. Such a testing technique is specifically
intended to explore the impact of using a given TTC scheduler implementation on the

predictability behaviour of the running application.

This chapter describes, in detail, the STC technique and the set of Scheduler Test Cases
(STCs) developed to assess the behaviour of the TTC scheduler implementations
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described in Chapter 5 for single-processor embedded designs. Remember that such
implementations were identified as representative examples of the wide range of
possible TTC implementation options'.

6.2 Overview of the Scheduler Test Case (STC) technique

It is important to begin this section by underlining that the concept of testing in the STC
technique, developed in this study, substantially differs from that used elsewhere (e.g. in
studies reviewed in Chapter 4). For example, unlike previous studies, testing here is not
aiming to check the correct functionality of the application software or evaluate its
quality attributes. Instead, it is mainly used to assess the execution behaviour of the
system as aresult of employing a particular software implementation of TTC scheduler
on generic processor hardware.

According to the discussions in Chapter 4, testing requires an appropriate set of test
cases which specify the system inputs, predicted results, and execution conditions,
aimed to verify (for example) the system’s compliance with specific requirements. It
was also mentioned that only a selective subset of possible test cases can be used as a
comprehensive testing is not viable. The feature of the system to be tested must be
selected along with the inputs that will execute that feature, and the expected outputs of
the test cases must be known in advance. All of these test case elements have been
considered in the process of developing the STCs presented in this chapter. This is
further described as follows.

The STC is a simple technique which employs a collection of test cases to examine the
output behaviour of a wide range of TTC scheduler implementations. The STCs
developed in this study have been generated manually based on previous experience and
knowledge (i.e. full understanding) about the characteristics and requirements of the
TTC scheduling algorithm (see Section 2.8.3). In this sense, the STC technique is

' The work described in this chapter has been adapted from the study presented in the author’s
publication [1] listed in page xvi.
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considered a component testing — as opposed to system testing — since it specifically
tests the scheduler component in the whole software and that it is based on an intuitive
understanding of how this particular component should operate after the whole system
isintegrated (see Sommerville, 2007 for more details).

The STC technique employs different scheduling examples (with “dummy tasks’) that
produce different behaviour patterns as the scheduler implementation varies. such task
sets represent the test inputs (or test data). Each STC comprises a different set of tasks
with different characteristics. Bloomfield et al. (2004) documented that “ The task
performed by a system during execution for the purposes of running a dynamic analysis
iswhat is known as workload or simply test cases.”

Once the tasks in each STC are input to the test item (which is, in this case, the
scheduler), the system will be executed on the target hardware. The system response
will then be monitored over a sufficient period of time and the output behaviour
recorded and compared to the predicted behaviour (that has been documented at the test
case design stage). The complete process of STC testing isillustrated in Figure 6-1.

Design STCs

STCs

A

Y

A

> P'epta;:kfms »| STCs tasks
v

Run software Task

» with STCs »| sequence &

tasks task jitter
\ 4
Compare
» results with —

STCs

Figure 6-1: Thetesting processin STC technique (adapted from Sommer ville, 2007).

The STC technique has been designed to test the system behaviour under both normal
and abnormal operating conditions. Normal operations refer to the situations during
which the scheduler operates in an absence of any errors, while abnormal operations
relate to the occurrence of errors. The error mode in any scheduling algorithm, for
which the STCs are developed, must be defined by the developer where it has to
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represent acknowledged problem(s) facing the implementers of such an algorithm. For
example, in TTC systems, “task overrun” is a major problem which can cause
measurable degradation in the system performance or jeopardise the system
functionality (Section 2.10). Therefore, task overrun has been used in this study to
define the error mode of the TTC scheduler.

The key criteria against which the TTC scheduler behaviour is assessed include the task
sequencing, jitter and ability to deal with overruns: these are the main tested features of
the TTC scheduling algorithm in this study. Such criteria have been used as a practical
means to assess the predictability of the TTC schedulers. In more detail, the task
sequencing checks whether the scheduler executes the required tasks in the required
order. Jitter in the task timing is used to assess the timing performance of the system. In
Chapter 2, jitter was defined as variations in the timing of tasks. Three different jitter
types were also listed: release jitter, execution jitter and finishing jitter. In this study, the
jitter is considered at the release time of tasks running in each TTC scheduler. Release
jitter — as in Chapter 2 — describes the deviation of the start time of a task from its
release time. Remember that tasks with low-jitter characteristics can lead to highly-
predictable behaviour in many embedded system designs. In addition to task sequencing
and jitter tests, the STC teststhe capability of the scheduler to handle task overrun error.
The system can be more predictable if it is able to reduce the impact of such an error.

6.3 The Scheduler Test Cases (STCs) for TTC algorithm

6.3.1 Introduction

This section describes the STCs developed in this study for TTC agorithm. The total
number of STCs described here is four. More specifically, STC A, STC B and STC C
are intended to test the system behaviour under normal operating conditions, where STC
D was intended to test the system behaviour during the occurrence of error. Each STC
was aimed to address a different type of problem which might have a negative impact
on the overall system predictability.

6.3.2 STC A (Task-induced jitter)

STC A explores the potential impact of variations in the execution time of tasks on the
jitter levels of subsequent tasks in the schedule.
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A summary of the task characteristics for this STC is presented in Table 6-1 and
schematically illustrated in Figure 6-2.

Considering STC A in more detail, all tasks execute with a “tick offset” of O: that is,
each task executes for the first time in tick interval 0 and continues to execute in each

tick interval.

Table 6-1: Task set (test input) for STC A (Major cycle=1 Tick).

Task Name Period Offset Priority ETy7 Allowable
(Ticks) (Ticks) (1=High) jitter in start
time of task
A 1 0 1 ET(A) —variable (0.01 - 0.4 Ticks) Low
B 1 0 2 ET(B) — variable (0.01 - 0.2 Ticks) Low
C 1 0 3 ET(C) —variable (0.01 - 0.2 Ticks) Low
Major
cycle
A A
Al A2 ——
t=0 1 t (Ticks)=
A A
B1 B2 e
t=0 1 Tick >
A i t (Ticks)
c1 (o7 -ome
t=0 1 t (Ticks)

Figure 6-2: Graphical representation of thetask set in STC A.

Examples of possible schedules obtained with this task set (using different
implementations) are given in Table 6-2 and Table 6-3.

" ET denotes the actual execution time of a task on a given run (this figure will vary between runsin
most cases).
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Table 6-2: Example schedule A1

Start time (after duetick) | Jitter
Ax | O Low (related to Tick jitter + scheduler overhead)
Bx | ET(AX) Potentially high (varies with ET of preceding task)
Cx | ET(Ax) + ET(Bx) Potentially high (varies with ET of preceding tasks)

Comment:

In a basic scheduler implementation, it islikely to see significant levels of jitter in the start
times of tasks executed later in thetick interval, if the execution time of the earlier tasks varies.
Thisisillustrated in Figure 6-3. Obviously, such a scheduler implementation is not suitable for
use with jitter-sensitive tasks.

Task B Task B N Task B
N Period . Period T Period ’
A 4 A
Al BL | c1 A | B2 | e2 A3 B3 | c3 A4 B4 | ca [ --—----
t=0 1 2 3 t (Ticks)

Figure 6-3: Graphical representation of Example schedule A1.

Table 6-3: Example schedule A2

Start time (after duetick) | Jitter
Ax | O Low (may be related to scheduler overhead)

Bx | WCET (A) Low (may be related to scheduler overhead)

Cx | WCET(A) + WCET(B) Low (may be related to scheduler overhead)

Comment:
In alow-jitter scheduler implementation, the scheduler will compensate for variationsin the
execution time of tasks. Lower priority tasksin the schedule will have low-jitter characteristics.

Thisisillustrated in Figure 6-4.

Task B Task B Task B
(€ period —»*¢—— Period — P ¢——— Period —>

A

Al BL [ c1 A2 B2 c2 A3 B3 | c3 A4 B4 G ------
.

t=0 1 2 3 t (Ticks)

Figure 6-4: Graphical representation of Example schedule A2.

It is clear from Figure 6-4 that with this schedule, Task B (and hence Task C) will be
free of jitter if the scheduler overhead is fixed.
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6.3.3 STC B (Schedule-induced jitter)

STC A explores the potential impact of variations in the execution time of tasks on the
jitter levels in the system. By contrast, STC B explores the potential impact of

variations in the schedule on the jitter levels of tasks.

A summary of the task characteristics for this STC is presented in Table 6-4 and
schematically illustrated in Figure 6-5.

Table 6-4: Task set (test input) for STC B (Major cycle= 2 Ticks).

Task Name | Period Offset Priority ET Allowablejitter in
(Ticks) (Ticks) | (1 =High) start time of task
2 0 1 ET(A) —variable (0.01 - 0.4 Ticks) Low
B 1 0 2 ET(B) — variable (0.01 - 0.2 Ticks) Low
1 0 3 ET(C) —variable (0.01 - 0.2 Ticks) Low
- Major cycle >
A A
Task A Al A2 | e
t‘i 0 ‘l‘ ﬁ t (Ticks)=
TaskB | Bl B2 B3| -
t‘i 0 ‘l‘ ﬁ t (Ticks)=
TaskC | €1 c2 c3|
t=0 1 2 t (Ticks)=

Figure 6-5: Graphical representation of the task set in STC B.

Examples of possible schedules obtained with this task set (using different
implementations) are given in Table 6-5 and Table 6-6.
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Table 6-5: Example schedule B1 (Basic scheduler)

Start time (after duetick) | Jitter

Ax | O Low (related to Tick jitter + scheduler overhead)

Bx | Oor High (start time of task varies on dternate Ticks)
ET(AX)

Cx | ET(Bx) or High (start time of task varies on aternate Ticks)
ET(AX) + ET(Bx)

Comment:
Here, Task B will suffer from high levels of releasejitter (because it executes sometimes after

Task A and sometimes at the start of thetick: Figure 6-6).

Task B Task B Task B
— —le— —>
Period Period Period

A 4 A

Al B1 [ c1 B2 | c2 A2 B3 | c3 =7 e [——

t=0 1 2 3 t (Ticks)

Figure 6-6: Graphical representation of Example schedule B1.

Table 6-6: Example schedule B2 (TTC scheduler with gap insertion)

Start time (after due tick) Jitter
Ax | O Low (related to Tick jitter + scheduler overhead)
Bx | WCET(A) Low (if WCET egtimates are accurate)
Cx | WCET(A) + WCET (B) Low (if WCET egtimates are accurate)
Comment:

This low-jitter scheduler implementation satisfies the jitter requirementsfor Task B and Task C
(Figure 6-7). Thisis because low-priority tasks always run in fixed time slots independent on
any preceding task executions.

Task B Task B Task B
(€ Pperiod — ¢ Period — P ¢——— Period —>

A A A

Al Bl | c1 A2 B2 c2 A3 B3 | c3 Ad B4 c4 | ------
—

Figure 6-7: Graphical representation of Example schedule B2.

6.3.4 STC C (Long tasks)

The majority of TTC scheduler implementations (including all of those considered in
this study) involve the use of scheduler ticks generated by means of a periodic timer
overflow, linked to an interrupt service routine. In STC A and STC B, it is assumed
that all tasks which begin execution in agiven tick interval will be intended to complete
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their execution before the next tick occurs. Such a restriction is not an essential
requirement in TTC designs®, but can be a limiting factor in some TTC

implementations.

The scheduler’s ability to handle “long tasks’ is tested in STC C. A summary of the
task characteristics for this test is presented in Table 6-7 and schematically illustrated in
Figure 6-8.

Table6-7: Task set (test input) for STC C (Major cycle=4 Ticks).

Task Name | Period | Offset | Priority ET Allowable jitter in start time of task
(Ticks) | (Ticks) | (1 =High)
A 2 1 1 ET(A) —fixed (0.2 Ticks) | Low
B 4 0 2 ET(B) —fixed (2.4 Ticks) | Low
C 2 1 3 ET(C) —fixed (0.2 Ticks) | High
Comment

In thistask set, Task B runs for 2.4 ticks. During thistime, Task A (assumed to be a low-jitter
task) becomes due to run. Inthis STC, it can be determined how the scheduler will deal with
tasks which are (deliberately) designed to have durations longer than thetick interval. It can
also be determined how the scheduler manages task priorities: Task A has a higher priority
than Task C and — following completion of Task B — Task A should execute before Task C.

Major cycle >

'

N e
3
=)
=~
L

t=0 1 2 3 t (Ticks)

Figure 6-8: Graphical representation of thetask set in STC C.

Examples of possible schedules obtained with this task set (using different
implementations) are given in Table 6-8 to Table 6-13.

8 A TTC design is co-operative in nature. Pre-emption of one task by another is not permitted.
However, in the case of “long tasks’, atask isinterrupted by the scheduler (not by another task).
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Table 6-8: Example schedule C1 (Basic scheduler)

Start time Jitter

(after duetick)
Ax | Oor1.4Ticks High (start time of task varies on dternate Ticks)
Bx | O Low (related to Tick jitter + scheduler overhead)
Cx | ET(AXx) or High (start time of task varies on aternate Ticks)

ET(AX) + 1.4 Ticks

Comment
This behaviour (illustrated in Figure 6-9) will be expected froma basic TTC scheduler.

B1 Al C1 A2 c2 | e

t=0 1 2 3 t (Ticks)

Figure 6-9: Graphical representation of Example schedule C1.

Table 6-9: Example schedule C2

Start time Jitter
(after duetick)
Ax | Oor High (start time of task varies on dternate Ticks)
ET(Cx) + 1.4 Ticks
Bx | O Low (related to Tick jitter + scheduler overhead)
Cx | ET(AXx) or High (start time of task varies on aternate Ticks)
1.4 Ticks

Comment

This behaviour will be observed with many TTC implementations which check each task, in
sequence, to seeif they are dueto run: inthis case, Task C's satusistested, and thetask is
executed, before the status of Task Aistested. Thisisillustrated in Figure 6-10

B1 C1 Al A2 c2 | e

t=0 1 2 3 t (Ticks)

Figure 6-10: Graphical representation of Example schedule C2.



Chapter 6: Scheduler Test Cases (STCs) for TTC scheduler 130

Table 6-10: Example schedule C3

Start time Jitter

(after duetick)
Ax | O Low (related to Tick jitter + scheduler overhead)
Bx | O Low (related to Tick jitter + scheduler overhead)
Cx | ET(AXx) or High (start time of task varies on aternate Ticks)

1.4 Ticks

Comment

This behaviour can also be observed with many TTC implementations which check the status of
all tasks before beginning to execute the due tasks: in this case, after completing Task B, Task C
is executed while Task A is omitted from the schedule. So, although jitter in Task Aislow, its
period is doubled, a result which may not be tolerated in many systems. Thisisillustrated in
Figure 6-10.

B1 c1 AL ez | e

t=0 L 2 3 t(Ticks)

Figure 6-11: Graphical representation of Example schedule C3.

Table 6-11: Example schedule C4

Start time Jitter

(after duetick)
Ax | O Low (related to Tick jitter + scheduler overhead)
Bx | O Low (related to Tick jitter + scheduler overhead)
Cx | ET(AX) Low (since ET(AX) isfixed)

Comment

In each major cycle, thefirst execution of both Task A and Task C is omitted from the schedule.
So, although jitter in Task A and Task C islow, their periods are doubled. Thisisillustrated in
Figure 6-12.

B1 AL e | -

t=0 L 2 3 t(Ticks)

Figure 6-12: Graphical representation of Example schedule C4.
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Table 6-12: Example schedule C5

Start time Jitter
(after duetick)

Ax | 2Tick or ET(AX) | High (task runstwice in the same Tick at different start times)

Bx | O Low (related to Tick jitter + scheduler overhead)
Cx | 1.4 Tick or High (start time of task varies on aternate Ticks)
2*ET(AX)

Comment
The first execution of Task A isdeayed by onetick. Thus, Task Awill run twicein the following
tick before Task C runs (see Figure 6-13).

A A A

B1 C1 Al | A2 | C2 | - -

t=0 1 2 3 t (Ticks)

Figure 6-13: Graphical representation of Example schedule C5.

Table 6-13: Example schedule C6

Start time Jitter

(after duetick)
Ax | O Low (related to Tick jitter + scheduler overhead)
Bx | O Low (related to Tick jitter + scheduler overhead)
Cx | ET(AX) Low (since ET(AX) isfixed)

Comment
The scheduler shuts down any task still executing when the next tick occurs (see Figure 6-14).

Task Task | Task Task [ Task

t=0 1 2 3 t (Ticks)

Figure 6-14: Graphical representation of Example schedule C6.

6.3.5 STC D (Task overruns)
STCA, STC B and STC C all assume normal system operation. The goal with STC D is

to explore the potential impact of unplanned task overruns.

A summary of the task characteristics for this test is presented in Table 6-14 and
schematically illustrated in Figure 6-15.
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Table 6-14: Task set (test input) for STC D (Major cycle= 20 Ticks).

Task Name | Period | Offset | Priority ET Overrun duration (in Ticks)
(Ticks) | (Ticks) | (1 =High)
A 20 0 1 ET(A) —fixed (0.2 Ticks) | 10
B 1 0 2 ET(B) —fixed (0.2 Ticks) | 0
Comment

In thistask set, Task A is designed to run for the duration of 0.2 Tick. When an error occurs,
Task A overruns by 10 Ticks. Thisisillustrated in Figure 6-15.

A

Major cycle

Y

A

Task A | Al

Task A
overruns

Task A
overruns

______ A2

20 t (Ticks,

B21

-
20 t (Ticks)

Figure 6-15: Graphical representation of the task set in STC D.

Examples of possible schedules obtained with this task set (using different

implementations) are given in Table 6-15. Note that jitter characteristics are not

considered in this STC as such values would have no meaning in thistest.

Table 6-15: Example schedule D1a, D1b, D2a, D2b, D3a and D3b

Schedule Shut down time
Name (after Ticks) Backup task | Comment
Not Overrunning task is not shut down. The number of elapsed ticks—
Dla licable during overrun —is not counted and therefore tasks duetorunin
ap these ticks are ignored.
Not Overrunning task is not shut down. The number of elapsed ticks—
Dib licable during overrun —is counted and therefore tasks due to run in these
ap ticks are executed immediately after overrunning task ends.
D2a 1 Tick Not Overrunning task is detected at thetime of the next tick and shut
available down.
D2b 1 Tick Available— | Overrunningtask is detected at thetime of the next tick and shut
BK(A) down: areplacement (backup) task is added to the schedule.
Not Overrunning task is shut down immediately after it exceeds its
D3a WCET(AX) available | estimated WCET.
D3b WCET(Ax) Available— | Overrunningtask isshut down immediately after it exceedsits
BK(A) estimated WCET. A backup task is added to the schedule.
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6.3.6 CPU, memory and power requirements

In resource-constrained embedded systems (of the type considered in this project),
designers are frequently concerned about CPU and memory requirements. These
requirements are therefore reported for all of the schedulers considered in this study.

In mobile applications (for example), average power consumption is also a key concern,
as this is related to the system battery life (Phatrapornnant, 2007). The average power
consumption figures will therefore be reported for all schedulers considered in this
study.

6.4 Conclusions

This chapter described the STC technique and the set of Scheduler Test Cases (STCs)
developed in this project to test the run-time behaviour of the various TTC scheduler
implementations considered in Chapter 5. The chapter highlighted the key criteria
against which the TTC scheduler behaviour will be assessed. These include task
sequencing, jitter and ability to deal with a task overrun. Specifically, task jitter was
given a particular consideration as a key practical measure for evaluating the system
predictability. It is useful to highlight — at this point — that while jitter has been widely
discussed in the literature, the impact of particular scheduler implementations on jitter
behaviour has not received widespread attention. Thereby, the current study attempts to
address this issue in greater depth.

Through the application of the various STCs described in this chapter, the study
presented in this thesis was intended to facilitate a meaningful comparison between the
different behaviour patterns in a wide range of “standard” TTC scheduler
implementations. The results obtained from a practical application of the STC technique

are provided in the next chapter (Chapter 7).



Chapter 7
Assessing the behaviour of TTC scheduler

implementations

7.1 Introduction

In Chapter 5, a set of representative implementation classes of the TTC scheduling
algorithm was described. Chapter 6 then described a set of generic “scheduler test
cases” (STCs) used to facilitate a meaningful comparison between the various TTC
schedulers.

This chapter provides the output results obtained when the described STCs are
employed in each TTC implementation considered. The aim of this chapter is to show
the effectiveness of the proposed STC technique in assessing (and distinguishing) the

behaviour of the various implementation classes of TTC scheduler.

The chapter begins by describing the experimental methodology used to obtain the
results presented later in the chapter™.

7.2 Experimental methodology

7.2.1 Hardware platform

It is assumed in this project that the target platform for the embedded system is a small
microcontroller (e.g. 8051, Infineon C16x, Philips LPC2xxx, or PH Processor: Hughes
et al., 2005) which will be programmed in the C language.

¥ The work described in this chapter has been adapted from the study presented in the author’s
publications[1] and [3] listed in page xvi.
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In particular, the empirical studies reported in this thesis for the single-processor
systems were conducted using Ashling LPC2000 evaluation board supporting Philips
LPC2106 processor (Ashling Microsystems, 2007). The LPC2106 is a modern 32-bit
microcontroller with an ARM7 core which can run — under control of an on-chip PLL —
at frequencies from 12 MHz to 60 MHz (Philips Semiconductors, 2003). Except where
otherwise noted, the processor used an oscillator frequency of 12 MHz, and a CPU
frequency of 60 MHz.

The compiler used was the GCC ARM 4.1.1 operating in Windows by means of
Cygwin (a Linux emulator for windows). The IDE and simulator used was the Keil
ARM development kit (v3.12).

7.2.2 Task sequencing and overrun tests

In each TTC scheduler implementation, the task sequencing — in both normal and
abnormal operations — was measured directly from the simulator by using breakpoints at
each task to observe the order (and the tick) at which the tasks execute. The
measurements were taken over a number of successive major cycles to ensure that the
observed behaviour is repetitive. The results obtained when executing each STC were
then reported and compared to the example schedules discussed in Section 6.3.

7.2.3 Jitter tests

In thistest, two jitter measures were recorded:

- Tick jitter: represented by the variations in the interval between the release times
of the periodic tick.

- Task jitter: represented by the variations in the interval between the release times
of periodic tasks.

To obtain a meaningful set of task jitter results, Task A, Task B and Task C were set to
have variable durationsin STC A and STC B. In STC C, the impact of long tasks on the
jitter levels of the scheduler tick and tasks were studied. It should be noted that the
jitter levels are only considered when the scheduler operates in normal conditions.
Therefore, in STC D — where errors relate to task overrun take place — jitter levels are
not discussed.
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In order to measure the jitter on the tick and tasks experimentally, a pin was set high at
the beginning of the tick or task (for a short time) then the periods between every two
successive rising edges were measured (Figure 6-1). In each experiment, 5000 samples
were recorded: this was found sufficient for the purpose of this study. The periods were
measured using a National Instruments data acquisition card ‘NI PCI-6035E’ (National
Instruments, 2006), used in conjunction with appropriate software LabVIEW 7.1
(LabVIEW, 2007).

A, A

1 1 1
{€—— Period 1 l€——— Period 2 bl €— Period 3

I I L

Tick 0 Tick 1 Tick 2 Tick 3 Time

Figure 7-1: Thetechnique used to measure releasejitter in tick.

To assess the jitter levels, two values were reported:

- Differencejitter: obtained by subtracting the minimum period from the maximum
period obtained from the measurements in the sample set. This jitter is sometimes
referred to as “absolute jitter” (Buttazzo, 2005).

- Average jitter: represented by the standard deviation in the measure of average
periods.

Note that there are many other measures that can be used to represent the levels of task

jitter, but these measures were felt to be appropriate for this study.

7.2.4 CPU test

The CPU overhead is one of the cost parameters that have been used to differentiate
between different TTC scheduler implementations. To obtain CPU overhead
measurements in each scheduler, STC A was run for 25 seconds and then, using the
performance analyser supported by the Keil simulator, the total time required by the
scheduler in the measurement period was measured (Figure 7-2). The percentage of the
measured CPU time was then reported to indicate the overhead (i.e. computational cost)
reguired in each scheduler implementation.



Chapter 7: Assessing the behaviour of TTC scheduler implementations 137

k7 Seh 2100 BSFAF - pi¥imond  [Perka s kel gee

[ 3 o s vt Dol Fah Pipherk Tk 305 b b =l=|x|

P S 0E = sEEE - +F 8
e ¢ [file AlH - ¥ Olm -~
LA N L S
Mgk |\'u I -
= Camart
il [ o
[ TV
B Ml TV
[ Nl YWWTH
B LB
OB
Fa LR
] Lol Scheduler
Fr .
i Eopit processing
RIZEA GO :
RiakAI ol time
LH=H [E TTTTTT)
L [E-LTLLL]T)
= UzsuSeriem
S Fuk bt
- g
= Cagellviond
= b
= Liedafieid
= kbl
M L0000 1
Male {15
Frass L]
2 ET RN
Elapsed
time
R | T \ |
LR I - IT - - E - T - - * brbah [0S 1 (e b (B PG [ e
Wl oyman odds Us fulow. iy and commwn. e loal 1ose

cap Qxm00LcOl0, DxeD01EFEF rwad writm
rap Qx40000000, GaDDOEEFE socme Tuad mrizm

i

2 FENIGE] Sreskinimsbls HowskEnabls Hreacdiill ErsaklLis: HreskbGst Hresbicosas

[ R T T8 Dousirdi - e ..

T g Tiandu..

[ TIEESTReY 1T W e, ekl E ¥,

Figure 7-2: Measuring CPU overhead in the Keil simulator.

7.2.5 Memory test

In this test, the CODE and DATA memory values required to implement STC A for
each scheduler were recorded. Note that these figures are independent of the STC used.
Memory values were obtained using the “.map” file which is created when the source

code is compiled (Figure 7-3 and Figure 7-4).
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Figure 7-3: Measuring CODE memory over head from the “.map” file.
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Figure 7-4: Measuring DATA memory over head from the“.map” file.

The STACK usage was also measured (as DATA memory overhead) by initially filling
the data memory with ‘DEAD CODE’ and then reporting the number of memory bytes
that had been overwritten after running the scheduler for sufficient period (Figure 7-5).
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Figure 7-5: Measuring STACK overhead from the Keil simulator.

7.2.6 Power test

To obtain representative values of power consumption, the input current and voltage to
the LPC2106 CPU core were measured while executing STC A and STC B: this is
because the power measures vary as the task schedule varies (from one STC to another).
Figure 7-6 shows one way of measuring the CPU power consumption in the embedded
designs considered in this study. Again, the voltage measurements were obtained by
using the National Instruments data acquisition card ‘NI PCI-6035E’ in conjunction
with LabVIEW 7.1 software. The sampling rate of 10 KHz was used over a period equal
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to 5000 major cycles. Values for currents and voltages were then multiplied and then

averaged out to give the power figures presented in power result tables™.

Vcc
_ >

1 Ohm

Vi LPC2106
v2 CPU

A 4

Figure 7-6: Thecircuit used to measur e the system power consumption in each TTC scheduler.

7.3 Results

7.3.1 Applying STC to the TTC-ISR scheduler

This section discusses the implementation of STCs in the TTC-ISR scheduler and

presents the output results from such an implementation.

7.3.1.1 Implementingthetest cases

Implementing STC A and STC B with the TTC-1SR scheduler was straightforward (and
very similar to the example shown in Figure 5-2). Listing 7-1 and Listing 7-2 show how
STC C and STC D were implemented, respectively, using a TTC-ISR scheduler.

% The method used to obtain the power results was suggested by Dr. Teera Phatrapornnant, an ex-
member of the ESL research group working on reducing power consumption in low-cost embedded
systems (Phatrapornnant, 2007).
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voi d | SR Updat e(voi d)
switch(Tick_Q

case O:

[/ Treat first three ticks as one long interval
Task_B(); // Long task (lose 2 ticks)

Task_A() ;

Task_C();

Tick_G = 3;

br eak;

case 3:

/1 Add Tasks in the fourth tick interval
Task_A() ;

Task_C();

/1 Reset Tick count
Tick_G = 0;
}

/] After interrupt, reset interrupt flag (by witing “1")
TOI R = 0x01;

}

Listing 7-1: One way of implementing STC C using the TTC-ISR scheduler.

voi d | SR Updat e(voi d)
{
switch(Tick_Q
{

case O:

// Add Tasks in the first tick interval
Task_A();

Task_B();

Ti ck_G++;

br eak;

defaul t:

/1 Add Tasks in the rest of tick intervals
Task_B();

br eak;

}

/'l Reset Tick count after 20 ticks to start a new cycle
Ti ck_G % 20;

/] After interrupt, reset interrupt flag (by witing “1")
TOI R = 0x01;

}

Listing 7-2: One way of implementing STC D using the TTC-ISR scheduler.

The WCETSs of tasks were defined as constants and, by using a “hardware delay”
function (Pont, 2001), the execution time of each task was controlled. For example, to
implement the tasks in STC C, the WCETSs for Tasks A, B and C were entered to the
scheduler using the code in Listing 7-3:
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/1 Define WCET of each task in m crosecond
#defi ne Task_A WCET 1000

#defi ne Task_B_WCET 12000

#defi ne Task_C WCET 1000

Listing 7-3: Definition of task WCETsin STC Cin the TTC-ISR scheduler.

The duration of (for example) Task A was adjusted using a hardware delay as shown in
Listing 7-4.

voi d Task_A(voi d)
{

f/ Del ay to control the duration of the task based on hardware timer 1
Har dwar e_Del ay_T1( Task_A WCET);

Listing 7-4: Adjusting the duration of Task A in STC Cin the TTC-ISR scheduler.

Where Har dwar e_Del ay_T1() is a function implemented particularly to generate N

microsecond delay (approximately) based on hardware Timer 1 (see Listing 7-5).

voi d Hardware_Del ay_T1(const unsigned int DELAY)
{

/1l Start tinmer 1
T1TCR &= 0x00;
T1TCR | = 0x01;

/1 Set the match register to current time plus required del ay
TIMRO = T1TC + ((PCLK / 1000000U) * DELAY) ;

// On match, nothing occurs
TIMCR &= !'0x07; // to make sure that no intrrupt, no reset, no stop on nmatch
/'l register O

while ((T1TC < TIMRO));
}

Listing 7-5: One way to implement a har dwar e delay function (see Pont, 2001 for mor e details).

Remember that, in STC C, the execution times of tasks were fixed. In situations where
tasks have variable durations, such as STC A and STC B, code example shown in
Listing 7-6 was used to manipulate the execution time of the tasks. For example, in STC
A, Task A’sduration varies between 0.01 to 0.4 Ticks (i.e. maximum duration is 2 ms).
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voi d Task_A(void)

{
int i =0;

/1 Delay to control the duration of the task

/1 A random data array was generated to produce 5000 i ntegers with a naxi mum
/1 duration of 2000 ps

Har dwar e_Del ay_T1( (RandomData _Ji] % 2000)); //

// increment i up to 5000 then repreat fromO
i = (i+l) % 5000;

}

Listing 7-6: Varying theduration of Task A in STC A inthe TTC-1SR scheduler.

7.3.1.2 Task sequencing and overrun behaviour

The sequence behaviour of the TTC-I1SR scheduler when applying STC A, STC B, STC
Cand STC D issummarised in Table 7-1.

Table 7-1: Task schedulein TTC-ISR scheduler.

STC | Scheduler behaviour
A Al
B Bl
C C1
D Dla

The results in Table 7-1 show that — as expected —the TTC-ISR scheduler performs the
standard scheduler tests (STC A, STC B and STC C) without problems.

The results in the table also illustrate that — in the event of task overrun — the scheduler
cannot recover. Referring back to Listing 7-2, it can be seen that — during the overrun —
the TTC-ISR scheduler will lose count of the missing ticks (see Figure 7-7). After the

overrun completes, the schedule will continue but will always be delayed by 10 ticks.

Al | B1 B2 B3| | - A2 | ------

t=0 1 2 3 20 t (Ticks)

Figure 7-7: Thebehaviour of TTC-ISR scheduler with STC D (D1a schedule class).
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7.3.1.3 Jitter

Table 7-2 shows the periods and jitter measurements for the tick and the tasks for STC
A, STC B and STC C when implemented using the TTC-ISR scheduler.

Table 7-2: Task jitter from the TTC-ISR scheduler (all valuesin ps).

Tick Task A | TaskB | TaskC
Min Period 4999.7 | 4999.7 | 3029.1 | 24811
Max Period 4999.7 | 4999.7 | 6966.1 | 7595.1
Test A | Average Period | 4999.7 | 4999.7 | 4938.2 | 4949.3
Diff. Jitter 0.0 0.0 3937.0 | 5114.0
Avg. Jitter 0.0 0.0 819.6 912.5

Min Period 4999.7 | 99994 | 29925 | 2146.1
Max Period 4999.7 | 99995 | 7009.2 | 77619
Test B | Average Period | 4999.7 | 9999.5 | 48453 | 4498.0
Diff. Jitter 0.0 0.1 4016.7 | 5615.8
Avg. Jitter 0.0 0.0 1167.7 | 1156.4

Min Period 4990.7 | 2994.2 | 19998.9 | 2994.1
Max Period 14999.2 | 17004.7 | 19998.9 | 17004.8
Test C | Average Period | 7953.6 | 5193.9 | 199989 | 4908.2
Diff. Jitter 9999.5 | 14010.5 0.0 14010.7
Avg. Jitter 4562.5 | 5097.5 0.0 4812.0

The jitter valuesin STC A and STC B show that with the TTC-ISR scheduler, the tick
interrupts occur at precisely-defined intervals with no measurable delays or jitter. The
release jitter in Task A is also equal to zero, while low-priority tasks (Task B and Task
C) always suffer high jitter in their release times caused by variations in the execution
times of the preceding tasks.

In situations where a task required multiple ticks to execute (as with STC C), the
resulting tick jitter was significantly increased and the system timing no longer matched
the specification. Note that the tick interval in STC C (for example) is not fixed to 5 ms
as required but instead varies between 5 and 15 ms resulting in only two (rather than
four) ticks per major cycle.
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7.3.1.4 CPU, memory and power requirements

Table 7-3 shows the CPU overhead for the TTC-1SR scheduler (with STC A).

Table 7-3: CPU overhead for the TTC-ISR scheduler.

Scheduler time (s):
10.09

Overhead %
39.5

Total time(s):
2554

Test A

Table 7-4 summarises the memory required to implement STC A using the TTC-ISR

scheduler.

Table 7-4: Memory requirements (ROM and RAM) for the TTC-1SR scheduler.

ROM requirements | RAM requirements
Method e e
(Bytes) (Bytes)
Test A 2256 127

Table 7-5 shows the power consumption levels from the STC A and STC B.

Table 7-5: Power requirementsfor the TTC-1SR scheduler.

Power consumption
Method
(mw)
Test A 39.7
Test B 36.4

7.3.2 Applying STC to the TTC-Dispatch scheduler
This section discusses the implementation of STCs in the TTC-Dispatch scheduler and

presents the output results from such an implementation.

7.3.21 Implementing thetest cases

Implementing the STCs was straightforward using SCH_Add_Task( ) function. As an

example, STC C was implemented as follows:

// Add tasks (5 ms ticks)
/] Paraneters are <task nane>,
SCH_Add_Task(TaskA, 1, 2);
SCH_Add_Task(TaskB, 0, 4);
SCH_Add_Task(TaskC, 1, 2);

<of fset in ticks> <period in ticks>

Listing 7-7: Implementing STC C using the TT C-Dispatch scheduler: task’s offset and period.
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It can be noted that the implementation of STC C was rather more straightforward than
was the case with the corresponding TTC-ISR scheduler implementation (see Listing
7-1). Similarly, the WCETs of tasks were entered to the system using a
SCH_Task_WCET function asin Listing 7-8.

/1 1nput duration for tasks

/1 Val ues are in *m croseconds*
SCH_Task_WCET( Task_A, 1000);
SCH_Task_WCET( Task_B, 12000);
SCH_Task_WCET( Task_C, 1000);

Listing 7-8: Implementing STC C using the TTC-Dispatch scheduler: task’sWCET.

Also in the TTC-Dispatch scheduler, hardware delays were used, in the same way asin
the TTC-ISR scheduler, to adjust the tasks WCETSs.

7.3.22 Task sequencing and overrun behaviour

The sequence behaviour of the TTC-Dispatch scheduler when applying STC A, STC B,
STC C and STC D issummarised in Table 7-6.

Table 7-6: Task schedulein TTC-Dispatch scheduler.

STC | Scheduler behaviour
A Al
B Bl
C C1
D Dib

When executing STC A, STC B and STC C, the TTC-Dispatch scheduler behaves in the
same way as the TTC-ISR scheduler. However, when executing STC D, the Dispatch
scheduler keeps track of the number of elapsed ticks during the overrun, and — once the
overrunning task (Task A) completes — the scheduler performs all missing executions
for Task B (in this case, 10 executions), before continuing to serve the tasks in the
following ticks. This means that the scheduler has the potential to “catch up” in the
event of certain (infrequent and temporary) errors. see Figure 7-8.
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Al | e Bl | B2 | B3 |--|B6|B7|B8|.-|Bll|B12| ------ A2 | ------

>
t=0 1 2 10 11 12 20 t (Ticks)

Figure 7-8: The behaviour of Dispatch scheduler with STC D (D1b schedule class).

7.3.2.3 Jitter

Table 7-7 shows the periods and jitter measurements for the tick and the tasksin STC
A, STC B and STC C implemented using the TTC-Dispatch scheduler.

Table7-7: Task jitter from the TTC-Dispatch scheduler (all valuesin ps).

Tick | TaskA | TaskB | TaskC
Min Period 49990.7 | 4999.7 | 3029.1 | 2480.5
Max Period 4990.7 | 4999.7 | 6966.1 | 7595.1
Test A | Average Period | 4999.7 | 4999.7 | 49509 | 4917.0
Diff. Jitter 0.0 0.0 3937.0 | 51146
Avg. Jitter 0.0 0.0 823.9 921.0

Min Period 4990.7 | 99994 | 29884 | 2164.3
Max Period 4999.7 | 99995 | 70111 | 7864.1
Test B | Average Period | 4999.7 | 99995 | 48820 | 4799.3
Diff. Jitter 0.0 0.1 4022.7 | 5699.8
Avg. Jitter 0.0 0.0 11727 | 1226.9

Min Period 4999.4 | 29787 | 199989 | 2978.6
Max Period 4999.9 | 17020.2 | 19998.9 | 17020.3
Test C | Average Period | 4999.7 | 53265 | 199989 | 5155.3
Diff. Jitter 0.5 140415 0.0 14041.7
Avg. Jitter 0.2 5240.1 0.0 5082.2

The jitter values presented in the table show that with the TTC-Dispatch
implementation, the duration of the tick interval —in all cases — is constant and equal to
5ms. However, the tick suffers small jitter when STC C is employed. This jitter is
mainly caused by the variation in time taken to leave Task B — rather than leaving the
idle mode as in the normal situations — and run the ISR Update function. Note that in
this implementation, when the interrupt occurs while Task B is running, the Update
function is executed then the scheduler returns back to continue the execution of Task
B.
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The table also shows that Task A has consistently low (release) jitter levels while the
jitter for Task B and Task C israther highin STC A and STC B.

7.3.24 CPU, memory and power requirements

Table 7-8 shows the CPU overhead for the TTC-Dispatch scheduler (with STC A).

Table 7-8: CPU over head for the TTC-Dispatch scheduler.

Scheduler time (s):
9.93

Overhead %
39.7

Total time(s):
25.01

Test A

The CPU overheads results show that the overall processing time is very similar to that
observed with the TTC-1SR scheduler.

Table 7-9 presents the memory required to implement STC A using the TTC-Dispatch
scheduler. Inevitably, these figures are somewhat larger than those required to

implement the TTC-ISR scheduler.

Table 7-9: Memory requirements (ROM and RAM) for the TTC-Dispatch scheduler.

Method

ROM requirements
(Bytes)

RAM requirements
(Bytes)

Test A

4012

325

Table 7-10 shows the power consumption levels for STC A and STC B when
implemented using the TTC-Dispatch scheduler.

Table 7-10: Power requirements for the TTC-Dispatch scheduler.

Power consumption
Method
(mw)
Test A 39.3
Test B 35.7

7.3.3 Applying STC to the TTC-DVS scheduler

This section discusses the implementation of STCs in the TTC-DVS scheduler and
presents the output results from such an implementation.
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7.3.31 Implementing thetest cases

Since the TTC-DVS scheduler is adapted from the TTC-Dispatch scheduler, the code
examples shown in Listing 7-7 and Listing 7-8 were used to implement the STCs in
TTC-DVS.

It is important to note that the results obtained here were based on an LPC2106 board
with a 10 MHz crystal oscillator frequency (the other examples in this chapter used a 12
MHz crystal: see Section 7.2.1). The 10 MHz oscillator was used in this case to
simplify the process of implementing DV S (see Phatrapornnant and Pont, 2006).

7.3.3.2 Task sequencing and overrun

The sequence behaviour of the TTC-DV'S scheduler when applying STC A, STC B,
STC Cand STC D issummarised in Table 7-11.

Table 7-11: Task schedulein TTC-DVS scheduler.

STC | Scheduler behaviour
A Al
B Bl
C C1
D Dib

Since the DVS scheduler implementation used is based upon the TTC-Dispatch
scheduler, the task behaviour observed is identical to that shown in Table 7-6.

7.3.3.3 Jitter

Table 7-12 shows the periods and jitter measurements for the tick and the tasks in STC
A, STC B and STC C implemented on TTC-DV S scheduler.
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Table 7-12: Task jitter from the TTC-DVS scheduler (all valuesin ps).

Tick | TaskA | TaskB | TaskC
Min Period 4990.8 | 4999.8 | 30293 | 2416.7
Max Period 4990.8 | 49999 | 6966.3 | 7595.2
Test A | Average Period | 4999.8 | 4999.8 | 4926.3 | 4937.6
Diff. Jitter 0.0 0.1 3937.0 | 51785
Avg. Jitter 0.0 0.0 821.3 913.9

Min Period 4990.8 | 9999.6 | 29046 | 2011.9
Max Period 4999.8 | 9999.7 | 7097.5 | 7951.0
Test B | Average Period | 4999.8 | 9999.7 | 4701.0 | 4718.3
Diff. Jitter 0.0 0.1 4192.9 | 5939.1
Avg. Jitter 0.0 0.0 1167.7 | 1268.9

Min Period 4990.5 | 3457.5 | 19999.3 | 3457.3
Max Period 5000.1 | 16541.9 | 19999.4 | 16542.0
Test C | Average Period | 4999.8 | 6241.9 | 19999.3 | 5006.5
Diff. Jitter 0.6 13084.4 0.1 13084.7
Avg. Jitter 0.2 5355.8 0.0 4227.8

Degpite the use of DVS, the jitter values shown in the table are similar to those
presented in Table 7-7. Remember that the results obtained here were based on an
LPC2106 board running a 10 MHz oscillator frequency. This explains the little
differences in some values between the results obtained from the TTC-DVS and those
obtained from the TTC-Dispatch schedulers. For example, the difference Tick jitter in
STC Ciseqgual to 0.6 ps at the used frequency. Since the jitter isinversely proportional
to the operating frequency, such a value would be equal to 0.5 ps if 12 MHz oscillator
frequency is used (as with the other implementations). Please compare to the equivalent
Tick jitter value in Table 7-7.

7.3.34 CPU, memory and power requirements

Table 7-13 shows the CPU overhead for the TTC-DVS scheduler (with STC A).
Inevitably, the CPU overhead for the TTC-DV'S scheduler is greater than that for the
TTC-ISR and TTC-Dispatch schedulers.
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Table 7-13: CPU over head for the TTC-DVS scheduler.

Scheduler time (s):
10.16

Total time(s):
25.03

Overhead %
40.6

Test A

Table 7-14 shows the memory required to implement the TTC-DV S scheduler: again,
thisis greater than for previous implementations.

Table 7-14: Memory requirements (ROM and RAM) for the TTC-DVS scheduler.

Method

ROM requirements
(Bytes)

RAM requirements
(Bytes)

Test A

17460

767

Overall, the memory results can demonstrate the complexity of implementing a TTC-
DVS scheduler in the used embedded hardware platform. Table 7-15 shows the power
consumption levels from the STC A and STC B when implemented using the TTC-DVS
scheduler.

Table 7-15: Power requirements for the TTC-DV S scheduler.

Power consumption
Method
(mw)
Test A 24.8
Test B 16.6

The results show that the power consumption levels in the TTC-DV'S scheduler are low
compared to the previous TTC implementations considered in this chapter. Compared
to the TTC-Dispatch scheduler, the values in the table show that in STC A, the average
power was reduced by the factor of 37%, wherein STC B it was reduced by 53%. This
reduction may be significant in a wide range of mobile embedded applications.

7.3.4 Applying STC to the TTC-TG scheduler

This section discusses the implementation of STCs in the TTC-TG scheduler and

presents the output results from such an implementation.
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7.3.4.1 Implementingthetest cases

Since the TTC-TG scheduler is adapted from the TTC-Dispatch scheduler, the code
example shown in Listing 7-7 and Listing 7-8 were used to implement the STCs in
TTC-TG.

7.3.4.2 Task sequencing and overrun behaviour

The sequence behaviour of the TTC-TG scheduler when applying STC A, STC B, STC
Cand STC D issummarised in Table 7-16.

Table 7-16: Task schedulein TTC-TG scheduler.

STC | Scheduler behaviour
A Al
B Bl
C C6
D D2b

The results illustrate that in STC C, Task B is terminated when the next tick interrupt
takes place. This is because the TG scheduler is designed to support tasks with a
WCET of at most one Tick.

In STC D, it is clear that the scheduler detects and hence terminates the overrunning
task (Task A) at the beginning of the tick following the one in which Task A overruns.
Moreover, the scheduler allows running a backup task BK(A) to replace Task A in the
same tick in which the overrun is detected and hence continues to run the following
tasks (Figure 7-9 (a)). This meansthat one tick shift is added to the schedule.

However, in some cases where (for example) the schedule is heavily loaded with tasks,
the insertion of a backup task in the next tick of overrun may cause a domino effect. To
reduce the impact of such a problem, the whole schedule can be extended for onetick to
allow the backup task to complete before the scheduler goes back to its normal
operation. In the case of STC D, the whole schedule will be extended for two ticks: one
for the backup task and one to run the missed task B1 (Figure 7-9 (b)).
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Figure 7-9: The behaviour of TG scheduler with STC D (D2b schedule class).

7.3.43 Jitter

Table 7-17 shows the periods and jitter measurements for the tick and the tasks in STC
A, STC B and STC C implemented on TTC-TG scheduler.

Table7-17: Task jitter from the TTC-TG scheduler (all valuesin ps).

Tick | TaskA | TaskB | TaskC
Min Period 4990.7 | 4999.7 | 3029.1 | 2415.6
Max Period 49990.7 | 4999.7 | 6966.1 | 7541.6
Test A | Average Period | 4999.7 | 4999.7 | 4933.3 | 4905.7
Diff. Jitter 0.0 0.0 3937.0 | 5126.0
Avg. Jitter 0.0 0.0 822.0 922.7

Min Period 4999.7 | 9999.4 | 29855 | 2096.2
Max Period 49990.7 | 99995 | 70117 | 7848.1
Test B | Average Period | 4999.7 | 9999.5 | 49227 | 4595.6
Diff. Jitter 0.0 0.1 4026.2 | 5751.9
Avg. Jitter 0.0 0.0 11753 | 1203.3

Min Period 4999.6 | 9990.2 | 199989 | 9990.1
Max Period 4999.9 | 10008.7 | 19998.9 | 10008.9
Test C | Average Period | 4999.7 | 9999.6 | 19998.9 | 9999.3
Diff. Jitter 0.3 18.5 0.0 18.8
Avg. Jitter 0.1 9.2 0.0 9.4
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Comparing these results with those obtained from the TTC-Dispatch scheduler — upon
which this scheduler implementation was based — it can be seen that most are similar. A
key difference in the results was the STC C jitter values. The table shows that although
Tasks A and Task C no longer suffer very high release jitter (as in the TTC-Dispatch
scheduler), they still have variation in their release times. The 19 s variations observed
here were caused by the modified Update function which, in this implementation,
differsin length when atask exceeds the tick interval (Hughes and Pont, 2004; Hughes

and Pont, in press).

7.3.4.4 CPU, memory and power requirements

Table 7-18 shows the CPU overhead for the TTC-TG scheduler (with STC A).

Table 7-18: CPU over head for the TTC-TG scheduler.

Scheduler time (s): | Total time(s): | Overhead %
Test A 9.95 25.03 39.8

The CPU overheads results show that the overall processing time required in the
implemented TTC-TG scheduler issimilar to that of the TTC-Dispatch scheduler.

Table 7-19 presents the memory requirements for implementing the STC A for the
TTC-TG scheduler. Compared with the memory requirements in Dispatch schedulers,

these figures are slightly larger.

Table 7-19: Memory requirements (ROM and RAM) for the TTC-TG scheduler.

Method ROM requirements | RAM requirements
(Bytes) (Bytes)
Test A 4296 446

Table 7-20 shows the power consumption levels from the STC A and STC B when
implemented using the TTC-TG scheduler.
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Table 7-20: Power requirementsfor the TTC-TG scheduler.

Power consumption
Method
(mw)
Test A 38.9
Test B 35.7

Since the TG scheduler is based on the Dispaich approach (the TTC-Dispatch
scheduler), the same levels of CPU power consumption were observed with the TTC-
TG scheduler.

7.3.5 Applying STC to the TTC-MTI scheduler

This section discusses the implementation of STCs in the TTC-MTI scheduler and
presents the output results from such an implementation.

7.3.51 Implementingthetest cases

In MTI scheduler, task parameters are defined in the same way as with Dispatch
scheduler. Therefore, the code shown in Listing 7-7 and Listing 7-8 were also used here
to implement the STCs.

7.3.5.2 Task sequencing and overrun behaviour

The sequence behaviour of the TTC-MTI scheduler when applying STC A, STC B,
STC C and STC D issummarised in Table 7-21.

Table 7-21: Task schedulein TTC-MTI scheduler.

STC | Scheduler behaviour
A A2
B B2
C C6
D D3a

With this scheduler implementation, it can be seen that the gap insertion mechanism
employed (through the multiple timer interrupts) has helped to achieve low jitter at the
release time of all tasks running in the system (both in STC A and STC B). However, it
should be noted that, like the TG scheduler, the TTC-MTI scheduler cannot support
tasks which require multiple ticks to execute (as in STC C). This is because the
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scheduler employs a simple TG mechanism and — once an interrupt occurs — the running
task (if any) will be terminated. Note that the implementation employed here did not
support backup tasks (Figure 7-10).

Al | B1 B2 B3| | meee-- A2 | -eeee-

t=0 1 2 3 20 t (Ticks)

Figure 7-10: The behaviour of MTI scheduler with STC D (D3a schedule class).

7.35.3 Jitter

Table 7-22 shows the periods and jitter measurements for the tick and the tasksin STC
A, STC B and STC C implemented using the TTC-MTI scheduler.

Table 7-22: Task jitter from the TTC-MTI scheduler (all valuesin ps).

Tick Task A | TaskB | TaskC
Min Period 4990.7 | 4999.7 | 4999.7 | 4999.7
Max Period 4990.7 | 4999.7 | 4999.7 | 4999.7
Test A | Average Period | 4999.7 | 4999.7 | 4999.7 | 4999.7
Diff. Jitter 0.0 0.0 0.0 0.0
Avg. Jitter 0.0 0.0 0.0 0.0

Min Period 4990.7 | 9999.4 | 4999.7 | 4999.7
Max Period 4990.7 | 9999.5 | 4999.7 | 4999.7
Test B | Average Period | 4999.7 | 99995 | 4999.7 | 4999.7
Diff. Jitter 0.0 0.1 0.0 0.0
Avg. Jitter 0.0 0.0 0.0 0.0

Min Period 4999.6 | 9999.4 | 19998.9 | 9999.4
Max Period 4999.9 | 99995 | 19998.9 | 9999.5
Test C | Average Period | 4999.7 | 9999.5 | 19998.9 | 9999.5
Diff. Jitter 0.3 0.1 0.0 0.1
Avg. Jitter 0.1 0.0 0.0 0.0

The jitter values in the table clearly show how the TTC-MTI scheduler helped to
remove jitter in the release time of all tasks running in the system, causing a significant
increase in the overall system predictability. Note that, in STC C, the tick jitter was
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caused by the difference between the time taken to leave Task B and service the
interrupt (Tick 1 in the cycle) and the time taken to leave the idle mode and service the
interrupt (Tick 3).

7.3.54 CPU, memory and power requirements

Table 7-23 shows the CPU overhead for the TTC-MTI scheduler (with STC A).

Table 7-23: CPU over head for the TTC-MTI scheduler.

Scheduler time (s):
9.9

Overhead %
39.6

Total time (s):
25.01

Test A

The CPU overhead results show that the overall processing time required for the TTC-
MTI scheduler is similar to that required for the other schedulers.

Table 7-24 presents the memory requirements for implementing the STC A for the
TTC-MTI scheduler. These ROM figures are dlightly smaller than those used to
implement any of the previous Dispatch schedulers while the RAM figures are larger
(remember that the overall architecture israther different in TTC-MTI: see Section 5.7).

Table 7-24: Memory requirements (ROM and RAM) for the TTC-MTI scheduler.

Method

ROM requirements
(Bytes)

RAM requirements
(Bytes)

Test A

3620

514

Table 7-25 shows the power consumption levels from the STC A and STC B when
implemented using the TTC-MTI scheduler.

Table 7-25: Power requirements for the TTC-MTI scheduler.

Power consumption
Method
(mw)
Test A 40.3
Test B 36.3
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7.3.6 Applying STC to the TTC-Adaptive implementation

This section discusses the implementation of STCs in the TTC-Adaptive scheduler and

presents the output results from such an implementation.

7.3.6.1 Implementingthetest cases

Since the structure of the TTC-Adaptive scheduler is adapted from the TTC-MTI
scheduler, where the tasks are defined based on the approaches used in TTC-Dispatch,
the code example shown in Listing 7-7 and Listing 7-8 were also used here to
implement the STCs.

7.3.6.2 Task sequencing and overrun behaviour
The sequence behaviour of the TTC-Adaptive scheduler when applying STC A, STC B,
STC C and STC D issummarised in Table 7-26.

Table 7-26: Task schedulein TTC-Adaptive scheduler.

STC | Scheduler behaviour
A A2
B B2
C C6
D D3b

Since TTC-Adaptive scheduler is based on the TTC-MTI and TTC-TG, it lacks the
support for running long tasks which require multiple ticks to execute (asin STC C).

As expected, this scheduler implementation provides low jitter at the release time of all
tasks running in the system and provides an efficient solution for task overruns problem.
For example, unlike TTC-MTI, such an implementation provides a support for backup
task that will replace the overrunning task once shut down. In this scheduler, there can

be three different options:

- If it is not dependent on the output from Task A, Task B1 can still be scheduled to
run in the same tick as Task A1 (Figure 7-11(a)).

- If it is dependent on the output from Task A, Task B1 must be scheduled to run in
the next tick after task BK(A) completes execution (Figure 7-11(b)). This will
obviously add one tick shift to the schedule.
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- To avoid any possibility for a domino effect to take place, the whole schedule can
be extended for one more tick to allow a completion of BK(A) before returning to
the normal schedule (Figure 7-11(c)). The figure shows that, in the case of STC D,
two tick shifts will be added to the whole schedule.
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Figure 7-11: The behaviour of MTI scheduler with STC D (D3b schedule class).

Note that the TTC-Adaptive implementation presented in Chapter 5 considered the
second option (Figure 7-11(b)). However, the scheduler framework developed in this
study has been made flexible so that the user can — with a little modification — adopt any

of the three proposed solutions.

Remember that, in addition to low-jitter provision and overrun prevention, the most
advantageous feature of the TTC-Adaptive scheduler is its ability to control the timing
behaviour of tasks based on accurate “online” measurements (not estimations) of their
WCETs.

7.3.6.3 Jitter

Table 7-27 shows the periods and jitter measurements for the tick and the tasks in STC
A, STC B and STC C implemented using the TTC-Adaptive scheduler.
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Table 7-27: Task jitter from the TTC-Adaptive scheduler (all valuesin ps).

Tick Task A | TaskB | TaskC
Min Period 49990.7 | 4999.7 | 4999.7 | 4999.7
Max Period 49990.7 | 4999.7 | 4999.7 | 4999.7
Test A | Average Period | 4999.7 | 4999.7 | 4999.7 | 4999.7
Diff. Jitter 0.0 0.0 0.0 0.0
Avg. Jitter 0.0 0.0 0.0 0.0

Min Period 4999.7 | 9999.4 | 4999.7 | 4999.7
Max Period 4999.7 | 99995 | 4999.7 | 4999.7
Test B | Average Period | 4999.7 | 9999.5 | 4999.7 | 4999.7
Diff. Jitter 0.0 0.1 0.0 0.0
Avg. Jitter 0.0 0.0 0.0 0.0

Min Period 4999.6 | 9999.4 | 19998.9 | 9999.4
Max Period 4999.9 | 99995 | 19998.9 | 9999.5
Test C | Average Period | 4999.7 | 9999.5 | 19998.9 | 9999.5
Diff. Jitter 0.3 0.1 0.0 0.1
Avg. Jitter 0.1 0.0 0.0 0.0

The jitter values in the table also show how the TTC-Adaptive scheduler can remove
jitter in the release time of all tasks running in the system. Overall, the jitter behaviour
here is seen similar to that obtained with the TTC-MTI scheduler.

7.3.6.4 CPU, memory and power requirements

Table 7-28 shows the CPU overhead for the TTC-Adaptive scheduler (with STC A).

Table 7-28: CPU over head for the TTC-Adaptive scheduler.

Scheduler time (s): | Total time(s): | Overhead %
Test A 9.95 25.01 39.8

The CPU overhead results show that the implementation of TTC-Adaptive scheduler
requires no additional processing time as compared to previous schedulers.

Table 7-29 presents the memory requirements for implementing the STC A for the
TTC-Adaptive scheduler. The figures in the table show insignificant increase in the
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code memory overhead when compared to those required for TTC-MTI scheduler. The
data memory is however as low as that required for the TTC-MTI scheduler.

Table 7-29: Memory requirements (ROM and RAM) for the TTC-MTI scheduler.

Method ROM requirements | RAM requirements
(Bytes) (Bytes)
Test A 5364 510

Table 7-30 shows the power consumption levels from the STC A and STC B when
implemented using the TTC-Adaptive scheduler.

Table 7-30: Power requirementsfor the TTC-Adaptive scheduler.

Method Power consumption
(mw)

Test A 40.5

Test B 36.5

7.4 Summary of the results

This section summarises the results detailed in the previous sections. The first four
columns in the summary table (Table 7-31) report the sequence behaviour from the
STCsinal TTC implementations. The remaining columns include CPU, jitter, memory
and power requirements. Since it is difficult to list all jitter results, the jitter columns
only present the Difference Tick jitter levels from STC C, and the Difference release
jitter levels for Task A and Task B from STC B as representative jitter values across all
jitter measurements.
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Table 7-31: Summary of results obtained in this chapter.

Scheduler | STC | sTC | st | sTc | cpu | Tk | TaskA 1 TakB | ooy | RaM | Power
name Al B| Cl| D| % J(':ltg J('Sg J(':ltg (Bytes) | (Bytes) | (mw)
TTCISR | AL | BL | Cl | Dla| 395 | 99995 | 0.1 | 40167 | 2256 | 127 | 36.4
TTCDispach | A1 | BL | CL | Db | 39.7 | 05 | 01 |40227 | 4012 | 325 | 357
TTCDVS | Al | BL | CL | Dlb| 406 | 05 | 01 |41929 | 17460 | 767 | 1656
TTCTG | AL | Bl | C6 | D2b | 398 | 03 | 01 |40262 | 4206 | 446 | 357
TTCMTI | A2 | B2 | C6 | D3a|396| 03 | 01 | 00 | 3620 | 514 | 363
TTC-Adaptive | A2 | B2 | C6 | D3b | 298| 03 | 01 | 00 | 534 | 510 | 365

Jitter in Task A has been included in the table to allow a comparison with the jitter

levels in low-priority tasks. Key jitter results are shown in Figure 7-12 for comparison

purposes. It can be clearly noticed that with the new TTC implementations, namely
TTC-MTI and TTC-Adaptive schedulers, release jitter in all tasks running in the system

IS minimised.

10000
9000
8000
7000
6000
5000
4000
3000
2000
1000

Diff. jitter (us)

41929

4022.7 4026.2
050 050 030 0300 030.0
o a— T— A—_——
TIGIR TTGDispatch TIGDVS TIGTG TIGMTI TTG-Adaptive
® Tick = Task A Task B

Figure 7-12: Summary of key jitter resultsin all TTC implementations.

The results for CPU, memory and power requirements are shown in Figure 7-13 to

Figure 7-16 for comparison purposes.
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Figure 7-14: Summary of ROM requirementsin all TTC implementations.
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Figure 7-15: Summary of RAM requirementsin all TTC implementations.
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Figure 7-16: Summary of power requirementsin all TTC implementations.

It can be clearly seen that the CPU utilisation in all assessed TTC implementations was
amost the same. The reason why CPU overheads have been included in the table is to
show that, despite the improvement that TTC-MTI and TTC-Adaptive schedulers can
offer to the system, such implementations do not compromise the resource efficiency as
aprice for achieving such an improvement. Instead, it can be seen that the code memory
required to implement (for example) the TTC-MTI schedulers was even smaller than
was used for the majority of other schedulers. In the TTC-Adaptive scheduler, the little
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increase in the code memory as compared to other schedulers is outweighed by the

improvement it provides to the scheduler behaviour.

7.5 Conclusions

This chapter began by providing an overview of the experimental methodology used to
obtain the empirical results from single-processor TTC implementations considered in
this thesis. It discussed in detail how each parameter used to assess the behaviour of the
schedulers was measured using practical methods.

The chapter then provided the output results from the application of the STC technique,
detailed in Chapter 6, to the range of TTC scheduler implementations described in
Chapter 5.

The results presented in this chapter clearly show that even a small (and by no means
exhaustive) selection of TTC scheduler implementations demonstrated a wide range of
different patterns of behaviour. The results also suggested that a “one size fitsall” TTC
implementation does not exist in practice, since each implementation has advantages
and disadvantages. The selection of a particular implementation will, hence, be decided
based on the requirements of the application in which the TTC scheduler is employed,

e.g. timing and resource requirements.

Note that, in this chapter, the STC technique was shown to be effective in assessing the
behaviour of a simple scheduling algorithm employed in a single-processor system. It
would only make sense to adopt such a technique if its applicability on wider (more
complicated) architectures can be proven. The next part of the thesis begins to look at
ways in which the STC method can be used in assessing the behaviour of scheduling
algorithms in multi-processor embedded systems.



PART D:
MULTI-PROCESSOR SYSTEMS



Chapter 8
Network and scheduling protocols for multi-processor
embedded systems

8.1 Introduction

Previous chapters in this thesis considered the use of the STC technique in assessing the
behaviour of simple embedded system implementations based on single-processor
architectures and TTC scheduling algorithms. This part of the thesis begins to
investigate the applicability of such a technique when more complicated embedded
implementations are considered: for example, when the system is based on distributed

architectures.

This chapter reviews a collection of network protocols that are widely used in the
design and implementation of distributed real-time embedded systems with high
reliability requirements. The focus of the discussion will, however, be on systems using
Controller Area Network (CAN) protocol (Bosch, 1991). The chapter provides a brief
overview of CAN and compares its features to aternative commercial network
protocols. The chapter then describes “high-level” scheduling protocols that can be
implemented on the CAN hardware to achieve time-triggered system operations for
high predictability. A particular focus of this discussion will be on the Shared-Clock (S
C) scheduling protocol (Pont, 2001) as a simple and effective software platform for
many low-cost, reliable embedded systems.

8.2 Overview of multi-processor embedded systems

With the rapid growth of technology, the development of huge and complex embedded
systems — that are physically distributed over wide areas — has become quite common.
Leen et al. (1999) provided two familiar examples:

- A typical passenger car might contain more than 40 processor devices that control

brakes, door windows and mirrors, steering, air bags, wheels and so forth.
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- An industrial fire detection system might have up to 200 or more processors

associated with different sensors and actuators.

Having several microcontrollers communicating with one another in a system is referred
to as a distributed or a multi-processor system®. Ayavoo (2006) highlighted that the
number of embedded processors used in a single automotive system (e.g. passenger
vehicle) had been steadily increasing over the past few years and predicted that this
growth would continue over the next few years as the complexity and functionality of
the system increase. A distributed solution helps to reduce the complexity and increase
the reliability of the entire system where one transmission medium is shared by all
processors. Advantages of using distributed systems are discussed by Tanenbaum
(1995).

Historically, multi-processor systems were first developed in the early 1970s, when
Moore's law®? did not work any longer, and people believed that the use of single-
processors cannot provide the level of performance that future applications would
demand (Ravikumar, 2004).

In order to connect various processors in an embedded control system, an effective
network architecture and communication medium are required. Perfect implementations
of multi-processor systems are not always justified, not least because of the very wide
range of implementation options which are available. For example, the software
engineer working on the design of a modern passenger car may need to choose between
the use of one (or more) network protocols based on Controller Area Network “CAN”

2! Please note that the term “multi-processor” is also used to describe System-on-Chip (SoC) designs with
multiple CPU cores (i.e. MP SoC). Such designs are not considered in this study. Thus, the term multi-
processor used in the context of this thesis is only referred to distributed systems where a umber of
physically-distributed microprocessors are connected via a communication network.

2 Moore's law — which refers back to Gordon E. Moore in 1965 — says: "the complexity for minimum
component costs has increased at a rate of roughly a factor of two per year ... Certainly over the short
term thisrate can be expected to continue, if not to increase. Over thelonger term, therate of increaseisa
bit more uncertain, although there is no reason to believe it will not remain nearly constant for at least 10
years. That means by 1975, the number of components per integrated circuit for minimum cost will be
65,000. | believe that such alarge circuit can be built on a single wafer" (Moore, 1965).
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(Bosch, 1991), Time-Triggered CAN “TTCAN” (Fuhrer et al., 2000), Local
Interconnect Network “LIN” (Specks and Rajnak, 2000), FlexRay (FlexRay, 2004) or
Time-Triggered Protocol - Class C “TTP/C” (Kopetz, 2001). The resulting network
may be connected in (for example) a bus or sar (Tanenbaum, 1995) topology. The
individual processor nodes in the network may use event-triggered (Nissanke, 1997) or
time-triggered (Kopetz, 1997) software architectures — or some combination of the two.
The clocks associated with these processors may be linked using (for example) shared-
clock techniques (Pont, 2001) or synchronisation messages (Fuhrer et al., 2000). These
individual processors may (for example) be C16x (Siemens, 1996), ARM (ARM, 2001),
MPC555 (Bannatyne, 2004) or 8051 (Pont, 2001).

8.3 Network protocols for multi-processor systems

8.3.1 Introduction

This section begins by providing a detailed overview of the Controller Area Network
(CAN) protocol as a genuine, well-designed hardware platform for multi-processor
embedded systems. It then outlines a few other network protocols which have also been
used (or recommended) in the design and implementation of such systems.

The section concludes by highlighting the main advantages of CAN, over other network
protocols, which made it an appropriate solution for a wide range of embedded designs

including those considered in this study.

8.3.2 Controller Area Network (CAN) protocol

8.3.2.1 Introduction

Controller Area Network (CAN) is a cost-effective protocol which is widely used in
embedded systems (Farsi and Barbosa, 2000; Fredriksson, 1994; Thomesse, 1998;
Sevillano et al., 1998). The CAN protocol was introduced by Robert Bosch GmbH in
the 1980s (Bosch, 1991). Although originally designed for automotive applications,
CAN is now widely used in process control and many other industrial areas (Farsi and
Barbosa, 2000; Fredriksson, 1994; Thomesse, 1998; Sevillano et al., 1998; Pazul, 1999;
Zuberi and Shin, 1995; Misbahuddin and Al-Holou, 2003; Short and Pont, 2007). Asa
consequence of its popularity and widespread use, most modern microcontroller
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families now include one or more members with on-chip hardware support for this
protocol (e.g. Philips, 1996; Siemens, 1997; Infineon, 2000; Philips, 2004).

In many distributed systems, the CAN protocol provides high reliability
communications at very low cost (Farsi and Barbosa, 2000; Fredriksson, 1994;
Thomesse, 1998; Sevillano et al., 1998). For example, in automotive vehicles, CAN
allows a huge reduction in wiring complexity as communicating devices are connected

through a single pair of wire (Farsi and Barbosa, 2000).

8.3.22 CAN featuresand operational principles

The main features and operational principles of CAN have been discussed in detail in a
number of recognised publications (e.g. Bosch, 1991; Farsi et al., 1999; Farsi and
Barbosa, 2000; Kopetz, 2001; CiA, 2008). The main features of CAN protocol can be
summarised as follows.

- High-integrity serial data communication bus for real-time applications.

- Communication speed up to 1 Mbps transmission rate (this speed is also referred to
as baudrate).

- Low-cost physical medium: simple twisted wire pair is used.

- Short data length: very low latency compared to other protocols.

- Fast reaction times: no token or permission required from a bus arbiter.

- Multi-master and peer-to-peer communication: broadcast to all or subset of nodes.

- Error detection and correction: high level of error detection and confinement.

CAN is usually viewed as an “event-triggered” protocol (Leen and Heffernan, 2002)
which has the following operational principles. Any transmitted message is defined by
an identifier which is unique throughout the network. This identifier defines the
message contents as well as the message priority. CAN follows Carrier Sense Multiple
Access / Collision Avoidance (CSMA/CA) protocol. Under such a protocol, when
several nodes compete for bus access, the higher priority message is guaranteed to gain
the bus access where lower priority messages have to wait until the bus becomes in the
idle state (CiA, 2008; Farsi et al., 1999; Bosch, 1991). When a message wins the bus
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access, it has an opportunity to complete transmission without destruction. Such a
mechanism is known as “non-destructive bitwise arbitration” (NDBA) which helps
resolve conflicts in bus access (L een and Heffernan, 2001). Once a message is received,
each node performs an acceptance test to determine if the received message is relevant
to that particular node. The ability to send data on an event basis means that the bus
load utilisation is kept to the minimal level. One advantage of CAN over other fieldbus
solutions is that this mechanism requires no interaction from a bus master or arbiter (see

Farsi et al., 1999; Egan-Krieger, 1994 for more information).

8.3.23 CAN layers

As shown in Figure 8-1, CAN standard is atwo-layer protocol as compared to the seven
layers of the ISO/OSI Reference Model (Farsi and Barbosa, 1999; Bosch, 1991; CiA,
2008). These two layers are: Data Link Layer and Physical Layer. The data link layer
consists of two sub-layers: Medium Access Control (MAC) and Logical Link Control
(LLC). The LLC sub-layer is concerned with the errors detection and correction when
data is exchanged in the network. The MAC sub-layer is responsible for message
framing, arbitration, acknowledgement, error detection and signalling. For example, the
MAC layer decides which node has the bus control for transmission (see Farsi and
Barbosa, 2000 for more details).

Since higher layer services are needed for some applications, CAN in Automation (CiA)
defined the CAN Reference Model which incorporates the CAN Application Layer
(CAL). The CAL layer employs a large number of services and strategies which achieve
the communications between applications. For more details, refer to Farsi et al. (1999).

CAN Application layer Application layer

Presentation Layer
Session Layer

Transport Layer

Network Layer
CAN DataLink Layer Data Link Layer
CAN Physical Layer Physical Layer

Figure 8-1: Comparison between CAN layersand | SO/OS| Model.
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8.3.24 CAN format

Briefly, any transmitted CAN frame has the format shown in Figure 8-2. The function
of each field illustrated in the figure is as follows (Busch, 1991, Egan-Krieger, 1994):

- SOF indicates the start of frame.

- ldentifier (ID) is used to arbitrate access to the bus. This ID can be 11-bits (in
standard CAN frames) or 29-hits (in extended CAN frames).

- The Remote Transmission Request (RTR) bit indicates whether the frame is a
reguest frame or a data frame.

- ldentifier Extension (IDE) indicates whether the frame is a standard or an extended
format.

- The length of the data field (in bytes) is contained in Data Length Code (DLC).

- The Data field contains the message data which can be between 0 and 8 bytes in
length.

- To check the frame integrity, a 15-bits Cyclic Redundancy Check (CRC)
checksum is calculated and transmitted with each frame. CRC Delimiter bit is
always equal to 1.

- ACK dlot is transmitted as a recessive bit (value of 1). Receivers that retrieve the

message correctly should overwrite this field with a dominant bit (value of 0).

- End of Frame (EOF) bit denotes that the whole frame has been terminated.

Arbitration field Control field Datafidd CRCfidd
S| 1lor29bits | R| | | R 4- 15- CRC End
0] Identifier T|D|O| bits | 0—8bytes bits del - | Ack of
F R|O DLC CRC bit Frame

Figure 8-2: Layout of the CAN frame.

8.3.25 Messageresponsetimein CAN network

When calculating the response time for CAN messages, the deadline monotonic
approach described in (Audsley, 1991) is considered. In this approach, a message of
shorter deadline is given a higher priority for transmission. Tindell et al. (1994 and
1995) provided a detailed analysis of the CAN-message response time. Based on his
model, the worst-case response time for a CAN message is represented by the
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summation of message jitter (Jm), physical transmission time (Cm) and the time delay
caused by bus arbitration (Wm) as in Equation 8-1.

Rm=Jm+ Cm+ Wm
Equation 8-1

Note that Jm takes into account the variation in the queuing time, and Cm is a function
of the CAN baudrate as well as the message length. Punnekkat et al. (2000) and Nolte et
al. (2001 and 2002) have also provided a simple analysis for CAN message response
time, and demonstrated that the physical transmission time of a particular message on
the CAN bus is equal to the message length (in bits) multiplied by the bit-time (Tyi).
The hit-time was defined as the worst-case time spent by a bit to travel on the CAN bus.
Thit can be calculated as follows:

B 1
Tbit -
CAN Baudrate

Equation 8-2

For example, at the maximum CAN baudrate (1 Mbps), Tuii = 1 ps. Therefore, the
transmission time (Cm) of a CAN message with 8 data bytes and standard format (111
bits length) can be calculated as:

Cm= 111 (bits) * 1 (n&/bit) = 111 s

Similarly, the transmission time (Cm) of a CAN message with 8 data bytes and
extended format (129 bits length) can be calculated as:

Cm= 129 (bits) * 1 (n&/bit) = 129 s

Note that the actual (physical) transmission time of a CAN message also depends on the
number of any additional hardware bits inserted by the CAN physical layer for purposes
such as clock synchronisation (Nolte et al., 2001): this process is called bit-stuffing and
is further described in Section 8.3.2.6.
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8.3.2.6 Error-handling mechanismsin CAN

CAN protocol employs several mechanisms for error detection and correction which
make it quite robust and, hence, a good match for many time-critical applications (Farsi
and Barbosa, 2000). Such error detection mechanisms are: bit error and bit-stuffing
error (at the bit level), and CRC error, format error and acknowledgement error (at the
message level). These mechanisms are described briefly as follows.

Bit error

When the transmitter places a bit on the bus, it monitors and compares this bit with the
actual bit on the bus. If the two hit levels are unequal, a bit error is flagged.

Bit-stuffing error

A mechanism known as bit-stuffing is used by CAN hardware for clock synchronisation
(Bosch, 1991). This mechanism is described here.

Since CAN protocol uses “Non Return to Zero” (NRZ)? coding for bit representation, a
drift in the receiver’s clock may occur when a long sequence of identical bits has been
transmitted on the bus. Such a drift might, in turn, result in message corruption. To
avoid the possibility of such a scenario, the CAN communication protocol (at the
physical layer) employs a bit-stuffing mechanism which operates as follows. After five
consecutive identical bits have been transmitted in a given frame, the sending node adds
an additional bit of the opposite polarity afterwards. All receiving nodes remove the
stuffed (inserted) bits to recover the original data (Farsi and Barbosa, 2000; Nolte et al.,
2001; Nolte et al., 2002; CiA, 2008). Figure 8-3 shows the basic operation of the bit-
stuffing mechanism carried out in the sending CAN controller.

% |n NRZ coding, logic “1” isimplemented as high-voltage and logic “0” isimplemented as |ow-voltage.
This is the simplest way of bit encoding in data communication which can provide maximum data
throughput.
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Original frame: 111110000010110000011101011111 .......
Transmitted frame: 1111100000101011000001111010111110 .......

Stuffed bits: T

Figure 8-3: The basic operation of bit-stuffing in the sending CAN controller.

If any six identical bits are detected by the receiver, this means that an error has
occurred during the transmission, therefore a bit-stuffing error is flagged.

CRC error

Every CAN message contains a 15-bit Cyclic Redundancy Check (CRC) code (see
Figure 8-2). The CRC is computed by the sending controller based on the message
content. All receivers that accept the message perform a similar calculation to check the

integrity of the received data and flag any error.

Format error

There are certain predefined bit values that must be transmitted at certain points within
any CAN message frame. If areceiver detects an invalid bit in one of these positions, a
format error will be flagged.

Acknowledgement error

If a transmitter determines that a message has not been acknowledged, then an
acknowledgement error is flagged.

Please note that the CAN protocol employs complex algorithms to distinguish between
temporary errors and permanent failures. More specifically, each node in the network
implements one counter for transmit-error and one counter for receive-error. The values
of these counters increase when errors occur and decrease when a message is
successfully transmitted. When the network sarts, all nodes are in the Error Active
Mode. When errors begin to occur, error counters begin to count until it reaches a
certain threshold after which the node should enter the Error Passive Mode. If the errors
continue to occur, then the device will take itself off the bus by going to Bus-Off Mode
(Bosch, 1991, Farsi and Barbosa, 2000).
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8.3.3 Alternative network protocols

8.3.31 Introduction

In this section, some alternative network protocols to CAN are described briefly. Such
protocols mainly include: Time-Triggered Protocol (TTP) and FlexRay as dedicated
platforms intended to meet the standard for highly-reliable, safety-critical embedded
systems. Other protocols which are generally used in multi-processor embedded designs
are also discussed in outline. These include: RS-485, Local Interconnect Network (LIN)
and Ethernet.

8.3.3.2 Time-Triggered Protocol (TTP)

Time-Triggered Protocol (TTP) (Kopetz, 2001; TTTech, 2008) was originaly
developed for high-dependability, hard real-time applications. Kopetz provided a
detailed comparison between the CAN and TTP protocols in terms of operational
principle, protocol services, dependability and system level properties. He concluded
that CAN is more suitable for soft real-time systems where flexibility is essential, while
TTP is more suitable for hard real-time systems where composability and dependability
are more essential than flexibility.

As asummary, the main characteristics of TTP protocol are:
- Applicable to hard real-time systems.
- Provides a time-triggered communication strategy.

- Extendable (new nodes can be easily added to the system if transmission slots for

the added nodes have been reserved in the original design).
- Latency jitter is constant.
- Provides fault-tolerant clock synchronisation service (in microsecond range).

- Speed up to 2 Mbps. TTTech (2008) stated that the controllers used today can

support 25 Mbps synchronous and 5 Mbps asynchronous transmissions,

- Frame size from 21 — 149 bits (21 control bits and between 0 — 128 data bits). Any
frame can be either initialisation frame or normal frame (only two frame types).

- Uses Modified Frequency Modulation (MFM) bit coding.
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Briefly, media-access in TTP is controlled by conflict-free TDMA strategy (Kopetz,
2001). Within the TDMA cycle (round), every node is allocated a time slot for
transmission. Every TTP controller contains a Message Descriptor List (MEDL) which
holds information about the node that is allowed to send at a particular point in time and
which message it will send. Every TTP controller also contains two replicated channels
in order to be able to tolerate a loss of one channel if occurred (see Kopetz, 2001 for

additional explanation).

TTP/C (Kopetz, 2001) is an integrated communication protocol for hard real-time, fault-
tolerant distributed systems. TTP/C is a member of the TTP protocol family where C
indicates that it satisfies SAE (Society of Automotive Engineers) Class C requirements
for hard real-time, fault-tolerant communication in the automotive area. Excellent
features can be provided by the use of this protocol. For example, it provides hard real-
time message delivery with minimal jitter and supports fault-tolerant communication
mechanisms, such as clock synchronisation (Poledna and Kroiss, 1998). The overhead
inthe TTP/C is kept to minimum levels with the provision of highest data efficiency.

8.3.3.3 FlexRay

FlexRay (FlexRay, 2005; Litterick and Brenner, 2005) is a fault-tolerant, time-triggered
communication protocol developed to meet the standard for safety-critical, real-time
control systems (e.g. X-by-wire systems). It is a combination of Byteflight (Byteflight,
2008) protocol and TTP/C (Kopetz, 2001) protocol. Like TTP, FlexRay supports a
number of fault-tolerant mechanisms which made it suitable for systems requiring high
degree of robustness and dependability.

The time line in FlexRay is divided into two channels allowing synchronous (time-
triggered) and asynchronous (event-triggered) communications. In the asynchronous,
data bandwidth is shared by all nodes to provide high bandwidth efficiency, and the
media-access is controlled by Byteflight and mini-slotting protocols. Speed in the
FlexRay can be more than 10 Mbps.

In particular, a bit-synchronisation feature in FlexRay — as opposed to bit-stuffing
mechanism in CAN — is considered in a little bit more detail. To achieve higher
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synchronisation and avoid any possibility of drift in the receiving clocks, the FlexRay
protocol implements a Byte Start Sequence (BSS) mechanism which provides the
receiving nodes with bit timing information. The BSS contains two alternating bits
(logic “1” followed by logic “0”), allowing a transition in the signal level around each
byte. This bit encoding, along with other encoding mechanisms (see FlexRay, 2004),
result in a constant transmission delay for each message scheduled to transmit in the
“static” segment of the communication cycle while maintaining the synchronisation
between communicating clocks. For more details see (Rushby, 2001; Kopetz, 2001;
FlexRay, 2004).

8.3.3.4 Other network protocols

Other network protocols which have also been used in multi-processor embedded
designsinclude: RS-485 (Leen et al., 1999), Local Interconnect Network (LIN) (Specks
and Rajnak, 2000) and Ethernet (Metcalfe and Boggs, 1976) protocols. These protocols

are described briefly here.

RS-485 is a serial communication standard produced by the Electronics Industry
Association (EIA, 2005) and aimed at transferring data between the desktop PC and
microprocessors, or between two (or more) microprocessors in a distributed embedded
system. RS-485 can have a data rate of up to 10 Mbps (or even more with new
transceivers), has a one twisted-pair line allowing simple implementation and is a
“multipoint” communication standard in which up to 256 nodes can be connected to the
network (Pont, 2001; Leen et al., 1999).

Local Interconnect Network (LIN) is a UART-based communication protocol
developed for automotive sensors and actuators. LIN provides a cost-effective
communication choice for one Master and multi-Slaves in a local connection. The
Master node in LIN usually communicates with high-level networks such as CAN to
achieve more benefits to the local sensors and actuators (Specks and Rajnak, 2000).

Figure 8-4 shows a schematic example of a LIN network.



Chapter 8: Network and scheduling protocols for multi-processor embedded systems 180

T
1 ]
' i
H Slave 1 !
]
1 ]
<« CAN bus! '
E Master Slave 2 i
To the CAN ! '
network 1 1
' Slave 3 | |
i LIN Network i

Figure 8-4: Example of alocal LIN network connected to a major CAN network.

Ethernet is the most Local Area Network (LAN) protocol used across the world
(CISCO, 2008). It provides a transfer rate of up to 100 Mbps based on using twisted
pair and fibre optic media. Ethernet is known to be very widely used as a consequence
of its widespread availability, high flexibility and easy installation, usage, maintenance
and management. In Ethernet, multiple LANs can be linked together via advanced
switching devices to create extended LAN networks.

In contrast to CAN, Ethernet networks apply a Carrier Sense Multiple Access /
Collision Detection (CSMA/CD) protocol to provide equal chance for each node in the
system to access the communication bus. This protocol provides the capability to detect
frame collisions when two (or more) nodes begin to transmit simultaneously. If a
collision occurs, each station will be notified to reschedule its transmission after a
random period of time. Such a mechanism has the potential to minimise the possibility
of further collisions. Although more collisions are likely to take place as the network
expands, the CSMA/CD can resolve mgjority of collisions in microseconds to avoid
frame losses.

Note that Ethernet is a seven-layer protocol based on the ISO/OSI model shown in
Figure 8-1. The only difference between the two models is that the data link layer in
Ethernet is divided into two sub-layers. Media Access Control (MAC) and MAC-Client.
For more information, see (CISCO, 2008). The basic frame format of Ethernet, as
defined in IEEE 802.3 standard, is shown in Figure 8-5.
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Start A Frame
Preamble of Destination | Source Length/Type Data Pad Check
Address | Address
Frame Sequence
7 bytes lbyte 6 bytes 6 bytes 4 bytes 64 — 1500 bytes 4 bytes

Figure 8-5: IEEE802.3 frame for mat.

Briefly, Preamble section contains alternating ones and zeros (e.g.1010101...) that
notify the receiver of a coming frame and also synchronise its clock. Start-Of-Frame
also contains alternating ones and zeros and ends with two successive ones to indicate
that the next bit will be the first bit of destination address. Destination Address field
identifies the node(s) to which the message is transmitted. Source Address identifiesthe
sending node. Data field contains the transmission information which must not be less
than 64 bytes. otherwise, this field must be padded to reach the 64 bytes size. Frame
Check Seguence contains a 32-bit Cyclic Redundancy Check (CRC) which is used, as
in CAN, to check that the received frame is free of errors (CISCO, 2008).

An important issue, which must be taken into account, is that Ethernet bus may generate
EMI and be susceptible to crosstalk due to its very fast transmission rate. These effects
are usualy minimised by using Shielded Twisted Pair Cabling (STP) (TechFest, 1999).

8.3.4 Why does CAN remain the most attractive solution?

This section highlights the key limitations of the discussed CAN alternative protocolsin
fulfilling the requirements for embedded designs which are concerned with in this
project: such designs are basically built on low-cost, resource-constrained embedded
microcontrollers and have a high degree of predictability and reliability requirements.

Although TTP can provide an excellent platform for hard real-time applications, its high
implementation costs and less availability (compared to CAN) have made it less
adopted in the design of many applications. In 2002, an article written by Charles J.
Murray in EE Times website highlighted that:

“TTTech's AS8202 communication processor, unveiled last spring, supportsthe TTP for
a cost of about $3 per chip, but such prices are based on volumes of 5 million chips, the

company said.” (Murray, 2002).
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On September 2004, soon after this project started, a personal contact with TTTech staff
was made by Devaraj Ayavoo (an ex-member of the ESL research group) enquiring
about the price for a complete TTP-development set. He found out that a TTP-
development cluster — which supports up to 64 nodes — would cost around €15000 (this
was a TURN price for universities only). For the TTP/C controller, he was told that
there were only prototyping samples available for testing which would cost around €20
per chip. The TTTech staff also pointed out that network configuration tools would also
be required with the TTP hardware set. This seemed likely to add additional cost to a
system implemented with this protocol. Later in 2006, Devaraj Ayavoo (in his PhD
thesis) confirmed that the cost of the TTP protocol was still seen much higher than CAN
protocol. Furthermore, it is worth noting that TTP controllers are still not widely
supported by COTS microcontroller boards.

Similarly, FlexRay has not gained widespread popularity and is still difficult to be
found on COTS microcontroller platforms. Ayavoo (2006) provided a comparison
between some of the characteristics of four well-known network protocols: CAN,
TTCAN, TTP/C and FlexRay. He underlined that finding the most optimal solution is
not a straightforward decision since each protocol of these has strengths and
weaknesses. Such an argument was also supported by Short and Pont (2007). However,
Ayavoo highlighted that CAN network seems to be a good match for many automotive
systems mainly due to its low implementation cost. Short and Pont (2007) argued that
under some circumstances, where (for example) cost is not an issue or the bandwidth of
CAN network is insufficient, using advanced protocols such as FlexRay or TTP/C may
be an appropriate solution. They, however, noted that:

“Due to a lack of user experience with [FlexRay and TTP] protocols, and their
comparatively high cost, it may be desirable for system developers to continue to use
CAN wherethisispractical.”

If more basic protocols such as RS-485, LIN and Ethernet are compared with CAN, the
following observations can be made.

Unlike CAN, the UART-based protocols, such as RS-485, are so simple and have no
error-checking capabilities. This simply means that, for high determinism, error

handling mechanisms would be carried out in the application (software) layer leading to
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an increased complexity of the system implementation in terms of processing and
memory overheads. Moreover, the data bandwidth used in such a protocol is often
insufficient as only one data byte can be transmitted a a time. Accordingly, RS-485
cannot compete with well-designed protocols like CAN for high determinism
(refiability). One more issue with this protocol is that the use of UART to connect the
microcontroller to the network may not be practical, since the number of available on-
chip UART transceivers are usually limited and may be needed for communication with

a PC during the operation time.

LIN network is, indeed, not designed to operate at high speeds. The maximum
reachable speed in LIN can be up to 20 Kbps (STMicroelectronics, 2002). Overall, LIN
is a low-cost solution used only to connect sensors and actuators locally with the

embedded processor that is connected to alarger network such as CAN.

Despite the great advantages of Ethernet, it can ill have some drawbacks. For
example, the CSMA/CD mechanism to solve frame conflict problems in Ethernet makes
it very sensible to high bus load during which only 60% of the bus throughput is
actually utilised: to reduce the impact of such a mechanism, the network must run at
very high speeds (Shandle, 2003). In contrast, CAN addresses this problem by
employing a clever principle of arbitration based on message priorities (CSMA/CA: see
Section 8.3.2.2). On the other hand, Ethernet is not widely available on COTS
microcontroller boards. In general, Ethernet is less popular than CAN and cannot be
used to achieve the level of determinism that CAN achieves.

In the study carried out recently by Short and Pont (2007), it has been argued (and
practically demonstrated) that experience gained with CAN over the past years allows
the creation of extremely reliable systems using this protocol, only with a little more
care to be taken at the design and implementation process. An example of a highly-
reliable CAN system implementation was described and proved to be effective in
dealing with major CAN limitations such as inability to support reliable group
communication and bus redundant arrangements.

As a result, CAN remains the most preferred network protocol by many engineers

mainly due to its simplicity, low-cost, widespread availability and extensive use in
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industrial systems as compared to other protocols. In his article published in 2003 and
titled “CAN: Network for Thousands of Applications outside Automotive”, Jack
Shandle noted that:

“CAN may be overlooked by some design engineers because of its simplicity and
modest bus speeds compared to Ethernet. But considering the fact that it has its roots
deep in the automotive industry, dismissing it may be a mistake. The benefits of the
automotive connection mean both mass-market semiconductor pricing and rock solid
infrastructure support. So it's not surprising that CAN continues to grow in both market

size and application diversity”

8.4 Scheduling protocols for multi-processor systems

8.4.1 Introduction

Although CAN supports event-triggered communication between nodes, it can be set to
work in a time-triggered way by employing high-level protocols on the existing CAN
hardware. There has been a great deal of previous work on developing techniques that
enable time-triggered communication on CAN fieldbus (e.g. Turski, 1994; Broster and
Burns; 2001; Broster, 2003; Donnelly and Cosgrove, 2004).

However, key successful work in this area have led to the development of well-
designed, high-level protocols such as TTCAN (Fuhrer et al., 2000) and S-C scheduler
(Pont, 2001). Each of these protocols is outlined in this section. However, for the
purpose of this study, more consideration is given to the S-C scheduling protocol.

8.4.2 Time-Triggered Controller Area Network (TTCAN)

8.4.2.1 Introduction

One consequence of employing NDBO mechanism in CAN arbitration (see Section
8.3.2.2), is a creation of distributed network-wide message queue (Leen and Heffernan,
2001). This, in turn, leads to a possible scenario where some messages — of lower
priorities — are delayed indefinitely by higher-priority messages and, hence, miss their
deadlines. From this example, two drawbacks of CAN are addressed: the possibility of

missing deadline, and the non-deterministic message transmission latency time.
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To alow better scheduling strategy for high-reliability and safety-critical embedded
applications, time-triggered CAN (TTCAN) protocol was developed (Kopetz, 1997;
Fuhrer et al., 2000; Hartwich et al.,2002; Leen and Heffernan, 2001; Leen and
Heffernan, 2002; Muller et al., 2002; CiA, 2008; Ryan et al., 2004; Short and Pont,
2007).

8.4.22 Overview of TTCAN operation

TTCAN is viewed as a “time-triggered” communication protocol in which the message
transactions are initiated based on the time progression (Kopetz, 1997). TTCAN
provides a high level protocol built on the CAN data link layer and physical layer to
allow communication in time-triggered fashion as well as in event-triggered fashion
(CiA, 2008). Time-triggered communication in TTCAN is basically achieved by
employing a Time Division Multiple Access (TDMA) communication scheme (Ryan et
al., 2004).

The communication process in TTCAN is based on the following principles (Fuhrer et
al., 2000; Ryan et al., 2004). A time Master transmits a regular reference message in
order to creste a global time base. The nodes across the network must synchronise their
clocks according to this reference message. Each node in the system can only transmit
data within a pre-allocated time slot (window) following the reference message. The
pattern of a reference message followed by time windows is called basic cycle (BC)
(Fuhrer et al., 2000). The sequence of basic cycles forms a matrix cycle (MC). Ryan et
al. (2004) defined the MC as the fixed pre-defined schedule for message exchange.
They also provided an example of a matrix cycle consisting of four basic cycles (see
Figure 8-6). Note that “merged arbitration” windows may contain more than one CAN
message. For further information, refer to Ryan et al. (2004). The TTCAN protocol uses
a synchronisation method with a maximum accuracy of +/- 1 hit time using a
combination of hardware and software. The protocol supports a satic TDMA schedule
and provides “empty” slots that allow normal message arbitration for dynamic messages
(Short and Pont, 2007).
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Figure 8-6: Example of TTCAN Matrix Cycle. Thefigureisreproduced from (Ryan et al., 2004).

One clear advantage of TTCAN is that it exploits the underlying CAN error handling
capabilities, whilst improving the overall timing performance of CAN aiming to achieve
highly-predictable and deterministic network operations.

Various studies have considered the use of TTCAN in various application domains due
to its simplicity and robustness. for more details, see (Fuhrer et al., 2000; Ryan et al.,
2004; Rodriguez-Navas et al., 2003).

8.4.3 Shared-Clock (S-C) protocol

8.4.3.1 Introduction

Despite that TTCAN provides a good communication platform for many real-time
systems, the TTCAN hardware is not widely supported by the COTS microcontroller
boards. Moreover, it was argued that a full implementation of TTCAN requires
dedicated hardware that is not yet widely available (Short and Pont, 2007). This, in turn,
increases the complexity and, hence, the cost of implementations using this protocol.

An alternative solution to provide a reliable time-triggered communication on CAN
without the need for additional hardware or software clock synchronisation algorithms
is to implement a “software-based only” protocol which will basically organise the
transmission of messages (and hence the operations of tasks) in a timely manner whilst
maintaining a high resource efficiency.



Chapter 8: Network and scheduling protocols for multi-processor embedded systems 187

Over the last years, the ESL researchers have been involved in the development of
reliable embedded systems based on time-triggered software architectures. The
previous work in this area has considered the development of techniques for both
single- and multi-processor embedded designs. In the case of multi-processor designs,
they have demonstrated that a “Shared-Clock” (S-C) scheduling protocol — used in
conjunction with the TTC scheduling algorithm — can provide a simple, flexible and
predictable platform for many real-time embedded systems (Pont, 2001). This protocol
is described in this section.

8.4.3.2 Shared-clock (S-C) scheduler

The “Shared-Clock” (S-C) architecture, developed by Pont (2001), was aimed to
provide a simple and low-cost software framework for time-triggered systems without
requiring specialised hardware. The S-C scheduler operates as follows (Figure 8-7). On
the Master node, a conventional (co-operative or hybrid) scheduler operates and the
system is driven by periodic interrupts generated from an on-chip timer. On the Slave
nodes, a very similar scheduler operates. However, on the Slaves, no timer is used:
instead, the Slave scheduler is driven by interrupts generated through the arrival of
periodic “Tick” messages sent from the Master node. By doing so, all nodes will be

synchronised according to one reference clock (which isthe Master clock).

[ Slave 1 ] [ Slave 2 ] Slave N
Acknowedge ment Acknowle dgement Acknowle dgement
< —— Mmessage <«——— message <«— message

— > Tick messages (from master to slaves)

Figure 8-7: Simple architectur e of Shared-Clock (S-C) scheduler.

Overall, the S-C scheduler is extremely simple and supports a number of low cost (but
effective) error-handling mechanisms (Section 8.4.3.3). The network communications
follow a Time-Division Multiple Access (TDMA) protocol, and the system behaviour is
highly-predictable (Ayavoo et al., 2007). In such a scheduling protocol, the Master Tick
message holds data for a particular Slave or a group of Slaves. The first byte of the
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transmitted data is therefore reserved for the Slave or Group identifier (ID) to which the
tick message is addressed. Only the addressed Slave(s) must reply a form of
acknowledgement “Ack” message to the Master straight after the Tick message is
received (see Pont, 2001 for more details).

Please note that in such architectures, the jitter between the timing of Master and Slave
nodes can be quite high due to bit stuffing mechanism in CAN hardware. To provide an
effective solution to this problem, a range of data coding techniques have been proposed
and evaluated in this project. These are “XOR masking”, “software bit stuffing” and
“eight-to-eleven modulation”. Such techniques are described in detail in Appendix E.

8.4.3.3 Error-handling mechanismsin S-C protocol

To achieve high degree of reliability, the S-C scheduler applies several error detection
and recovery mechanisms. For example, a Slave can detect an error on the Master by
measuring the time period between every two ticks and once it exceeds the tick interval
(which is deterministic) the Slave knows that an error has occurred in the Master node.
Since the S-C follows the TDMA protocol allowing the Master to talk to each node
individually, the Master can easily detect an error on any Slave if no “Ack” message is
received from a particular Slave within its allocated time interval.

Once an error is detected in the S-C network, appropriate handling mechanism(s) must
be employed. For example, when a Slave detects a failure in the Master, it enters a “safe
state” and waits until an appropriate series of “start” commands are received from the
Master. The situation is more complicated when a Master detects a failure in one of the
Slaves. In this case, the Master can have three options (Pont, 2001):

Enter a safe state then shut down the whole network.
Reset the network.

Start a backup Slave.

8.5 Conclusions

Having completed the work on single-processor embedded systems in the previous
chapters, this chapter began to address the implementation issues for (distributed) multi-
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processor embedded systems. The chapter reviewed key previous work in this area and

linked it to the work concerned with in this thesis.

The focus of the discussions in this chapter was on systems using Controller Area
Network (CAN) protocol for message transmission. The chapter reviewed CAN in
detail and compared it with other network protocols. The key features of CAN — over
aternative protocols — were summarised as simplicity, low-cost, availability and

widespread use in industry.

The discussions then moved on to consider ways for implementing “high-level”
protocols on the CAN hardware to improve its operational characteristics. in particular,
to alow the network operate in time-triggered manner rather than event-triggered.
Particular concern was given to the Shared-Clock (S-C) scheduling protocol which
offers avery flexible and predictable platform for many real-time embedded systems.

The next chapter describes how the S-C scheduling protocol can be implemented on
CAN network and reviews a number of possible implementations for such a protocol.



Chapter 9
TTC-SCC scheduler implementations

9.1 Introduction

As in the discussions provided in Chapter 8, despite that CAN supports an event-
triggered communication, time-triggered behaviour can be achieved if simple, cost-
effective software protocols (such as Shared-Clock (S-C) schedulers) are implemented
with the CAN hardware (Pont, 2001).

Like any other scheduler, the S-C scheduling protocol can have a large nhumber of
possible implementation options, where each implementation is expected to produce
different patterns of behaviour at the system run-time. In another word, the ‘one-to-
many’ relationship (discussed in Chapter 3) does also apply between the S-C scheduling
protocol and its low-level implementations.

As noted earlier in this thesis, it is impossible to cover al possible implementation
options for a given scheduler in a single study. Therefore, this chapter reviews a
selective set of the various possible ways in which S-C scheduler can be implemented in
low-cost embedded systems. Such a representative set of S-C schedulers will be used as
a basis for assessing the effectiveness of the STC technique in testing multi-processor
embedded designs.

Note that this chapter reviews five different implementations for S-C scheduler. Four
implementations have been taken from studies conducted previously in the ESL
research group, while only one implementation is proposed in this project®”.

2 The work described in this chapter has been adapted from the study presented in the author’s
publication [2] listed in page xvi.
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9.2 Implementing S-C scheduler on CAN protocol

The S-C scheduler can be implemented on a wide-range of network protocols used in
the design of multi-processor embedded systems, such as CAN, RS-485, TTP and
FlexRay. The work presented in this study is, however, focused on implementations
using CAN network protocol. The multi-processor systems considered in this study are
based on the following three-level implementations:

- TTC-Dispatch scheduler implemented in each individual node to achieve time-

triggered operations of scheduled tasks.

- CAN network protocol implemented as a hardware platform on which the

communicating nodes transmit their messages.

- S C scheduling protocol — implemented on top of the CAN — as a software
platform to achieve time-triggered communications between the nodes connected
in the embedded network.

The resulting system is best described as a “TTC-SCC” scheduler® (Ayavoo et al.,
2007). Overall, the use of TTC-SCC scheduler can be so attractive due to its
exploitation of the error handling features offered by the underlying CAN hardware,
whilst — at the same time — allowing the network to behave in a highly-predictable time-
triggered manner. The TTC-SCC scheduler has been widely adopted by ESL
researchers to implement various distributed embedded applications. For example,
Ayavoo et al. (2004); Short and Pont (2005) demonstrated how such a scheduling
protocol can be used to implement different versions of automotive cruise control
system for use in passenger car. The testbed considered in (Ayavoo et al., 2005; Short et
al., 2006; Short et al., 2007), which was based on X-by-wire control system, also used
this protocol. Similarly, Edward (2004) built an inverted pendulum testbed using several
nodes, associated with different sensors and actuators, which communicated with each
other through a TTC-SCC scheduling protocol.

% TTC-SCC is an abbreviation for Time-Triggered Co-operative, Shared-Clock, CAN.
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9.3 TTC-SCC1 scheduling protocol

9.3.1 Introduction

The implementation of the first version of the TTC-SCC scheduler — as described in
(Pont, 2001; Ayavoo et al., 2007) — is presented in this section. This particular
implementation will be referred to as TTC-SCCL1.

9.3.2 Overview of the scheduler implementation

The TTC-SCC1 scheduler is a simple version of the TTC-SCC scheduling protocol.
TTC-SCC1 follows a Time Division Multiple Access (TDMA) protocol in which the
Master node communicates with only one Slave node per tick interval. The scheduler is
based on the following arrangements: first byte of the transmitted data is reserved for
the Slave Identifier (ID) to which the Master “Tick” message is addressed. Only the
addressed Slave will reply an acknowledgement “Ack” message to the Master where
this message must be sent back within the same tick interval in which the “Tick”
message is received.

The described mechanism is used by the Master to detect network and node failure.
More clearly, at each tick interval, the Master node checks if avalid “Ack” message is
received from the addressed Slave in the previous tick. If not, then the necessary actions
might be taken, for example, starting a backup Slave, or going into a safe mode. If a
correct “Ack” message has been received from that Slave, the Master will send Tick
message on the CAN bus which addresses the next Slave node, and so on.

Figure 9-1 illustrates an example of the TDMA round (cycle) for a TTC-SCC1 network
with one Master and three Slaves, where “Tick” messages originate from the Master
and the “Ack X" message is transmitted back from “Slave X”. The figure shows that
TTC-SCC1 follows a round-robin message scheduling approach in which all Slaves are
given equal time to transmit their messages. The figure clearly shows that the TDMA
round in the TTC-SCCL1 is equal to the number of Slaves multiplied by the width of the
tick interval. Given that N is the number of Slaves and T is the tick interval, the TDMA
round can be calculated as follows:
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TDMAL = NT
Equation 9-1

TDMA round

A
3V

Tick | Ackl Tick | Ack2 Tick | Ack3 Tick | Ackl| "™~

y

T 1r <—— Tick interval ———» Time

Master Slave
Tick Tick

Figure9-1: TDMA round for a four-node system using TTC-SCC1 scheduler.

To implement TTC-SCC1 scheduler, only two CAN messages are exchanged within a
tick interval: “Tick” and “Ack” messages. The “Tick” message is assigned a higher
priority than the “Ack” message. This is because the Master Tick messages are used to
generate the timing beat of the whole network and manage the transmission of
messages. Therefore, the first CAN Message Object (CMO 0) in the Master node must
be configured to send “Tick” messages where the second CAN Message Object (CMO
1) must be configured to receive “Ack” messages. The same configurations are to be
considered in the Slave nodes. However, in Slaves, CMO 0 is configured to receive
“Tick” messages from the Master and CMO 1 is configured to send “Ack” messages to
the Master. Furthermore, the timer interrupt on the Master node is enabled to generate
periodic interrupts for triggering the Master scheduler and, hence, sending “Tick”
messages to the Slaves. On the Slave nodes, the CAN interface will be configured to
generate a CAN interrupt on arrival of a valid “Tick” message, while Slave timer
interrupts are totally disabled.

Overall, CAN messages can have up to eight bytes data bandwidth. However, in any S-
C scheduler, one byte in each (Tick or Ack) message is reserved for Slave ID. This
allows up to seven bytes per message for data transfers between nodes. Please note that
the Slave ID byte in the Ack message is used by the Master to check that a given Slave
has responded correctly and hence has no failure.
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9.4 TTC-SCC2 scheduling protocol

9.4.1 Introduction

The TTC-SCC2 scheduler provides a small (but effective) modification to the original
TTC-SCC1 scheduler. An overview of the TTC-SCC2 scheduling protocol is presented
in this section. The particular implementation discussed in this section has been
described in detail elsewhere (Pont, 2001; Ayavoo et al., 2007).

9.4.2 Overview of the scheduler implementation

The round-robin approach used in the TTC-SCC1 scheduler to communicate with the
Slave nodes may not be efficient in some networks. For example, in some applications,
the Master node may need to communicate with a particular Slave node more frequently
than the other Slaves. This is (for example) to check the Slave’s status or acquire some
data samples. In order to achieve this, an enhanced implementation of the scheduler is
required: thisisreferred to hereas“TTC-SCC2".

The TTC-SCC2 scheduler provides a flexible TDMA round. For example, the status of
Slave 1, in the example shown in Figure 9-1, may need to be checked more frequently
than the status of Slave 2 and Slave 3. In this case, the TDMA round used must be
amended to meet such an application requirement. An example of appropriate TDMA
round that can be used for such a system is illustrated in Figure 9-2. In the example in
the figure, the TDMA round is equal to four tick intervals (i.e. 4T). This can be broken
down into 2T (for Slave 1 Ack message which is allowed to transmit twice in the
TDMA round) plus 2T (for Slaves 2 and Slave 3 Ack messages, each transmitted once
in the TDMA round). More generally, for N Slaves, the TDMA round can be calculated

as follows;

TDMA2 = (2N-2)T
Equation 9-2
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Figure 9-2: A simple TDMA configuration for afour-node system using TTC-SCC2 scheduler.

Figure 9-2 shows a simple example of TTC-SCC2 scheduler for a system which has a
small number of Slave nodes, and the Master node communicates with only one of the
Slaves more frequently than communicating with the other Slaves (in this case, at every

other tick).

In a more complicated scenario, assume that the system has five Slave nodes, and the
Master is required to check the status of (for example) Slave 1 at every three ticks
(instead of two ticks as in the example shown in Figure 9-2). Thisisillustrated in Figure
9-3. In the example shown in the figure, the TDMA round is equal to 6T. This can be
broken down into 2T (for Slave 1 Ack message, the only message which is designated
two tick intervals) plus 4T (for Slaves 2, 3, 4 and 5 Ack messages).

< TDMA round >
A A A A A A A
. Ack ) Ack . Ack ) Ack ) Ack ) Ack ) Ack | ---
Tick 1 Tick 2 Tick 3 Tick 1 Tick 4 Tick 5 Tick 1
»
T T «—> Time
Tick interval

Master Slave
Tick  Tick

Figure 9-3: A morecomplicated TDMA configuration for a sx-node system using TTC-SCC2
scheduler.

Figure 9-3 shows an example of TTC-SCC2 scheduler for a system which has a
comparatively large number of Slave nodes and one of these Slaves requires checking
more frequently but at a lower rate than that required in the previous example (in this

case, a every threeticks).

To make the calculations more general, given that N is the number of Slaves, T is the
tick interval, S is the frequently checked Slave, and F is the frequency of S “Ack”
messages (in “ticks’), the TDMA round can be calculated as follows:
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N - F).T:N.T+(N_ F
1 F-1

N D ron+

TDMA2=(N - 1+
F-1 F-

)T
Equation 9-3

Of course, the number of Slaves which need to be checked at higher frequency is not
limited to one: there might be a few other Slaves which the Master is required to
communicate more frequently than the other Slaves. This would add more complexity
to the TDMA calculation expressed in Equation 9-3.

In general, TTC-SCC2 scheduler has been intended to meet the requirements of any
real-time control application. Therefore, the configuration of the TDMA round in such a
scheduler is considered an application-specific design parameter which allows the
Master to communicate with Slaves in an arbitrary way. For example, consider the
system illustrated in Figure 9-4. Here, the system has five Slaves and the TDMA round
isequal to 8T. It isimpossible to find a general formula which can be used to calculate
the TDMA round for any system implemented using TTC-SCC2 scheduler. Instead, the
TDMA round for a given system will be dependent on the number of Slaves as well as
the message scheduling pattern used for that particular system.

<
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TDMA round
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A A A y
Ack Ack Ack Ack Ack Ack Ack Ack -—
Tick 1 Tick 2 Tick 1 Tick 1 Tick 3 Tick 2 Tick 4 Tick 5

—>
T T «— » Time
Tickinterval

Master Slave
Tick  Tick

Figure 9-4: A TDMA configuration for a six-node system with arbitrary pattern using TTC-SCC2
scheduler.

Overall, to implement the TTC-SCC2 scheduler, the same configuration for CAN
message objects — as described in Section 9.3.2. —is used. The only difference between

the two schedulers is, again, the way the system talks to the various Slaves.
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9.5 TTC-SCC3 scheduling protocol

9.5.1 Introduction

Overal, The TTC-SCC1 and TTC-SCC2 schedulers are very simple and allow the
creation of low-cost, time triggered CAN-based networks with highly-predictable
patterns of behaviour (Ayavoo et al., 2007).

However, the two scheduling protocols have some limitations. For example, in TTC-
SCC1 and TTC-SCC2 schedulers, Slave-to-Slave communication is not permitted as all
communication is directed via the Master node (through “Tick” and “Ack” messages).
This causes the transmission time of data between any two Slaves to be comparatively
long. Moreover, the time taken to detect the failure of any Slave node can be very long,
since the Master checks the status of all (or some) Slaves only once per TDMA round.
As the TDMA round goes larger, the failure detection time would increase
correspondingly. Finally, tasks running on the Slave nodes will suffer from high jitter
due to CAN bit stuffing in the Master Tick messages (Ayavoo &t al., 2007). Note that a
complete set of results which show such characteristics is provided in Chapter 11.

To resolve some of the outlined shortcomings of the TTC-SCC1 and TTC-SCC2
schedulers, the TTC-SCC3 was developed. An overview of this scheduling protocol is
presented in this section. Note that the particular implementation discussed here has
been described in detail elsewhere (Ayavoo et al., 2007).

9.5.2 Overview of the scheduler implementation

The TTC-SCC3 scheduler provides the facility for all Slave nodes to transmit their Ack
messages within one tick interval. As with TTC-SCC1 and TTC-SCC2, each time a
Tick message is sent from the Master, an ID is also sent within the message. However,
with TTC-SCC3, thisis a “Group ID” (rather than a Slave ID). This simply means that
— if there is more than one Slave in a particular group — al Slaves in the group will send
their Ack messages simultaneously. In this casg, it is the responsibility of the CAN
controller to deal with any collision between messages. Thereafter, the Master node
needs to ensure that al Slaves in the group addressed in the Tick message have replied
back before transmitting the next Tick message, and so on.
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To better explain the TTC-SCC3 scheduler, assume a four-node system as illustrated in
Figure 9-5. The figure shows how Slave Ack messages can be scheduled in a simple
TTC-SCC3 scheduler, where the three Slaves are permitted to transmit in the same tick
interval. In this case, the TDMA round is equal to the tick interval.

TDMA round
= Tick interval

A
4

Tick | Ackl | Ack2 | Ack3 Tick | Ackl | Ack2 | Ack3 T

1

Master Slave
Tick Tick

y

Figure 9-5: A simple TDMA configuration for afour-node system using TTC-SCC3 scheduler.

In a more complicated scenario, assume that a system has N Slaves. The scheduler has
the option to schedule the Ack messages for al N Slaves in one tick interval, or
aternatively divide them between two tick intervals. For example, m Slaves can send
Ack messages in the first tick interval while the remaining N-m Slaves send Ack
messages in the second tick interval (where m < N ). In general, the TDMA in such a
scheduler can be extended across multiple tick intervals. Figure 9-6 illustrates two
possible ways to schedule messages in a seven-node system using TTC-SCC3
scheduler. In Configuration A, the TDMA round consists of two tick intervals, each
allocated for three Slaves to send their Ack messages. In contrast, the TDMA round in
Configuration B is extended across three tick intervals, so that in each interval only two
Slaves can send their Ack messages.
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Figure 9-6. Two possible TDM A configurations for a seven-node system using TTC-SCC3
scheduler.

More generally, given that N is the total number of Slaves, m is the maximum number
of Slavesreplying per tick and T isthe tick interval, the TDMA round can be calculated

as follows;

TDMA3= NT

Equation 9-4

Please note that the TDMA in TTC-SCC3 can be much shorter than TDMA in TTC-
SCC1 and TTC-SCC2. For example, TDMAL = NT and TDMA3 = NT/m. Thus, the
relationship between the two TDMA rounds can be expresses as.

TDMA3 = 1 x TDMA1
m

Equation 9-5
Remember that in the case where m = N (as in the example shown in Figure 9-5), then

TDMA3=T.

Overall, the TTC-SCC3 scheduler allows that messages sent from the Slave nodes can
be broadcasted to both Master and all other Slave nodes. In order to allow practical
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implementation for the TTC-SCC3 scheduler, each Slave Ack message must be
assigned a unique CMO. Note that, aswith TTC-SCC1 and TTC-SCC2 schedulers, such
Ack messages should not generate CAN interruptson arrival at other nodes.

9.6 TTC-SCC4 scheduling protocol

9.6.1 Introduction

The TTC-SCC4 scheduler is another implementation of the S-C algorithm which was
adapted from the TTC-SCC3 scheduler. This section describes TTC-SCC4 scheduler
briefly. The particular implementation discussed in this section has been described in
detail elsewhere (Ayavoo et al., 2007).

9.6.2 Overview of the scheduler implementation

The motivation behind the development of TTC-SCC4 scheduler isto separate between
data messages and time-control messages in order to achieve higher predictability. More
specifically, the Master node in a TTC-SCC4 scheduler is set to transmit Tick messages
which contain no data. Such messages are used only to synchronise the local time of all
other nodes. In another word, the Master node has the responsibility to generate the
“heartbeat” of the network and then control the message transmissions over the
network. For example, it ill has the responsibility to check the status of all Slave nodes
and deal with any node-failure. Moreover, it decides which Slaves must transmit in each
tick interval if the TDMA round is extended across multiple tick intervals (as in Figure
9-6). In this case, the Master will use only one data byte for “Group ID” to which
particular messages are sent. Also, a new Slave node is needed to transmit the Master
data messages. Figure 9-7 illustrates how the TDMA round in the system shown in
Figure 9-5 will look like if TTC-SCCA4 is used.

TDMA round
= Tick interval
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Tick | Ackl | Ack2 | Ack3 | Ack4 Tick | Ackl | Ack2 | Ack3 | Ack4 T
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Master Slave
Tick Tick

A 4

Figure9-7: A simple TDMA configuration for afour-node system using TTC-SCC4 scheduler.



Chapter 9: TTC-SCC scheduler implementations 201

It can be clearly noticed from the figure that the number of Slaves has increased by one.
Thisimplies that the TDMA round in this scheduler is calculated as:

Equation 9-6

Where N is the number of original Slaves, mis the maximum number of Slaves replying
per tick and T isthetick interval.

However, this simple modification to the previous S-C schedulers allows the Tick
messages to be of short and fixed lengths with the result that jitter caused by CAN bit
stuffing would be minimised. Remember that, in any S-C scheduler, Tick messages are
sent from the Master at each tick interval to drive the Slave schedulers. If such
messages have variable lengths, this is likely to introduce jitter in the timing of tasks

running in the Slave nodes (see Appendix E).

Since this scheduler is built on the TTC-SCC3, it provides the same features as those
outlined in 9.5.2 For example, a direct communication between any two Slaves is

permitted.

On the other hand, to implement such a scheduler in practice, an additional
microcontroller will be required as the number of nodes in the system has increased by

one. Thisis adisadvantage of such a scheduling protocol.

9.7 TTC-SCC5 scheduling protocol

9.7.1 Introduction

Despite the fact that the TTC-SCC4 scheduler helps to substantially reduce the jitter in
the Tick messages, the system requires — at least — one additional processor to generate
the timing beat of the network. In order to maintain the low levels of jitter without using
additional hardware, the TTC-SCCS5 scheduler has been proposed in this project. This

scheduling protocol is described in this section.
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9.7.2 Overview of the scheduler implementation

In the TTC-SCC5 scheduler, the Master is configured to send out two types of
messages. Tick messages and Data messages. As with the TTC-SCC4 scheduler, the
Tick messages are configured to have “empty” data. This, again, means that these
messages are only used to generate the time-reference for the whole network while
processing no data. After a Tick message is sent out to all Slaves at each tick, the
Master can then send its data in its Data message (see Figure 9-8). The TDMA round in
TTC-SCC5 scheduler is calculated in the same way as in TTC-SCC3 scheduler (i.e.
TDMAS = TDMAS3)

v

TDMA round
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Master | Master Master | Master Master | Master | ----
Tick | Data Ackl | Ack2 [ Ack3 Tick | Data Ack4 | Ack5 | Ack6 Tick | Data R
T <«— Tickinteval ——— Tlme'

Master Slave
Tick Tick

Figure 9-8: A TDMA configuration for a seven-node system using TTC-SCC5 scheduler.

Note that the TTC-SCCS5 design is adapted mainly fromthe TTC-SCC3 and TTC-SCC4
schedulers. Therefore, using this scheduler, jitter in the Slave ticks can be significantly
reduced. Moreover, messages sent by a given Slave will be broadcasted to al other
Slaves, allowing a direct communication (and hence reduced message transmission

times) between the Slaves.

To implement this scheduler practically, the Master node will have the following CAN
message Objects (CMOs):

- ‘CMO O which is configured to send Master “Tick” messages.
- ‘CMO 1’ which is configured to send Master “Data’ messages.

- ‘CMO 2 — CMO N+1" which are configured to receive “Ack” messages from N

Slaves.

In the Slave nodes, the same configurations are to be considered. However, in Slave,
‘CMO 0 is configured to receive “Tick” messages from Master, ‘CMO 1’ is configured
to receive “Data’ messages from Master, ‘CMO 2 is configured to send “Ack”
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messages to all nodes, and ‘CMO 3 — CMO N+1' are configured to receive “Ack”
messages from the other Slaves. Note that — as with TTC-SCC3 and TTC-SCC4 — each
Slave node in the network is assigned a unigue CMO for its Ack message in order to
achieve a Slave-to-Slave communication. Also note that, when this scheduler is used,
the Master Data messages and the Slaves Ack messages should not trigger CAN
interrupts.

9.8 Conclusions

This chapter reviewed a selective set of implementation classes for TTC-SCC
scheduling  protocol for multi-processor embedded designs. The various
implementations were based on the architecture described in Section 8.4.3.2 which was
originally developed to provide a predictable software platform for real-time embedded
applications.

It has been made clear that the majority of the TTC-SCC implementations discussed in
this chapter were taken from previous studies carried out in the ESL research group.
Such implementations included: TTC-SCC1, TTC-SCC2, TTC-SCC3 and TTC-SCC4
schedulers. Subsequently, one new implementation was presented which suggests a
useful addition to the range of TTC-SCC schedulers. Such an implementation was
called TTC-SCC5 scheduler. The key feature of this scheduler is that it provides a
reduced jitter characteristic in the message transmission and maintains high resource
efficiency, having the network timing controlled by one of the existing system nodes
without the need for additional hardware as with TTC-SCC4 alternative.

It is essential to highlight that, although jitter due to bit stuffing in CAN hardware can
be minimised by altering the scheduler architecture (as discussed in this chapter), there
can be other possible ways to deal with such a problem. One suggested solution is to
pre-process the transmitted data so asto ensure that CAN bit stuffing mechanism would
always have the minimum effect (Nahas and Pont, 2005; Nahas et al., submitted). For
further reference, Appendix E reviews a wide range of data coding techniques
developed in this project to reduce the impact of CAN bit stuffing on task jitter in S-C

scheduling protocols.
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Like Chapter 5 in the thesis, this chapter provides the basis for the work presented in
Chapter 10 and 11, in which the reviewed TTC-SCC implementations form the testbeds
for assessing the effectiveness of the testing technique introduced in this project for
multi-processor designs.



Chapter 10
Scheduler Test Cases (STCs) for TTC-SCC schedulers

10.1 Introduction

Because of the complexity of multi-processor embedded systems, developing test cases
for such systems is a nontrivial process. The work presented in this thesis attempts to
address this problem (in part) by considering the combination of TTC scheduling
algorithms and S-C scheduling protocols implemented on CAN networks. In more
detail, the study explores the impact of using particular implementations of TTC-SCC
scheduling protocol on the overall timing behaviour of multi-processor embedded

designs by means of scheduler test cases.

Based on the approach discussed for single-processor systems, this chapter begins to
explore ways in which the STC methodology can be extended to assess the behaviour of
multi-processor embedded systems which are based on TTC-SCC scheduler. In
particular, a set of proposed “scheduler test cases’” (STCs) is described in this chapter
with the aim to help in distinguishing the behaviour of the selective TTC-SCC scheduler
implementations discussed in Chapter 9%°.

10.2 The Scheduler Test Cases (STCs) for TTC-SCC protocol

10.2.1 Introduction

This section describes the various STCs developed in this study for TTC-SCC
scheduling protocol. The total number of STCs described here is five. More specifically,
STC A, STC B, STC C and STC D are intended to test the system behaviour under

% The work described in this chapter has been adapted from the study presented in the author’s
publication [2] listed in page xvi.
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normal operating conditions, where STC E was intended to test the system behaviour

during the occurrence of errors.

Asin the single-processor systems, each of the STCs presented was intended to address
aparticular problem that have the potential to degrade the overall system predictability.

Note that in all test cases presented here, it is assumed that the system consists of one
Master and three Slaves connected via CAN fieldbus (Figure 10-1). The Master Tick
message is used to drive the local time of each of the three Slaves (as discussed in
Section 8.4.3.2).

e

Master

CAN bus

y Tick message i|

\4 Y

Slave 1 Slave 2 Slave 3

Figure 10-1: Hardwar e ar chitectur e of the multi-processor system used for the STCs.

10.2.2 STC A (jitter behaviour)

As indicated in Chapter 3, a particular focus of this study is on the impact of
implementation decisions on system predictability which can often be measured by the
levels of jitter. Generally, jitter in multi-processor embedded systems can arise from
different sources, such as delay in network caused by a route consisting of several hops
(Baruah et al., 1999), network protocol (e.g. Ethernet, CAN) (Tindell and Burns, 1994),

and the variations in message transmission times (Nolte et al., 2002).

Remember that in the case of single-processor architectures, the jitter was measured at
the task level. In contrast, people working on multi-processor architectures are often
concerned with the jitter caused by message transmission. Such a jitter can be defined as
the variation in the time taken to transmit a message from one node to another. In many
applications, exchanged data messages are used by the networked processors to adjust
their timing base according to one time reference (Fuhrer et al., 2000). In situations
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where exchanged messages have highly-variable transmission durations (i.e. jitter), this

can result in unpredictable operation of the whole network.

Particularly, in TTC-SCC systems, the timing of the individual nodes is synchronised
by sharing a single clock source between the various processor boards in the system:
this clock is distributed through the Master Tick message (Pont, 2001). If the Master
Tick message varies in length, then the Slave scheduler ticks and, hence, the execution
time of tasks running on the Slave will suffer from jitter. This can be further illustrated
in Figure 10-2.

T T+ T T+ T Slave Ticks (with jitter)

A
T | T i Slave Ticks (ideal)

Tick Tick Tick
message message message

T T T T T Master Tick

Figure 10-2: Impact of Tick message variation on the timing of Slaveticksin TTC-SCC systems.

\ 4

Time

In a CAN bus, the bit-stuffing mechanism (introduced in Section 8.3.2.6) inserts an
additional bit of opposite polarity when five consecutive bits with the same polarity are
transmitted on the bus (e.g. 11111 or 00000). This is aimed at providing edges to allow
receivers to re-synchronise their internal timing. Whilst providing an effective
mechanism for clock synchronisation in the CAN hardware, such a bit-stuffing
mechanism causes the frame length to become (in part) a complex function of the data
contents.

It is useful to understand the level of message variation that this process may induce.
When using (for example) 8-byte data and standard CAN identifiers, the minimum
message length will be 111 bits (without bit-stuffing) and the maximum message length
will be 135 bits (with the worst-case level of bit-suffing) (Nolte et al., 2002). This
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translates to a possible variation of approximately 22% of the total message length. For
example, at the maximum CAN baud rate (1 Mbps), the variation in the message length
will be 24 ps?’. Once transmission starts, a CAN message cannot be interrupted, and the
variation in transmission times therefore has the potential to have a significant impact
on the predictability of systems using CAN protocol.

Overall, obtaining full synchronisation between the communicating nodes in a multi-
processor embedded design is a key factor to achieve predictability. Therefore, STC A
is developed to assess the jitter levels in the relative timing of Master and Slave ticks in
a TTC-SCC network. As in the single-processor study, results from this STC are
empirical.

In STC A, the system has one task (Mast er _Task_A) running on the Master node and
a corresponding task (Sl avel _Task_A) running on Slave 1 node. Given that
“Mast er _Task_A" sends random data to “Sl avel_Task_A" every time it is called,
jitter test assesses the variation in the time delay between these two communicating
tasks. Please recall that all other Slaves will receive Master data at the same instant over
the CAN link. Also note that the overheads of the Master and the Slave schedulers —
which are based on TTC-Dispatch (5.4) — do not introduce any jitter and, hence, the
jitter observed is only caused by the communication protocol (Nahas et al., 2004) .

10.2.3 STC B (Master-to-Slave message latency)

STC B is developed to assess the communication latency between the Master node and
any Slave node in the network. Since such message latency times can be described
mathematically, the output results from this STC are in the form of mathematical
equations. It is worth highlighting that as the complexity of the scheduling algorithm —

2" Note that when the baudrate is below 1 Mbps, jitter levels will be seen higher.

% |n the implementation discussed in (Nahas et al., 2004), the ISR Update function which is called prior
to the tasks is set to have a fixed duration, therefore, no jitter is expected to arise from the “scheduler”
code.
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under test — increases, the use of theoretical (as well as empirical) results can help to

provide more information about the behaviour of the system.

In this test case, the message latency between the Master and Slaves in all TTC-SCC
protocols is calculated. Assume that a given Slave node needs to respond to a switch-
press activity occurred on the Master board by performing some activities. If the switch-
press takes place at arbitrary instants, then STC B evaluates the best-case (minimum)
and the worst-case (maximum) message transmission times between the Master and the
Slave node.

10.2.4 STC C (Slave-to-Master message latency)

STC C is developed to assess the communication latency between any Slave node and
the Master node in the network. Results from this STC are also in the form of
mathematical equations.

In thistest case, the message latency between any Slave and the Master inall TTC-SCC
protocols is calculated. Assume that the Master node needs to respond to a switch-press
activity occurred on a given Slave board by performing some activities. If the switch-
press takes place at arbitrary instants, then STC C evaluates the best-case (minimum)
and the worst-case (maximum) message transmission times between the Slave and the
Master node.

10.2.5 STC D (Slave-to-Slave message latency)

STC D is developed to assess the communication latency between Slave ‘X’ and Slave
‘Y’ in the network. Results from this STC are also in the form of mathematical
equations.

In this test case, the message latency between any two Slaves in all TTC-SCC protocols
is calculated. Assume that the Slave 'Y’ needs to respond to a switch-press activity
occurred on Slave ‘X’ board by performing some activities. If the switch-press takes
place at arbitrary instants, then STC D evaluates the best-case (minimum) and the
worgt-case (maximum) message transmission times between Slave ‘X’ and Slave'Y’.
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10.2.6 STC E (node-failure detection time)

Having considered that STCs B, C and D assess the behaviour of the TTC-SCC system
under normal conditions, STC E is developed to assess the behaviour of the system
when an error takes place. As discussed in Chapter 8, node failure is a common error in
communication networks that might, in turn, reduce the overall reliability and
predictability of the system. Node failure describes a situation where one or more nodes
do not respond to messages sent from other nodes due to hardware / software error

occurred in the receiving node.

The STC E is developed to assess the behaviour of a TTC-SCC protocol when one of
the Slaves becomes temporarily out of order. Thetest case evaluates the worst-case time
taken by the network-Master to detect the failure and hence begin to handle it. Results
from this STC are aso in the form of mathematical equations.

10.2.7 Memory and network bandwidth requirements

As previously done for single-processor schedulers, the memory requirements were also
reported here as a means for measuring the complexity of the various TTC-SCC
schedulers.

Moreover, in communication network, the utilisation of the available network
bandwidth is a major factor that affects network efficiency. Therefore, the bandwidth
utilisation in each TTC-SCC scheduling protocol was also reported.

Please note that, in the single-processor study, CPU overhead and average power
consumption in each TTC scheduler were measured and reported. In the multi-processor
study, it has been felt that such measurements would have no meaning and therefore no

CPU or power results were reported.

10.3 Conclusions

This chapter began to explore the applicability of the STC technique developed for
single-processor systems in wider embedded architectures. The chapter proposed a set
of Scheduler Test Cases (STCs) to help evaluate multi-processor embedded systems
when the TTC-SCC scheduler implementations reviewed in Chapter 9 are employed.
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The discussions emphasised that the aim with these STCs was to assess the timing
behaviour of CAN-based networks implemented using TTC-SCC scheduling protocols.
The criteria considered in such an evaluation process included: the levels of jitter in the
relative timing of Master and Slave ticks, message latencies between any two

communicating nodes, and node-failure detection time.

It is important to note that such criteria were selected as key factors which can
somewhat help to assess the predictability of the system as a whole. For example, in S-
C networks, tasks in the receiving nodes are triggered by the arrival of messages sent
from the Master node. Assessing the jitter levels in the transmission time of such
messages allows predicting the time at which tasks in the receivers will execute and
whether or not they can meet their timing constraints. Also testing the ability of the
network to detect and hence deal with a node failure within a short time bound can help
assess the level of predictability in the whole system.

The results obtained from the practical application of the STCs described in this chapter
are provided in the next chapter (Chapter 11).



Chapter 11
Assessing the behaviour of TTC-SCC scheduler

implementations

11.1 Introduction

As in Chapter 7, this chapter provides the output results from the TTC-SCC
implementations (discussed in Chapter 9) when the STCs (described in Chapter 10) are
employed. The aim of this chapter is to explore the effectiveness of the extended STC
technique for multi-processor systems in assessing (and distinguishing) the behaviour of

the various implementation classes for TTC-SCC scheduler.

The chapter also begins by outlining the methodology used to obtain the results
presented |ater in the chapter®.

11.2 Methodology

11.2.1 Introduction

It is worth highlighting that the key results in the multi-processor study in this thesis are
presented using mathematical equations. Such equations were intended to provide a
description of the behaviour of each TTC-SCC scheduler considered. Using
mathematical approach, as previously noted, was found more meaningful in this

particular study than using only empirical approaches (as in the single-processor sudy).

This section describes the methodology used to obtain both the experimental and

theoretical results.

% The work described in this chapter has been adapted from the study presented in the author’s
publication [2] listed in page xvi.
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11.2.2 Hardware and software setup

The experimental measurements in this study were conducted using Phytec boards
supporting Infineon C167 microcontrollers. The C167 is a 16-bit microcontroller with a
20 MHz crystal oscillator. The C167 board has additional on-chip support for CAN
protocol. The network nodes (one Master and three Slaves) were connected using a
twisted-pair CAN link. The CAN baudrate used was 1 Mbps, and 8-byte “Tick”
messages were used, with one byte reserved for the Slave 1D, while the remaining data
bytes contained random values (see Section 8.4.3). Thetick interval used was 4 ms.

Note that Pont (2001) provided a complete set of codes required to implement the TTC-
SCC protocol on 8051 processor hardware. For the 16-bit system considered here, the
8051 design was ported to the C16x family. The Keil C166 compiler was used (Keil
Software, 1998).

11.2.3 Jitter tests

To provide an indication of the timing behaviour of each system, two sets of parameters
were measured: the first one was corresponding to transmission times between
distributed nodes, and the second one was corresponding to the timing jitter.

To present the transmission periods between the Master and Slave nodes, three values

were recorded:

- Worst-case transmission time (WCTT): represented by the longest delay
between the execution of Task A on the Master node and the execution of Task A

on the Slave node.

- Best-case transmission time (BCTT): represented by the shortest delay between
the execution of Task A on the Master node and the execution of Task A on the

Slave node.

- Average transmission time (AVTT): represented by the average delay between
the execution of Task A on the Master node and the execution of Task A on the

Slave node.
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As mentioned previously, jitter in multi-processor systems can be represented by the
variation in time between an event in the Master and its corresponding event in the

Slave. To assessthe jitter levels, two values were recorded:

- Difference (absolute) jitter: obtained by subtracting the best-case (minimum)
transmission time from the worst-case (maximum) transmission time obtained

from the measurements in the sample set.

- Average jitter: represented by the standard deviation in the measure of average

message transmission time.

Again, note that there can be many other measures to represent the levels of task jitter,

but these measures were felt to be appropriate for this study.

To make transmission delay measurements experimentally, a pin on the Master node
was set high (for a short period) at the start of the “Mast er _Task_A”. Another pin on
the Slave (initially high) was set low at the start of the “Sl avel_Task_A". The signals
obtained from these two pins were then AND-ed (using a 74LS08N chip: Texas
Instruments, 1988), to give a pulse stream with widths that represent the transmission
delays (Figure 11-1).

From Master
Output pulses
— «— — -« —> «—
1% transmission 2" transmission 3" transmission
period period period

Figure 11-1: The method used to measur e the transmission timein TTC-SCC schedulers.

These widths were measured using a National Instruments data acquisition card ‘NI
PCI-6035E’ (National Instruments, 2006), used in conjunction with appropriate
software LabVIEW 7.1 (LabVIEW, 2007). In each study, 5000 consecutive pulse
widths were measured and recorded: this, again, was found sufficient for the purpose of
this study.
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11.2.4 Message latency calculations

By going back to the STCs description in Chapter 10, the transmission delays must be
calculated between the time at which an activity takes place in one node and the
response to this activity in another node. This means that precise results can be obtained
if the delays are calculated between the time when data is generated in the sending node
and the time when the receiving node begins to handle this data.

Generally, if tasks have long execution durations, the data can be generated at any point
in time during the tick interval. In order to smplify the calculations, it has been
assumed — throughout this study — that all tasks have reasonably short execution times,
thus the data is always generated close to the start of tick interval. Moreover, it has been
assumed that the scheduler overhead time on Master and Slaves are very small and can
hence be neglected. Based on these assumptions, the message latencies will be
calculated between the start of the tick in which data is generated and the tick in which
data is received.

11.2.5 Node-failure detection time calculation

In this study, the error mode in the TTC-SCC scheduler has been represented by node
failure. Such an error occurs when a Slave node fails to respond to messages sent from
the Master or other Slaves in the network.

To assess the behaviour of the scheduler in the event of such an error, it has been
decided to calculate the worst-case time the Master processor would take to detect the
failure and begin to react to it (see STC E). To obtain worst-case scenario, it was
assumed that the Slave fails immediately after it has sent its Ack message to the Master.
The worst-case node-failure detection time will hence be calculated between this failure
time and the start of the tick in which the Master checks the status of this Slave.

11.2.6 Network utilisation tests

Network (i.e. bandwidth) utilisation in each protocol is also reported. The network
utilisation values are represented mathematically as functions of the lengths of the
various messages exchanged in the network (assuming 1 Mbps CAN speed) and the
scheduler tick interval. Note that network utilisation in each scheduler implementation
was presented as the average bandwidth per tick interval.
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11.2.7 Memory test
To reflect the scheduler complexity, the CODE and DATA memory values required to

implement each of the described scheduling protocol were recorded. The experimental
methodology described in Section 7.2.5 to obtain memory requirement results was again
used here.

11.3 Results

11.3.1 Applying STC to the TTC-SCC1 scheduler
This section presents the output results from the TTC-SCC1 scheduler.

11.3.1.1 Jitter

This section presents the empirical results obtained from the STC A (jitter test)
implemented with the TTC-SCC1 scheduling protocol.

Table 11-1: Task jitter from the TTC-SCC1 scheduler (all valuesin ps).

us
BCTT 162.9
WCTT 173
AVTT 166.3
Diff. Jitter 10.1
Avg. Jitter 15

The table shows that the difference and average jitter obtained from the TTC-SCC1
scheduler were 10 ps and 1.5 s, respectively. This jitter was due to high variation in
Tick message lengths: such a variation was caused by the variation in the number of bits
stuffed by the CAN hardware in random data bytes. Remember that transmission times
here were measured between the Master’s task and Slave’'s task (not between the ticks).
However, since Master and Slave schedulers did not vary in time, the jitter observed
was due to CAN bit-stuffing only.

The jitter values presented are seen significant (as will be shown later). Remember that
the CAN baudrate used in this study was set to its maximum value which is 1 Mbps. If
the network is set to run at lower speeds, then such jitter levels would increase, with

having more impact on the timing performance.
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11.3.1.2 Message latencies

This section presents the results obtained from the STC B, STC C and STC D
implemented with the TTC-SCC1 scheduling protocol.

Given that M is the Master Tick message length, T is the tick interval, TDMAL is the
Time Division Multiple Access round and N is the number of Slaves, the message
latencies between any two nodes in the network are calculated as follows.

STC B: Master-to-Slave message latency

In the best-case scenario, the data to be transmitted from the Master to a Slave a a
given tick must be ready at the start of the tick interval and, therefore, it has already
been generated in the task(s) executed within the preceding tick interval. The Master
will hence be able to send this data with the Tick message due to transmit in the current
tick. In contrast, in the worst-case scenario, the Master decides to send data to a given

Slave straight after it has sent Tick message to that Slave.

Figure 11-2 shows an example where the Master node wants to communicate with S2
(i.e. Slave number 2). The best-case transmission process is illustrated using the “blue”

colour while the worst-case process is illustrated using the “red” colour.

< TDMA >
Send data Send data
Datain__ Data in )
Tick Tick Tick Tick Tick
to to to to to | ..
S1 S2 S3 s1 S2
Master
T M Time
Master i‘ ' >
Tick TDVA M
Ack Ack Ack Ack Ack
from from from from from _____
S1 S2 S3
T L * Slave
Data out Data out Time

Slave
Tick

Figure 11-2: Master-to-Slave message latency in TTC-SCCL1.

The figure clearly shows that in the best-case scenario, the data — generated in the first
tick — can be sent to S2 at the beginning of the second tick (where this tick is allocated
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to exchange data with S2). S2 can then extract the data on arrival of the Master Tick
message. | n the worst-case scenario, the Master needs to wait until the tick allocated for
S2 —in the next TDMA round — arrives during which it can send a Tick message with
data alocated for S2. Remember that Slave ticks are always delayed by M, since Slave
scheduler istriggered by the arrival of the Master Tick message.

The equations for the best- and the worst-case message latencies between the Master
and a given Slave are presented in the following table. Note that these equations are
simply derived from the graphical representation illustrated in Figure 11-2.

Table 11-2: Master-to-Slave latency equationsin TTC-SCC1.

Best-case latency | Worst-case latency
Master-to-Slave latency | T+ M TDMA1 + M

STC C: Slave-to-Master message latency

Based on the explanation provided for STC B, the best- and the worst-case message
transmissions can be derived using Figure 11-3. Note that, in this case, athough S2
replies its Ack message to the Master in the second tick interval (straight after receiving
the Tick message), the Master will not check the contents of S2 Ack message until the
start of the next tick (just before sending datato S3).

< TDMA >
end data 4 end data
Data in Data in
Ack Ack Ack Ack Ack
from from from from from |
S1 S2 S3 S1 S2
»
A< T > Slave
<> Time
Slave M
Tick [« TDMA >i< T >
. . M
Tick Tick Tick Tick Tick
to to to to to W ____
S1 S2 S3 S1 S2
»
¢ * Master
Master Data out Data out Time

Tick
Figure 11-3: Slave-to-M aster message latency in TTC-SCCL.
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Using the graphical representation illustrated in Figure 11-3, the equations for the best-
and the worst-case message latencies between a given Slave and the Master are
presented in the following table.

Table 11-3: Slave-to-Master latency equationsin TTC-SCC1.

Best-case latency | Worst-case latency
Slave-to-Master latency | 2T —M TDMAl1+ T-M

STC D: Slave-to-Slave message latency

In the Slave-to-Slave communication, the situation is more complicated. To be able to
work out the message latency between any two Slaves in the TTC-SCC1 network, the
shortest distance between their corresponding tick intervals (i.e. the tick intervals in
which Slaves can send their “Ack” messages) must be calculated.

Given that X is the transmitting Slave and Y is the receiving Slave, the distance Dxy
between “Ack-X" and “Ack-Y” is calculated as follows:

D,y =((Y - X)mod(N))T

Equation 11-1

For example, consider the example shown in Figure 9-1. The distance between Ack-1
and Ack-3, where X = 1and Y = 3, iscalculated as: ((3-1) mod (3)) T= (2mod (3)) T
= 2T.

In contrast, the distance between Ack-3 and Ack-1, where X = 3 and Y = 1, is calculated
as. ((1-3) mod (3)) T = (-2mod (3)) T = T. Note that the message latency between any
two communicating Slaves is calculated as a function of Dxy. This is further illustrated
in Figure 11-4 below.



Chapter 11: Assessing the behaviour of TTC-SCC scheduler implementations 220
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Figure 11-4: Save-to-Slave message latency in TTC-SCCL.

The figure illustrates the communication process between S1 and S3 in the TTC-SCC1
scheduler. In the best-case scenario (blue colour), S1 sends the data (which was
generated in the preceding tick interval) with its Ack-1 message straight after the Master
Tick message is received. The Master will check the contents of Ack-1 message in the
following tick before it sends a Tick message addresses S2. The data can then be
completely processed and placed in the corresponding CAN data registers for
transmission with the following Tick message intended for S3. The diagram shows that
this process takes time equals to 2T (the distance between Ack-1 and Ack-3) plus one
additional tick interval.

In the worst-case scenario (red colour), the data is generated in S1 after it has already
sent its Ack-1 to the Master. This means that S1 can only send its data after a full
TDMA round. This results in increasing the message latency between S1 and S3 to be
equal to TDMAL1 plus the distance between Ack-1 and Ack-3. Note that the process
shown in Figure 11-4 presents the communication between any two Slaves when Dxy is
larger than T (i.e. Ack messages for the communicating Slaves are not transmitted in
consecutive tick intervals). When Dxy is equal to T, then the communication process in
the described TTC-SCC1 becomes more complicated. This is simply because when the

Master receives data from S1 — as an example — it cannot send it immediately to S2
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since the data intended for S2 has already been configured and placed in the CAN data
registers. This means that the Master always needs to wait for an extra TDMA round so
it can complete processing the data received from S1 and configure the Tick data

message.

The equations for the best- and the worst-case message latencies between the Master

and a give Slave are presented in the following table.

Table 11-4: Slave-to-Slave latency equationsin TTC-SCC1.

Best-case latency | Worst-case latency
Dyy>T | Dxy+ T Dxy + TDMA1
Dxy=T| 2T+ TDMA1 T+ 2TDMA1

Slave-to-Slave latency

Remember that in TTC-SCC1, TDMAL = NT. By substituting this value in the equations
shown, the results can be simplified as follows:

Table 11-5: Slave-to-Slave latency equationsin TTC-SCC1 (simplified for mula).

Best-case latency | Worst-case latency
Dxy>T | Dxy+ T Dxy+ NT
Dxy=T| (N+2)T (2N+1)T

Slave-to-Slave latency

Note that when the number of Slaves N significantly increases, the message latencies
between the communicating Slaves will also increase by significant factors (except in
the best-case scenario when Dxy >T). This implies that the described TTC-SCC1 may
not be the appropriate solution for multi-processor designs with a large number of Slave
nodes connected up in the network.

11.3.1.3 Node-failure detection time

This section presents the results obtained from the STC E implemented with the TTC-
SCC1 scheduling protocol.
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Figure 11-5: Failure detection timein TTC-SCC1.

In TTC-SCC1, the Master node has to wait for a complete TDMA round before the
status of all the Slaves can be checked. Using Figure 11-5, the worst-case failure
detection time for the TTC-SCC1 scheduler is calculated as.

Worst-case failure detection time= TDMAL1+ T—-M = (N+1) T—-M
Equation 11-2

In the example shown in Figure 11-5, the Master would take four Tick intervals (i.e.
TDMA plus one additional tick) to detect a failure on S1. The situation would become

worse if the number of Slave nodes N increases.

11.3.1.4 Network utilisation and memory requirements

Assume that all Ack message lengths are equal, and each one is represented by S then
the network utilisation in TTC-SCC1 can be calculated as follows:

NM+NS NM+NS M+S
TDMAL NT T

Network utilisation =
Equation 11-3

Remember that the number of Tick messages in each TDMA round was equal to the
number of Slaves. If the length of the Tick message is assumed equal to the length of
Ack message, then Equation 11-3 can be simplified as:

Network utilisation = ZTM
Equation 11-4

Table 11-6 summarises the memory required to implement the TTC-SCC1 scheduler.



Chapter 11: Assessing the behaviour of TTC-SCC scheduler implementations 223

Table 11-6: Memory requirements (ROM and RAM) for the TTC-SCC1 scheduler.

ROM requirements | RAM requirements
(Bytes) (Bytes)
Master 1666 30
Save 1590 108

11.3.2 Applying STC to the TTC-SCC2 scheduler
This section presents the output results from the TTC-SCC2 scheduler.

11.3.21 Jitter

This section presents the empirical results obtained from the STC A (jitter test)
implemented with the TTC-SCC2 scheduling protocol.

Table 11-7: Task jitter from the TTC-SCC2 scheduler (all valuesin ps).

us
BCTT 163
WCTT 173.1
AVTT 166

Diff. Jitter | 10.1
Avg. Jitter | 1.4

The jitter levelsin this scheduler implementation are seen similar to those obtained from
TTC-SCC1 scheduler. This is again due to CAN bit-stuffing impact on the Tick
messages which contained random data set.

11.3.2.2 Message latencies

This section presents the results obtained from the STC B, STC C and STC D
implemented with the TTC-SCC2 scheduling protocol.

Calculating message latencies in TTC-SCC2 scheduler is not straightforward. This is
because the Master communicates with Slaves in a random way depending on the

specification of the system for which the scheduler is used.

To get on with the calculations, it is important to define two parameters:
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- The distance between successive ticks allocated for a given Slave: this is referred

to as Dxx.

- The shortest distance between Ack messages from any two communicating Slaves:
thisisreferred to as Dxy (asin TTC-SCC1).

Given that M isthe Master Tick message length, T is thetick interval and TDMAZ isthe
Time Division Multiple Access round, the message latencies between any two nodes in
the network are calculated as follows.

STC B: Master-to-Slave message latency

In the best-case scenario, the behavior is exactly the same as observed with TTC-SCC1
scheduler. However, in the worst-case scenario, after data is generated in a given tick,
the Master needs to wait until the following tick in which it can communicate with the
target Slave. This delay does not have to be as long as the TDMA round: instead, it
depends on Dxx. The value of Dxx must lie between T and TDMA2. For example, if the
Master communicates with the Slave only once in the TDMA round, Dxx will be equal
to TDMA2. In contrag,, if the Slave is allocated adjacent tick intervals to transmit its
Ack message, then Dxx will be equal to T.

Figure 11-6 illustrates the process of Master to Slave 2 communication in the system
shown in Figure 9-4. In the worgt-case scenario, data — which is generated immediately
after the Master sent Tick to S2 — can only be sent to S2 in the next tick allocated for
this Slave. In the example shown, this delay is equal to 4T. For S3, where only one tick
in the whole TDMA round is allocated, Dxx will be equal to TDMAZ2, and so on.
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Figure 11-6: Master-to-Slave message latency in TTC-SCCL.

A summary of the results is provided in the following table.

Table 11-8: Master-to-Slave latency equationsin TTC-SCC2.

Best-case latency | Worst-case latency
Master-to-Slave latency | T+ M Dxx+ M

Based on the discussion above, the worst-case Master-to-Slave latency will have the

minimum value of T + M and the maximum value of TDMAZ2 + M.

STC C: Slave-to-Master message latency

Again, the behavior here is similar to that observed in the TTC-SCC1 scheduler. The
only difference — as in Master-to-Slave communication — is that the TDMA2 term is
replaced by Dxx in the equations. A summary of the results is provided in the following
table. Remember that Dxx can have a value between T and TDMA.

Table 11-9: Slave-to-Master latency equationsin TTC-SCC2.

Best-case latency | Worst-case latency
Slave-to-Master latency | 2T —M Dyx+ T—M

Similarly, the worgt-case Slave-to-Master latency will have the minimum value of 2T —
M and the maximum value of TDMA2 + T — M.
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STC D: Slave-to-Slave message latency

The situation here is slightly more complicated. Since the communication between
nodes in this scheduler has a random pattern, Dxy cannot be calculated as a function of
Xand Y (aswith TTC-SCC1). For example, the distance between the Slave 1 and Slave
3 cannot be calculated as (3-1)T.

In order to present a general formula for Slave-to-Slave message latency, it is important
to know the “current” and the “next” distance between the Ack message of the sending
Slave and the Ack message of the receiving Slave. The “current” distance is denoted by
Dxi vi, while the “next” distance is denoted by Dxg+1) vi+1). FOr example, consider the
communication between S1 and S2 in the system shown in Figure 9-4. For these two
Slaves, Dxi vi = T and Dxg+1) vi+1) = 3T. In the same way, considering S1 and S3, Dx; vi =
T and Dxgi+1) vi+1= 4T. Note that the “current” distance must be the shortest distance
between the two communication Slaves and the “next” distance is the one followsiit.

Accordingly, the message latencies between any two Slaves depend of both the
“current” and “next” distances. In the best-case scenario, when data is generated in the
previous tick to the current one, the message latency between S1 and S2 can be
calculated as follows.

Table 11-10: Slave-to-Slave latency equationsin TTC-SCC2 (best-case scenario).

Best-case scenario
Dxivi>T | Dxivi+T
Dxivi=T | Dxivi+py + T

Slave-to-Slave latency

Please note that Dy; v denotes the distance between the Ack message of the sender and
the consecutive Ack message of the receiver, while Dy; v(+1) IS the distance between the
Ack message of the sender and the one after the next Ack message of the receiver.

Likewise, in the worst-case scenario, when data is generated in the current tick after
Ack message is sent, the message latency between S1 and S2 can be calculated as

follows.
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Table 11-11: Slave-to-Slave latency equationsin TTC-SCC2 (wor st-case scenario).

Worst-case scenario

Dx+1 v+ > T | Dxivi+1)
Slave-to-Slave latency

Dx+1 v+ = T | Dxivi+2)

Please note that the best-case scenario here does not mean the shortest message latency,

and the worgt-case scenario does not mean longest message latency.

The figure shows the message latency between S1 and S2 in the example provided in
Figure 9-4, where Dyj i = T and Dxg+1) vi+1) > T. The figure shows that the best-case

scenario produced longer message latency than in the worst-case scenario.
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Figure 11-7: Slave-to-Slave message latency in TTC-SCC2.

11.3.2.3 Node-failure detection time
This section presents the results obtained from the STC E implemented with the TTC-
SCC2 scheduling protocol.
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Figure 11-8: Failure detection timein TTC-SCC2.

In TTC-SCC2, the Master node has to wait until the status of the Slave is next checked.
Using Figure 11-8, the worst-case failure detection time for the TTC-SCC2 scheduler is
calculated as.

Worst-case failure detectiontime=Dxx + T—M
Equation 11-5

In the example shown in Figure 11-8, the Master would take approximately three Tick
intervals to detect a failure on S1. Failure detection time for agiven node in TTC-SCC2
scheduler would depend on the number of Slaves in the network, length of the TDMA
round, and the number of ticks — within the TDMA round — used to communicate with
that Slave. In some case, where (for example) TDMAZ is very long and the Slave is only
checked once per TDMA round, detecting failure in such a Slave can be too long. This
can have an important impact on the predictability of many networks.

11.3.2.4 Network utilisation and memory requirements

Assume that all Ack message lengths are equal and, where any Ack message is
represented by S k is the total number of ticks in the TDMA round, M is the Master
Tick message length, then the network utilisation in TTC-SCC2 can be calculated as

follows:

k(M+S)_M+s
KT T

Network utilisation =

Equation 11-6

If the length of the Tick message is assumed equal to the length of Ack message, then
Equation 11-6 can be simplified as:

Network utilisation = ZTM
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Equation 11-7

Note that the network utilisation here is exactly similar to that with TTC-SCC1
scheduler. This is because, although the TDMA round is configured differently, each
tick interval can still not handle more than two messages. Master “Tick” and Slave
“Ack”.

Table 11-12 summarises the memory required to implement the TTC-SCC2 scheduler.

Table 11-12: Memory requirements (ROM and RAM) for the TTC-SCC2 scheduler.

ROM requirements | RAM requirements
(Bytes) (Bytes)
Master 1710 31
Slave 1590 108

11.3.3 Applying STC to the TTC-SCC3 scheduler
This section presents the output results from the TTC-SCC3 scheduler.

11.3.3.1 Jitter

This section presents the empirical results obtained from the STC A (jitter test)
implemented with the TTC-SCC3 scheduling protocol.

Table 11-13: Task jitter from the TTC-SCC3 scheduler (all valuesin ps).

us
BCTT 162.9
WCTT 172.9
AVTT 166.2
Diff. Jitter | 10
Avg. Jitter | 1.5

The jitter levelsin this scheduler implementation are seen similar to those obtained from
the previous two schedulers. This is again due to CAN bit-stuffing impact on the Tick
messages which contained random data set.
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11.3.3.2 Message latencies

This section presents the results obtained from the STC B, STC C and STC D
implemented with the TTC-SCC3 scheduling protocol.

Given that M is the Master Tick message length, T is the tick interval, TDMAS3 is the
Time Division Multiple Access round, N is the number of Slaves, and m is the
maximum number of Slaves replying per tick interval, the message latencies between
any two nodes in the network are calculated as follows.

STC B: Master-to-Slave message latency

Basically, the results obtained here are similar to those obtained from the TTC-SCC1
and TTC-SCC2. However, since the TDMA round is shorter in the TTC-SCCS3, this
results is a reduced message latency. A summary of the results is provided in the

following table.

Table 11-14: Master-to-Slave latency equationsin TTC-SCC3.

Best-case latency | Worst-case latency
Master-to-Slave latency | T+ M TDMA3 + M

Please note that in the example given in Figure 9-5 (where TDMA3 = T), the Master-to-
Slave latency is fixed and alwaysequal to T + M.

STC C: Slave-to-Master message latency

Again, the equations for the Slave-to-Master message latencies are similar to those
derived before (in TTC-SCC1 and TTC-SCC2). But, again, the message latencies are
expected to be much shorter in the TTC-SCC3 due to the shorter TDMA round. A
summary of the resultsis provided in the following table.

Table 11-15: Slave-to-Master latency equationsin TTC-SCC3.

Best-case latency | Worst-case latency
Slave-to-Master latency | 2T —M TDMA3+ T—-M
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Also note here that in the example given in Figure 9-5 (where TDMAS3 = T), the Slave-
to-Master latency is fixed and always equal to 2T — M.

STC D: Slave-to-Slave message latency

STC D demonstrates a substantial difference between the behaviour of TTC-SCC3
scheduler and the previous schedulers. Since all Slaves are configured to receive Ack
messages sent from other Slaves, Slave to Slave message latency is substantially
reduced. Thisis further illustrated in Figure 11-9.
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Figure 11-9: Save-to-Slave message latency in TTC-SCC3.

Assume that S1 wants to send data to S2. In the TTC-SCC3 described, Slave-to-Slave
communication can be made directly without going through the Master. More clearly, in
the best-case scenario, data on S1 must be ready to transmit at the start of the tick (i.e.
data has been generated in the previous tick interval). The data will then be sent out in
the Ack-1 message to all nodes. At the beginning of the following tick, S2 (for which
the data is intended) will check the contents of Ack-1 message and hence extract the
requested data for use in that tick. In the worst-case scenario, where S1 decides to send
the data straight after transmitting Ack-1 message, it has to wait for afull TDMA round
(which is equal to T in the simple implementation shown in the figure) before which it
can send the data out with the next Ack-1 message to all Slaves. Once S2 receives the
Ack-1 message, the scheduler on S2 needs only one tick to process the Ack-1 message
and hence extract the requested data.
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Please note that the latencies between Slaves are almost same as the latencies between a

given Slave and the Master. These results are summarised in the following table.

Table 11-16: Slave-to-Slave latency equationsin TTC-SCC3.

Best-case latency | Worst-case latency
Slave-to-Slave latency | 2T TDMA3+ T

Again note that in the example given in Figure 9-5 (where TDMA3 = T), the Slave-to-
Slave latency is fixed and always equal to 2T.

Please note that a large value of m (the number of Slaves replying per tick) would
reguire that the tick interval should be extended to accommodate m Ack messages sent
from m Slaves. This increase in the scheduler tick interval may not be appropriate for
some applications where tick interval has to be extremely short. This means that it is
always a trade-off between message latencies and tick interval.

11.3.3.3 Node-failure detection time

This section presents the results obtained from the STC E implemented with the TTC-
SCC3 scheduling protocol.

The TTC-SCC3 allows the Master node to quickly receive Ack messages from the
Slaves. For example, Figure 11-10 illustrates an example where Slavel suffers a failure
as soon as it has sent its Ack message. It is assumed here that the TDMA round is
extended across two tick intervals. As aresult, the longest possible time for the Master
node to detect afailure on the S1 node is calculated as follows.

Worst-case failure detectiontime = TDMA3+ T—-M = (N'/m+ 1) T—-M
Equation 11-8
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Figure 11-10: Failure detection timein TTC-SCC3.

Remember that TDMA here equals to NT / m. When all Slaves are allowed to reply in
one tick (i.e. N = m), then the worst-case failure detection time becomes equal to 2T —
M. This duration is slightly less than two Tick intervals (which is significantly less than
corresponding time in TTC-SCC1 and TTC-SCC2 for non-trivial networks).

11.3.3.4 Network utilisation and memory requirements

Again, assume that Sis the length of any Ack message, then the network utilisation in
TTC-SCC3 can be calculated as follows:

EEEQM +NS gdeM +NS
emg _emg _M+mS
TDMA3 2NT 6 T
(;77
emg

Network utilisation =

Equation 11-9

Remember that the number of Tick messages in each TDMA round was equal to the
number of tick intervals (which is equal to N/m). If the length of the Tick message is
assumed equal to the length of Ack message, then Equation 11-9 can be simplified as:

. . +
Network utilisation = m

Equation 11-10

Table 11-17 summarises the memory required to implement the TTC-SCC3 scheduler.
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Table 11-17: Memory requirements (ROM and RAM) for the TTC-SCC3 scheduler.

ROM requirements | RAM requirements
(Bytes) (Bytes)
Master 1838 33
Slave 1722 116

11.3.4 Applying STC to the TTC-SCC4 scheduler
This section presents the output results from the TTC-SCC4 scheduler.

11.3.4.1 Jitter

This section presents the empirical results obtained from the STC A (jitter test)
implemented with the TTC-SCC4 scheduling protocol.

Table 11-18: Task jitter from the TTC-SCC4 scheduler (all valuesin ps).

us

BCTT 99.9
WCTT 102
AVTT 101
Diff. Jitter | 2.1
Avg. Jitter | 0.6

By configuring the Master Tick messages to be empty of data, the results show that the
impact of CAN bit stuffing has been significantly reduced. Note that — apart from
removing jitter in the data field — all bits in the control fields of CAN messages have
been selected with care so that they do not themselves introduce any variation in the
number of bit stuffing. Such a bit-value selection approach caused the bit-stuffing jitter
in CAN messages to be removed almost completely. However, the residual 2 s jitter
(which is equal to 2 bit times for the CAN bus at 1 Mbps) has been found to be likely
generated by a clock-drift between the CAN controller and the microcontroller CPU:

thisis further discussed in Appendix F.

11.3.4.2 Message latencies
This section presents the results obtained from the STC B, STC C and STC D
implemented with the TTC-SCC4 scheduling protocol.
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Overall, since the TTC-SCC4 scheduler was developed only to deal with jitter problem
in the TTC-SCC3 scheduler, the results obtained from the STCs A, B and C
implemented with TTC-SCC4 are expected to be similar to those presented in Section
11.3.3.2. Remember that the TDMA round in TTC-SCC4 is equal to (N+1) T/m, where

N isthe original number of Slaves.

However, STC B, C and D assume that Master and Slave should exchange “real” data
between them, therefore the equations for Master-to-Slave and Slave-to-Master shown
for the TTC-SCC3 do not work here anymore. This is again because the Master node in
the TTC-SCC4 scheduler cannot send data to (or respond to data from) Slave nodes. In
order to assess the scheduler behavior when the STCs A, B and C are applied to TTC-
SCC4 (in the same way as with the previous schedulers), it must be assumed here that
the additional Slave node will completely replace the original Master node in processing
data, but will still not be superior to other Slaves. Therefore, Master-to-Slave and Slave-
to-Master message latencies will be identical to Slave-to-Slave message latencies (in the
context discussed here).

STC B: Master-to-Slave message latency

Same as Slave-to-Slave message latency in TTC-SCC3 (see Section 11.3.3.2 ¢)

STC C: Slave-to-Master message latency

Same as Slave-to-Slave message latency in TTC-SCC3 (see Section 11.3.3.2 ¢)

STC D: Slave-to-Slave message latency
Same as Slave-to-Slave message latency in TTC-SCC3 (see Section 11.3.3.2 ¢)

11.3.4.3 Node-failure detection time

This section presents the results obtained from the STC E implemented with the TTC-
SCC4 scheduling protocol.

The results here are very similar to those obtained from the TTC-SCC3 scheduler. The
only difference is that the Tick message here is extremely short, therefore the worg-
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case failure detection time for S1 in the example shown in Figure 11-10 is calculated as

follows.

Worst-case failure detectiontime = TDMA4 + T—Mt = ((N+1)/m+ 1) T—M+¢
Equation 11-11

Where N is the original number of Slaves and M+ is the Master Tick message length:
this is in order to distinguish it from the ordinary Tick message which contains data in
its data field.

11.3.4.4 Network utilisation and memory requirements

Again, assume that S is the length of any Ack message, and My is the length of the
Master Tick message, then the network utilisation in TTC-SCC4 can be calculated as

follows:

N0, +(N+2)s

Network utilisation = €1 2 _M;+mS
6é\|+1d1_ T
c ke
émg

Equation 11-12

Remember that the Tick message is sent from a dedicated Master node, and the number
of Slaves has increased by one: this is where the term (N+1) comes from. The length of
the Master Tick message is assumed shorter than the length of Ack message since it
contains no data, so Scannot be substituted by M+ in the equation.

Table 11-19 summarises the memory required to implement the TTC-SCC4 scheduler.

Table 11-19: Memory requirements (ROM and RAM) for the TTC-SCC4 scheduler.

ROM requirements | RAM requirements
(Bytes) (Bytes)

Master 1768 32

Slave 1722 116
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11.3.5 Applying STC to the TTC-SCC5 scheduler
This section presents the output results from the TTC-SCC5 scheduler.

11.3.5.1 Jitter

This section presents the empirical results obtained from the STC A (jitter test)
implemented with the TTC-SCC5 scheduling protocol.

Table 11-20: Task jitter from the TTC-SCC1 scheduler (all valuesin ps).

us
BCTT 100
WCTT 102.2
AVTT 101.1

Diff. Jitter | 2.2

Avg. Jitter | 0.6

Jitter results obtained from this scheduler were exactly similar to those obtained from
the TTC-SCC4 scheduler. This is obviously due to the same configuration used for the
Master Tick messages (i.e. no data-bits were sent and control-bits were selected
carefully, thusno CAN bit-stuffing was required).

11.3.5.2 Message latencies

This section presents the results obtained from the STC B, STC C and STC D
implemented with the TTC-SCC5 scheduling protocol.

Given that Mt is the Master Tick message length, Mp is the Master Data message
length, T isthe tick interval, TDMAS is the Time Division Multiple Access round, N is
the number of Slaves, and m is the maximum number of Slaves replying per tick
interval, the message latencies between any two nodes in the network are calculated as

follows.
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STC B: Master-to-Slave message latency

Using TTC-SCCS5 protocol, the Master-to-Slave communication process will slightly be
different than that achieved with the TTC-SCC3 and TTC-SCC4. This process is
described here.

By considering the best-case scenario, the data sent from the Master to Slaves is
assumed to be generated in the previous tick. However, this data will be sent with the
Master Data message (not with the Tick message). The recipient Slaves will, therefore,
process the received data in the tick following the tick in which the Master Data
message is received (in the same way the Ack messages are treated by the Master and
by other Slaves: see Figure 11-9). As aresult, the best-case transmission time between
the Master and any Slave will be one tick longer than that achieved with the previous S-

C protocols.

Since the Master node is allowed to transmit its Data message every tick, it does not
have to wait for a full TDMA round before it sends its data in the worst-case scenario:
instead, it is able to send its data in the tick following the tick in which the data is
generated. Therefore, the best- and the worst-case transmission latencies will always be
identical in this scheduler. Please remember that the Slave clocks are always delayed —
according to the Master clock — by the value of Mt which represents the length of the
Master “empty” Tick message. This is why this term appears in the equations. A

summary of the resultsis provided in the following table.

Table 11-21: Master-to-Slave latency equationsin TTC-SCC5.

Best-case latency | Worst-case latency
Master-to-Slave latency | 2T + Mt 2T + M+

The results, in the table, show that the Master-to-Slave message latency in this
scheduler is always fixed and equal to 2T + Mr.
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STC C: Slave-to-Master message latency

The Slave-to-Master communication process is identical to that achieved when the
TTC-SCC3 or TTC-SCC4 is used. Again, remember that the Slave clocks are always
delayed by the value of M. A summary of the resultsis provided in the following table.

Table 11-22: Slave-to-Master latency equationsin TTC-SCC5.

Best-case latency | Worst-case latency
Slave-to-Master latency | 2T — My TDMA5 + T—Mry

STC D: Slave-to-Slave message latency

The latencies between the Slaves in this scheduler are similar to those obtained from the
TTC-SCC3 and the TTC-SCC4. A summary of the results is provided in the following
table.

Table 11-23: Slave-to-Slave latency equationsin TTC-SCCS5.

Best-case latency | Worst-case latency
Slave-to-Slave latency | 2T TDMA5+ T

11.3.5.3 Node-failure detection time

This section presents the results obtained from the STC E implemented with the TTC-
SCC5 scheduling protocol.

Figure 11-11 illustrates an example where S1 suffers a failure as soon as it has sent its
Ack message. If the TDMA round is extended across two tick intervals, the longest
possible time that the Master node takes to detect a failure on the Slave node is
calculated as follows.

Worst-case failure detection time = TDMAS5 + T—M1—Mp = (N/m+ 1) T—Mr—Mp
Equation 11-13
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Figure 11-11: Failure detection timein TTC-SCC5.

As discussed in Section 11.3.3.3, when all Slaves are allowed to reply in one tick (i.e. N
= m), then the worgt-case failure detection time becomes equal to 2T — Mt — Mp.

11.3.5.4 Network utilisation and memory requirements

Again, assume that Sis the length of any Ack message, then the network utilisation in
TTC-SCC5 can be calculated as follows:
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Network utilisation =

Equation 11-14

Remember that in each tick, the Master sends Tick message and Data message. The
Master Tick message is assumed shorter that the Data message, since it contains no
data. If the length of the Master Data message is assumed equal to the length of Ack
message, then Equation 11-14 can be simplified as:

M. +(@+mM,
T

Network utilisation =

Equation 11-15

Table 11-24 summarises the memory required to implement the TTC-SCC5 scheduler.
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Table 11-24: Memory requirements (ROM and RAM) for the TTC-SCC5 scheduler.

ROM requirements | RAM requirements
(Bytes) (Bytes)
Master 1884 34
Slave 1722 116

11.4 Summary of the results

This section summarises the results detailed in the previous sections. The section begins
by summarising and comparing the results which have been obtained empirically. The
jitter column presents the Difference jitter between Master and any Slave in the

network.

Table 11-25: Summary of the empirical results from all TTC-SCC schedulers.

Memory overhead
] Master Slave

Scheduler name ‘zlrt:;r ROM | RAM
ROM (Bytes) | RAM (Bytes) Byto) | Byte)

TTC-SCC1 10.1 1666 30 1590 | 108
TTC-SCC2 10.1 1710 31 1590 108
TTC-SCC3 10 1838 33 1722 | 116
TTC-SCC4 21 1768 32 1722 116
TTC-SCC5 2.2 1884 34 1760 | 118

It is clear from the results that TTC-SCC4 and TTC-SCC5 — where Tick messages
transmitted from the Master had fixed lengths — jitter was reduced by approximately
80% when compared to the TTC-SCC1, TTC-SCC2 and TTC-SCC3 schedulers. Again,
jitter is an important factor which reveals the predictability level of a system. For
memory requirements, it is clear that Slaves required the same memory overheads in
TTC-SCC1 and TTC-SCC2, and in TTC-SCC3 and TTC-SCCA4. This is because the
Slave codes are identical in these cases. In the Master, it can be seen that the memory
overheads increased as the scheduler incorporated more features. For example, TTC-
SCC5 scheduler required the largest amount of memory overheads to be implemented
on the used hardware. However, such increases in memory requirements can still be
seen very small (i.e. approx 12% in the ROM and RAM as compared to the basic TTC-
SCC1 scheduler).
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To provide a practical comparison between the communication behaviour in the various
schedulers considered, a small case study is used. The case study is based on the system
described in Section 11.2.2. In this system, three Slave nodes are connected up in the
network, CAN baudrate is 1 Mbps and the tick interval is 4 ms. Assuming
“standard” CAN messages (i.e. 11-bit identifier), “Tick” and “Ack” messages send
seven “random” data bytes along with the Slave / Group ID byte (except in the Tick-
only message which has no data), then the value of M, Mp and S are equal to 135 ns
(with the worgt-case level of bit-stuffing) and the value for Mris equal to 47 s (without
data bytes and any bit-stuffing). The TTC-SCC schedulers used with this small network

has the following configurations:

Table 11-26: TTC-SCC models used in the case study to allow a comparison between

schedulers.
TDMA
Scheduler name Model Comments
(ms)
TTC-SCC1 Figure9-1 12 TDMA round consists of threeticks.

TDMA round consists of four ticks. SLis
TTC-SCC2 Figure 9-2 16 allocated two ticks to send its Ack message,
while S2 and S3 only send their Ack once.

TDMA =T, m= 3. All Slaves send their Ack

TTC-SCC3 Figure9-5 4 in the same tick

TDMA =T, m= 4. The number of Slaves
TTC-SCC4 Figure 9-7 4 increased by one. Tick message is very short
compared to Saves Ack messages.

TDMA =T, m= 3. Tick messageis aso very
TTC-SCC5 Figure 9-8 4 short compared to Master Data and Slaves
Ack messages.

The results obtained from this case study are summarised in the following table. Note
that the following abbreviations are used: M-S (Master-to-Slave), SM (Slave-to-
Master), S-S (Slave-to-Slave), NFDT (Node-failure detection time), NU (Network
utilisation), BC (Best-case) and WC (Worst-case).
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Table 11-27: Results from the case study used to compare between TTC-SCC schedulers.

M-S1 S1-M S1-82
Scheduler Latencies Latencies Latencies | NFDT (S1) NU
name (ms) (rs) () (ms) (%)

BC wC BC wC | BC | WC
TTC-SCC1 | 4.135 | 12,135 | 7.865 | 15.865 | 20 | 28 15.865 6.75%
TTC-SCC2 | 4135 | 8135 | 7.865 | 11.865 | 20 | 24 11.865 6.75%

TTC-SCC3 | 4135 | 4.135 | 7.865 | 7.865 | 8 8 7.865 13.5%
TTC-SCC4 8 8 8 8 8 8 7.953 14.675%
TTC-SCC5 | 8.047 | 8.047 | 7953 | 7.953 | 8 8 7.818 14.675%

The results in the table clearly show how the STCs helped to distinguish the behaviour
of the various TTC-SCC scheduler implementations evaluated in this study. In more
details, it is clear that the TTC-SCC1 — athough very simple and efficient — can
produce long delays in communication between nodes, especially when the worst-case
scenario is considered, and needs comparatively long time to detect a possible failure in
a Slave node. The TTC-SCC2 provides an improvement to these parameters while
maintaining high network efficiency. The simple case study used here evaluated the
communication latencies between S1 (which is more frequently checked) and S2 which
is checked once in the TDMA round. If both Slaves are checked only once and the
TDMA round increases, the message latencies would be expected to increase
correspondingly, with the result that TTC-SCC2 may not be a good alternative to TTC-
SCC1 for some systems.

Moving on to the next schedulers, it is clear from the results that in TTC-SCC3, TTC-
SCC4 and TTC-SCC5 — where all Slaves are permitted to transmit their Ack messages
simultaneously — the message latencies and failure detection time have been reduced
significantly. Of course, bandwidth utilisation has increased and would likely increase
more depending on the number of Ack messages allowed to transmit per tick interval.
This can be a major drawback in applications requiring small tick intervals.

Comparing TTC-SCC4 and TTC-SCC5, the results look almost the same. Remember
that TTC-SCC5 was built on TTC-SCC4 and aimed to provide the same level of
performance at lower cost. When comparing TTC-SCC5 with TTC-SCC3, Master-to-
Slave latencies are shorter (almost by half) in the TTC-SCC3 and the network utilisation
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is slightly less. Apart from those, the performance is similar. Remember that in TTC-
SCC3, jitter levels are quite high as compared to those obtained from the TTC-SCC5.

11.5 Conclusions

This chapter began by describing the methodology used to obtain the results from multi-
processor TTC-SCC implementations considered in this thesis.

The chapter then provided the output results from the application of the STC technique,
detailed in Chapter 10, to the TTC-SCC scheduler implementations described in
Chapter 9. Again, the results suggested that there is no prefect implementation which
can fit all applications. However, according to the features concerned with in this thesis
for multi-processor embedded designs, it can be concluded that the TTC-SCC5
scheduler — developed in this project — can be an attractive solution for a wide range of
applications due to its low-jitter characteristics, short message latencies and node-failure

detection time, and low resource requirements.

Overall, the results presented in this chapter proved — practically — that the use of STC
technique is not limited to simple architectures. Instead, it can be easily adapted to
evaluate the implementations of scheduling systems with more complex software
architectures such as the S-C scheduling protocols considered in this study.
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Chapter 12

Discussion

12.1 Introduction

Before concluding this thesis, this chapter discusses the work presented in the previous
chapters and highlights the key findings of this project. The studies detailed in this
thesis were divided mainly into four parts. Following the thesis introduction, the second
part was literature review which consisted of three chapters — according to the covered
topics. The topics discussed were real-time scheduling algorithms, scheduler
implementations and techniques for linking such two system representations in a

systematic way.

Having identified the gaps in previous work in such areas, the third part began to
address these gaps for single-processor embedded systems. The fourth and final part
then considered the work carried out on multi-processor embedded systems. The same

layout is followed in this discussion chapter.

12.2 Literature review

12.2.1 Scheduling algorithms

The literature review began by providing essential background material that is necessary
to understand the context of the work presented in the thesis. This material included
definitions and classifications of the following items: tasks, timing constraints, jitter,

software architectures, schedulers, schedule designs and scheduling algorithms.

It was emphasised that any real-time scheduler incorporates, a its heart, a scheduling
algorithm which has a major responsibility of managing the operation of tasks during
the system run-time. Since it is responsible of satisfying the timing constraints of tasks,
the scheduling algorithm was recognised as the key element that influences system
predictability.
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The discussion provided a detailed comparison between time-triggered and event-
triggered software architectures, and co-operative and pre-emptive schedulers. Based on
advantages and disadvantages of these different schemes, it was concluded that systems
which employ a combination of time-triggered architectures and co-operative
schedulers can have a highly-predictable patterns of behaviour compared with other
architectures. Therefore, over many available scheduling algorithms, Time-Triggered
Co-operétive (TTC) schedulers were found to be a good match for a wide range of
applications, in which predictability is a key primary concern, such as safety-related
embedded systems.

Problems which might degrade the predictability of TTC schedulers have also been
outlined. These mainly included jitter and task overruns. Sources and possible solutions
to these problems have been discussed in brief, with a particular focus on the impact
that such problems can have on system predictability.

12.2.2 Scheduler implementations

For any project, once the scheduling algorithm has been decided and the task-schedule
designed, the next step to take place in the system development process is to implement
the scheduler using hardware and software resources. In this project, the target
hardware, on which schedulers have been implemented, was based on small (low-cost)
COTS embedded microcontrollers. The main focus was therefore on the process of
implementing the scheduler software on such hardware platforms using ‘C’ language,
being the most suitable language for programming real-time and embedded systems.

Discussions began by emphasising that there can always be a ‘one-to-many’ mapping
between any scheduling algorithm and its practical (software) implementations.
Evidence was provided that this is true in any scheduling algorithm. As noted, one
source of multiple implementations for a give scheduler is the use of “software design
patterns’ (to create the scheduler code) which themselves can have a vast range of
possible implementation options. The discussions indicated that the key component
which — in practical use — controls the operational behaviour of an embedded system
incorporating a scheduler is the software implementation (typically represented by the
scheduler source code). It was also made clear that any — even small and by no means
significant — changes in the implementation decisions can have a profound impact on
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the overall system behaviour, therefore special consideration must be given to the way

the scheduler code is implemented.

Previous work on scheduler implementations using Ada and C languages was reviewed
using a substantial number of example studies. The chapter then focused on previous
work on TTC scheduler implementations. The key early and recently (by the ESL
research group) work in this area was reviewed in detail. It was shown how researchers
inthe ESL group had a great deal of interest in developing embedded systems which are
based on TTC architectures. This was reflected by the number of projects carried out in

this particular area.

Discussions about scheduler implementations concluded by pointing out the key

limitations experienced in this research area. These can be summarised as follows:

- The process of translating between scheduling algorithms and scheduler
implementations, and the impact of using particular implementation decisions on
the actual run-time behaviour of embedded systems, have not been considered in
detail.

- Despite the useful work on TTC agorithms which is still ongoing, the various TTC
implementations developed so far in the ESL group have not been documented,
evaluated and linked using a systematic method. In each of the previous projects,
only one or two features — as to be addressed by the particular scheduler — were
assessed without considering other important features that might affect the user’s

decision when choosing between the various schedulers.

12.2.3 Linking scheduling algorithms and scheduler implementations

Having discussed the relationship between scheduling algorithms and scheduler
implementations, the thesis moved further to review previous work on software
evaluation techniques as a practical means for linking these two system representations.
The aim of this process was to find ways which help ensure that the features specified at
the design stage of a scheduling algorithm are not lost during the scheduler

implementation stage.
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In general, two main approaches were recognised as ways for evaluating software
systems, validation and verification. A clear distinction between these two terms was
provided by gathering and comparing numerous definitions from a range of well-
recognised dictionaries and reference books. It was concluded that validation is mainly
used to ensure that the final software product complies with user’s requirements, where
such a confidence cannot be achieved unless a verification — which checks the
conformance of each stage with its previous one — is applied consistently during the
whole development process. As indicated, software verification can be achieved
through static techniques, such as software ingpections and formal methods, and/or

dynamic techniques, such as software testing.

The discussions provided, in detail, the advantages and disadvantages of the three
verification techniques outlined. In summary, despite the benefit of using software
ingpections and formal methods — especially at the early stages in the development
process, software testing was recognised as the most effective way to provide a
confidence that the implemented software — in many applications — will behave exactly
as the user intended. To ensure more efficiency in testing real-time embedded software
and avoid the necessity for static verification techniques, automated code generation
was suggested as a way to verify that the software — before testing — is error-free and
precisely reflects the specifications defined at the design phase of a project.

The limitations in previous work in the area of testing and test cases were then
highlighted. These can be summarised as follows:

- Previous work on software testing mainly considered techniques for generating test

cases that check the functionality of the software, or its quality attributes.

- Previous work on real-time software testing was based on modelling the properties
of the system using formal methods. This inevitably adds complexity to the
verification process.

- No previous work was found which considered generating test cases to study the
effect of changing some (or all) of the implementation decisions for a given
scheduling algorithm on the overall embedded system behaviour which
incorporates this scheduler. Even very simple algorithms such as TTC have not
been tested in this regard.
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- Automated code generation, although useful, cannot provide the user with
information about the possible behaviour patterns the generated scheduler code
may produce after the system is executed. Also, the use of such techniques has not
been evaluated with complex, large-scale TTC scheduler implementations.

12.3 Single-processor study
12.3.1 TTC scheduler implementations

12.3.1.1 Overview

The work on single-processor systems in this thesis began by reviewing a set of
selective implementations for TTC scheduling algorithm which were either developed
previously in the ESL research group or recently in this project. It was emphasised that
the reviewed implementations were selected — according to their features — so that they
represent the full range of TTC scheduler implementations developed so far in the ESL
group. A brief summary of the features of such TTC implementations is provided in this

section.

Note that other examples which were not identified as representative TTC
implementations are reviewed and evaluated later in Appendix C. Figure 12-1
summarises all TTC scheduler implementations documented and evaluated in this
project. Note that those which were classified as “representative” implementations are
shaded to distinguish them from the others.

TTC-SL TTC-ISR
Orig TTC- TTC-
Dispatch Dispatch
TTC-DVS TTC-TG
TTC-SD TTC-MTI
TTC-
Adaptive

Figure 12-1: All TTC scheduler implementationsreviewed in this study.
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12.3.1.2 TTC-ISR scheduler
The TTC-I1SR scheduler discussed in this thesis is a very simple version of the TTC

schedulers used in a wide range of practical systems. It has low resource requirements
and the behaviour is easy to understand (and predict).

However, the TTC-1SR implementation has two main drawbacks. The first drawback is
that it provides no clear separation between the “scheduler” and the “user” (application)
code. One consequence of this is that, if large numbers of tasks are used, the system
requires a large amount of hand coding and can be difficult to maintain. The second
drawback is that, because tasks are called from an “update”’ function which is linked to
the timer ISR, the system will lose track of any further timer “ticks” which occur during
the execution of (for example) long tasks. This second drawback means that the

scheduler is very fragile in the event of task overruns.

12.3.1.3 TTC Digpatch scheduler

The TTC-Dispatch scheduler addresses both of the TTC-ISR limitations. First, the
scheduler provides a clearer distinction between scheduler and tasks, making the system
always easy to maintain and expand. Secondly, the separation of the implementation
into an “update” and a “dispatch” functions means that the scheduler is more robust in

the event of task overruns.

12.3.1.4 TTC-DVS scheduler

One concern with time-triggered (as opposed to event-triggered) designs is that power
consumption can be increased. As discussed in this thesis, use of Dynamic Voltage
Scaling (DVS) can help to reduce the power consumption in TTC implementations
without jeopardising low-jitter behaviour.

12.3.1.5 TTC-TG scheduler

As noted, a TTC-Dispatch implementation has the ability to tolerate tasks which exceed
their predicted WCET values, however, this ability is limited. In the most severe cases,
an overrun could mean that a high-priority task tries to execute “for ever”, denying
lower-priority tasks access to the CPU. As discussed in this thesis, “task guardians’ can
be added to the TTC-Dispatch design so as to provide a more flexible response in the

event of task overruns.
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12.3.1.6 TTC-MTI scheduler

A simple TTC implementation based on periodic timer interrupts provides highly-
predictable behaviour for the first task in every tick interval. However, if more than one
task are executed in atick interval, the release times of later tasks will depend (in many
TTC implementations) on the execution time of earlier tasks. As demonstrated in this

thesis, use of multiple timer interrupts can significantly reduce jitter levels in later tasks.

Note that — because this scheduler is similar to the TTC-ISR scheduler in construction
(in that tasks are called from the ISR) — it has low resource requirements (i.e. less code
memory is required than for the Dispatch scheduler). However, the underlying
architecture means that it cannot support tasks which execute for longer than a single
tick interval.

12.3.1.7 TTC-Adaptive scheduler

To deal with task overrun problem while maintaining low levels of task jitter, this
scheduler has been developed. As previously noted in this thesis, dealing with task
overrun and task release jitter requires knowledge about the task WCETS. In previous
implementations, it was assumed that such values are provided to the scheduler by the
user. The TTC-Adaptive scheduler was developed to offer a flexible implementation in
which the user does not need to estimate the task WCETS during the design stage
which, in many cases, cannot be accurate and may hence cause a significant degradation

in the timing performance of the system.

Asdiscussed in the thesis, the TTC-Adaptive scheduler employs an online measurement
method to calculate the WCET for all tasks over a sufficient period of time. Such values
are then used by the scheduler to adjust the timing of tasks and protect (guard) any task
from overrunning. Since it was adapted from the TTC-MTI scheduler, TTC-Adaptive

scheduler also has low resource requirements, e.g. low code memory is required.

12.3.2 STCs for TTC scheduling algorithm

As previously noted, the aim of this project is to bridge the gap between scheduling
algorithms and scheduler implementations in embedded systems employing TTC
architectures by means of testing. Since testing requires test cases, the work described in
this thesis proposed an effective set of “scheduler test cases’ (STCs) to evaluate, and
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hence, compare the behaviour of the different TTC scheduler implementations

reviewed.

The technique presented employs four STCs in total, where each of these test cases
attempted to explore the response (behaviour) of the system under different condition.
For example, each test case was intended to investigate the impact of a particular
problem which might be linked to predictability in TTC schedulers. As previously
argued, the main two problems which can have significant impacts on predictability in
TTC systems are task jitter and overruns. Thus, STC A and B were developed to test the
capability of the system to deal with jitter that arises from tasks and schedule
(respectively). STC C investigated the impact of scheduling long tasks on the sequence
and timing behaviour of other tasks in the scheduler, where STC D finally tested how

the system would behave when a major error — such as a task overrun — took place.

In all STCs, except STC D, the sequence of task executions was recorded along with
tick and task jitter. In STC D, the way the system reactsto the task overrun is recorded.
In addition to these results, resource requirements to implement each of the compared
TTC scheduler implementations were also reported. Such measurements were used as
characterising features for each implementation. The aim with this process was to
provide the user with as much information as possible about each scheduler
implementation so that they can either select the most suitable scheduler for their
project or identify which category their existing scheduler belongsto.

12.3.3 Assessing the behaviour of TTC schedulers

The reviewed TTC scheduler implementations outlined in Section 12.3.1 formed the
testbed to examine the effectiveness of the STC technique summarised in Section
12.3.2. This section provides a brief summary of the results detailed in Chapter 7 when
the STC technique was applied to the target TTC schedulers. In Chapter 7, first, the
experimental methodology used to obtain the required measurements was outlined.
Before presenting the results in each implementation, the way in which the STCs were
employed in that particular implementation was described. Thereafter, results— in terms
of task sequencing, overrun-handling, jitter, CPU, memory and power requirements —
were presented and analysed.
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A summary of the results was provided before Chapter 7 was concluded, where the key
results were listed and compared using both a summary table and illustrative graphs.
The graphs clearly show how each scheduler implementation can be superior to the
others in a particular area. For example, TTC-DVS cannot be competed with when
power consumption is the most crucial factor to consider, where this was on the account
of (for example) data and code memory overheads. Likewise, TTC-ISR was so simple
and required less memory overheads than other schedulers but produced extremely high

levels of tick jitter when along task was scheduled in the system.

The results also show that with TTC-MTI and TTC-Adaptive implementations, the
behaviour of the TTC scheduler has been improved in areas including jitter and code
memory overheads, without compromising CPU, data memory and power consumption
as compared to the majority of schedulers. It is important to highlight that — in addition
to the jitter reduction feature — the two developed implementations provided effective
solutions to the problem of task overruns (this was shown in the summary table but not
in the graphs). Although TTC-TG scheduler provided a complete solution to task
overrun by employing appropriate “tasks guardians’, it did not address other problems
such as jitter which can, in many cases, cause the system behaviour to be entirely
unpredictable.

The study concluded by pointing out that a perfect TTC scheduler which matches the
requirements of every embedded design cannot be found in practice. It was therefore
suggested that the scheduler for a particular application must be selected based on (for
example) its timing, power, CPU and memory constraints.

12.4 Multi-processor study

12.4.1 Network and scheduling protocols

Having completed the work on single-processor embedded designs, the thesis moved on
to consider the various issues which relate to the process of implementing and
evaluating multiple-processor embedded systems. In particular, the thesis began to
investigate how far the STC technique (developed for single-processor-based
schedulers) can be used as the system goes more complicated. Thus, multi-processor
embedded architectures which are based on distributed schedulers were considered.
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The study provided by a discussion about the available network and scheduling
protocols which were extensively used (or highly recommended) in the design and
implementation of such systems.

These discussions began by network protocols for multi-processor designs. It provided
the key features of a wide range of protocols with a particular focus on Controller Area
Network (CAN) protocol that was selected to represent the hardware platform for all
implementations considered in this thesis due to a set of recognised features, such as
low-cost, availability and widespread use. CAN was described in a greater detail and
then compared to aternative protocols which included Time-Triggered Protocol (TTP),
FlexRay, RS-485, Local Interconnect Network (LIN) and Ethernet. It was emphasised
that TTP and FlexRay can be competitive solutions to CAN, but their limited
availability and use implies that CAN would remain the most appropriate choice for
many embedded designs.

The discussions then considered high-level scheduling protocols —which can be used in
conjunction with CAN hardware — to obtain time-triggered network operations (as
opposed to event-triggered behaviour provided by the original CAN). Such protocols
included Time-Triggered CAN (TTCAN) and Shared-Clock (S-C) protocols. Based on
the features of each protocol, it was concluded that S-C schedulers can be a good match
for many embedded designs. mainly due to their simplicity, low-cost and high
predictability.

However, one key issue in the S-C protocol was highlighted: that is the jitter in the
relative timing of Master and Slave ticks caused by bit stuffing mechanism employed in
the CAN hardware upon which the S-C is implemented. To address such a jitter
problem, three new techniques — developed during the course of this project — were
listed. As noted, the techniques proposed were based on generic data coding
approaches. The complete description and evaluation of the techniques are provided
later in Appendices E.
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12.4.2 TTC-SCC scheduler implementations

12.4.2.1 Overview

As in the single-processor study, the work on multi-processor systems in this thesis
began by reviewing a set of selective implementation options for TTC-SCC scheduling
protocol which were either developed previously in the ESL research group or recently
in this project. Again, such implementations were identified as representative
implementations of the TTC-SCC scheduler. A brief summary of the features of these
implementations is provided in this section.

12.4.2.2 TTC-SCC1 scheduler

TTC-SCC1 isasimple version of the S-C protocol. It employs a simple TDMA protocol
in which the Master talks to one Slave only in each tick interval. The TDMA round was
therefore proportional to the the number of Slaves connected in the system. The two
major concerns about this implementation, as noted, were the possibility of having long
TDMA round and the lack of support for Slave-to-Slave communication. One
conseguence of having long TDMA round in this scheduler (where the Master talks to
each Slave only once in the TDMA) is that a node failure may not be detected as
quickly as required: such behaviour can have a significant impact on system
predictability.

12.4.2.3 TTC-SCC2 scheduler

TTC-SCC2 was developed based on the TTC-SCC1 and intended to offer high
flexibility in the communication between the nodes. Initially, a simple example was
given in which the Master can talk to one particular Slave every other tick interval.
Such a Slave was described as a critical Slave which required to be checked by the
network-Master regularly at high rates. A slightly more complicated example was then
provided in which it was assumed that the Master talks to the critical Slave at any
frequency. The TDMA round for both cases was calculated and it was shown that it was
longer than that in TTC-SCCL.

It was then emphasised that the two examples represented only limited use of this
scheduler. A more general example was therefore given to show how the TDMA round

can have arandom pattern. Thisis entirely based on application requirements.
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As with TTC-SCC1, this scheduler suffers lack of support for direct communication
between Slaves, thereby causing the transmission time between any two Slaves
comparatively long. Also the failure detection time of particular Slaves (which are
checked less frequently) can be very long.

12.4.2.4 TTC-SCC3 scheduler

The limitations observed in TTC-SCC1 and TTC-SCC2 were addressed through the
development of a third implementation of the S-C scheduler which was called TTC-
SCC3. Such an implementation allowed each Slave to send its messages to all Slavesin
the network. It also allowed the Master to tak to al (or a group of) Slaves within a
singletick interval, causing a significant reduction in the length of the TDMA round.

The major problem in this and all the previous schedulers, as discussed in detail, is the
high levels of jitter at the release time of Slave tasks due to variations in the length of
Tick messages. As previously noted, such variations are dependent on the nature of the
transmitted data in the Tick messages. If (for example) data sent in the Tick messages
are likely to be random, this can have more impact on the timing of Slave tasks.

12.4.25 TTC-SCC4 scheduler

TTC-SCC4 provided an attractive solution to the jitter problem caused by variations in
the transmission time of Tick messages. This was achieved by allocating a separate
node for generating the heartbeat of the network. This node was seen as a “tick-only-
Master” node which processes no data. The Master node in previous implementations
becomes an ordinary Slave node which only sends data messages. Apart from this
feature, the same message configuration — as in TTC-SCC3 — was used with this
scheduler.

The only problem with TTC-SCC4 scheduler is that it required an additional
microcontroller board only to send Tick messages while not being involved in any other
activities. This obviously caused a reduction in the resource efficiency.
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12.4.2.6 TTC-SCC5 scheduler

In order to combine the features of TTC-SCC3 and TTC-SCC4 without adding more
cost to the system, the TTC-SCC5 was developed in this project. Simply, such a
scheduler allowed the Master node to send two types of messages consecutively. The
first message was only to trigger the Slave nodes at precisely-fixed intervals, where the
following message was designated for Master data intended for all or some Slaves. The
implementation process of such a scheduler was described. It was pointed out that
although the bandwidth utilisation might be slightly reduced, due to the scheduling of
additional messages in the tick intervals, TTC-SCC5 can provide a highly-predictable
message and task operations compared to all previous implementations.

12.4.3 STCs for TTC-SCC scheduling protocol

As in the single-processor study, an appropriate set of “scheduler test cases’ (STCs)
were developed to assess (and distinguish) the behaviour of the TTC-SCC schedulers
outlined in the previous section. The same conditions considered in the process of
developing STCs for single-processor systems were also appreciated here. For example,
the STCs were selected so that they help to discover the various aspects of the TTC-
SCC scheduler when implemented in practical systems.

It was noted that, in such a scheduling protocol, the Master and Slave nodes employ
TTC-Dispatch scheduler to manage the operation of their tasks. The aim with the STCs
was not to assess the behaviour of individual schedulers (as in single-processor study)
but to assess the S-C protocol employed to facilitate the communication between the
individual nodes. Therefore, the communication behaviour of each TTC-SCC scheduler
implementation was considered to be evaluated using test cases that specifically address
the communication latency between any two nodes in the network (STCs B, C and D)
and the time required to detect and handle a temporary node failure (STC E). To help
address the predictability of the system further, atest case (i.e. STC A) was developed
specifically to assess the jitter levels in the transmission time of messages sent from
Master to Slaves. Measurements for such kind of jitter were fairly important since its
levels influence the overall timing accuracy and hence predictability of the whole

network.
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12.4.4 Assessing the behaviour of TTC-SCC schedulers

Again, as with single-processor sudy, the reviewed TTC-SCC scheduler
implementations outlined in Section 12.4.2 formed the testbed to test the effectiveness
of the STC technique summarised in Section 12.4.3. This section provides a brief
summary of the results detailed in Chapter 11 where the STC technique was applied to
the various TTC-SCC schedulers. Chapter 11 began by outlining the methodology used
in obtaining the required results. Next, results were presented for each scheduler. The
results included jitter, Master-to-Slave, Slave-to-Master and Slave-to-Slave latencies,

node-failure detection time, bandwidth utilisation and memory requirements.

A summary of the results was presented at the end of Chapter 11 using a small realistic
case study that helped understand the different behaviour patterns of the evaluated TTC-
SCC schedulers. It was clearly shown that the STC is quite flexible so that it can be
adapted for use in any scheduling algorithm, regardless how complicated the system is.
Of course, the complexity of the test case design process for a particular system would
increase as the system goes more complicated.

12.5 Conclusions

This chapter provided a brief overview of the studies carried out in this PhD research
project and summarised the key obtained results. It began by highlighting the main gaps
identified in the literature review of research areas related to this project. Then, the
approaches proposed to fill these gaps were discussed in summary. For consistency, this
chapter followed the same structure used in presenting the previous chapters.
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Conclusions and futurework

13.1 Introduction

Chapter 12 provided a summary of the work carried out in this PhD research project and
discussed the obtained results. Based on such discussions, this chapter draws the overall
thesis conclusions and provides some suggestions for future work in the areas
concerned with in this project.

13.2 Main achievements

As clearly stated in this thesis, the work carried out in this project aimed to bridge the
gap — which was identified but not systematically addressed — between the scheduling
theory and its implementations in practical real-time embedded environments. In order
to tackle this problem, the thesis attempted to address the process of translating between
the two core system-representations, scheduling algorithm and scheduler
implementation, while ensuring highly-predictable system behaviour during this

Process.

The importance of each of such system components has been emphasised. However, it
was underlined that, even if the right scheduling algorithm is selected at the design
phase of the system development process, inappropriate decisions at the scheduler
implementation phase can lead to undesirable consequences, not least the inability of
the system to meet its functional and temporal requirements. This means that it is likely
that the system will behave incorrectly during all (or some) of its operating period. The
impact of improper scheduler implementation decisions on the system behaviour have
been discussed in detail.

The studies presented in this thesis mainly considered the process of implementing
Time-Triggered Co-operative (TTC) scheduling algorithm as a simple, low-cost
software architecture for many embedded applications which have severe resource
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congtraints and require very high degrees of predictability. In order to link TTC
scheduling algorithm with its practical implementations, the thesis began by
categorising the various TTC scheduler implementations developed in the ESL research
group since 2001. In total, nine different implementations were collected. However,
only six of these were selected for detailed evaluation in this thesis. The particular TTC
implementations were selected in such a way that each implementation would be
expected to demonstrate recognisably different patterns of behaviour during periods of
normal and/or abnormal system operation. This led to a detailed review and evaluation
of only TTC schedulers which are representative of all implementations.

To be able to evaluate TTC schedulers, the thesis suggested that an appropriate
verification method must be applied between the TTC design and implementation stages
to ensure that an implementation matches the original design specification. By
reviewing a number of generic verification techniques, it was decided that only dynamic
verification techniques — namely testing — would be suitable to address this problem
since it facilitates examining the scheduler while it is running on the target hardware.
Therefore, the technique proposed to verify the TTC implementations was based on a
form of testing. However, it was emphasised that the STC technique was not an
ordinary testing method which checks the system against its required functionality.
Instead, the STC was specifically developed to assess the behaviour of TTC scheduler
with regards to a set of parameters that — in one way or another — influence the system
predictability.

The application of STC technique was found to be very effective in both single- and

multi-processor embedded systems due to the following reasons:

- It alowed a systematic classification and documentation of the various scheduler
implementations which have been developed in the ESL research group over the

last eight years.

- It helped identify a small set of “standard” forms of the scheduling algorithm (e.g.
TTC) that can satisfy the requirements of awide range of time-triggered embedded
applications.
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- It helped understand — practically — the implications of using a particular scheduler
implementation on the overall operational behaviour of system implementing this
scheduler.

- It facilitated a detailed “black-box” comparison between the various scheduler
implementations without the need to access (or attempt to understand) the

underlying scheduler source codes.

- It helped assess the predictability levels of systems incorporating particular

scheduler implementations.

- It provided the facility to help user select the most appropriate scheduler
implementation for a particular project, or aternatively identify which scheduler
implementation has been used in their system. By doing so, the user would be able
to predict how their system islikely to behave in the future or, alternatively, decide
that a different form of system implementation should be employed.

13.3 Limitations and future work

Of course, there are limitations in any research project. This section attempts to identify
the key limitations of the project summarised in this thesis and proposes some ideas to

address some (or all) of them in a future work.

First, it must be noted that this project was concerned with testing the TTC scheduling
algorithm since it represents the simplest form of scheduler that is in widespread use.
Thisis because all tasks are scheduled in predefined sequence without interruption from
other tasks. As discussed in Chapter 2, TTC scheduler was seen simple and highly-
predictable. This simply means that if a project is to be launched, the designer should
begin by considering the use of such a scheduling algorithm for the system tasks. Only
in cases where the system cannot meet its requirements or achieve the level of
performance expected by implementing TTC scheduler is the scheduler dismissed and
alternative architectures considered.

The ESL research members has suggested that if TTC does not match a particular
application, where task pre-emption is needed to meet hard deadlines, then Time-
Triggered Hybrid (TTH) schedulers — which provide a limited degree of pre-emption —
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would be recommended. Having accepted that, the TTH schedulers need to be evaluated
in a systematic way. As with every other scheduling algorithm, TTH scheduler can have
a wide range of possible implementation options, each with different operational
behaviour (see Section 3.5.3). It would therefore be recommended to extend the STC
technique to be able to document, assess and compare the various implementation
classesof TTH in the same way as with TTC schedulers. For example, atest case would
be required to determine which of the co-operative tasks is to be converted into pre-
emptive, and how such a modification can affect the system behaviour. Similarly, the
STC technique can be extended to evaluate further scheduling algorithms in widespread
use such as Rate Monotonic (RM) and Earliest Deadline First (EDF). One of the
features that can be tested in such algorithms is the ability of the system to deal with
priority inversion problem.

Moreover, the TTC-Adaptive scheduler presented in Chapter 5 can also be extended.
For example, the existing version of this scheduler was found effective with co-
operative tasks. It would be a good idea if the scheduler framework can be modified to
work as a hybrid scheduler. On the other hand, the WCET method implemented in the
TTC-Adaptive scheduler only calculates the WCETs and RTs for all tasks during the
first phase of the system operation (during the calculating mode). It was assumed that
the user had set the duration of the calculating mode long enough to obtain a correct set
of WCET values based on their knowledge about the system characteristics. By doing
S0, there might be a possibility that the calculating period was set incorrectly by the user
and thus the actual WCET of all (or some of) the tasks were missed. This means that the
behaviour of the system during the operating mode would be unpredictable. For
example, high jitter might be observed at task release times and task guardians might
detect a task overrun where the task is still within its WCET. In order to avoid such a
scenario, the system can be modified so that the whole calculation process is automated
while the user’s interference is avoided. For example, the scheduler can employ a
permanent run-time WECT measurement method so that whenever the WCET value of
atask is modified the system adapts itself to this change.

Please note that the TTC-Adaptive scheduler was aimed towards a perfect TTC
implementation since it provided effective solutions to jitter and overrun problems.
However, the “perfect” TTC scheduler can be achieved if more features are considered.
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For example, techniques such as DV'S can be incorporated in the scheduler framework
to achieve low-power characteristics at zero jitter. Such a modification would require a
substantial amount of underlying work in order to avoid any conflicts between timer
configurations.

For multi-processor systems, there are some future suggestions. First, the range of TTC-
SCC scheduler implementations can be extended to include other possible arrangements
for Master and Slave communication messages. Of course, the implementations
discussed, although useful, represent only a number of the representative
implementation classes for such a scheduler. For example, systems which use dual-
CAN bus can also be added to the range of TTC-SCC schedulers and evaluated. This
might need an addition of new STCs that explore more features related to this system

modification.

Despite the usefulness of the jitter-reduction techniques outlined in Chapter 8, they can
still, in some cases, be outweighed by the increases in the resource requirements (such
as CPU and memory). To achieve similar levels of performance while reducing the
resource overheads, it would be recommended that techniques — such as SBS and EEM
— are implemented in hardware using SoC designs. This has the potential to free the
system from unnecessary overheads and increase the system predictability.

13.4 Conclusions

The work described in this thesis has mainly considered the development and evaluation
of asimple verification technique (STC) aimed at facilitating a meaningful “black-box”
evaluation of time-triggered embedded systems. The practical work began by exploring
the benefit of using the STC technique in a simple TTC scheduling algorithm used in
single-processor embedded architectures. The thesis then explored ways for extending
the technique to allow evaluating the behaviour of more complicated embedded designs:
for example, when multi-processor architectures are considered. The results show that
the proposed technique can have the potential to provide a detailed evaluation of any
embedded software design, when appropriate scheduler test cases are employed.
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Apart from this, the thesis also described a range of highly-predictable time-triggered
scheduler implementations, for both single- and multi-processor systems, and
demonstrated how such new implementations can add very useful features to many real-
time resource-constrained embedded applications. Some other interesting areas which
relate to the work presented in this thesis were also discussed in detail. The thesis
concluded by summarising the key achievements of this project and making useful
suggestions for future research projects in the same areas.
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Appendix A

Overview of system development process

Introduction

This appendix describes in detail the various processes involved in software
development with a particular focus on embedded software systems. Sources for this
appendix include (McLaughlin and Moore, 1998; Booch et al., 1999; Pont, 2001; Shaw,
2001; Douglass, 2004; Buttazzo, 2005; Marwedel, 2006; Mwelwa, 2006; Sommerville,
2007).

System requirements

Embedded systems engineering is viewed as a branch of system engineering discipline
where engineers are concerned with all aspects of computer-based development
including hardware, software and process engineering. Therefore, activities such as
specification, design, implementation, validation, deployment and maintenance will all
be involved in the development of an embedded application. A design of any system
usually starts with ideas in people’'s head. These ideas need to be captured in
reguirements specification documents that specify the basic functions and the desirable
features of the system.

System design process then determines how these functions can be provided by the
system components. The following figure illustrates the life cycle of a system

development process.

Requirement System and Integration and Operation and
quirer —> Software |—3| Implementation |—>» grato p| OPE
definition design Testing Maintenance

Figure A-1: The system development process (adapted from Sommer ville, 2007).

For successful design, the system requirements have to be expressed and documented in
avery clear way. Inevitably, there can be numerous ways in which the requirements for
a simple system can be described. The simplest and most obvious way to express the

system requirements is to use a detailed natura language, such as English, French and
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so on. However, due to limitations caused by (for example) overflexibility and
ambiguity of the natural languages, systems described using this method are likely to be
misunderstood. Furthermore, it isimpossible to use the system specification written in a
natural language to derive implementations in a systematic way. Therefore, more
technical ways of representation might be required. Sommerville (2007) notes that using
more specialised notations such as structured natural language, design description
language, graphical notations and mathematical specifications can be more effective
ways for documenting the designed system. For example, structured natural language —
early used in 1980 to describe the requirements for an aircraft system (Heninger, 1980)
— uses standard forms that utilise the advantages of natural languages, such as clarity
and understandability, while removing some of the language limitations. However,
these approaches can till have shortcomings when complex computations are required:
for example, as the complexity of the system increases it is so difficult to specify the
requirements in an unambiguous way when a natural language text is integrated. One
solution to this problem is to use supplementary materials such as tables or graphical
models which add extra information about the system.

System modelling

A widely used systematic approach for documenting system requirements is to use a set
of system models which are basically forms of graphical representations that represent
the system from different perspectives. A system model is developed to provide an
abstract view of the system while deliberately ignoring some system details. Each
system model may cover only one (or sometimes more) particular aspect of the system,
while a combination of different models is needed to provide wider scope of the system.
Different system models can be classified into: context models, behavioral models, data
models and object models (see Sommerville, 2007 for more details). Two common
types of models which are generally used to describe the overall behaviour of the
system are known as data-flow and state machine models. A data-flow model is very
important way to show how data flows in the system through a sequence of processing
steps. A state machine model shows events or system states that cause the system to
move from one state to another. Since real-time systems are often driven by events in

the environment, state machine model is widely used in the design of such systems.
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To describe a system model, an appropriate form of specification language is required.
There is a wide range of specification languages which are available nowadays, e.g.
StateCharts, System Design Language (SDL), Unified Modeling Language (UML),
Java, Verilog Hardware Description Language (VHDL), SystemC and SpecC. Note that
each of these languages has different capabilities and hence provide different
representations of the designed system. As a result, the choice of the language for an
actual design will highly depend on the application domain and the environment in
which the system has to be operated.

However, one of the most widely used specification language in the fields of system and
software engineering is the UML. UML contains a large set of notations and diagram
types that make it a de facto sandard modelling language for a broad range of
application domains. One key advantage of UML, compared to other specification
languages, is that it does not require precise knowledge of the system behaviour which
is, in most cases, not available at very early stages of the design process. An early
version of UML (eg. UML 1.4) was not supporting the modelling of real-time
embedded systems due to a lack of some important features required to model those
systems, e.g. timing and concurrency. However, new versions of UML (e.g. UML 2.0)
have been developed to support the design modelling for embedded systems. UML 2.0
contains various diagram types such as sequence diagrams, state machine diagrams,
activity diagrams, use case diagrams, timing diagrams, object diagrams and some
others. Based on the sets of notations and diagram types provided by UML 2.0, data-
flow diagram — as an example — can be clearly represented using ‘rounded rectangles
for functional processing, ‘rectangles for data stores and ‘labelled arrows for data
transfer between different functions. Similarly, state machine diagram can be
represented using ‘rounded rectangles for system states, ‘labelled arrows for events
that cause transition from one state to another. However, it should be noted that the
UML models can only be viewed as ‘high-level’ representations of the system which
need an executable programming language (e.g. C or C++) to be combined with for

achieving precise, executable system specifications.

Formal specification
Before beginning the actual design process, formal specification techniques can also be
used to add details to a system requirements specification. A formal specification of
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software is the specification which is expressed in a language whose vocabulary, syntax
and semantics are formally defined: this means that the used specification language
must be based on mathematical concepts. Examples of formal specification languages
are: Larch (Guttag and Homing, 1993), OBJ (Futatsugi et al., 1985), Z (Spivey, 1988),
VDM (Jones, 1989), and B (Wordsworth, 1996). The main advantage of using formal
specifications is that they help to avoid ambiguities in the system requirements
documentation.

System architecture

Once the system requirements have been clearly defined and well documented, the first
step in the design process is to design the overall system architecture. Architecture of a
system basically represents an overview of the system components (i.e. sub-systems)
and the interrelationships between these different components. Since embedded
engineers are concerned with hardware and software design aspects of the system, they

must decide on both the hardware and the software architectures of the intended design.

Douglass (2004) defines architecture as: “ the set of strategic design decisions that affect
the structure, behaviour, or functionality of the system as a whole”. In (Sommerville,
2007), it is highlighted that designing the architecture of a system is the process of
creating a basic structural framework which identifies the key components of the system
and the communication between these components. It is also noted that the output of
this design process is a description of the software architecture which provides a high-
level representation of the system. System and software architectures also need
appropriate ways of modelling and documentations. It is widely adopted that
architectures are illustrated graphically using simple block diagrams in which the
system components can be represented by a set of ‘rectangles linked to one another by

‘arrows'.

Clear documentations of the software architecture help the developers to consider key
design aspect of the system early in the design process (Sommerville, 2007). Since the
software architecture provides a high-level abstraction of the system, it helps the
developers to establish discussions about the system requirements and begin to predict
how the system will operate after implementation. Determining the most appropriate
architecture is a key part in the design and implementation of a given system. In
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embedded systems, there are two fundamental software architectures which are
generally used: time-triggered and event-triggered.

System implementation

Once the software architecture is identified, the process of implementing that
architecture should take place. This can be achieved using a lower-level system
representation such as a scheduler or an operating system. A scheduler is avery simple
operating system which organises the operation of real-time tasks and manages the
computational and data resources in the system. The most key part of the scheduler is
the scheduling algorithm which states the set of rules that specify the order in which the
tasks will be executed by the scheduler during the system operating time. Once the
scheduling algorithm has been selected and the schedule designed, the low-level
implementation of the scheduler will take place by generating the scheduler source code
using a software programming language. The scheduler source code is the lower level
representation of the system which should determine the actual behaviour of the system
once run on the target hardware.
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Overview of programming languages

Introduction

This appendix provides an overview of the available programming languages used
nowadays in computer science and real-time embedded systems. It discusses the
classification of programming languages and provides a historical background. The
features of ‘C’ language (outlined in Chapter 3) are provided here in a little more detail.

What is a programming language?

Simply, programming as a problem has only arisen since computer machines were first
created. The magnitude of the problem is however relative to the size (and complexity)
of the computer machine used: for example, with using gigantic computers,
programming becomes an equally gigantic problem (Cook, 1999). To program a
computer system, a programming language is required. The latter is seen as the major
way of communication (i.e. interface) between a person who has a problem and the
computer system used to solve his problem. Programming language has been defined in
several ways. For example, American Standard VVocabulary for Information Processing
(ANSVIP, 1970) defined a programming language as “ A language used to prepare
computer programs’. The IFIP-ICC Vocabulary of Information Processing (IFIP-1CC,
1966) defined it as “A general term for a defined set of symbolic and rules or
conventions governing the manner and sequence in which the symbols may be combined
into a meaningful communication”. The IFIP-ICC glossary also noted that “An
unambiguous language, intended for expressing programs, is caled a
PROGRAMMING LANGUAGE" . Other definitions for a programming language are:

“ A computer tool that allows a programmer to write commandsin a format that is
more easily understood or remembered by a person, and in such a way that they
can be trandated into codes that the computer can understand and execute.”
(Budlong, 1999).

- “An artificial language for expressing programs.” (1SO, 2001).
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- “A sdf-consistent notation for the precise description of computer programs’
(Wizitt, 2001).

“A standard which specifies how (sort of) human readable text is run on a
computer.” (Sanders, 2007).

“ A precise artificial language for writing programs which can be automatically

trand ated into machine language.” (Holyer, 2008).

However, it was noted elsewhere (e.g. Sammet, 1969) that standard definitions are
usually too general as they do not reflect the language usage. A more specific definition
for aprogramming language was given by Sammet as a set of characters and rules (used
to combine the characters), with the following characteristics:

- A programming language requires no knowledge of the machine code by the
programmer, thus the programmer can write a program without much knowledge
about the physical characteristics of the machine on which the program is to be

run.
- A programming language should be machine independent.

- When a program written in a programming language is translated to the machine
code, each statement should explode to generate a large set of machine

instructions.

- A programming language must have problem-oriented notations which are closer
to the specific problem intended to be solved.

It is worth mentioning that a vast number of different programming languages have
already been created, and new languages are still being created every year.

Classification of programming languages

This section provides an overview of the programming language classifications. Sources
for this section include (Sammet, 1969; Booch, 1991; Grogono, 1999; Lambert and
Osborne, 2000; Mitchell, 2003; Calgary, 2005; Davidgould, 2008; Wikipedia, 2008;
Network Dictionary, 2008).
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In general, programming languages can be divided into programming paradigms and
classified by their intended domain of use. Paradigms include procedural programming,
object-oriented (O-O) programming, functional programming, and logic programming.
Note that some languages combine multiple paradigms. Each of these paradigms is
briefly introduced here.

Procedural programming (or imperative programming) is based on the concept of
decomposing the program into a set of procedures (i.e. series of computational steps).
Examples of procedural languages are: FORTRAN (FORmula TRANSslator), Algol
(ALGOrithmic Language), COBOL (COmmon Business Oriented Language), PL/I
(Programming Language 1), Pascal, BASIC (Beginner's All-purpose Symbolic
Instruction Code), Modula-2, C and Ada. Object-oriented (O-O) programming is a
method where the program is organised as a cooperative collections of “objects’. This
style of programming was not commonly used in software application development
until the early 1990s, but nowadays most of the modern programming languages
support this type of programming paradigm. Examples of object-oriented languages are:
Simula, Smaltalk, C++, Eiffel and Java. Functional programming treats computation as
the evaluation of mathematical functions. In functional programming, a high order
function can take another function as a parameter or returns a function. An example of
functional languages is LISP (LISt Processor). Finaly, logic programming uses
mathematical logic in which the program enables the computer to reason logically. An
example of logic languages is Prolog (PROgramming in LOGic). It is often argued that
languages with support for an object-oriented (O-O) programming style have
advantages over those from earlier generations (Pont, 2003). For example, Jalote (1997)
noted that using O-O helps to represent the problem domain, which makes it easier to
produce and understand designs.

In addition to programming paradigm, the purpose of use is an important characteristic
of a language: it is unlikely to see one language fitting all needs for all purposes
(Sammet, 1969). Programming languages can be divided, according to their purpose,
into general-purpose languages, system programming languages, scripting languages,
domain-specific languages, and concurrent / distributed languages (or a combination of
these). General-purpose language is a type of programming language that is capable of
creating various types of programs for various applications, e.g. C language. There has
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been an argument that some of the general-purpose languages were designed mainly for
educational purposes (Wirth, 1993). System programming language is a language used
to produce software which services the computer hardware rather than the user, e.g.
Assembly and Embedded C. Scripting language is a language in which programs are a
series of commands that are interpreted and then executed sequentially at run-time
without compilation, e.g. JavaScript (used for web page design). Domain-specific
programming languages are, in contrast to general-purpose languages, designed for a
specific kind of tasks, e.g. Csound (used to create audio files), and GraphViz (used to
create visual representations of directed graphs). Concurrent languages are
programming languages that have abstractions for writing concurrent programs. A
concurrent program is the program that can execute multiple tasks simultaneously,
where these tasks can be in the form of separate programs or a set of processes or
threads created by a single program. Concurrent programming can support distributed
computing, message passing or shared resources. Examples of concurrent programming
languages include Java, Eiffel and Ada.

In his famous book (i.e. “Programming Languages. History and Fundamentals’, 1969),
Jean E. Sammet used the following set of defining categories as a way of classifying
programming languages. [1] procedural and non-procedura languages; [2] problem-
oriented, application-oriented and special purpose languages; [3] problem-defining,
problem describing and problem solving languages,; [4] hardware, publication and
reference languages. Sammet however underlined that any programming language can
fall into more than one of these categories simultaneously: for further details see
Sammet (1969).

History of programming languages

It has been argued that studying the history of programming languages is paramount as
it helps developers avoid previously-committed mistakes in the development of new
languages (Wilson and Clark, 2000). It was also pointed out that an unfortunate
tendency in Computer Science is to create new language features without carefully
studying previous work (Grogono, 1999). Most books and articles on the history of
programming languages tend to discuss languages in terms of generations in which
languages are classified by age (Cook, 1999). There are many articles and books which
have discussed the generations of programming languages (e.g. Wexelblat, 1981;
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Martin and Leben, 1986; Watson, 1989; Zuse, 1995; Flynn, 2001). Pont (2003) provides
a list of widely-used programming languages classified according to their generations
(see Table B-1).

Table B-1: Classification of programming languages by gener ations

Language generation Example languages

- Machine code

First generation language (1GL) Assembly

Second generation languages (2GL) COBOL, FORTRAN
Third generation languages (3GL) “ process-oriented’ C, Pascal, Ada 83
Fourth generation languages (4GL) * object-oriented’ C++, Java, Ada 95

A brief history of the most popular programming languages (including the ones
presented in Table B-1) is provided in this section. Sources for this section mainly
include (Wexelblat, 1981; Martin and Leben, 1986; Watson, 1989; Halang and
Stoyenko, 1990; Grogono, 1999; Flynn, 2001; Wikipedia, 2008).

In the 1940s, the first electrically powered digital computers were created. The
computers of the early 1950s used machine language which was quickly superseded by
a second generation of programming languages known as Assembly languages. The
limitations in resources (e.g. computer speed and memory space) enforced programmers
to write their hand-tuned assembly programs. However, it was shortly realised that
programming in assembly required a great deal of intellectual effort and was prone to
error. It is important to note that although many people consider Assembly to be a
standard programming language, some others believe it is too low-level to bring
satisfactory of communication for user, hence excluded (Sammet, 1969).

1950s saw the development of a range of high-level programming languages (some of
which are still in widespread use), eg. FORTRAN, LISP, and COBOL, and other
languages such as Algol 60 that had a substantial influence on most of the lately
developed programming languages. In 1960s, languages such as APL (A Programming
Language), Simula, BASIC and PL/l were developed. PL/I incorporated the best ideas
from FORTRAN and COBOL. Simulais considered to be the first language designed to
support object-oriented (O-O) programming.



Appendix B 277

The period between late 1960s and late 1970s brought great prosperity to programming
languages most of which are used nowadays. In the mid-1970s, Smalltalk was
introduced with a complete design of an object-oriented language. The programming
language C was developed between 1969 and 1973 as a systems programming
language, and remained popular. In 1972, Prolog was designed as the first logic
programming language. In 1978, ML (MetaLanguage) was developed to found
statically-typed functional programming languages in which type checking is performed
during compile-time allowing more efficient program execution. It is important to
highlight that each of these languages originated an entire family of descendants. Some
other key languages which were developed in this period include: Pascal, Forth and
SQL (Structured Query L anguage).

In 1980s, the C++ was developed as a combined object-oriented and systems
programming language. Around the same time, Ada was developed and standardised by
the United States government as a systems programming language intended for use in
defence systems. One noticeable tendency of language design during the 1980s was the
increased focus on programming large-scale systems through the use of modules, or
large-scale organisational units of code. Therefore, languages such as Modula-2, Ada,
and ML were all extended to support such modular programming in 1980s. Some other
languages that were developed in this period include: Eiffel, PEARL (Practical
Extraction and Report L anguage) and FL (Function L evel).

In mid-1990s, the rapid growth of the Internet created opportunities for new languages
to emerge. For example, PEARL (which is originally a Unix scripting tool first released
in 1987) became widely adopted in dynamic web sites design. Another example is Java
which was commonly used in server-side programming. These language developments
provided no fundamental novelty: instead, they were modifications to existing
languages and paradigms and largely based on the C family of programming languages.

It is difficult to determine which programming languages are most widely used, as there
have been various ways to measure language popularity (see O'Reilly, 2006; Bieman
and Murdock, 2001). Mostly, languages tend to be popular in particular types of
applications. For example, COBOL is a foremost language in business applications
(Carr and Kizior, 2000), FORTRAN is widely used in engineering and science
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applications (Chapman, 2004), and C is a genuine language for programming embedded
applications and operating systems (Barr, 1999; Pont, 2002; Liberty and Jones, 2004).

Programming languages for embedded and real-time systems
To develop a real-time embedded system, a number of tools and techniques will be
required: the key one is the programming language used to develop the application code
(Burns, 2006). Assembly was the first programming languages used to implement the
software for embedded applications. However, it was argued that the development
environments that used the first generation languages such as Assembly lacked the basic
support for debugging and testing (Halang and Stoyenko, 1990). Therefore, in 1960s,
the need for high-level programming languages to program real-time systems, instead of
continuing to use Assembly language, was agreed among many real-time sSystem
designers due to advantages such as ease of learning, programming, understanding,
debugging, maintaining, documenting, and code portability (see Boulton and Reid,
1969; Sammet, 1969).

The work in this area began by identify the essential requirements for a high-level
language to fulfil the objectives of real-time applications (Opler, 1966). Such
requirements were summarised by Boulton and Reid (1969) as methods of handling
real-time signals and interrupts, and methods of scheduling real-time tasks. Opler
(1966) argued that to achieve such requirements, one can make extensions /
modifications to an existing programming language, where an alternative solution is to
develop new languages dedicated specifically for real-time software. Some success, in
extending existing languages to real-time computing, was achieved using languages
such as FORTRAN (e.g. Jarvis, 1968; Roberts, 1968; Hohmeyer, 1968; Mensh and
Diehl, 1968; Kircher and Turner, 1968) and PL/I (e.g. Boulton and Reid, 1969). Some
other studies, however, attempted to develop new real-time languages but with some
similarity to existing languages, e.g. PROSPRO (Bates, 1968), SPL (Oerter, 1968) and
RTL (Schoeffler and Temple, 1970).

In 1970s, a major concern of many researchers became the programming of real-time
applications which involve concurrent processing. Useful work in this area
demonstrated that, same as before, concurrent programming can be achieved by either
extending available general-purpose languages (e.g. Hansen, 1975; Wirth, 1977) or
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developing entirely new concurrent-processing languages (e.g. Schutz, 1979). However,
it was noticed that extended general-purpose languages still lacked genuine concurrency
and real-time concepts (Steusloff, 1984). This led to the development of more efficient
concurrent real-time languages such as PEARL (DIN, 1979), ILIAD (Schutz, 1979) and
Ada (Ada, 1980).

Ada is a well-designed and widely used language for implementing real-time systems
(Burns, 2006). Therefore, it is worth mentioning it in greater detail. As previously
noted, Ada is an object-oriented, high-level programming language which was first
developed and adopted by the U.S. Department of Defence (DoD) to implement various
defence mission-critical software applications (Ada, 1980; Baker and Shaw, 1989). Ada
appeared as a standard language in 1983 — when Ada83 was released — and was later
reviewed and improved in 1995 by producing Ada95. Since developed, Ada has gained
a great deal of interest by many real-time and embedded systems developers (see
Chapter 3 for example studies). It was declared that Ada embodies features which
facilitate the achievement of safety, reliability and predictability in the system
behaviour (Halang and Stoyenko, 1990). Halang and Stoyenko (1990) carried out a
detailed survey on a number of representative real-time programming languages
including Ada, FORTRAN, HALL/S, LTR, PEARL, PL/l and Euclid, and concluded
that Ada and PEARL were the most widely available and used languages among the
others which had been surveyed.

In addition to the previous sets of modified and specialised real-time languages, it was
accepted that universal, procedural programming languages (such as C) can also be used
for real-time programming although they contain just rudimentary real-time features:
this is mainly because such languages are more popular and widely available than
genuine real-time languages (Halang and Stoyenko, 1990). Later generations of object-
oriented (O-O) languages such as C++ and Java also have popularity in embedded
programming (Fisher et al., 2004).

Overview of ‘C’ language
In his famous book “Programming Embedded Systems in C and C++”, Michael Barr
(1999) emphasised that C language has been a constant factor across all embedded

software development due to the following advantages:
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- Itissmall and easy to learn.
- Itscompilers are available for almost every processor in use today.
- There are so many experienced C programmers around the world.

- It is hardware-independent programming language, a feature which allows the
programmer to concentrate only on the algorithm rather than on the architecture of

the processor on which the program will be running.

Degpite this, Barr highlighted that the key advantage of C which made it the favourite
choice for many embedded programmers is its low-level nature that provides the
programmer with the ability to interact easily with the underlying hardware without
sacrificing the benefits of using high-level programming.

In (Grogono, 1999), it was declared that C is based on a small number of primitive
concepts, therefore it is an easy language to learn and program by both skilled and
unskilled programmers. Moreover, Grogono stated that C can be easily compiled to

produce efficient object code.

In a more recent publication, Pont (2002) stated that “ C's strengths for embedded
system greatly outweigh its weaknesses. It may not be an ideal language for developing
embedded systems, but it is unlikely that a ‘perfect’ language will be created” .
According to (Pont, 2002 and 2003), the key features of the C language can be

summarised as follows.

- It is a mid-level language with both high-level features (such as support for
functions and modules) and low-level features (such as access to hardware via

pointers).

- It is very efficient, popular and well understood even by desktop developers who
programmed on C++ or Java
- It has well-proven compilers available nowadays for every embedded processor

(e.g. 8-, 16-, 32-hit or more).

- Books, training courses, code examples and websites that discuss the use of

language are all widely available.
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In (Jones, 2002), it was noted that features such as easy access to hardware, low
memory requirements, and efficient run-time performance make the C language popular
and foremost among other languages. In (Brosgol, 2003), it was made clear that C isthe
typical choice for programming embedded applications as it is processor-independent,
has low-level features, can be implemented on any architecture, has reasonable run-time
performance, is an international standard, and is familiar to amost all embedded
systems programmers. Fisher et al. (2004) emphasised that, in addition to portability
and low-level features of the language, C's structured programming drives embedded
programmers to choose C language for their designs. Moreover, it has been clearly
noted that C cannot be competed in producing a compact, efficient code for aimost all
processors used today (Ciocarlie and Simon, 2007).
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Har dwar e-based scheduler implementation

approaches

This appendix discusses a range of hardware (or a mix of hardware and software)
techniques used previously to implement scheduling algorithms in practical real-time
embedded systems.

In 1988, Wendorf (1988) considered the practical implementation issues of the Time-
Driven Scheduler (TDS) developed originally by Jensen et al. (1985). Wendorf began
by pointing out that fixed-priority schedulers may not perform well under overload
conditions and the TDS had the potential to improve the performance of real-time
systems under such conditions. TDS is atime-triggered, pre-emptive scheduler in which
each task has a time-varying value function that defines the value of completing task at
a given time. In addition, a “best-effort” (BE) scheduling policy (Locke, 1986) was
designed and integrated into the TDS scheduler framework to maximise the total value
of all completed tasks over a wide range of value functions and workloads. However, as
noted by Wendorf, the practical implementation of the best-effort, time-driven
scheduler and the impact on the computational overhead were not fully addressed.
Therefore, Wendorf discussed the implementation and performance of the BE
scheduling policy on a practical real-time system. Experimentally, it was found that
under overload conditions, more than 80% of the CPU time could be spent by the
scheduler to decide which task to execute next when a single-processor system is used.
It was therefore suggested that all scheduling processes are performed in a dedicated
scheduling processor and was shown that this solution can help to reduce the CPU
overhead of the host processor to less than 2%.

Katcher et al. (1993) presented a methodology to incorporate the costs of scheduler
implementation in fixed-priority scheduling algorithms. In particular, the study provided
a framework to evaluate hardware and software implementation decisions for real-time
applications based on quantitative results about implementation costs such as blocking
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and overhead®. The proposed methodology was used to compare the real-time
performance, in terms of schedulability, of four generic scheduler implementations of a
fixed-priority algorithm: two time-triggered and two event-triggered. When the different
implementations were applied to two redistic task sets — corresponding to avionics and
inertial navigation applications — different levels of schedulability utilisation were
obtained. Thiswork was described as a first step toward bridging the gap between real-
time scheduling theory and its implementation in real systems.

Later on, Mooney (1999) described one way of implementing a custom run-time
scheduler, which dynamically executes tasks in different orders based on the conditional
execution path, by using a hardware-software co-design. Along with areal-time analysis
tool, the study demonstrated how the suggested implementation helps the system meet
its relative timing, control-flow, and rate constraints.

In (Huajin et al., 2002), implementing the classical Round Robin scheduling algorithm
on Xilinx Field Programmable Gate Array (FPGA) chip using Verilog Hardware
Description Language (VHDL) was discussed. Huajin noted that Round Robin is a very
simple and widely used scheduling algorithm in computer systems where tasks are
placed in a circular queue and executed in order starting from the first task in the queue.
Moreover, it was emphasised that Round Robin algorithm is a time-triggered, pre-
emptive scheduler in which each task in the system is allocated one time unit (quantum)
to execute, and if the task is not completed at the end of the allocated slot the CPU is
pre-empted and the current task is added to thetail of the queue, and so on.

Golatowski et al. (2002) presented a framework (with appropriate tools) to help the
developers select the appropriate algorithm for their real-time application, among
various kinds of dynamic scheduling algorithms (i.e. EDF, LLF), and then choose the

% Overhead and blocking are implementation costs which are a function of the underlying hardware.
Overhead is the time spent in the kernel performing a service on behalf of a specific task, such as
invoking or terminating it. Blocking, or priority inversion, is time spent, either in the kernel or in an
application task, when a higher priority task is prevented from running (Katcher et al.., 1993).
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best hardware / software implementation method for the selected scheduler based on the
schedulability analysis of the scheduled task set.

Brinkschulte et al. (2002) considered the design and implementation of a real-time
scheduling algorithm, called Guaranteed Percentage (GP) scheme, in which each thread
is assigned a specific guaranteed percentage of the processor power and the threads are
executed in isolation: i.e. threads have no influence on each others. The study
demonstrated that when compared with Fixed-Priority Pre-emptive (FPP), Earliest
Deadline First (EDF) and Least Laxity First (LLF) scheduling algorithms (all
implemented on a Komodo microcontroller that features a multithreaded Java processor
kernel), the GP scheduling was the only scheme that provided a strict isolation between
threads: such an isolation advantage is required to maximise dependability in real-time
systems. The results also showed that the hardware implementation costs of the GP

scheduler were still reasonable.

Samuelsson et al. (2003) presented a performance comparison between a real-time
kernel implemented in hardware and an equivalent one implemented in software using a
multi-processor hardware platform. The hardware kernel implemented the scheduler,

inter-process communication methods, semaphores and timer.

Cho et al. (2005) described an approach to implement static scheduler in muilti-
processor System-on-Chip (SoC). The work introduced efficient hardware and software
scheduler architectures and considered the centralised® implementation versus
distributed implementation of the schedulers. The trade-offs between both types of
scheduler implementation was investigated according to area- and scheduler-overhead.

In a study carried out by Silva et al. (2005), it was argued that trade-offs between
software and hardware implementations of a system are very important to achieve

%' |n centralised implementation, the scheduler is implemented on a single processor, wheresas in
distributed implementation the scheduler is implemented over multiple processors with one local
scheduler for each processor.



Appendix C 285

flexibility as well as high-performance. The paper considered the implementation of a
task scheduler for a real-time embedded system, as defined by the Real-Time
Specification for Java (RTSJ), in both hardware and software. The study concluded that,
if hardware implementation is used (using co-processor), task latencies can be reduced
(regardless the number of scheduler tasks in the system) and the system predictability
can be improved. However, such enhancement was at the cost of area-overhead.

Similarly, Vetromille et al. (2006) claimed that distributing the critical operating system
functionalities between hardware and software implementations can have the potential
to improve the overall performance and increase predictability of the real time systems.
Therefore, Vetromille et al. evaluated the process of migrating RTOS scheduler
implementation from software to hardware by considering the pros and cons of three
different scheduler implementations as follows:. (i) software using a single processor;
(ii) software partitioned using two processors; and (iii) hardware / software partitioned
using a processor and a dedicated hardware block. It was noticed that scheduler
implementation (iii) always achieves better performance results, but is more complex
and expensive compared to the other approaches due to the complex nature of the
hardware implementation. The study concluded that (ii) and (iii) present the best results
for hard real-time applications, where (i) is suitable for soft real-time systems.

In another study, Baruah (2006) presented sufficient conditions for determining whether
a given periodic task system will meet all deadlines if non-pre-emptive EDF scheduler
implementation is used upon a multi-processor platform. Baruah came to conclude that,
if particular conditions are met, non-pre-emptive EDF scheduler implementations can
provide the level of performance expected from the pre-emptive scheduler alternatives.
Moreover, Baruah made a note that as faster processors become available, non-pre-

emptive scheduling would become more popular in the future.

It can be clearly noticed that the outlined studies on scheduler implementation have not
looked at the various possible ways in which the software of a given scheduler (or
scheduling algorithm) can be implemented in low-cost “commercial of the shelf” COTS
microcontroller platforms, and the impact of the various software implementation
methods on the run-time behaviour of the systems. The studies presented in this thesis
attempt to address such issues.
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TTC-SL scheduler
Introduction

The simplest practical implementation of a TTC scheduler can be created using a
“Super Loop” (sometimes called an “endless loop: Kalinsky, 2001). The particular
implementation discussed in this section has been adapted from that described in detall
elsewhere (Pont, 2001; Kurian and Pont, 2007).

Overview of the scheduler implementation

In Chapter 5, a simple TTC scheduler implementation — using a form of super loop —
was outlined (Listing 5-2). Such a system assumed that each task executed would
aways have 4 ms duration, therefore a system with 10 ms tick interval was
implemented using super loop and delay function (see Figure D-1).

4 ms 4 ms 4 ms
— — —
Task A Task B TaskC | -
10 ms Time

System
Tick

Figure D-1: Thetask executions resulting from the code in Listing 5-2.

In the case where the scheduled tasks have variable durations, creating a fixed tick
interval is not straightforward. One way of doing that is to use a “Sandwich Delay”
(Pont et al., 2006) placed around the tasks. Briefly, a Sandwich Delay (SD) is a
mechanism — based on a hardware timer — which can be used to ensure that a particular
code section always takes approximately the same period of time to execute. The SD
operates as follows:

- A timer is set to run.

- Anactivity is performed.
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The system waits until the timer reaches a pre-determined count value.

In these circumstances — as long as the timer count is set to a duration that exceeds the

WCET of the sandwiched activity — SD mechanism has the potential to fix the

execution period.

Listing D-1 shows how the tasks in Listing 5-2 can be scheduled — again using a 10 ms

tick interval — if their execution durations are not fixed.

int main(void)

whi | (1)

/] Set up a Timer for sandw ch del ay

SANDW CH_DELAY _Start ();

// Add Tasks in the first tick interval

Task_A();

// Wait for 10 mlli second
/1 Add Tasks in the second

SANDW CH_DELAY_Wai t (10);
Task_B();

/] Wait for 20 mllisecond
/1 Add Tasks in the second

SANDW CH_DELAY Wi t (20);
Task_C();

/1 Wait for 30 mllisecond

SANDW CH_DELAY_ Wi t ( 30);

/1 Shoul d never reach here
return 1

}

sandwi ch del ay
tick interval

sandwi ch del ay
tick interval

sandwi ch del ay

Listing D-1: A TTC scheduler which executesthree periodic taskswith variable durations, in

sequence.

Using the code listing shown, the successive function calls will take place at fixed

intervals, even if these functions have large variations in their durations (Figure D-2).

6 ms 9ms 4ms
—> < >
Task A Task B TaskC |  —ee
L .
10 ms Time

A

System
Tick

Y

Figure D-2: Thetask executions expected from the TTC-SL scheduler code shown in Listing D-1.
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Original TTC-Dispatch scheduler
Introduction

An early implementation of TTC scheduler, using Dispatch approach, was developed in
the ESL group back in 2001. The architecture of such a scheduler provided the basis for
TTC implementations which were developed later in the group. The particular
implementation discussed in this section has been fully described and documented in
(Pont, 2001).

Overview of the scheduler implementation

As in the TTC-Dispatch scheduler (described in Chapter 5), the implementation
considered in this section is characterised by distinct and well-defined scheduler
functions (see Listing 5-3). The original TTC-Dispatch scheduler is also driven by
periodic interrupts generated from an on-chip timer. When an interrupt occurs, the
processor executes an Updat e() function (see Listing 5-5). Inthe Updat e() function,
the scheduler checks the status of all tasks to see which tasks are due to run and sets
appropriate flags. After these checks are complete, a Di spat ch() function (Listing
5-6) will be called, and the identified tasks (if any) will be executed in sequence. The
Di spat ch() function here is also called from an “endless’ loop placed in the Mai n
code (Listing 5-7) and when not executing the Updat e() and Di spat ch() functions,

the system will usually enter alow-power (“idl€”) mode.

Again, the scheduler implements a SCH_Add_Task() and a SCH Del et e_Task()
functions for adding or removing tasks during the system run-time. In the Updat e()
function, the scheduler applies checking on each task’ s parameters (i.e. task’s offset and
period) and consequently sets RunMe flag to indicate that the checked task is ready to

execute in the current tick interval.

Code for the original TTC-Dispatch considered in this section is shown in the following
listings.
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voi d SCH Updat e(voi d)
int |ndex;

/1 NOTE: calculations are in *TICKS* (not mliseconds)
for (Index = 0; Index < SCH MAX_TASKS; | ndex++)

/1l Check if there is a task at this location
if (SCH_tasks_{ I ndex]. pTask)

{
if (SCH tasks_{ I ndex].Delay == 0)

/1 The task is due to run
SCH tasks_@ I ndex]. RunMe += 1; // Inc. the 'RunMe' flag

if (SCH_tasks_{ I ndex]. Period)

/1 Schedul e regular tasks to run again
SCH tasks_G I ndex].Delay = SCH tasks_G I ndex]. Period - 1;

}
}

el se

/1 Not yet ready to run: just decrement the del ay
SCH tasks_{G I ndex] . Delay -= 1;
}

}

}
/] After interrupt, reset interrupt flag (by witing "1")
TOI R = 0x01;
}

Listing D-2: “Update” ISR of the original TTC-Dispatch scheduler.

voi d SCH Di spatch_Tasks(voi d)
int Index;

/1 Dispatches (runs) the next task (if one is ready)
for (Index = 0; Index < SCH MAX_TASKS; | ndex++)

{

if (SCH tasks_{ I ndex]. RunMe > 0)
{
(*SCH tasks_G I ndex] . pTask)(); // Run the task
SCH tasks_{ I ndex] . RunMe -= 1; /1 Reset / reduce RunMe flag
/1 Periodic tasks will automatically run again
/[l - if this is a 'one shot' task, remobve it fromthe array
if (SCH tasks_{ Index].Period == 0)

{
SCH_Del et e_Task( | ndex);
}

}

/1 The schedul er enters idle node at this point
SCH Go_To_Sl eep();
}

Listing D-3: Dispatch function of the original TTC-Dispatch scheduler.
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Adding “Sandwich Delays”
Introduction

The timing performance of the tasks running in the TTC scheduler can be improved by
adding “sandwich delays’. This approach is introduced in this section and will be
referred to as TTC-SD scheduler.

Overview of the scheduler implementation

In Chapter 2, the impact of task placement on “low-priority” tasks running in TTC
schedulers have been considered. One way to reduce the variation in the starting times
of such tasks is to place “Sandwich Delay” (Pont et al., 2006) around tasks which
execute prior to other tasks in the same tick interval.

In the TTC-SD scheduler, sandwich delays are used to provide execution “slots’ of
fixed sizes in situations where there is more than one task in atick interval. To clarify
this, consider the set of tasks shown in Figure D-3. In the figure, the required SD prior
to Task C — for low jitter behaviour — is equal to the WCET of Task A plus the WCET
of Task B. Thisimpliesthat in the second tick (for example), the scheduler runs Task A
and then waits for the period equals to the WCET of Task B before running Task C.
The figure shows that when SDs are placed around the tasks prior to Task C, the periods
between successive runs of Task C become equal and hence jitter in the release time of
this task is significantly reduced.

Tick TaskC TaskC
Interrupt € Period — P& Pperiod —— >
Task sp | Task | [ Task | 'de Task sD | Task sD Task
A B B Vode A © €
t=0 1 2 t(Ticks)

Figure D-3: Using Sandwich Delaysto reduce releasejitter in TTC schedulers.

Note that — with this implementation — the WCET for each task is input to the scheduler
through a SCH_Task_WCET() function placed in the Mai n code. After entering task
parameters, the  scheduler  employs Cal c_Sch_Mj or _Cycl e() and

Cal cul at e_Task_RT() functions to calculate the scheduler major cycle and the
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required release time for the tasks, respectively. The release time values are stored in
the “Task Array” using the variable SCH t asks_J I ndex] . Rl s_ti ne.

Code for the TTC-SD scheduler is shown in the following listings.

int main (void)

{

/1 Add tasks
/1 Delay and Period values are in *ticks*
SCH_Add_Task(Task_A, 0, 1);

/1 Input duration for tasks
/1l Val ues are in *m croseconds*
SCH_Task_WCET( Task_A, 2000);

/1 Cal cul ate the Schedul er Major Cycle
Cal c_Sch_Maj or _Cycl e( SCH_MAX_TASKS) ;

/1 Calculate the required release tine for each task
Cal cul ate_Task_RT();

/1 Start the schedul er
SCH Start();

/1 The schedul er may enter idle node at this point (if used)
SCH Go_To_Sl eep();

return O;

}

Listing D-4: “Main” function in the TTC-SD scheduler.
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voi d SCH Di spatch_Tasks(voi d)

int Index;
int Update_required = 0;

/1 Delay margin added to conpensate for schedul er overhead
int Delay_Margin ;

/] Set up Timer 1 for sandw ch del ay
SANDW CH_DELAY _Start();

/1 Need to check for a timer interuppt since this
/1 function was |ast executed (in case idle node is not being used)

/1 Disable timer interrupt
VIClntEndr = 0x10;

if (Tick_count_G > 0)
{
Tick_count_G -;
Update_required = 1;

/] Re-enable timer interrupts
VI Cl nt Enabl e = 0x10;

whil e (Update_required)
{

/1 Go through the task array

for (Index = 0; Index < SCH MAX_TASKS; | ndex++)
{
/] Check if there is a task at this location
if (SCH_ tasks_{ I ndex].pTask)

{
if (--SCH tasks_{ I ndex].Delay == 0)
{
/1if(1ndex>0)
{
Del ay_Margi n = 20*I ndex;
/1 Wait for the required sandw ch del ay
SANDW CH_DELAY_WAi t (SCH_ t asks_{J | ndex] . R s_ti me+Del ay_Margin);
}
/1 The task is due to run
(*SCH tasks_G I ndex] . pTask)(); // Run the task
if (SCH tasks_{ Index].Period != 0)
/1 Schedul e period tasks to run again
SCH tasks_G I ndex] . Del ay = SCH_ tasks_{ I ndex] . Peri od;
}
el se
{
/1 Del ete one-shot tasks
SCH tasks_G I ndex] . pTask = 0;
}
}
}

}

/1 Disable timer interrupt
VICIntEndr = 0x10;

if (Tick_count_G > 0)
{
Tick_count_G -;
Update_required = 1;
}

el se
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{
Update_required = 0;
}

/] Re-enable tinmer interrupts
VI Cl nt Enabl e = 0x10;

}

/] Stop then reset SD Timer
T1TCR &= ~0x01;
T1TC = 0O;

/1 The schedul er may enter idle node at this point (if used)
SCH Go_To_Sl eep();
}

Listing D-5: Dispatch function of the TTC-SD scheduler.

The code presented in Listing D-5 shows that a SD was placed around each scheduled
task, and only when the SD matches the value of the required “release time” of a task
(e.g. SCH tasks_{d I ndex] . R s_ti ne) is the task executed. Note that the required
release time of atask is the time between the start of the tick interval and the start time
of the task “slot” plus a little safety margin.

Results
Applying STC to the TTC-SL scheduler

This section discusses the implementation of STCs in the TTC-SL scheduler and

presents the output results from such an implementation.

I mplementing the test cases

Implementing STC A and STC B with the TTC-SL scheduler can be straightforward
(and very similar to the example shown in Listing D-1). The following two listings
show how STC C and STC D were implemented, respectively, using a TTC-SL
scheduler.
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int main(void)

{
whi | e( 1)

{
/] Set up Timer 1 for sandw ch del ay
SANDW CH DELAY T1 Start();

/1 Add Tasks in the first tick interval
/] Task B executes in approx 2 and 1/2 ticks
Task_B();

/1 Wait for 5 millisecond sandwi ch del ay
/1 Since Task B exceeds the 5ns tick, the scheduler goes to run the tasks
in Tick 2 straight away

SANDW CH DELAY T1 Wit (5);

/1 Add Tasks in the second tick interval
Task_A();
Task_C();

/1 Wait for 10 nillisecond sandwi ch del ay
SANDW CH DELAY T1_ Wit (10);

// Add Tasks in the third tick interval

/1 Wit for 15 nillisecond sandwi ch del ay
SANDW CH DELAY T1 Wit (15);

// Add Tasks in the fourth tick interval

Task_A();

Task_C();

/1 Wit for 20 nillisecond sandwi ch del ay
SANDW CH DELAY T1_ Wit (20);

}

return 1; // Should never reach here ...

}

Listing D-6: Oneway of implementing STC C using the TTC-SL scheduler.
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int main(void)

whi | e( 1)

/] Set up Timer 1 for sandwi ch del ay
SANDW CH DELAY _T1_Start();

// Add Tasks in the first tick interval

/1 Task A executes will overrun for 10 ticks
Task_A();

Task_B();

/1 Wait for 5 millisecond sandwi ch del ay
SANDW CH DELAY T1 Wit (5);

for(i=2; i<=20; i++)

// Add Tasks in the next tick interval
Task_B();

/1 Wait for 5 nillisecond sandwi ch del ay
SANDW CH DELAY T1 Wit (i*5);

}
}

return 1; // Should never reach here ...

}

Listing D-7: Oneway of implementing STC D using the TTC-SL scheduler.

Task sequencing and overrun behaviour

The sequence behaviour of the TTC-SL scheduler when applying STC A, STC B, STC
C and STC D is summarised in the following table.

TableD-1: Task schedulein TTC-SL scheduler.

STC | Scheduler behaviour
A Al
B Bl
C C1
D Dib

The results in Table D-1 show that — as would be expected — the TTC-SL scheduler
performs the standard scheduler tests (STC A, STC B and STC C) without problems.
However, when executing STC D, once the overrunning task (Task A) completes, the
scheduler performs all missing executions for Task B (in this case, 10 executions),
before continuing to serve the tasks in the following ticks. This means that the
behaviour of the SL scheduler with STC D is very much similar to that obtained with
the Dispatch scheduler (Section 7.3.2.2) in the sense that the system can “catch up” in
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the event of error: see Figure D-4. Please note that there can be various other possible

ways to implement the SL scheduler which might not be able to provide such behaviour.

Mmoo = Y R [— B13 B14 N1-) [R— B20 .Y J [

t=0 10 13 14 19 2 t (Ticks)

Figure D-4: The behaviour of SL scheduler with STC D (D1b schedule class).

Jitter

Table D-2 shows the periods and jitter measurements for the tick and the tasks for STC
A, STC B and STC C when implemented using the TTC-SL scheduler.

Table D-2: Task jitter from the TTC-SL scheduler (all valuesin ps).

Tick Task A | TaskB | TaskC
Min Period 4999.7 4999.7 3029.9 | 2409.1
Max Period 5000.5 5000.5 6953.6 | 7368.8
Test A | Average Period | 5000.1 5000.1 4935 4836.8
Diff. Jitter 0.8 0.8 3923.7 | 4959.7
Avg. Jitter 0.2 0.2 836.8 900.8

Min Period 4999.8 | 10000.1 | 2993.9 | 2100.8
Max Period 5001 10001.6 | 7010.1 7873

Test B | Average Period | 50005 | 10000.9 | 49237 | 4947.2
Diff. Jitter 12 15 4016.2 | 5772.2
Avg. Jitter 0.3 0.3 1179 1248.6

Min Period 972.5 2991.9 | 20004.4 | 2991.6
Max Period 12012.8 | 17012.8 | 20004.5 | 17013.2
Test C | Average Period | 2416.1 5184.8 | 20004.5 | 5344.5
Diff. Jitter 11040.3 | 14020.9 0.1 14021.6
Avg. Jitter 2159.7 5093.3 0 5240.2

The jitter valuesin STCs A and B show that with a Super Loop scheduler, it is difficult
to obtain zero jitter in the release time of the tick, although the tick jitter can till be
very low. Results also show that when the scheduler major cycle had more than one tick
(asin STC B) the ‘tick’ and ‘Task A’ jitter values have slightly increased. It can also be
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shown that low-priority tasks always suffer high jitter in their release times when they
are scheduled to run later in the tick interval. In situations where a task required
multiple ticks to execute (as in STC C), the resulting tick jitter has significantly
increased. Note that the tick interval in Test C is not fixed to 5 ms as required: instead,
it varies between 12, 2, 1 and 5 ms in each major cycle.

CPU, memory and power requirements

Table D-3 shows the CPU overhead for the TTC-SL scheduler (with STC A). From the
results shown in the table, the TTC-SL scheduler always requires a full CPU load (~
100%). This is since the scheduler does not use the low-power “idle” mode when not
executing tasks: instead, the scheduler waits in a*“while” loop.

Table D-3: CPU over head for the TTC-SL scheduler.

Scheduler time (s):
25.01

Overhead %
100

Total time (s):
25.01

Test A

Table D-4 summarises the memory required to implement STC A using the TTC-SL
scheduler.

Table D-4: Memory requirements (ROM and RAM) for the TTC-SL scheduler.

Method

ROM requirements
(Bytes)

RAM requirements
(Bytes)

Test A

2264

124

Table D-5 shows the power consumption levels from the STC A and STC B.

Table D-5: Power requirements for the TTC-SL scheduler.

Power consumption
Method
(mw)
Test A 62.1
Test B 65.3

The results in the table demonstrate very high levels of CPU power consumption. This
is again caused by the inefficient use of the processor: that is, when no tasks are
executed, the processor is not sent to sleep (i.e. placed in the low-power “idle” mode).
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Applying STC to the original TTC-Dispatch scheduler

This section discusses the implementation of STCs in the original TTC-Dispatch
scheduler and presents the output results from such an implementation.

I mplementing the test cases

I mplementing the STCsis similar to that with the TTC-Dispatch scheduler (Chapter 7).

Task sequencing and overrun behaviour

The sequence behaviour of the original TTC-Dispatch scheduler when applying STC A,
STCB, STC Cand STC D issummarised in the following table.

Table D-6: Task schedulein TTC-Dispatch scheduler.

STC | Scheduler behaviour
A Al
B Bl
C C3
D Dla

When executing STC A and STC B, the original TTC-Dispatch scheduler behaves in
the same way as the TTC-ISR and the TTC-Dispatch schedulers. When executing STC
C, since the scheduler checks each task in sequence to see if they are due to run, Task
C's status is tested — after Task B — and the task is executed. The scheduler then enters
the “idle” mode waiting for atimer interrupt. This means that the first execution of Task
A is omitted from the schedule. The system then continues as normal. In STC D, the
scheduler does not have a mechanism which counts the missing ticks, therefore tasks
which are due to run in these ticks are totally ignored.

Jitter

Table D-7 shows the periods and jitter measurements for the tick and the tasks for STC
A, STC B and STC C when implemented using the original TTC-Dispatch scheduler.
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Table D-7: Task jitter from the original TTC-Dispatch scheduler (all valuesin pus).

Tick Task A Task B Task C
Min Period 4999.7 4999.7 3029.1 2480.5
Max Period 4999.7 4999.7 6953.5 7595.1
Test A | Average Period | 4999.7 4999.7 4930.99468 | 4896.26064
Diff. Jitter 0 0 3924.4 5114.6
Avg. Jitter 0 0 824.6 911.9
Min Period 4999.7 9999.4 2990.1 2099
Max Period 4999.7 9999.5 7011.6 7863.6
Test B | Average Period | 4999.7 | 9999.4849 4805.84748 | 4762.61818
Diff. Jitter 0 0.1 4021.5 5764.6
Avg. Jitter 0 0 1166.3 1204.7
Min Period 4999.5 4999.2 18991 2994.1
Max Period 4999.9 14999.7 19998.9 17004.8
Test C | Average Period | 4999.7 | 7680.33856 | 19998.49684 | 5370.11318
Diff. Jitter 0.4 10000.5 1007.9 14010.7
Avg. Jitter 0.1 4429.8 20.2 5258

The jitter results obtained are similar to those obtained with the TTC-Dispatch
scheduler (Chapter 7). For example, the table shows that Task A has consistently low
(release) jitter levels while the jitter for Task B and Task C —which are of low priorities
—israther highin STC A and STC B.

However, it is very important to highlight that at any tick, the length of the check
activities — and hence the Update ISR —is a function of the number of scheduled tasks
to run at thistick. Thisresultsin varying the length of the ISR function from one tick to
another. One consequence of this variation is that Task A will suffer from jitter in its
release time when the tasks, to be scheduled in-phase with it, change from one tick to
another. The developed STCs (presented in Chapter 6) do not illustrate this difference in
behaviour between the two versions of the Dispatch scheduler.

In order to emphasise this behaviour, a small study was carried out in which a number
of tasks (between one and ten) were scheduled in such a way that the impact of jitter
would be maximised (Listing D-8 to Listing D-11). In this study, the release jitter for
Task A was measured 10 times each with a different set of tasks. For example, in the
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first experiment, only Task A was added to the system. In the second experiment, Task
A and Task B were added. In the third experiment, Task A, Task B and Task C were
added and so on. Thiswas to explore the impact of the number of scheduled task on the
jitter behaviour of Task A (which is implicitly the top priority task with hardest timing
constraints).

/1 Add tasks in experinent 1 (5 ns ticks)
/| Parameters are <task nane>, <offset in ticks> <period in ticks>
SCH_Add_Task(Task_A, 0, 10);

Listing D-8: Task list used in experiment ‘one’.

/1 Add tasks in experiment 2 (5 ns ticks)

/| Parameters are <task nanme>, <offset in ticks> <period in ticks>
SCH_Add_Task( Task_A, 0, 10);

SCH_Add_Task( Task_B, 0, 9);

Listing D-9: Task list used in experiment ‘two'.

/1 Add tasks in experinment 3 (5 ns ticks)

/| Parameters are <task nanme>, <offset in ticks> <period in ticks>
SCH_Add_Task( Task_A, 0, 10);

SCH_Add_Task( Task_B, 0, 9);

SCH_Add_Task(Task_C, 0, 8);

Listing D-10: Task list used in experiment ‘three’.

/1 Add tasks in experinment 10 (5 ms ticks)
/| Parameters are <task nanme>, <offset in ticks> <period in ticks>

SCH_Add_Task(Task_A, 0, 10);
SCH_Add_Task(Task_B, 0, 9);
SCH_Add_Task(Task_C, 0, 8):
SCH_Add_Task(Task_D, 0, 7);
SCH_Add_Task(Task_E, 0, 6);
SCH_Add_Task(Task_F, 0, 5):
SCH_Add_Task(Task_G, 0, 4);
SCH_Add_Task(Task_H, 0, 3):
SCH_Add_Task(Task_|, 0, 2):
SCH_Add_Task(Task_J, 0, 1):

Listing D-11: Task list used in experiment ‘ten’.
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Table D-8: Task A jitter fromtheoriginal TTC-Dispatch and the TTC-Dispatch
schedulers (all valuesin ps).
Experiment No.
One Two Three Four Five Six Seven | Eight Nine Ten
P'Z'”'gd 4999.7 | 4998.6 | 4997.7 | 4996.8 | 4996.2 | 4995.8 | 4995.3 | 4994.9 | 4994.5 | 4994.1
P'Z'ria(’)‘d 4999.7 | 5000.8 | 5000.6 | 5000.9 | 50012 | 5001.5 | 5002.1 | 5002.4 | 5002.9 | 5003.7
Origind Av
TTC- Cra0€ | 4990.7 | 4999.6 | 4999.5 | 4999.7 | 4999.7 | 4999.8 | 4999.6 | 4999.7 | 4999.5 | 4999.7
. Period
Dispatch
Diff.
. 0 2.2 2.9 4.1 5 5.7 6.8 75 8.4 9.6
Jitter
Avg.
Jitter 0 11 1.4 1.6 1.9 2.2 2.6 2.8 3.2 36
P'Z'n'gd 4999.7 | 4999.7 | 4999.7 | 4999.7 | 4999.7 | 4999.7 | 4999.7 | 4999.7 | 4999.7 | 4999.7
P'Z'ria(’)‘d 4999.7 | 4999.7 | 4999.7 | 4999.7 | 4999.7 | 4999.7 | 4999.7 | 4999.7 | 4999.7 | 4999.7
TTC | Average | ya007 | 4999.7 | 4999.7 | 4999.7 | 4999.7 | 4909.7 | 4999.7 | 4999.7 | 4999.7 | 49997
Dispatch | Period ) ) ) ) ) ) ) ) ) )
Diif. 0 0 0 0 0 0 0 0 0 0
Jitter
Avg.
Jitter 0 0 0 0 0 0 0 0 0 0

By analysing the jitter values of Task A in both schedulers, it was seen that, in the
original TTC-Disgpatch scheduler, the jitter levels increased as further tasks were
scheduled to run in the system, while the jitter levels were always constant in the TTC-
Dispatch scheduler.

Difference jitter (us)

T~ ]
o N b O ® O
| | I | I |

4 5

—e— Original TTC-Dispatch
—&— TTC-Dispatch

6 7 8 9 10

Number of scheduled tasks

Figure D-5: “Task A” releasejitter in theoriginal TTC-Dispatch and the TTC-Dispatch schedulers
based on the study shown in Listing D-8 to Listing D-11.
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The observed behaviour patterns are caused mainly by the architecture of the system.
For example, in the original TTC-Dispatch implementation, the scheduler first
determines — in the Updat e() function — which tasks are due to execute and sets the
corresponding flags. The system will then execute the flagged tasks from the
Di spat ch() function. A consequence of this arrangement — as previously noted —is
that the scheduler overhead (the Updat e() function duration) will vary depending on
the number of tasksthat are to be implemented in agiventick interval. This means that
all tasks (even the first task to be executed which is Task A in this case) will suffer
release jitter.

The TTC-Dispatch implementation (described in Chapter 7) controls the jitter in the
first task by re-arranging the activities performed in the Updat e() and Di spat ch()
functions, as illustrated in Listing 5-5 and Listing 5-6, respectively. In such an
implementation, the Updat e() function is very short and has a fixed duration: it simply
keeps track of the number of Ticks. The dispatch activities will then be carried out in
the Di spat ch() function.

CPU, memory and power requirements

Table D-9 shows the CPU overhead for the original TTC-Dispatch scheduler (with STC
A).

Table D-9: CPU over head for the original TTC-Dispatch scheduler.

Scheduler time (s): | Total time(s): | Overhead %
Test A 9.9 25.0 39.8

Table D-10 presents the memory required to implement STC A using the original TTC-
Dispatch scheduler.

Table D-10: Memory requirements (ROM and RAM) for theoriginal TTC-Dispatch
scheduler.

ROM requirements | RAM requirements
(Bytes) (Bytes)
Test A 4112 324

Method
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Table D-11 shows the power consumption levels for STC A and STC B when
implemented using the original TTC-Dispatch scheduler.

Table D-11: Power requirementsfor theoriginal TTC-Dispatch scheduler.

Power consumption
Method
(mw)
Test A 38.9
Test B 35.7

Applying STC to the TTC-SD scheduler

This section discusses the implementation of STCs in the TTC-SD scheduler and
presents the output results from such an implementation.

I mplementing the test cases

I mplementing the STCsis similar to that with the TTC-Dispatch scheduler (Chapter 7).

Task sequencing and overrun behaviour

The sequence behaviour of the TTC-SD scheduler when applying STC A, STC B, STC
Cand STC D issummarised in Table D-12.

Table D-12; Task schedulein TTC-SD scheduler.

STC | Scheduler behaviour
A A2
B B2
C C1
D Dib

It can be clearly seen from the table that — like the MTI approach — using the SD
approach helps to reduce the variation in the starting times of tasks running in a TTC
system (asin STC A and STC B). Inthe STC C and STC D, the system behaves in the
same way as the TTC-Dispatch scheduler (Chapter 7). This is because the SD scheduler
is mainly adapted from the Dispatch scheduler with a little modification.
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Jitter

Table D-13 shows the periods and jitter measurements for the tick and the tasks for STC
A, STC B and STC C when implemented using the TTC-SD scheduler.

Table D-13: Task jitter from the TTC-SD scheduler (all valuesin ps).

Tick | TaskA | TaskB | TaskC
Min Period 4999.7 | 4999.7 | 4999 4999
Max Period | 4999.7 | 4999.7 | 5000.5 | 5000.5
Test A | Average Period | 4999.7 | 4999.7 | 4999.7 | 4999.7
Diff. Jitter 0 0 15 15
Avg. Jitter 0 0 0.3 0.3

Min Period 4999.7 | 9999.4 | 4999 4999
Max Period | 4999.7 | 9999.5 | 5000.5 | 5000.5
TestB | Average Period | 4999.7 | 9999.5 | 4999.8 | 4999.7
Diff. Jitter 0 0.1 15 15
Avg. Jitter 0 0 0.4 0.3

Min Period 4990.6 | 29784 | 199989 | 2978.2
Max Period 4999.9 | 17020.5 | 19998.9 | 17020.6
Test C | Average Period | 4999.7 | 5312.2 | 19998.9 | 5427.3
Diff. Jitter 0.3 14042.1 0 14042.4
Avg. Jitter 0 5227.8 0 5328.9

From the values presented in the table, the use of SD mechanism in TTC schedulers can
help the low-priority tasks to execute at fixed intervals. This is clear in the results
obtained from STC A and STC B. However, the results from these STCs till show little
variation (i.e. jitter) in the release times of Tasks B and Task C. This jitter is caused by
variation in time taken to leave the software loop — which is used in the SD mechanism
to check if the required release time for the concerned task is matched — and begin to
execute the task. In Listing D-12, one way of implementing such a SD mechanism is
shown.
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voi d SANDW CH_DELAY_T1_Wit(const unsigned int DELAY_MS)

/1 The timer is set so that one count equals to one m crosecond
int i = DELAY_MS;

/1 Wait for Tiner 1 count to reach del ay
while (TITC < i)
t
}
Listing D-12: An example of “sandwich delay” function used in the TTC-SD scheduler.

CPU, memory and power requirements

Table D-14 shows the CPU overhead for the TTC-SD scheduler (with STC A).

Table D-14: CPU overhead for the TTC-SD scheduler.

Scheduler time(s): | Total time(s): | Overhead %
Test A 185 25.0 74.0

The CPU overhead results show that the overall processing time required for the TTC-
SD scheduler is equal to 74% of the total run-time. This overhead figure is too large
compared to that obtained from the most of the schedulers considered in this thesis
(which was approximately equal to 39%). The observed increase in processing time is
expected when such a SD approach is used: since the CPU is forced to run in normal
operating mode while waiting for tasks to art their execution. Nonetheless, this CPU
overhead can still be low compared to that required to implement the TTC-SL scheduler
in which the processor is not placed in low-power idle mode under any condition.

Table D-15 presents the memory requirements for implementing the STC A for the
TTC-SD scheduler.

Table D-15: Memory requirements (ROM and RAM) for the TTC-SD scheduler.

Method ROM requirements | RAM requirements
(Bytes) (Bytes)
Test A 5344 310

Table D-16 shows the power consumption levels from the STC A and STC B when
implemented using the TTC-MTI scheduler.



Appendix D 306

Table D-16: Power requirementsfor the TTC-SD scheduler.

Power consumption
Method
(mw)
Test A 54.4
Test B 54.5

The results in the table show that with SD scheduler, the CPU power consumption is
significantly increased. This is, again, because the processor runs in normal operating
mode while the SD is executing. Note that the power consumption levelsin STC A and
STC B, when SD is employed, are equal. This is because whether or not Task A is
scheduled, the processor has to operate for the same duration until Task C (the last task
in the list) completes execution (see STC A and STC B in Chapter 6).

In order to eliminate jitter completely from the release time of tasksin a TTC scheduler
while reducing power consumption, the modified sandwich delay mechanism (described
in Section 5.7) which employs “multiple timer interrupts’ (MTIs) is recommended.
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Techniquesfor reducing jitter in S-C schedulers

Introduction

This appendix reviews key previous work carried out to reduce jitter in systems using
CAN-based networks including the TTC-SCC scheduling protocol. The main focus
will, however, be on data coding techniques developed in this project to provide simple
and cost-effective solutions to jitter problem in such embedded system architectures.

General jitter-reduction techniques

Generally, there has been a great deal of previous work to address jitter problem in
systems implemented using CAN network. For example, ways for bounding the
response time of CAN messages to reduce the impact of jitter have been explored in a
number of studies (e.g. Tindell et al., 1995; Navet and Song, 1998; Rudiger, 1998). To
reduce clock jitter in CAN systems, many studies proposed techniques which help to
adjust clocks in the communicating processors (e.g. see Verissimo and Rodrigues, 1992;
Rodrigues et al., 1998; Lee and Allan, 2003; Johansson et al., 2005). Barreiros et al.
(2000) and Coutinho et al. (2000) applied ability of genetic algorithms which is a search
technique to manage the schedule of message transmission in order to minimise jitter
levels.

Nonetheless, if data messages are used to drive the local time base of each other node
(as with TTC-SCC protocol), then encoding message data (before transmission) can be
a cost-effective approach to reduce jitter by significant factors whilst maintaining high

resource efficiency.

Data coding techniques
Introduction

This section describes a range of effective software-based techniques which can be
integrated in TTC-SCC1, TTC-SCC2 and TTC-SCC3 (or any CAN-based) networks for
reducing jitter caused by the underlying network protocol. In this case, the jitter is

observed by bit stuffing mechanism implemented in the CAN hardware for clock
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synchronisation. The described techniques are based on generic data coding approaches
which can be adapted for use in a wider range of data applications. Such techniques
include: XOR masking, Software Bit Stuffing (SBS), and Eight-to-Eleven Modulation
(EEM). Ways of implementing each of these techniques in practical designs, using
TTC-SCCL1 scheduler, are explored and fully documented™.

It must be emphasised that in all these techniques, data “encoding” and “decoding”
activities in the Master and Slave nodes, respectively, are performed in the scheduler
dack time: that is the spare processing time during which the scheduler is in its idle
state (Davis, 1993), see Figure E-1. Thereason for thisis to avoid any jitter that may be
caused by variations in the execution times of such coding activities which are a
complex function of the original data-bit values. This means that, a any tick interval,
frame that was encoded in the slack time of the previous tick interval is transmitted.
Note that code listings for al techniques are presented in Appendix H.

Tick
interval
A . A

H Slack time
&

| .

Task Task | Coding
----- g ) --- N D Idle mode -—---
Tick n Tick n+1 Time

Figure E-1: Tick structurein all coding techniques considered in thisthesis.

Masking data using XOR transformation
I ntroduction

This section explores the benefits of a method proposed originally by Nolte et al. (2001
and 2002) for reducing the impact of (hardware) bit stuffing in CAN networks.
Modifications to this technique — for achieving better improvement to a wider range of
real-time applications — are then discussed and evaluated.

% The work described in this appendix has been adapted from the studies presented in the author’s
publications [7] and [9] listed in page xvii.
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Overview of the technique

When attempting to reduce message-length variations (and hence transmission jitter) to
low levels without imposing large computational or memory overheads, techniques
described by Nolte et al. (2001 and 2002) appear to be attractive. Nolte and colleagues
(2001 and 2002) have described two mechanisms which can be combined to reduce the
impact of bit stuffing in networks employing the CAN protocol. The first approach was
based on a careful selection of message priorities aimed to remove the bit stuffing effect
in the frame header (i.e. Arbitration and Control fields). The second approach they
considered was based on an exclusive-OR (XOR) bit masking applied to the data
section of each CAN frame.

When applying both techniques to a particular set of test data, Nolte and colleges have
found that worst-case number of stuffed bitsin CAN messages was reduced from 17 to
4. Thisis further discussed as follows.

Nolte XOR transfor mation

By analysing 25000 CAN frames from a real automotive system, Nolte et al. (2001)
found that the probability of having bit value of 1 (or O) in the data section is not 50% as
usually assumed in traditional models. More specifically, they observed that the
probability of having consecutive bits of the same polarity was high, and that —
therefore — the number of stuffed bits is higher than would be expected with random
data.

To reduce the number of stuffed bits inserted by the CAN hardware, Nolte suggested a
simple encoding scheme based on logical exclusive-OR (i.e. XOR) operation. In this
scheme, the data section of each CAN frame is XOR-ed with alternating ones and zeros
(i.e. 101010...). At the receiving end, the same bit operation is applied again to extract
the original data (see Figure E-2).

Original frame: 000000111110011000000111 ...
XOR with bit-mask: 101010101010101010101010 ...
Transmitted frame: 101010010100110010101101 ...

Figure E-2: Encoding processin Nolte XOR masking.
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When applying such an XOR masking technique to the data set considered in their
study (along with the message-1D selection technique), Nolte et al. found that the worgt-
case number of stuffed bitsin CAN messages was reduced by approximately 76%.

However, in a more general case, the data transmitted may not have the same
characteristics as those observed by Nolte. Provided that message identifiers were
selected properly, it would not be expected to see a significant reduction in the level of
bit-stuffing if the Nolte (XOR) transformation is applied to a data field containing
random bytes. Thisis investigated in the next section.

Applying Nolte transfor mation to general CAN traffic

Overall, the application of an XOR transformation can help to reduce levels of bit
stuffing in frames which are found to contain long sequences of identical bits. In a more
general case, the data transmitted may not have the same pattern. Indeed, if a
completely general CAN message was modelled using random data, then it would not
be expected to see a significant reduction in the level of bit-stuffing when the Nolte
(XOR) transformation is applied.

To illustrate this, 10 million pseudo-random data frames — each with eight data bytes —
were created and analysed using a ‘C’ program. The results from a simple analysis of
these data are presented in Table E-1.

Table E-1: Bit stuffing results from random CAN frames.

No. of frames exposed to | Maximum number of | Average number of
CAN hit stuffing stuffed bit stuffed bit

8,932,166 10 2.27

The table shows that — of the 10,000,000 frames — a total of 8,932,166 (around 89%)
would be subject to CAN bit stuffing. In this data set, the maximum number of stuffed
bits (for any frame) was 10 and the average number of stuffed bits (across all frames)
was 2.27.

Table E-2 then illustrates what happens if the Nolte approach is applied to al framesin
the data set.
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Table E-2: Results from Nolte XOR transfor mation technique applied to random CAN frames.

Bit-stuffed Maximum. Average Reductionin Reductionin Reductionin
frames stuffed bits stuffed bits frames max bits average hits
8,931,642 10 227 0.006% 0% 0%

In the table, “Reduction in frames’ shows the reduction in the number of frames which
are subject to bit stuffing after Nolte XOR transformation is applied: in this case, the
result is small (0.006%). Similarly, the reductions in the maximum number of stuffed
bits (0%) and the average number of stuffed bits (0%) are also small. Overall, it can be
concluded that the direct application of Nolte transformation is having a minimal
improvement on the level of bit stuffing for the random data.

Selective “ frame-based” application of Nolte transfor mation

Using the same study, Table E-3 shows the results obtained in response to a selective
application of the Nolte method. This table uses the same data set used in Table E-1.
Thistime, however, the frames are tested individually before Nolte XOR transformation
is applied: in situations where — for the whole frame — bit stuffing will not occur, the
frame is transmitted unaltered. Only where bit-stuffing will be applied (to the “raw”
frame) is the frame subject to an XOR transformation. This method will be referred to,

in the remainder of the thesis, as “frame-based XOR transformation”.

Table E-3: Results from frame-based XOR transfor mation applied to random CAN frames.

Bit-stuffed Maximum. Average Reductionin Reductionin Reductionin
frames stuffed bits stuffed bits frames max bits average hits
7,927,015 10 222 11.25% 0% 2.2%

In this case, it is noted that “Reduction in frames’” and reduction in the average number
of stuffed bits are larger after frame-based X OR transformation is applied. However, no
reduction is obtained in the maximum number of stuffed bits.

Selective “ byte-based” application of Nolte transfor mation

Here, Table E-4 shows the results obtained in response to a third implementation of the
Nolte method. This table again uses the same data set. This time, however, each byte
of datain each frame is tested individually before Nolte XOR transformation is applied:
in situations where — for the byte — bit stuffing will not occur, the byte is transmitted
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unaltered. Only where bit-stuffing will be applied is the byte subject to an XOR
transformation. This method will be referred to, in the remainder of the thesis, as “byte-
based XOR transformation”.

Table E-4: Results from byte-based XOR transfor mation applied torandom CAN frames.

Bit-stuffed Maximum. Average Reductionin Reductionin Reductionin
frames stuffed bits stuffed bits frames max bits average hits
5,638,654 6 1.39 36.87% 40% 38.77%

In this case, against all the measures made here, it can be noted that there has been a
reduction in the level of bit stuffing. In this case, the “Reduction in frames’ is
approximately 37%. The reductions in the maximum and average number of stuffed

bits are at smilar levels.

I mplementation

From the small study described in the previous sections, the XOR transformation
suggested by Nolte has — as expected — a little impact on the random data set. However,
by applying Nolte transformation selectively (when required) the level of bit stuffing
can be further reduced.

Of course, the study outlined by Nolte was highly artificial, and took no account of (for
example) the need to transmit information about the encoding process to the receiver, to
allow successful decoding of the data stream. In this section, the described XOR
transformation methods are incorporated in the TTC-SCC1 scheduling protocol
described in Chapter 9.

Implementing Nolte XOR transformation

In this method, every byte of the CAN data message (except the Slave ID) is XOR-ed
with the bit pattern 10101010. In this method the maximum data bandwidth of eight
bytes can be used for real data since there is no need to send any encoding information

with the CAN messages.
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Implementing the frame-based XOR transformation

In this method, each CAN frame is checked and — if a sequence of five identical bitsis
detected — the whole frame will be XOR-ed with the bit mask 10101010 ....

To alow decoding, only one bit is required to indicate if the frame is masked or not. To
make best use of the available data bandwidth, one bit in Byte 1 (which otherwise
contains the Slave ID) was used to store the masking information. Appropriate coding
schemes were used to ensure that the bit stuffing was not introduced in the Slave 1D
byte (see Figure E-3).

Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7 Bit 8

SavelD SavelD M?rsl:%ng Slave ID Slave D Slave D Slave D Slave D

Figure E-3: Layout for Byte 1in the frame-based XOR transfor mation.

Implementing the byte-based XOR transformation

In this method, each CAN frame is checked on byte-by-byte basis, and once a byte
contains a sequence of five identical bits is detected, this particular byte will be masked
using Nolte bit-mask (i.e. 10101010).

To hold the masking information, one bit per each byte of data is required. In this case,
where 6 bytes were used for data, six bits were needed. However, it was necessary to
ensure that these 6 bits did not themselves introduce bit stuffing. Therefore — as with
the frame-based method — one hit of the Slave-ID byte was used to store decoding
information, along with 5 bits (and appropriate padding) in the last CAN data byte (see
Figure E-4 to Figure E-6).

Byte 1 Byte 2 Byte 7 Byte 8

Slave ID + one bit -
for masking info Actual data Masking info

Figure E-4: Layout for data field in the byte-based XOR transfor mation.
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Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7 Bit 8
Opp:):ete 2 Relevantto | Relevantto | Relevantto | Oppositeto | Relevant to I;g:fy?g? Oppositeto
. .| databyte2 | databyte3 | databyte4 Bit 4 data byte 6 Bit 7

previous bit
Figure E-5: Layout for Byte 8 in the byte-based XOR transfor mation.
Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7 Bit 8
Relevant to
Slave ID Slave ID data byte 5 Slave ID Slave ID Slave ID Slave ID Slave ID

Figure E-6: Layout for Byte 1in the byte-based XOR transfor mation.

For example, if Byte 8 equals to: 01010110 and Byte 1 equals to: 00100010, the
receiving node will know that bytes 2, 4, 5, 6 and 7 were masked. The Slave ID value
was again selected with extra care to avoid exposure to hardware bit-stuffing.

To implement encoding and decoding processes of this method in practice, there can be
two implementation options: (a) offline using lookup table, and (b) online using

function call. Both approaches are explained here.

Lookup table

In this approach, byte checking and required XOR transformation are carried out in a
Separate desktop program for all different combinations of bits. Once all bytes are
checked and hence the required bytes are masked, the equivalent codewords are stored
in aone dimensional array that is used as a lookup table. For those bytes which need no
masking, the equivalent codeword in the table will be equal to the original byte value. In
the following table, the first few lines of the lookup table used in the byte-based XOR
transformation are presented. Note that the byte values 8, 9 and 10 remain the same

since they are not subject to XOR transformation.



Appendix E 315

Table E-5: Part of the byte-based XOR lookup table.

Origind |  Equivalent Equivalent
Byte codeword Codeword
vaue (Decimal) (Binary)
0 85 01010101

1 84 01010100

2 87 01010111

3 86 01010110

4 81 01010001

S 80 01010000

6 83 01010011

7 82 01010010

8 8 00001000

9 9 00001001
10 10 00001010

The (embedded) Master and Slave codes will then port this lookup table and use it for
encoding and decoding, respectively. However, in the Slave, the decoding function
needs to search for the value — of each received byte — in the table and map it to its
original byte value (which is represented by the array index).

Function call

In this approach, masking the required bytes (in the encoder) and de-masking them (in
the decoder) are performed in the embedded code during the system runtime without
prior information. For example, the Master code needs to check the data bytes and
applies the XOR transformation when required. The receiver code should hence follow
the reverse process to recover the original data bytes.

Software Bit Stuffing (SBS)

I ntr oduction

This section presents an alternative software-based technique, called Software Bit
Stuffing (SBS), which can be used in any CAN-based network to minimise the impact
of the bit stuffing mechanism implemented in the CAN physical layer. It will be

explained how such a technique can be implemented in practical designs, using TTC-
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SCC1 scheduler, with the aim to reduce the message-length variations (and hence the
transmission jitter) in CAN networks.

Overview of the technique

Although the byte-based X OR transformation was found to reduce the level of message-
length variations, it is impossible to guarantee that all (hardware) bit stuffing will be
avoided through application of this method. This is because in situations where there
are five consecutive bits of the same polarity at the boundary of two adjacent bytes, this
method will not detect this.

To completely eliminate the need for hardware bit stuffing in the CAN data segment,
Software Bit Stuffing (SBS) technique is proposed. SBS operates as follows. Before
transmitting on the CAN bus, the data content of a given frame is checked. If a
sequence of four consecutive identical bits is detected, the algorithm adds an additional
bit, of opposite polarity, afterwards. By doing so, the transmitted frames will have no
bit-sections — in the data field — that will be subject to CAN bit stuffing. Note that the
(software) stuffed bits must be removed at the receiving node (using the reverse
process) to recover the original data.

Note that after completing the bit stuffing process in the sending node, the message is
padded — as necessary — before transmission to ensure that the message length is
independent of the level of (software) bit stuffing. Notethat in the hardware bit-stuffing
mechanism used in CAN, no such padding is employed.

I mplementation

The previous section described a simple approach to software bit stuffing. This section
describes how such a technique can be implemented on the TTC-SCC1 scheduling
protocol.

The analysis in (Nolte et al., 2001) demonstrates that the worst-case bit stuffing occurs
if the CAN data contains five “0s’ followed by four “1s” followed by four “0s’, and so
on. Thetotal number of bits transmitted in the CAN message is therefore calculated as:
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No.of transmitted bits = No.of bitssubject tobit stuffing + No.of stuffed bits

Equation E-1

The number of required stuffed bitsis calculated as follows:

No.of bitssubject tobit stuffing - 1
Maximum No.of consecutivebitsallowed - 1

No.of stuffed bits=
Equation E-2

Note that the maximum number of allowed consecutive bits to transmit is equal to five;
since any sequence contains more than five consecutive identical bits will be broken up
by the CAN physical layer using an opposite polarity bit.

In the software level, to avoid hardware bit stuffing, a maximum of four consecutive
identical bits is allowed to transmit. Remember that in the S-C protocol, one byte is
allocated for Slave ID, where the bits value of this byte are selected carefully such that
(a) they were not subject to CAN bit stuffing, and (b) the last two bits in the Slave ID
had opposite polarities.

Given that B is the total number of bits in the data field of the CAN frame, Bp is the
number of bits used for Slave ID, B, is the number of bits used for real data (which will
be subject to bit stuffing), and Bs is the number of stuffed bits, by substituting these
parameters in Equation Equation E-1 and above, B; can be formulated as:

Bt = BID+ Br + Bs
Equation E-3
. . . éB - 10 . . . . .
Using Equation E-2, Bs will be equal to Sr_BH If this term is substituted in Equation

E-3, then B, can be calculated as:

g =3B - Bp)-1
' 4
Equation E-4
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If By is the number of bytes used for real data, then B, = 8 By,. By substituting this in
Equation E-4, By, will be calculated as 5.3 Bytes. This means that the maximum
bandwidth which can be used for transmitting real data is 5 bytes. This implies that the
worgt-case number of stuffed bits will be equal to 13.

Note that athough the Slave ID byte was not subject to bit stuffing, there is still the
possibility that there will be five consecutive bits of the same polarity at the boundary of
this byte and the first byte in the real data. To avoid this possibility, software bit stuffing
will be applied if the data starts with three identical bits.

After all the necessary message bytes have been checked and the required bits inserted,
the remaining bits in the data section of the CAN message are padded with alternating

ones and zeros (i.e. 1010...). These bits are called compensation bits.

The number of compensation bits required (B.) can be calculated as follows:

Bc = Bi—Bip — (B + By); 0<B:<16
Equation E-5

In the system considered here where Bip = 8, B; = 64 (8 bytes), B; = 40 (5 bytes), and Bs
= 13, there will be at least three compensation bits needed to pad the message for fixing
its length. If the real data are not subject to CAN bit stuffing then the last two “ Stuffed
coding” bytes (16 hits) in the data section of the CAN message will be filled with
alternating ones and zeros (see Figure E-7).

Byte 1 Byte2-6 Byte 7 Byte 8
[ SavelD | Data | Stuff coding | Stuff coding ]

Figure E-7: Layout for datafield in the softwar e bit stuffing.

Using an example of pseudo-random data, the entire (encoding) process of SBS is
schematically illustrated in Figure E-8. Note that the stuffed bits and the compensation
bits are bolded.
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Byte 1 Byte 2 Byte 6 Byte 7 Byte 8
| SlavelD | 1111110010001000000111000101111111110010 [ ---- ---- - |
Software
bit-stuffing

| SlavelD [ 1110111001000100001001110001011110111101 [ 0010 ---- | ---- ----

Compensation
(padding)

[ SavelD | 1110111001000100001001110001011110111101 | 00101010 | 10101010 |

l Transmit frame

Figure E-8: Encoding processin the softwar e bit stuffing algorithm.

In the same way, reverse (decoding) process must apply in all Slave nodes to extract the
original five data bytes sent in the “Tick” message from the Master.

Eight-to-Eleven Modulation (EEM)
I ntroduction

In this section, Eight-to-Eleven Modulation (EEM) technique, which can also be used in
CAN-based systems for reducing the impact of bit stuffing, is described. EEM is,
however, found to be more flexible and cost-effective. The flexibility of this method
results from the wide range of implementation options which are available to implement
the algorithm in resource-constrained embedded microcontrollers. An exploration of
various possible ways in which EEM can be implemented in practice, using TTC-SCC1
scheduler, is carried out in this section. Please note that the implementations outlined

here have been viewed as representative of all possible implementations methods.

Overview of the technique

Despite the fact that SBS can help to substantially reduce the jitter levels in CAN
systems, the data encoding / decoding processes can only be performed at run-time
(while the system is in its normal operation) using a function call. Overall, processing
data at run-time may result in increased CPU overheads on the used processor: a fact
which may not be tolerated in many embedded systems that have extremely limited

timing resources.

To reduce the impact of bit stuffing in CAN systems while achieving higher processor
utilisation, an alternative coding technique, which is based on X-to-Y modulation
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approach, is proposed. The X-to-Y modulation is a general coding method in which “X”
represents the number of bits in the original data segment and “Y” represents the
number of bits in the encoded data segment. Data stream in some computer applications
need to be encoded to meet particular requirements. One of the popular examples isthe
Eight-to-Fourteen Modulation (EFM) used to represent audio data in compact discs
(CDs)*: see Watkinson (2002). Applying the same concept to the transmitted data in
CAN networks, Eight-to-Eleven Modulation (EEM) would be an effective solution to
avoid hardware bit-stuffing. This approach is described here.

EEM is a special case of the X-to-Y modulation approach where “X” equals to 8 (the
number of bits per byte) and “Y” equals to 11. Modulating CAN data bytes using EEM
can help to ensure that the number of consecutive bits of the same polarity does not
exceed four and that, therefore, hardware bit stuffing is no longer applicable. As a
consequence, predictability of CAN message transmission times will increase.

By applying the formula in Equation E-2, where the number of bits subject to bit
stuffing is equal to 8 and the maximum number of consecutive bits allowed is again
equal to 4, the number of required stuffed bits in each byte will be equal to 2.3 (~ 2
bits).

By referring to the analysis provided by Nolte et al. (2001), the worst-case scenario for
one byte would be four ones followed by three zeros (i.e. 11110001). With adding two

B n digital audio CD systems, data is represented by NRZI in which the presence of alternating ‘ 1s' and
‘0s at high rates can be so fast that the optical system cannot perceive the data. On the other hand, ajitter
or data locking can be introduced if the data rate is set too low. In order to keep the data rate between
non-too-low and non-too-high frequency ranges, an appropriate coding mechanism is required. For
example, Eight-to-Fourteen Modulation (EFM) technique is widely adopted in CD recording systems. In
EFM, each data byte (8-hit) is converted to an equivalent 14-bit codeword using lookup table. This
conversion ensures that any data word has: [1] No more than 10 zeros between every two ones: thisisfor
synchronisation; [2] No less than 2 zeros between every 2 ones:. thisisto reduce frequency and help the
laser to detect the recorded data. For further details, refer to (Watkinson, 2002).
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stuffed bits as calculated above, the resulting byte becomes. ‘1111000011’ (the stuffed
bits are bolded). This would work only if the boundaries between adjacent bytes are not
taken into consideration. More clearly, in the case where the previous byte to the one
shown above ends with the bit “1”, CAN hardware will detect five consecutive bits (at
the boundaries between this and its preceding byte) and thus insert an additional bit for
synchronisation.

There is no way to avoid this unless if a further bit is padded near the most significant
bits of each byte. Figure E-9 shows one possible way — which has been considered in
this study — for byte encoding. The figure clearly demonstrates that each byte needs to
be represented by (at least) 11-bit codeword. This process isreferred to, in thisthesis, as
“eight-to-eleven modulation (EEM)”. Note that “SB” in the figure stands for “stuffed
bit”.

| Bit1 | sB1 | Bit2 | Bit3 | Bit4 | SB2 | Bit5 | Bit6 | Bit7 | SB3 | Bit8 |

Figure E-9: Encoding a data bytein EEM method.

Same as SBS, when EEM was implemented in practice (using the TTC-SCC1
scheduler) the maximum throughput for the real data was equal to 5 bytes (since stuffed
bits require approximately two bytes and one byte is reserved for Slave ID in the S-C

protocol).

If By is the number of bytes used for real data, then B, = 8By, and Bs = 3 By, (since 3
bits are required to encode each byte in the EEM). By substituting these terms in
Equation E-3, By, will be calculated as 5.1 bytes. In another word, the number of bytes
used for real data cannot be more than 5 when EEM is applied.

I mplementation

This section explores possible ways for implementing EEM technique in practice using
the TTC-SCC1 scheduling protocol. The two main approaches considered are: lookup
table and function call. Each of these approaches is discussed in details.
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Lookup table approaches

As in the EFM data modulation method described previously, the EEM algorithm can
use a lookup table to store the EEM codes for all possible byte values (between 0 and
255). In this approach, EEM codes are computed offline (using a desktop program) and
stored in a one-dimensional array which will then be used by the embedded program.
Note that with 16-bit microcontrollers (as used in this study), array with 16-bit integers
can be a suitable choice to represent the lookup table. However, using 16-bit array can
provide two types of EEM tables: explicit and implicit tables

Explicit EEM table

In the explicit representation, each array element (16-bit) is reserved for one EEM code
(11-bit), and the remaining bits in each element are left unused. Since there are 256
possible byte values, the required array size will be 256 integers. Basically, the array
index here represents the byte value and the array element represents the EEM code. For
example, the byte "0" has the EEM code of "546" (i.e. 01000100010). The first few

lines of the explicit lookup table considered here is shown in the following table.

Table E-6: Part of the explicit EEM lookup table.

Index Array element Binary value
0 546 01000100010
1 547 01000100011
2 548 01000100100
3 549 01000100101
4 554 01000101010
5 555 01000101011
6 556 01000101100
7 557 01000101101
8 562 01000110010
9 563 01000110011

10 564 01000110100

Implicit EEM table

In the implicit representation of the EEM table, each array integer may include bits for
two or three EEM codes (11-bits each). For example, the first array element includes the
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EEM code of the byte “0”, and five bits from the EEM code of the byte “1”. In this
option, the overall array size is calculated as follows:

(No. of all possible byte values) © (No. of bits required for each byte)
(No. of bits per array element)

Array size =

Equation E-6

Since the number of all possible byte values is 256, each byte requires 11 bits for
encoding, and the length of each array element is 16 bits, then the size of the EEM array
will be 176 integers. Remember that the explicit EEM table contains 256 integers.

Once the lookup table is generated, it is then used by both the Master ansd Slave nodes.
Note that although the lookup table methods are offline-based, there are still some
processes to be done at runtime. This includes: (1) looking up data from the EEM table,
and (2) placing data in (or extracting from) their corresponding 8-bit CAN registers.
Unlike the process carried out by the encoder, the lookup process in the decoder may
not be straightforward. This study outlines two mechanisms for the lookup process that
the Slave' s program can implement.

Searching element:

The one-dimensional array is the simplest (software) method to represent the EEM
lookup table. If, for example, the explicit lookup table is used in both the Master and
Slave, then the decoder needs to search for the EEM code in the array lines to find its
corresponding byte value (i.e. array index).

There are many methods for looking up a particular value in a sorted array. For
example, Binary Search Algorithm (BSA) is a widely-used searching method in
computer science (Knuth, 1998). It basically rules out half of the data at each search
step for reducing the search time. A binary search finds the median, makes a
comparison to determine whether the desired value comes before or after it, and then
searches the remaining half in the same manner. Note that this algorithm is logarithmic
in which it requires at most (1+log2 N) iterations to return the answer; where N is the

number of records.
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If the implicit lookup table is used in the Slave, then a direct searching mechanism has
to be applied to determine the original byte values for the receiving EEM codes. In the
design considered in this study, in order to smplify the searching process, the implicit
lookup table was divided into 16 regions (each contains 16 EEM codes stored in 11
array elements). Therefore, the decoder needs to work out in which region a particular
EEM code is stored then performs a search within this region. Overall, searching
mechanisms cause low utilisation of the CPU.

Using reverse array:

In this approach, the EEM table — in the Slave — isimplemented in the opposite way: i.e.
the array index represents the EEM value and the array element represents its
corresponding byte value. Since the maximum EEM value is 1501, then the array can
have 1501 elements. But in order to save more memory, unnecessary ranges can, if
possible, be removed. For instance, since the minimum EEM value is 546 then f(546)
can be set to be equal to f(0) to start the table from the minimum EEM code while all
elements with indices less than 546 are entirely removed from the table. This implies
that, in the decoding process, f(x) = f(x — 546). With this option the EEM array can have
956 bytes (i.e. Max —Min = 1501 — 546 + 1) and hence save more memory.

Nonetheless, in order to make a better use of the available memory resources, the EEM
technique can also be implemented using online computational methods where the EEM
code for an input byte value is calculated at runtime using a function call. This approach
is further described here.

Function call approaches

This is an alternative implementation of EEM in which the equivalent EEM code for
each data byte is calculated online without the need to store data in a lookup table. In
this approach, the Master uses an “encode data’ function to perform the EEM
conversion and then places the EEM words in the corresponding registers for
transmission with the CAN frame. On the Slave node, a reverse process (decoding)
takes place to extract the original data bytes. This method can be practically
implemented using two approaches. algorithmic and mathematical coding. Both
approaches are described here.
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Algorithmic coding

In algorithmic coding, a set of logical operations (e.g. SHIFT, AND, OR, etc) are
employed to stuff the three required bits in each byte for generating the equivalent EEM
code. The complete process of this coding method is illustrated in Figure E-10. Note
that “In_index” indicates the bit order in the original byte, while “Out_index” indicates

the bit order in the EEM code.

Outindex =1
In index=1

A

>
P
A
=1

EEM [Out_index] = Input_Byte [In_index]

If
In_index=1
OrlIn_index =4
OrlIn_index=7

Qut_index ++
EEM [Out_index] = ! Input_Byte [In_index]

»
P

A 4

In_index ++
Out index ++

Yes If

In_index < 8

Figure E-10: The process of the EEM algorithmic coding.

On the Slave node, the reverse process is applied to take out the stuffed bits and recover
the original byte values. It should be noted that in the offline approaches the desktop
program — used to generate the lookup table — was based on this algorithm.
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Mathematical coding

The EEM value of a given byte can be calculated using a mathematical formula. To
clarify this, by looking at the EEM values in the explicit lookup table, it can be
observed that as the byte value (array index) increases the equivalent EEM value
increases with a specific trend (Figure E-11). The three graphs show the numerical
EEM values in three ranges: (a) full range, (b) byte values between 0 and 12, and (c)
byte values between 0 and 32. Note that the trend shown in (c) is repesated 8 timesin (a).

Mathematical equations for EEM values can be derived directly from the analysis of the

graphs. If the EEM value of a byte x is represented by f(x), then f(x) can be calculated
using Equation E-7:

F(x)= f(0)+x+ E@

Equation E-7

Where f(0) is the initial value which represents the EEM code of the byte “0”, and éx{

is the floor function of x. Floor function is defined as the largest integer less than or
equal to x. Similarly, on the Slave, the decoding function employs Equation E-8 to
calculate x from the receiving f(x) value.

?f(x) f(O)u _a&f(x)- f(0)u. 169

58
g 4 5864Hfa

Equation E-8

x=f(x)- f(0)-
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Figure E-11: EEM valuesfor different byteranges. (a) full range, (b) bytes between 0 and 12, (c)
bytes between 0 and 32.
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In general, online solutions require no excessive memory for storing data. However,
they impose higher CPU overheads on the Master and Slave microcontrollers. One
advantage over the SBS method is that the online implementation of EEM algorithm
can be achieved by both algorithmic and mathematical approaches. in SBS, only
algorithmic coding can be used. Remember that, unlike SBS, EEM coding processes
each byte in the data segment independently.

Summary

In general, the discussions in this appendix suggested that jitter in the transmission
times of data messages caused by bit-stuffing mechanism in CAN protocol can be
reduced significantly using simple coding techniques.

A schematic illustration of the techniques developed in this study, and their possible
implementation methods, is provided in Figure E-12.

Data coding techniques

| ! !

XOR masking EEM SBS
! ;|
Nolte Frame- Byte- _
XOR based based Function Lookup Function call
: XOR XOR call table
masking . .
masking masking

Y N\ ¥ N\ Y N

Function || Lookup Algorithmic||Mathematical| [Explicit Implicit
call table coding coding table table

Y N

Search| |Reverse| |Search
element | array | |element

Figure E-12: Summary of the coding techniques described in this appendix.
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Results from thejitter-reduction techniques

Introduction

This appendix provides the output results from the data coding techniques introduced in
Appendix E for reducing jitter in multi-processor embedded systems employing TTC-
SCC architecture. The particular system used, as previously noted, is the TTC-SCC1
scheduling protocol as a representative scheduler which utilises the tick messages for
exchanging real data with other nodes. Since TTC-SCC2 and TTC-SCC3 schedulers use
the same configuration for the Master tick messages, they can also benefit from such
techniques to reduce jitter in the timing of their Slave tasks.

The key parameter against which the various techniques are assessed is the release jitter
in Slave tasks. However, the techniques are also weighed up against the required CPU
time and memory overheads.

The experimental methodology used to obtain the results is first outlined™.

Experimental methodology

Hardware setup

In summary, the study used here was based on using two microcontroller nodes. one
represents the Master and the other represents the Slave. Each node was based on a
Phytec board supporting an Infineon C167 microcontroller with oscillator frequency of
20 MHz. The network nodes were connected using a twisted-pair CAN link. The CAN
baudrate was 1 Mbps.

% The work described in this appendix has been adapted from the studies presented in the author’s
publications [7] and [9] listed in page xvii.
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Software setup

The data coding techniques discussed in Appendix E were applied to the TTC-SCC1
(described in Chapter 9) to explore their impact on the jitter levels of Slave tasks. The
scheduler tick interval used was 4 ms. The Keil C166 compiler was used.

Jitter measurements

The experimental methodology used to obtain jitter results in this study is similar to that
described in detail in Section 11.2.3. Remember that jitter levels are measured at the

releasetime of “Sl avel_Task_A" (the only task) in the Slave node.

Jitter in each method was measured for systems with 8-, 7- and 6-byte data model to
allow a meaningful comparison with other coding techniques. For example, the 6-byte
data model uses five bytes for real data and one byte for Slave ID. The remaining bytes
would either be unused or hold information about encoding process.

Assessing the CPU and memory loads

Since the focus in this study is on embedded systems with limited-resource
requirements, consideration of the overheads (in terms of memory and CPU
requirements) is important. To do this, the time taken for the encoding and decoding
processes was measured from the microcontroller hardware using LabVIEW
measurement tools. In each process, a pin was set high at the start of the coding function
and low at the end of it. The resulting pulse was then measured which represented the
processing time of the function a a given run. In each case, 1000 samples were
recorded and then averaged. The CPU overhead values were also represented as
percentages of thetick interval used (which isin this case 4 ms).

The memory requirements (ROM and RAM) to implement each technique in the C167
hardware platform used were also reported. In addition to the absolute values of
memory requirements in each method, the results were also presented as percentages of
the available on-chip ROM and RAM resources. Please note that the C167 boards used
have 32 Kbytes ROM and 2 Kbytes RAM. Note that memory results were obtained
from the systems using the maximum available data bandwidth only (i.e. 8-byte model).
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Data selection

In the studies presented here, the data segment of each message may contain “best-
case’, “worst-case” or “random” values (and the Slave ID). One example of the best-
case scenario is message data which consists of alternating ‘1s and ‘Os (e.g.
10101010): such data require no bit stuffing. The worst-case situation occurs when the
data are set to be 11111000011110000..., since this causes the maximum level of CAN
bit stuffing (Nolte et al., 2001).

Both best- and worst-case data were used here for comparison purposes. In the case of
random data, pseudo-random values were sent in each data byte. Note that exactly the
same set of “random” data was used in each study. In total 50,000 messages were

transmitted (and measured) in each experiment.

Benchmark measures
Jitter

The jitter levels resulting from the “best-case” and “worst-case” data sets are first
considered. Table F-1 shows these jitter levels from the TTC-SCC1 scheduler. Note that
all results are in microseconds (ps). Remember that 8-byte “Tick” messages were used,

with one byte reserved for the Slave ID.

Table F-1: Task jitter from the TTC-SCCL1 scheduler for best-case and wor st-case data.

8-byte
Best-case data BCTT 161.4
WCTT 163.6
AVTT 162.5
Diff. Jitter 22
Avg. Jitter 0.6
Worst-case data BCTT 174.4
WCTT 176.7
AVTT 1755
Diff. Jitter 2.3
Avg. Jitter 0.6
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It might be expected that the jitter levels when fixed data bytes are transmitted in each
CAN frame will be zero. In practice, the difference jitter obtained was found to be
approximately 2us (equal to 2 bit times for the CAN bus at 1 Mbps). These jitter figures
are approximately equal to 1% of the whole message length.

Without access to the implementation details for the CAN controller (which are not
generally available), the precise cause of these variations cannot be identified.
However, it can be noticed that the CAN controller is asynchronous with respect to the
CPU. This means that the generation of an interrupt by the controller and its servicing
by the CPU takes a period of time which may depend on several factors (for example,
the state of the instruction pipeline in the CPU when the interrupt is generated). The
reported timing values are compatible with this kind of jitter.

The jitter levels resulting from the “random” data set is now considered. Table F-2
shows these jitter levels from the TTC-SCC1 scheduler. Note that all results are in

microseconds (1s). Remember that 8-, 7- and 6- byte data models are used here.

Table F-2: Task jitter from the TTC-SCCL1 scheduler for random data.

8-byte 7-byte 6-byte
Random data BCTT 162.4 1515 140.7
WCTT 172.6 160.6 148.7
AVTT 166.7 154.4 1435
Diff. Jitter 10.2 9.1 8.0
Avg. Jitter 15 14 13

The results clearly show that as the number of data bytes — sent in the CAN message —
increases, the number of bits stuffed by the CAN hardware increases. The maximum
number of stuffed bits, when maximum data bandwidth was used, was found to be 10.

CPU and memory requirements

CPU and memory requirements in the TTC-SCC1 before employing any coding
technique are presented in Table F-3. Of course, there are no encoding and decoding
processes in the original system, therefore, the CPU and memory overheads are equal to

Z€ero.
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Table F-3: CPU and memory requirements for the TTC-SCC1 scheduler.

Encoding Decoding
Absolute Percentage Absolute Percentage
value: value: value: value:
CPU overhead (ms) 0 0% 0 0%
Data overhead (Byte) 0 0% 0 0%
Code overhead (Byte) 0 0% 0 0%

Nolte XOR transformation

Jitter

The jitter levels from Nolte XOR transformation are presented in Table F-4. Note that

all results are in microseconds (Us).

Table F-4: Jitter results from Nolte XOR transfor mation.

8-byte 7-byte 6-byte
BCTT 162.4 1514 140.6
WCTT 1725 160.4 148.6
AVTT 166.6 154.6 143.4
Diff. Jitter 10.1 9 8
Avg. Jitter 14 13 13

Overall, jitter levels were not reduced as aresult of applying Nolte XOR transformation
to the random data set considered in this study (compare with the benchmark results
presented Table F-2).

CPU and memory requirements

To implement this method in the microcontroller hardware considered in this study,
encoding and decoding processes required little amounts of the CPU time. Table F-5
shows the implementation costs of the Nolte method in terms of CPU and memory
overheads.
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Table F-5: Implementation costs of the Nolte XOR transfor mation.

Encoding Decoding
Absolute Percentage Absolute Percentage
value: value: value: value:
CPU overhead (ms) 0.0158 0.4% 0.0157 0.4%
Data overhead (Byte) 0 0% 0 0%
Code overhead (Byte) 32 0.1% 24 0.1%

The CPU overhead figures shown in the table are equal to 0.4% from the total CPU
time available in each scheduler tick interval. The memory requirements to implement
this technique were negligible as compared against the available memory resources.
Frame-based XOR transformation

Jitter

The jitter results from the frame-based XOR transformation are shown in Table F-6.
Note that all results are in microseconds (l1S).

Table F-6: Jitter results from frame-based XOR transfor mation.

8-byte 7-byte 6-byte
BCTT 167.9 157.8 147.1
WCTT 1779 166.9 155.1
AVTT 171.8 161 149.5
Diff. Jitter 10 9.1 8
Avg. Jitter 15 14 13

As expected, the jitter levels were not improved when the frame-based XOR
transformation was applied to random CAN traffic. This is because masking the whole
frame (when at least one long sequence of identical bit is detected) had no potential to
reduce the number of stuffed bits in that frame. In such a case, the masked frame would
also be of random data pattern and as a result the CAN bit-stuffing would be expected
to remain at the same level. Frame-based XOR transformation may only fit particular

applications that contain few numbers of long sequences in each of their data frames.

CPU and memory requirements

Table F-7 shows the CPU and the memory overheads of implementing this method on
the used microcontroller hardware.
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Table F-7: Implementation costs of the frame-based XOR transfor mation.

Encoding Decoding
Absolute Percentage Absolute Percentage
value: value: value: value:
CPU overhead (ms) 0.2457 6.1% 0.0144 0.4%
Data overhead (Byte) 8 0.4% 0 0%
Code overhead (Byte) 338 1% 36 0.1%

Byte-based XOR transformation

Jitter

Table F-8 shows the jitter levels obtained from the byte-based XOR transformation.
Remember that in this method, the maximum number of bytes that can be used for real
data (including Slave ID) is 7 as one byte is used to store information for decoding.

Note that all results are in microseconds (l1S).

Table F-8: Jitter results from byte-based Nolte XOR transfor mation.

7-byte 6-byte

BCTT 165 155.8

WCTT 172.1 162.9

AVTT 167.1 157.84
Diff. Jitter 7.1 7.1
Avg. Jitter 12 11

It can be clearly seen from the results that the application of Nolte XOR transformation
to particular bytes — when required — has helped to reduce the jitter levels from 9 ns
down to 7 ns when the maximum available data bandwidth was used. This reduction in

jitter is approximately equal to 20%.

CPU and memory requirements

In both lookup table and function call implementation methods for the byte-based XOR
transformation, jitter values are at the same level. However, each approach required
different implementation costs. Table F-9 shows the CPU and memory overheads of

implementing each method on the microcontroller hardware used.
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Table F-9: Implementation costs of the byte-based XOR transfor mation.

Encoding Decoding
Absolute value: | Percentage value: | Absolute value: | Percentage value:

CPU overhead (ms) 0.0537 1.3% 0.4 10%

D h B 12 25% 512 25%

L ookup table ata overhead (Byte) 5 () ()
Code overhead (Byte) 152 0.5% 104 0.3%
CPU overhead (ms) 0.2896 7.2% 0.0218 0.5%

0,

Function call Data overhead (Byte) 3 0.1% 0 0%
Code overhead (Byte) 244 0.7% 70 0.2%

Note that the decoding process in the function call method was found much faster than
encoding. Thisis because the encoding process involved checking each byte (bit by bit)
to see if hardware bit-stuffing will occur: this process took more time than the
corresponding checking routine during decoding (which only required testing of asingle
bit flag). Also note that in the lookup table approach, the required CPU time increased
by approximately 10% in the Slave node, and the data memory increased by 25% in
both Master and Slave nodes. However, the CPU overhead for the encoding process was
seen reduced significantly. The reason why the CPU overhead in the decoding process
increased by a large factor is that each received byte must be checked and if it is masked
then the Slave will search in the lookup table for its corresponding value. The duration

of this search process entirely depends on the combination of the byte values received.
Software bit stuffing (SBS)

Jitter

The task jitter which resulted from the use of SBS is presented in Table F-10. Note that

all results are in microseconds (Us).
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Table F-10: Jitter results from the SBS technique.

6-byte
BCTT 161.2
WCTT 166.2
AVTT 162.72
Diff. Jitter 5
Avg. Jitter 0.8

The values in the table show that, in practical implementations used in this study, SBS
can reduce the jitter on the Slave task from 8 ns to 5 ns (when the same number of real
data bytes is used, in this case 6). This reduction is approximately equal to 40% which
is significant in many applications that require high levels of predictability.

CPU and memory requirements

The memory and CPU overheads imposed by SBS on the used microcontroller
hardware are presented in Table F-11.

Table F-11: Implementation costs of the SBS technique.

Encoding Decoding
Absolute Percentage Absolute Percentage
value: value: value: value:
CPU overhead (ms) 0.44831 11.2% 0.4232 10.6%
Data overhead (Byte) 0 0% 0 0%
Code overhead (Byte) 250 0.8% 150 0.5%

The SBS technique required approximately 11% of the tick interval to perform the
encoding or decoding process. Although this figure is higher than that required in the
previous technique (by approximately 4%), it is still very small in comparison with the
available time resources. Remember that with SBS, the reduction in jitter was two times
that obtained from the byte-based XOR masking.

Eight-to-Eleven Modulation (EEM)

Jitter

The task jitter which resulted from the use of EEM is presented in Table F-12. Note that
all results are in microseconds (Us).
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Table F-12: Jitter resultsfrom the EEM technique.

6-byte

BCTT 163.4

WCTT 1685
AVTT 165
Diff. Jitter 5.1
Avg. Jitter 0.9

By looking at the results in the table, it is noticeable that — like SBS — when the message

data section is encoded using the EEM technique, the jitter is reduced by approximately

40% on the microcontroller platform used in this study.

CPU and memory requirements

The memory and CPU overheads imposed by EEM on the used microcontroller

hardware are presented in the following tables.

Table F-13: CPU overhead in all EEM methods (values arein ms).

Encoding Decoding
EEM Coding Absolute Percentage Absolute Percentage
approach Method value: value: value: value:
BSA 0.36 9%
Explicit table 0.08
P 2% Reverse 0.07 1.75%
Lookup Array
table
- Search o
Implicit table 0.16 4% Element 0.49 12.25%
Algorithmic
) 0.42 10.5% 0.40 10%
coding
Function cdl
Mathematical
) 0.10 2.5% 0.16 4%
coding
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Table F-14: Memory overhead in the encoding processin all EEM methods (values arein

Bytes).
Encoding
EEM approach | Coding Method
Data Code
Absolute value: | Percentage value: | Absolute value: | Percentage value:
Explicit table 522 25.5% 172 0.5%
Lookup table
Implicit table 362 17.7% 364 1.1%
Algorithmic
' 10 0.5% 266 0.8%
coding
Function cdl
Mathematical
' 10 0.5% 206 0.6%
coding

Table F-15: Memory over head in the decoding processin all EEM methods (values arein

Bytes).
EEM Coding Decoding
approach Method Data Code
Absolute Percentage Absolute Percentage
value: value: value: value:
BSA 522 25.5% 266 0.8%
Explicit table
Reverse 1922 93.8% 164 0.5%
Lookup Array
table
.. Search 0 0
Implicit table Element 362 17.7% 480 1.5%
Algorithmic
) 10 0.5% 218 0.7%
coding
Function cal
Mathematical
) 10 0.5% 182 0.6%
coding

The tables demonstrate how much processing time and memory each implementation

method of the EEM technique required when implemented on the used C167 hardware.

As a general observation, searching elements in the decoder requires quite a long time

to recover the original byte (~12% of the used tick interval). Alternatively, a reverse

lookup table can be implemented and used to save time but on the account of the used

data memory (data memory required is too large). Another observation is that the

mathematical coding can provide little CPU overhead and small amounts of memory

requirements. Combinations of encoding and decoding methods can be used as
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appropriate. Indeed, it must be reported that there is no “best” solution as the selection
of the most appropriate implementation is highly dependent on the available resources
of the Master and Slave microcontrollers adopted.

Summary of the results

Based on the results presented in this appendix using TTC-SCC1 scheduling protocol
and random data messages, it was shown that Nolte XOR transformation and the
selective frame-based XOR transformation did not help to reduce the jitter levels. For
the frame-based technique, only one bit was required to indicate if the frame was
masked or not.

The selective byte-based XOR transformation technique provided a minimum jitter of 7
ps on the C167 microcontrollers used (at 1 Mbps CAN baudrate). This means that the
method had the potential to reduce the number of stuffed bits in the data section of a
CAN frame by approximately 20% in practical implementations. For this method, one
bit per (real) data byte was required to indicate if a byte was masked or not. For
example, when 6 “real” data bytes were transmitted, six bits were needed for the
encoding data: however, to insure that these six bits do not themselves introduce bit
stuffing, one byte (including appropriate padding) was used along with one bit from the
Slave ID byte. This caused a loss of 12.5% of the available CAN message bandwidth.

When SBS and EEM coding schemes were applied, the minimum jitter was equal to 5
Ms. this means that such techniques had the potential to reduce the levels of jitter in a
CAN-based system by approximately 40%. However, for both techniques, up to 5 bytes
of “real” datawere allowed to transmit in a CAN message. This is because, in SBS, up
to 13 (software) stuffed bits were required plus 3 bits for padding, to ensure that the
stuffed bits are not themselves subject to hardware bit stuffing. In EEM, 15 bits in total
were required to convert the real data bytes into their equivalent codewords to avoid
hardware bit stuffing. As a consequence, a loss of 25% of the CAN message bandwidth
was caused in both techniques. Figure F-1 summarises the jitter results in all techniques
and compares them with those obtained from the original scheduler (without any coding
scheme employed).
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Figure F-1: Jitter resultsfrom all coding techniques on C167 platform.

With regardsto jitter results, it is worth emphasising that —in C167 microcontrollers — 2
ps (i.e. £1 bit time for the CAN bus at 1 Mbps) of the jitter values were likely related to
clock synchronisation between the CAN controller and the CPU. If this is taken into
account, then the remaining 3 us jitter — in the case of SBS and EEM — are likely to be
generated from the control fields of the CAN frame which cannot be fully controlled by
the software designers. For example, the CRC field, tailed to the CAN message,
contains a 15-bit codeword which is calculated as a function of the bit contents in all
fields including the data field. Such 15 bits can, in the worst-case scenario, induce three
(hardware) stuffed bits (Nolte et al., 2001). If this proves to be correct, then SBS and
EEM technigues had the capability to provide the maximum reduction of jitter which

could be possible at the software layer.

The message overhead (bandwidth) required to implement each technique is illustrated

in Figure F-2. Note that the results are in “number of bits’.
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Figure F-2: Message over headsin all coding techniques.

The results can be summarised as follows. In the 7-byte model, the frame-based XOR
masking had a 1-bit overhead while the byte-based XOR masking had a 9-bit overhead
(6 bits for encoding information and 3 bits for appropriate padding). In the 6-byte
model, the frame-based XOR masking (again) had an overhead of 1 bit, the byte-based
XOR masking had an overhead of 8 bits, while the overheads for the SBS and EEM
were 16 bits.

Guidelines for selecting a suitable method

This section attempts to provide general rules for selecting the most suitable data coding
technique for a particular project. It is assumed here that the designer has decided to
improve the overall performance of their existing design implemented on CAN
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protocol, and not to upgrade the hardware network using a more predictable solution

(such as FlexRay).

- If the CAN data messages are likely to contain long sequences of ones and zeros —
as in the data set observed by Nolte et al. — then the direct application of Nolte
(XOR) transformation can significantly reduce the effect of bit stuffing and,
therefore, be a suitable solution.

- If the CAN data are likely to have random characteristics (with any degree of
randomness), then the designer needs to know the maximum tolerated jitter. If (for
example) the standing jitter levels are quite high for the system to tolerate, but a
reduction of up to 20% can help, then the selective byte-based XOR masking
method can be a good option. Note that this method requires little CPU and
memory overheads, but imposes 12.5% loss of the data bandwidth.

- In the case where 20% reduction in jitter is not sufficient, then the designer needs
to select between SBS and EEM methods.

- If the CPU time is very limited, then the explicit lookup table (with reverse array in
the decoder) can be a good solution. However, if the available data memory is very
limited, then the online mathematical coding will be the best option. Designers can
also chose to implement the implicit lookup table in the encoder for reducing the
data memory overhead (compared to explicit table).

- If the CPU time is flexible but the data memory is very limited, then the user can
chose one of these methods (in this order): SBS, EEM mathematical coding, or
EEM algorithmic coding. Among these methods, the EEM mathematical can be the
best in terms of CPU overhead.

- Combinations between the encoding and decoding implementations can also by

applicable depending on the available resources of individual nodes.
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Using alternative microcontroller hardware
Introduction

To avoid presenting results which are symptomatic of any particular hardware platform,
a comparative study was carried out in which the XOR masking and SBS techniques
were also applied to two other CPU families: “8051” (8-bit) and “ARM7” (32-hit).

In the 8-bit system, each node was based on a Phytec board supporting an Infineon 8051
microcontroller with a 10 MHz crystal oscillator. The C515C is based on the 8051
architecture with additional on-chip support for features such as CAN (Siemens, 1997).

In the 32-bit system, each node was based on a Keil MCB2100 board, supporting a
Philips LPC2129 microcontroller with an ARM7 core. The oscillator frequency was 12
MHz and, through use of the on-chip PLL, the CPU frequency was 60 MHz.

Benchmark measures

Table F-16 shows jitter results from the TTC-SCC1 scheduler on the C515C (8051-
based), and ARM7 microcontrollers when the best-case and worst-case data are
transmitted. Note that all results are in microseconds (Us).

Table F-16: Task jitter from the TTC-SCC1 scheduler for best-case and wor st-case data

on 8051 and ARM.

8051 ARM
Best-case data BCTT 220.3 1145
WCTT 222.8 115.6
AVTT 221.6 115.1

Diff. Jitter 25 11

Avg. Jitter 0.6 0.3
Worst-case data BCTT 231.3 127.6
WCTT 2339 128.6
AVTT 232.6 128.1

Diff. Jitter 2.6 10

Avg. Jitter 0.6 0.3

It was shown that, like the C167 which is also based on Infineon board, the difference
jitter in both the best- and the worst-case data was 2.5us (approximately equal to 2 bit
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times for the CAN bus at 1 Mbps). For the ARM processor, the corresponding value
was 1us (1 bit time). These jitter figures are approximately equal to 1% of the whole
message length in all cases. By looking at the results presented, it can also be noted that
— as the CPU performance increases (e.g. ARM) — the level of difference jitter is found
to fall.

The jitter levels resulting from the “random” data set on the 8051 and ARM
microcontrollers are shown in Table F-17. Note that all results are in microseconds (Us).
Remember that 8-, 7- and 6- byte data models are used here.

Table F-17: Task jitter from the TTC-SCC1 scheduler for random data on 8051 and

ARM.
8-byte 7-byte 6-byte
BCTT 221.4 208.3 197.2
WCTT 231.6 217.3 205.4
8051 Random data
AVTT 225.3 212.0 200.1
Diff. Jitter 10.2 9 8.2
Avg. Jitter 15 14 14
BCTT 114.6 1035 92.6
WCTT 123.6 111.6 99.9
ARM Random data
AVTT 117.3 105.9 94.9
Diff. Jitter 9.0 8.1 7.3
Avg. Jitter 14 13 13

The results show that the jitter levels from the 8051 processor were very similar to those
obtained from the C167 alternative. However, it can be clearly seen that the jitter levels
from the ARM processor was less by approximately one bit time. This can again be due
to the way the CAN controller in such hardware synchronises its timing with the

microcontroller CPU.

CPU and memory requirements in the TTC-SCC1 before employing any coding
technique are presented in Table F-18. Of course, there are no encoding and decoding
processes in the original system, therefore, the CPU overhead is equal to zero. Please
note that — unlike the previous sections — the memory overheads by the “whole”
software program in each technique were recorded. This is to allow a meaningful
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comparison with the original system. Also note that the table shows the results as
percentages of the available on-chip ROM and RAM resources. For example, the
C515C boards used have 64 Kbytes ROM and 256 bytes RAM (Siemens, 1997), and the

ARM boards have 128 Kbytes ROM and 16 Kbytes RAM (Philips, 2004).

Table F-18: CPU and memory requirements for the TTC-SCC1 scheduler on 8051 and

ARM.
Encoding Decoding
Absolute value: | Percentage value: | Absolute value: | Percentage value:
CPU overhead (ms) 0 0% 0 0%
8051 | Dataoverhead (Byte) 52 20.3% 102 39.8%
Code overhead (Byte) 1582 2.4% 1434 2.2%
CPU overhead (ms) 0 0% 0 0%
ARM | Data overhead (Byte) 448 2.7% 512 3.1%
Code overhead (Byte) 11408 8.7% 10208 7.8%

Jitter results from all techniques

The jitter results obtained from the 8051 and ARM microcontrollers are shown in the

following tables. Notethat al values presented are in microseconds (l1S).

Table F-19: Jitter results from 8 byte methods (7 data bytes + Slave I D) using 8051 and

ARM.
Platform Nolte XOR Frame-based Byte-based XOR SBS
transformation XOR transformation
transformation
BCTT 2215 221.9
WCTT 231.7 232.0
C515
AVTT 225.4 225.2
Diff. Jitter 10.2 10.1
Avg. Jitter 15 15
BCTT 114.7 114.6
WCTT 123.7 1235
ARM
AVTT 117.3 117.2
Diff. Jitter 9.0 8.9
Avg. Jitter 14 14
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Table F-20: Jitter results from 7 byte methods (6 data bytes + Slave I D + encoding
infor mation) using 8051 and ARM.

Platform Nolte XOR Frame-based Byte-based XOR SBS
transformation XOR transformation
transformation
BCTT 2084 208.8 2219
WCTT 2174 218.0 229.0
C515
AVTT 212.1 211.8 224.1
Diff. Jitter 9 9.2 7.1
Avg. Jitter 14 14 11
BCTT 103.4 103.7 114.6
WCTT 1115 1116 120.7
ARM
AVTT 105.8 105.8 116.2
Diff. Jitter 8.1 7.9 6.1
Avg. Jitter 1.3 1.4 11

Table F-21: Jitter results from 6 byte methods (5 data bytes + Slave I D + encoding
infor mation) using 8051 and ARM.

Platform Nolte XOR Frame-based Byte-based XOR SBS
transformation XOR transformation
transformation
BCTT 197.6 197.8 208.1 220.3
WCTT 205.8 205.9 215.2 225.4
C515
AVTT 200.5 200.4 2104 222.0
Diff. Jitter 8.2 8.1 71 51
Avg. Jitter 1.4 1.3 1.1 0.8
BCTT 92.6 92.7 103.6 115.2
WCTT 99.7 99.6 109.5 119.3
ARM
AVTT 94.6 94.6 104.9 116.3
Diff. Jitter 7.1 6.9 59 4.1
Avg. Jitter 1.3 1.2 1.0 0.7

The results show that the minimum level of jitter obtained from the byte-based XOR

transformation — when using 8-bit C515C Infineon boards — was approximately 7 s
(this is similar to the figure obtained from the equivalent C167 boards). When 32-bit

ARM boards were used, the minimum jitter was approximately 6 ns. When the SBS

method was applied, the jitter levels were further reduced. For example, with the 8-bit
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boards, the minimum jitter approached was around 5 s whereas with the 32-bit boards

it came down to 4 ns.

Table F-22: CPU over head from all techniques on 8051 and ARM (values arein ms).

Encoding Decoding
process process
Platform Method
Absolute Percentage Absolute Percentage
value: value: value: value:
Nolte XOR
. 0.039 1% 0.039 1%
transformation
Frame-based XOR
. 0.9019 22.5% 0.0471 1.2%
transformation
8051 Byte-based XOR
transformation 1.4932 37.3% 0.1134 2.8%
(function call)
SBS 2.9798 74.5% 2.6016 65%
Nolte XOR
olte XOf 0.0121 0.3% 0.0121 0.3%
transformation
Frame-based XOR
. 0.1328 3.3% 0.0115 0.3%
transformation
ARM Byte-based XOR
transformation 0.1244 3.1% 0.0175 0.4%
(function call)
SBS 0.1585 4% 0.1608 4%

From the table, it can be seen that the byte-based XOR encoding process took
approximately 1.5 ms (37% of the 4ms tick interval used) and 0.1 ms (3%) on 8- and
32-bit microcontrollers, respectively. Also, it can be seen that the durations of the SBS
encoding processes, on 8 and 32-bit microcontrollers, were 3 ms (74%: this is too
large) and 0.16 ms (4%), respectively. The bit de-stuffing processes (on the Slaves)
imposed similar CPU loads.
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Table F-23: Memory over heads from all techniques on 8051 and ARM.

Master Slave
Platform ROM RAM ROM RAM
Absolute | % Absolute % Absolute | % Absolute %
Nolte XOR

. 1590 2.4 52.6 20.5 1442 2.2 102 39.3

transformation

Frame-based XOR

. 1788 2.7 60 23.4 1461 2.2 102 39.8

transformation

8051 Byte-based XOR

transformation 1780 2.7 55 215 1482 2.3 103 40.2

(function call)
SBS 1848 2.8 60 23.4 1547 2.4 110 43

Nolte XOR

. 11456 8.7 448 2.7 10304 79 512 31

transformation

Frame-based XOR

. 12240 9.3 640 39 10320 7.9 512 3.1

transformation

ARM
Byte-based XOR

transformation 11776 9 576 35 10288 7.8 512 31

(function call)
SBS 11856 9 480 29 10528 8 528 3.2

As can be seen from this table, the absolute values for memory requirements increase on
the more powerful processors. For example, to implement the byte-based XOR
encoding and decoding on the 32-bit processors, an additional 368 and 80 code bytes
would be required (respectively). Similarly, to implement SBS on this processor, an
additional 484 code bytes are required for coding and an extra 320 code bytes would be
required for decoding.

Comparison between results in all platforms

The following figures summarise the jitter results obtained from the XOR masking and
SBS techniques in all microcontroller platforms considered. For meaningful
comparisons, the results from 8-, 7- and 6-byte models areillustrated.

The figures clearly show how the application of the byte-based XOR masking and SBS
techniques have the capability to reduce the task jitter by significant factors. They also

show that, as the processor’s speed increases, jitter levels are likely to decrease in all
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cases. The results suggest that the application of the EEM technique would provide the
same levels of jitter reduction — as with SBS — in 8051 and ARM microcontroller
hardware. Of course, this would be on the account of the CPU and memory overheads

imposed by practical implementation of such a method.
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Figure F-3: Jitter resultsfrom all techniques on all platfor ms (8-byte models).
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Figure F-4: Jitter resultsfrom all techniques on all platforms (7-byte models).
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Figure F-5: Jitter resultsfrom all techniques on all platfor ms (6-byte models).



Appendix G
Adaptive Cruise Control (ACC) system: a case study

Introduction

As in Appendix F, the data coding techniques discussed can significantly reduce the
levels of hardware bit stuffing. However, it only makes sense to employ such techniques
in a particular application if the gains (from the reductions in jitter levels) are not
outweighed by the losses that result from the implementation costs (e.g. CPU, memory
resources and CAN bandwidth).

In order to begin to address this matter, a detailed case study was carried out in which
the Software Bit Stuffing (SBS) technique was applied to an Adaptive Cruise Control
(ACC) system developed for use in passenger vehicles. The study was based on using a
realistic “hardware in the loop” (HIL) testbed facility™®.

ACC system
HIL testbed

The HIL testbed employed in this study has been previously described in detail (e.g.
Short et al. 2004a; Short et al. 2004b; Short et al. 2004c; Short and Pont, 2005).
Briefly, the simulation consists of a real-time representation of a motor vehicle
travelling down a three-lane motorway, under realistic traffic conditions. It enables
different system architectures to be assessed and quantitatively compared in a variety of
realistic and repeatable scenarios. In this appendix, HIL simulator is used to represent
an automotive Adaptive Cruise Control (ACC) system.

% The work described in this chapter has been adapted from the study presented in the author’s
publication [5] listed in page xvii.



Appendix G 353

ACC system

Adaptive Cruise Control (ACC) is a relatively new technological development in the
automotive field which was claimed to reduce driver fatigue and the rate of auto
accidents whilst increasing fuel efficiency (Stanton, 1997). The main system function
of ACC isto control the speed of the host vehicle using information aboui:

- The distance between the subject vehicle and any forward vehicles.
- The motion of the subject vehicle.

- Driver commands.

Based upon the information acquired, the controller sends commands to the vehicle
throttle and brakes to either regulate the vehicle speed to a given set value, or maintain a
safe distance to a leading vehicle (if the speed of the vehicle in front is slower than the

set value). It also sends status information to the driver.
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Figure G-1: An overview of the operation of the ACC.

The system under consideration in this study is a Type 2b ACC system: such a system
has an automatic gearbox and active braking. Vehicle acceleration is limited to 2.0
m/s’, deceleration to 3.0 mVs” in order to comply with SO standards (1SO 15622, 2003).
Figure G-1 shows the principle of operation. The controller that has been implemented
is based of a modified version of that presented by Yi et al. (2000) and is shown in
schematic form in Figure G-2 (see Short et al. 2004a; Short et al. 2004b; Short et al.
2004c).
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Figure G-2: The ACC implementation: adapted from Yi et al. (2000)

This ACC system has been used as an example of a distributed embedded control
system which can be based on TTC-SCC architecture (the architecture used was that
provided in TTC-SCC1 scheduler). The aim of this study isto demonstrate the effect of
the developed SBS technique on the real-time performance of the ACC application.

System implementation
Overview

The ACC testbed was based on Infineon C167CS microcontrollers (one per node)
running at a 20 MHz oscillator frequency. Each microcontroller had two on-chip CAN
interfaces. In total 10 nodes were used. All nodes were connected using twisted-pair
CAN links running at 500 kbaud. The system is schematically illustrated in Figure G-3.
In this case study, SBS technique was applied to the ACC system to explore the impact
on the real-time behaviour.
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Figure G-3: The 10-nodes ACC implementation

I

Three systems

One conseguence of the use of the SBS methods is that a limit is placed on the amount
of user data that may be transferred in each CAN frame, since the encoding process

reguires two data bytes (see Appendix E).

The original system design had to be altered to accommodate the reduced data payload.
This, in turn, resulted in a reduction in the sampling rate of the system traction
controller. To enable a meaningful comparison, measurements were also taken for an

uncompensated implementation using this reduced sampling rate.

To summarise, the three sets of results were obtained. These are labelled as follows:
Original: the original 8-byte system with no SBS.
Uncompensated: a 6-byte system with no SBS.

Compensated: a 6-byte system with SBS.

Experimental methodology

Jitter measurements

To obtain jitter measurements, the latency between Master and Slave clock ticks was
recorded for a period of 10,000 samples for each system. The experimental
methodology used here is very similar to that described in Chapter 11. However, here,
the delay was measured between the Master ISR and the Slave ISR. This implies that
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the “worgt-case transmission time” (WCTT) here was represented by the longest delay
between the occurrence of a clock Tick on the Master node and the corresponding Tick
on the Slaves. Apart from this, the same methodology outlined in Chapter 11 was used.
Note that the jitter values presented here reflect the impact of bit-stuffing only.

Jerk and IAE measurement

To provide an indication of the control performance of each system, the maximum
positive and negative vehicle ‘jerk’ (rate of change of acceleration) was recorded over a
300 second test period in which the ACC system was put through a series of typical
manoeuvres. The jerk was averaged over a 1-second time period in accordance with
| SO test specifications (1SO, 2003).

In addition to measuring the vehicle ‘jerk’, the performance of the vehicle while
executing speed, and time-gap control was recorded. The Integral of Absolute Error
(IAE) criterion was used to provide the performance measure in this case, as defined in
Equation G-1. The IAE represents the error between the measured speed (or time-gap)
and the reference one, with the test duration, T, equal to 300 seconds.

T
|AE = ¢je(t)| dt
0
Equation G-1

Each velocity test was for a speed setpoint of 70 MPH. Each distance test was
performed whilst following a lead vehicle at 50 MPH (distance setpoint of 33.53 m for
1.5 s headway).

Results

System performance

Using the experimental methodology outlined in the previous section, the results
obtained from the described ACC case study are presented in the following table.



Appendix G 357

Table G-1: Results from the 10-node ACC study

Test Origina|UncompensatedCompensated
IAE Velocity 1.64 1.68 1.53
IAE Distance | 11.60 11.84 10.98
Ave. Jitter (M) | 3.66 3.83 2.40
Diff. Jitter (ns) | 23.53 24.03 11.20
WCTT (ns) 339.17 339.57 310.77
Max Pos Jerk (m/s®)| 2.24 2.39 2.37
Max Neg Jerk (m/s®)| -1.81 -1.75 -1.60

Note that each of the three tests was repeated three times, and the results obtained were
averaged. Notethat the |IAE measurements are “unit less” values, and are best viewed as
a performance measure (the lower the better).

It can be seen from the results that the measured WCTT, average and difference jitter
have all been reduced considerably by the compensation technique. For example, the
overall reduction in the difference jitter was approximately 50%. When comparing the
control behaviour of the compensated system to that of the original system, it can be
seen that the performance has improved in all areas, except in the case of positive jerk.
When comparing the uncompensated system to the original system, it is clear that the
control performance of the uncompensated system is comparatively poor: thisis adirect
conseguence of the 25% reduction in the data bandwidth of the network. However,
when the compensated and uncompensated systems (with the same bandwidth
restrictions) are compared, the use of compensation is seen to improve performance in

all areas (including positive jerk).

The following tables show the results of jitter, IAE distance and velocity, and jerk from
the three versions of the ACC system considered in this study.
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Memory and CPU requirements

The bit stuffing (SBS encoding) operation took an average of 0.7 ms on the C167
processors used, and the corresponding de-stuffing (SBS decoding) operation had an
average duration of 0.6 ms. The extra RAM required by the SBS technique was 72 bytes
and 56 bytes for the Master and Slave, respectively. The corresponding ROM (data
memory) increases were found to be 1,317 and 985 bytes respectively, for the Master
and Slave. Please note that the C167 boards used in this study have 256 kBytes ROM
and 256 kBytes RAM (PhyCORE, 2003). The overall increases in memory do not,
therefore, represent large percentages of the available resources.
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Selective code listings

TTC-MTI scheduler

IRQ Wrapper
/* __________________________________________________________________ * _
I RQ W apper (v1.00)
e K e e e e e e e e e e e e e e e e e m m m e e m e m e m e m m m m e m e m m m m e m e m e m m m m e m e m e m e — - - */
. text
.arm
.code 32
[* e G obal function prototypes ----------cmmmmmmm oo */
. gl obal | RQ_W apper
[* e LPC2106 Tinmer 1 Interrupt Register Address --------------- */
. equ T1l R, 0xE0008000
.equ Mbode_USR, 0x10
. equ Mbde_FI Q Ox11
. equ Mbde_I RQ 0x12
. equ Mbde_SVC, 0x13
. equ Mbde_ABT, 0ox17
. equ Mbde_UND, 0x1B
. equ Mbde_SYS, Ox1F
.equ I _Bit, 0x80 /* when | bit is set, IRQis disabled */
. equ F Bit, 0x40 /* when F bit is set, FIQis disabled */
/* __________________________________________________________________ * _
voi d | RQ Wapper (void)
e K e e e e e e e e e e e e e e e e e m m m e e m e m e m e m m m m e m e m m m m e m e m e m m m m e m e m e m e — - - */
| RQ_W apper:
/* Save regs and create stack frane */
MoV R12, R13
STMDB  R13!, { RO- R12, R14}
MoV R11, R12

/* Check if Tinmer 1 Match Register O generated interrupt */
LDR R2, =T1I R
LDR R3, [ R2]

STR R3, [ R2]
AND R4, R3, #0xf
WP R4, #1

/* If TLIR =1 call SCH Tick_Update */
BLEQ SCH_Ti ck_Updat e

CwWP R4, #1

BEQ | RQ End_|I f

/* Else call SCH Task_Update */

BL SCH_Task_Updat e
I RQ _End_If:

/* Restore registers fromstack frame */
LDVDB R11, { RO- R11, R13, R14}

/* Load return address register with pointer to Dispatch */
MSR CPSR_c, #Mode_SYS
LDR R14, =nTask
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LDR R14, [ R14]
LDR R13, =St ackP
LDR R13, [ R13]
MSR CPSR_c, #MWdde_FIQ | _Bit|F_Bit
/* Load return address register with pointer to Task */
LDR R8, =cTask
LDR R8, [r8]

/* Return fromlInterrupt */
SUBS PC, R8, #0

Main code
/* __________________________________________________________________ * _
Mai n. C (v1.00)
e K e e e e e e e e e e e e e e e e e m m m e e m e m e m e m m m m e m e m m m m e m e m e m m m m e m e m e m e — - - */

#i ncl ude "Main. h"
#include "system.init.h"
#i nclude "Sch_2100. h"

#i nclude "tasks. h"

#i nclude "task_RT. h"

#i nclude "nt_cal . h"

int main (void)

{
/1 Set up PLL, VPB divider and MAM (di sabl ed)
System I nit();

/1 Set up the schedul er
SCH_Init(5);

/] Prepare for the 'Flash_LED task
LED FLASH Init();

/1 Add tasks

/1 Delay and Period values are in *ticks*
SCH_Add_Task(Task_A, 0, 1);
SCH_Add_Task(Task_B, 0, 1);
SCH_Add_Task(Task_C, 0, 1);

/1 Input duration for tasks
/1 Values are in *m croseconds*
SCH_Task_WCET(Task_A, 2000);
SCH_Task_WCET(Task_B, 1000);
SCH_Task_WCET(Task_C, 1000);

/1 Cal culate the Schedul er Major Cycle
Cal c_Sch_Maj or _Cycl e( SCH_MAX_TASKS) ;

/1 Calculate the required release tinme for each task
Cal cul at e_Task_RT();

/1 Start the schedul er
SCH Start();

/1 The scheduler may enter idle node at this point (if used)
SCH_Go_To_Sl eep();

return O;

}




Appendix H 362

Scheduler code

#i fndef _SCH 2100 _H
#define _SCH 2100 H

#i ncl ude "main. h"
#i nclude "l pc21xx. h"

Hho------ Public function prototypes ---------------------------~-~---
void SCH I nit(const int)

void SCH Start(void)

voi d SCH Update (void)

Hho------ Public data type declarations ------------------------~----

/1 Total menmory per task is >>> bytes
typedef struct

/1 Pointer to the task (nust be a 'void (void)' function)
voi d (*pTask) (void)

/1 Delay (ticks) until the function will (next) be run
/Il - see SCH Add_Task() for further details
tWord Del ay;

/'l Interval (ticks) between subsequent runs
/Il - see SCH_Add_Task() for further details
tWord Period

/1 Incremented (by schedul er) when task is due to execute
tWord RunMe;

/1 Task worst case execution time (in mcroseconds): the |ongest tine required by
the processor to execute the task
tWord wecet;

/] Task release time (in mcroseconds): the tine at which can execute with no
jitter
tWwrd Ris_tine

} sTask;
Hho------ Public function prototypes ---------------------------~----

/'l Core schedul er functions

voi d SCH Di spat ch_Tasks(voi d)

tByte SCH Add_Task(void (*) (void), const tWrd, const tWrd);
tByte SCH Task_WCET(void (*) (void), const tWrd);

int SCH_Del et e_Task(const tByte)

void SCH Go_To_Sl eep(void)

Hho------ Public constants ------------------------ -

/1 The maxi mum nunber of tasks required at any one tine
/1 during the execution of the program

/1

/1 MJST BE ADJUSTED FOR EACH NEW PRQIECT

#define SCH_MAX_TASKS  (3)

#endi f

/* __________________________________________________________________ * _
sch_2100.c (v1.00)

e K e e e e e e e e e e e e e e e e e m m m e e m e m e m e m m m m e m e m m m m e m e m e m m m m e m e m e m e — - - */

#i nclude "sch_2100. h"
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Io------ Public variable definitions ------------------“---------

/1 Used to report errors, if required
tByte Error_code_G

/1 Current task index
tByte I ndex_G

/1 The current node
tByte Mde_G

| ong St ackP;

/1 Pointer to the task (rmust be a 'void (void)' function)
void (*cTask) (void);
voi d (*mTask) (void);

Io------ Private variable definitions ------------------------------

/1 The array of tasks (see Sch2100. H)
sTask SCH_t asks_{J SCH_MAX TASKS] ;

tByte runme[ SCH MAX_TASKS + 1];
Hho------ Private function prototypes ------------------------------

void SCH Ti ck_Update(void);

void SCH Task_Update(void);

voi d SCH End_Task(voi d);

voi d SCH Task_Overrun_Updat e(voi d);

SCH_ I nit()

Schedul er initialisation function. Prepares schedul er
data structures and sets up tiner interrupts at required rate.

You nmust call this function before using the schedul er.

* * [

{ .
tByte i;

for (i =0; i < SCH MAX_TASKS; i ++)

{
SCH_Del et e_Task(i);
}

/! Reset the global error variable

/1 - SCH Del ete_Task() will generate an error code,
I (because the task array is enpty)
Error_code_G = 0;

/1 Initialise the node to cal cul ati ng node
mlrask = SCH _Go_To_Sl eep;

/1 Set prescaler to O
T1PR = (PCLK / 1000000) - 1;

/1 Setup Match Register 0 - tick in nms nultiples
TIMRO = ((1000) * TICK_LEN mB) - 1;

/1 Interrupt on match, and automatically restart counter
TIMCR = 0x03;

/1 Set Timer 1 to FIQ
VI Cl nt Sel ect = 0x20;

/1 Enable Timer 1 interrupt
VI Cl nt Enabl e | = 0x20;
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/1 Enable Timer 1 to operate in idle node
PCONP | = 0x04;

}

SCH Start()

Starts the schedul er, by enabling interrupts.

NOTE: Usually called after all regular tasks are added,
to keep the tasks synchronised.

NOTE: ONLY THE SCHEDULER | NTERRUPT SHOULD BE ENABLED! !'!

K o o o e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e * [

{
T1TCR | = 0x01; /1 Counter enable (Tinmer Counter Register)
StackP = (int) sp;
}
/* __________________________________________________________________ * _

SCH_Ti ck_Updat e()

This is the scheduler ISR It is called at a rate

determned by the timer settings in the "init' function.
e K e e e e e e e e e e e e e e e e e m m e m e m e e e m e m m e m o m m m m e m e m m m m e m e m e m e — - - */
voi d SCH Ti ck_Updat e(voi d)

{

tByte i = 0;

t Byt e | ndex;

// Set tick jitter pinto 1
| OSETO = Tick_Jitter_pin;
// Set tick jitter pinto O
I OCLRO = Tick_Jitter_pin;

/1 Go through the task array
for (Index = 0; Index < SCH MAX_TASKS ; I|ndex++)

/1 Check if there is a task at this location

if (SCH_tasks_({ I ndex].pTask)
{
if (--SCH tasks_{d Index].Delay == 0)
{
/1 indicate the task is to be run
runnel[i ++] = | ndex;
if (SCH tasks_{J Index].Period != 0)
/1 Schedul e period tasks to run again
SCH_ t asks_{J I ndex] . Del ay = SCH_tasks_{d | ndex] . Peri od;
}
el se
/1 Del ete one-shot tasks
SCH_t asks_{d I ndex] . pTask = 0;
}
}
}
}

/1 Indicate no nore tasks in runnme queue
runme[i] = SCH_MAX_TASKS;

/* |If there are tasks in current tick interval */
if (runme[0] != SCH _MAX_ TASKS)

/1 Setup Match Register 1 - interrupt in uS fromtick
TIMRL = SCH tasks_Jrunne[0]]. R s_tine + 100*(runne[0] +1);

/'l Interrupt on match 1
T1IMCR | = 0x08;
}

/1 Return to sleep




Appendix H 365

cTask = SCH Go_To_Sl eep;

/1 Reset the task index

I ndex_G = 0;
}
/* __________________________________________________________________ * _
SCH_Task_Updat e()
e K e e e e e e e e e e e e e e e e e m m e m e m e e e m e m m e m o m m m m e m e m m m m e m e m e m e — - - */
voi d SCH Task_Updat e(voi d)

{

/1 Run task after this function
cTask = SCH_ tasks_G runme[ | ndex_G]. pTask;

/1 Setup Match Register 1 - for the next task
TIMRL = SCH tasks_{J runne[ | ndex_G+1l] % SCH MAX TASKS].RI's_tinme +
100* (runme[ | ndex_QG +2) ;

| ndex_Gt++;

/! Disable Interrupt on match 1
TIMCR &= OxFFFFFFF7;

/1 Enable Interrupt on natch 1
TIMCR | = (1 & (tLong) (runme[lndex_G != SCH MAX TASKS)) << 3;

/1if(Index_G == 2){I OSETO = Task_Jitter_pin;
I | OCLRO = Task_Jitter_pin;}

}

SCH_Add_Task()

Causes a task (function) to be executed at regular intervals

or after a user-defined del ay

K e e e e e e e e e e e e e e e e m e m e — e — - - */
const tWord DELAY,
const tWord PERI OD)

tByte Index = O;

I/l First find a gap in the array (if there is one)
while ((SCH tasks_{ Index].pTask != 0) && (I ndex < SCH MAX_TASKS))

| ndex++;

}

/1 Have we reached the end of the list?
if (1ndex == SCH_MAX_ TASKS)

{

/1 Task list is full

/1

/1 Set the global error variable
Error_code_G = ERROR_SCH_TOO_ MANY_TASKS;

/1l Al'so return an error code
return SCH MAX_TASKS;
}

/1 If we're here, there is space in the task array

a
SCH_t asks_{Jd | ndex] . pTask = pFuncti on;
SCH_t asks_{ | ndex] . Del ay = DELAY + 1;
SCH_t asks_{d I ndex] . Period = PERI OD;

SCH tasks_{J I ndex]. R s_tine = 0;

return Index; // return position of task (to allow | ater deletion)

}

SCH_Task_WCET()
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tByte SCH Task_WCET(void (* pFunction)(),
const tWord WCET)

{

tByte I ndex = O;

for (Index=0; |Index<SCH MAX_TASKS; | ndex++)
{
i f(SCH tasks_{ I ndex].pTask == pFuncti on)

{
SCH_t asks_{Jd I ndex] . wcet = WCET;
br eak;
}
}

return Index; // return position of task (to allow | ater deletion)

SCH_Del et e_Task()

RETURN VALUE: RETURN_ERROR or RETURN_NORMAL

K o o o e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e * [

int Return_code;
if (SCH_tasks_QG TASK_| NDEX] . pTask == 0)

{

/1 No task at this location...

/1

/1 Set the global error variable
Error_code_G = ERROR_SCH_CANNOT_DELETE_TASK;

/1 ...also return an error code
Ret urn_code = RETURN_ERROR;
}
el se
{
Ret urn_code = RETURN_NORMAL;
}

SCH t asks_{ TASK_| NDEX] . pTask
SCH_t asks_({ TASK_| NDEX] . Del ay
SCH_t asks_{ TASK_| NDEX] . Peri od

0x0000;
0;
0;

return Return_code; /1 return status

}

{
PCON = 1;
}

Major cycle and task RT calculations

#i ncl ude "main. h"

/'l Schedul er nmjor cycle
tWord SCH Maj or _Cycle_G
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/1 Function prototype
tWord Cal c_Sch_Maj or _Cycl e(tWord);
tWord LCM2Nurber s(tWord, tWord);

#i nclude "nt_cal . h"
#i nclude "sch_2100. h"

/1 The array of tasks (see Sch51.C)
extern sTask SCH_tasks_G SCH MAX_TASKS] ;

/1 Cal culate the schedul er nejor cycle
tWord Cal c_Sch_Maj or _Cycl e(tWord n)
{tV‘brd i;
SCH_Mnj or _Cycle_G = SCH_tasks_{d 0] . Peri od;
for(i =1; i < n; i++)

SCH_Mnj or _Cycl e_G = LCM2Nunbers( SCH _Maj or_Cycle_G SCH tasks_{i]. Period);
}//end of for(i..

return SCH Maj or_Cycle_G

}//end of function Cal cTestPeriod(int n)

tWord LCM2Nunbers(tWord nil, tWord n2)

//calc the LCM of any two nunbers
tWord LCM product, t enp;

product =nl1*n2;
do

{
if ( n1 <n2)

t enp=nl;
nl=n2;
n2=t enp;
Y/ /end of if(nl...
el se
}//end of else-->if(nl...
nl=n1l%n2;
}while (nl);

/1 now n2 contains the GCD of the two nunbers
LCM= product/ n2;

return LCM

}//end of function LCM2Nunbers(. ...

#i ncl ude "main. h"

/'l Function prototype
voi d Cal cul ate_Task_RT(voi d);




Appendix H 368

#include "task_rt.h"
#i nclude "sch_2100. h"
#i nclude "nt_cal . h"

/1 The array of tasks (see Sch51.C)
extern sTask SCH_tasks_G SCH MAX_TASKS] ;

voi d Cal cul ate_Task_RT(voi d)

tWord I ndex, k, Tenmp_RIs_tine=0, Ticks ;
tWord Task_Schedul e[ SCH_MAX_TASKS] [ SCH_Mj or _Cycle_G ; /1 adjust to be
larger than or equal to mmjor cycle

/1 Fill the array Task_Schedul e[] which contains informati on about the task
schedul e
for (Index = 0; Index < SCH MAX_TASKS; | ndex++)

/1 SCH tasks_J Index].R s_tine = 0;

/'l check higher-periority tasks in each tick
for (Ticks = 0; Ticks < SCH Major_Cycle_G Ticks++)

/1 Check if there is a task at this location
if (SCH_tasks_{ I ndex].pTask)

{
if (--SCH tasks_{d Index].Delay == 0)

/1 The task is due to run
/1 Don't run the task at this stage; instead set a flag

Task_Schedul e[ I ndex] [ Ti cks] = 1;
if (SCH_ tasks_{ I ndex]. Period)

/1 Schedul e period tasks to run again
SCH_t asks_{J I ndex] . Del ay = SCH_tasks_{ | ndex] . Peri od;
}

el se

/1 Del ete one-shot tasks
SCH_t asks_{Jd I ndex] . pTask = 0;
}

}

el se

{
Task_Schedul e[ I ndex] [ Ti cks] = O0;
}

}
} // end for (Index ...)
} /1 end for (Runs ...)

/1 Calculate the RT required for each task

for (Index = 1; Index < SCH MAX TASKS; |ndex++)
{

for (Ticks = 0; Ticks < SCH Major_Cycle_G Ticks++)
{ Tenp_R s_time = 0;
if (Task_Schedul e[| ndex] [ Ti cks] == 1)
ior (k = 0; k < Index ; k++)
if (Task_Schedul e[ k] [Ticks] == 1)
{ Tenp_R s_time += SCH_ tasks_{d k] . wcet;

/1 store the maxi mum (rel ease) tine before the current task

if((SCH tasks_J Index].Ris_time < Tenp_RIs_tine))
{
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SCH tasks_J Index].Ris_tine = Tenp_R s_tine;
}

} /1 end if()
/1 end for(k)
} /1 end if(Task)
} /1 end for(j)

/1 SCH tasks_J Index].R s_tine *= (PCLK / 1000000U);
} /1 end for(Index)

#i ncl ude "main. h"

/'l Function prototype
voi d Cal cul ate_Task_RT(voi d);

#include "task_rt.h"
#i nclude "sch_2100. h"
#i nclude "nt_cal . h"

/1 The array of tasks (see Sch51.C)
extern sTask SCH_tasks_G SCH MAX_TASKS] ;

voi d Cal cul ate_Task_RT(voi d)

tWord I ndex, k, Tenmp_RIs_tine=0, Ticks ;
tWord Task_Schedul e[ SCH_MAX_TASKS] [ SCH_Mj or _Cycle_G ; /1 adjust to be
larger than or equal to mmjor cycle

/1 Fill the array Task_Schedul e[] which contains informati on about the task
schedul e
for (Index = 0; Index < SCH MAX TASKS; | ndex++)

/1 SCH tasks_J Index].R s_tine = 0;

/'l check higher-periority tasks in each tick
for (Ticks = 0; Ticks < SCH Major_Cycle_G Ticks++)

/1 Check if there is a task at this location
if (SCH_tasks_({ I ndex].pTask)

{
if (--SCH tasks_{d Index].Delay == 0)

/1 The task is due to run
/1 Don't run the task at this stage; instead set a flag

Task_Schedul e[ I ndex] [ Ti cks] = 1;
if (SCH tasks_{ | ndex]. Peri od)

/1 Schedul e period tasks to run again
SCH_t asks_{J I ndex] . Del ay = SCH_tasks_{ | ndex] . Peri od;
}

el se

/1 Del ete one-shot tasks
SCH_t asks_{Jd I ndex] . pTask = 0;
}

}

el se
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{
Task_Schedul e[ I ndex] [ Ti cks] = O0;
}

}
} // end for (Index ...)
} /1 end for (Runs ...)

/1 Calculate the RT required for each task

for (Index = 1; Index < SCH MAX_TASKS; | ndex++)
{

for (Ticks = 0; Ticks < SCH Major_Cycle_G Ticks++)
{ Tenp_R s_time = 0;
if (Task_Schedul e[ I ndex] [ Ti cks] == 1)
Eor (k = 0; k < Index ; k++)
if (Task_Schedul e[ k] [Ticks] == 1)
{ Tenp_R s_time += SCH_ tasks_{d k] . wcet;
/] store the maxi mum (rel ease) tine before the current task
if((SCH tasks_(JIndex].Ris_time < Tenp_RIs_tine))
{SCH_t asks_(JIndex].Ris_time = Tenp_Rl s_tine;
}
} /1 end if()
/1 end for(k)

} /1 end if(Task)
} /1 end for(j)

/1 SCH tasks_J Index].R s_tine *= (PCLK / 1000000U);
} /1 end for(Index)

TTC-SCC1 scheduler

Master code

Io------ Public variable definitions ---------------------------
/'l Four bytes of data (plus ID information) are sent

tByte Tick_nmessage_data_ G NUVBER_OF SLAVES] [ 8];

tByte Ack_nessage_data_J NUVBER_OF SLAVES] [ 4];

Hho------ Public variable declarations -----------------------------

/1l The array of tasks (see Sch51.c)
extern sTask SCH_tasks_G SCH MAX_TASKS] ;

/1 The error code variable (see Sch51.c)
extern tByte Error_code_G

long int Tick_count_G
Io------ Private variable definitions -----------------------------

static tByte Slave_index_G = 0;
static bit First_ack_G = 1;

Hho------ Private function prototypes --------------------------~----
static void SCC_A MASTER Send_Ti ck_Message(const tByte);

static bit SCC A MASTER Process_Ack(const tByte);
static void SCC_A MASTER Shut _Down_t he_Net wor k(voi d) ;
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static void SCC_A MASTER Enter_Safe_State(void);
static tByte SCC A MASTER Start_Slave(const tByte); // reentrant;

Hho------ Private constants ------------------------- -

/1 Slave | Ds may be any NON-ZERO tByte value (all must be different)
/1 NOTE: Do *not* use |ID Ox00 (used to start slaves)
static const tByte MAIN_SLAVE_| Ds[ NUMBER_OF_SLAVES] = {0x02};

/1 If there are no backup nodes, this array should be identical
/1 to the array MAIN_SLAVE |IDs[] - see above.
static const tByte BACKUP_SLAVE_| Ds[ NUMBER_OF_SLAVES] = {0x02};

#defi ne NO_NETWORK_ERRCR (1)
#defi ne NETWORK_ERROR (0)

Hho------ Private variables --------------------

/1 Current slave IDs (Slave or Backup)
static tByte Current_Slave_|I Ds_ NUMBER_OF SLAVES] = {0};

SCC_A MASTER Update_T6

This is the scheduler ISR It is called at a rate deternined by
the timer settings in SCC_A MASTER Init_T6(). This version is
triggered by Tinmer 6 interrupts: tiner is autonmtically rel oaded.

voi d SCC_A MASTER Update_T6(void) interrupt | NTERRUPT_Ti nmer_6_Overfl ow
{
tByte Previous_slave_index;
bit Slave_replied_correctly;

// Clear T6 interrupt request flag
T6I R = O;

/1 Default
Net wor k_error_pin = NO_NETWORK_ERROR;

/1 Keep track of the current slave
Previ ous_sl ave_i ndex = Sl ave_i ndex_G /1 First value of prev slave is O...

if (++Slave_i ndex_G >= NUMBER_OF_ SLAVES)

Sl ave_i ndex_G = 0;

}

/1 Check that the appropriate slave responded to the previ ous nessage:
/1 (if it did, store the data sent by this slave)
if (SCC_A MASTER Process_Ack(Previous_slave_i ndex) == RETURN_ERROR)

{

Error_code_G = ERROR_SCH_LOST_SLAVE;

Net wor k_error _pin = NETWORK_ERROR;

/1 1f we have lost contact with a slave, we attenpt to

/1 switch to a backup device (if one is avail able)

if (Current_Slave_ | Ds_(Jd Sl ave_index_G ! = BACKUP_SLAVE_I| Ds[ Sl ave_i ndex_G)
{
/1 There is a backup available: switch to backup and try again
Current_Sl ave_| Ds_{J Sl ave_i ndex_G = BACKUP_SLAVE | Ds[ Sl ave_i ndex_(G ;
}

el se
{
/1 There is no backup available (or we are already using it)
/1 Try main device.
Current_Slave_| Ds_{J Sl ave_i ndex_G = MAI N_SLAVE | Ds[ Sl ave_i ndex_(G;
}

/1 Try to connect to the slave
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Slave_replied_correctly =
SCC_A MASTER Start_Slave(Current_Slave_| Ds_{d Sl ave_i ndex_QG);

if (!Slave_replied_correctly)

/1 No backup available (or backup failed too) - we shut down
/1 OTHER BEHAVI OUR MAY BE MORE APPROPRI ATE | N YOUR APPLI CATI ON
SCC_A MASTER_Shut _Down_t he_Net wor k() ;
}

}

/1 Send 'tick' nmessage to all connected sl aves
/1 (sends one data byte to the current slave)
SCC_A MASTER Send_Ti ck_Message( Sl ave_i ndex_G) ;

/] Check the last error codes on the CAN bus via the status register
if ((CLCSR & 0x0700) != 0)

{

Error_code_G = ERROR_SCH_CAN BUS_ERRCR;

Net wor k_error _pin = NETWORK_ERROR;

/1 See Infineon Cl67CR manual for error code details
CAN_error_pi n0 ((C1CSR & 0x0100) == 0);
CAN_error_pinl ((CL1CSR & 0x0200) == 0);
CAN_error_pi n2 ((CLCSR & 0x0400) == 0);
}

el se
{
CAN_error_pi n0
CAN_error_pinl
CAN_error_pi n2
}

Ti ck_count _G++;

nnon
ey

SCC_A MASTER Send_Ti ck_Message()

This function sends a tick nessage, over the CAN network.

The receipt of this message will cause an interrupt to be generated
in the slave(s): this invoke the schedul er 'update' function

in the slave(s).

voi d SCC_A MASTER Send_Ti ck_Message(const tByte SLAVE_ | NDEX)
{

/1 Find the slave ID for this slave

/1 ALL SLAVES MJUST HAVE A UNI QUE (non-zero) ID

tByte Slave_ID = (tByte) Current_Slave_|l Ds_{J SLAVE_| NDEX] ;
CAN_OBJ[ 0] .Data[ 0] = Slave_ID;

/1 Fill the data fields

CAN_OBJ[ 0] . Dat a[ 1] Ti ck_message_data_J 0][1];
CAN_OBJ[ 0] . Dat a[ 2] Ti ck_message_data_J 0][ 2];
CAN_OBJ[ 0] . Dat a[ 3] Ti ck_message_data_J 0][ 3] ;
CAN_OBJ[ 0] . Dat a[ 4] Ti ck_message_data_J 0] [4];
CAN_OBJ[ 0] . Dat a[ 5] Ti ck_message_data_J 0] [ 5] ;
CAN_OBJ[ 0] . Dat a[ 6] Ti ck_message_data_J 0] [ 6] ;
CAN_OBJ[ 0] . Dat a[ 7] Ti ck_message_data_J 0][7];

/1 Send the message on the CAN bus
CAN_OBJ[ 0] . MCR = OXEFFF; // Set TXRQ

SCC_A MASTER Process_Ack()

Make sure the slave (SLAVE | D) has acknow edged the previous
message that was sent. |If it has, extract the nessage data




Appendix H 373

fromthe USART hardware: if not, call the appropriate error
handl er.

PARAMS: The index of the slave.

RETURNS: RETURN_NORMAL - Ack received (data in Ack_nessage_data_Q
RETURN_ERROR - No ack received (-> no data)

bit SCC_A MASTER Process_Ack(const tByte SLAVE_ | NDEX)

{
tByte Ack_I D, Slave_ID,
I/l First time this is called there is no ack tick to check
Il - we sinply return ' K
if (First_ack_Q
First_ack_G = 0;
return RETURN_NORMAL;
}
/1 I's the NEWDAT flag set?
if ((CAN_OBJ[1].MCR & 0x0300) == 0x0200)
/1 An Ack nessage was received
/'l - Extract the data
Ack_I D = CAN_OBJ[ 1] . Data[ 0] ; /] Get data byte O
Ack_nessage_dat a_J SLAVE_| NDEX] [ 0] = CAN_OBJ[ 1] . Data[ 1];
Ack_nmessage_data_@ SLAVE_ I NDEX][1] = CAN_OBJ[1].Data[2];
Ack_nmessage_data_G SLAVE_|I NDEX][2] = CAN_OBJ[1].Data[ 3];
Ack_nmessage_data_G SLAVE I NDEX] [ 3] = CAN_OBJ[1].Data[ 4];
CAN_OBJ[1]. MCR = OxFDFF; // C ear NEWDAT fl ag
/1 Find the slave ID for this slave
Slave_|I D = (tByte) Current_Slave_| Ds_J SLAVE_| NDEX] ;
if (Ack_ID == Slave_|D)
{
return RETURN_NORMAL;
}
}
/1 No nessage, or ID incorrect
return RETURN_NORMAL;
}
Io------ Public variable definitions ------------------"--------

/1 The array of tasks
sTask SCH_tasks_{J SCH_MAX TASKS];

extern long int Tick_count_G

extern tByte Tick_message_data_G NUMBER_OF_SLAVES] [ 8] ;

/1 Used to display the error code

/] See Main.H for details of error codes

/Il See Port.H for details of the error port

tByte Error_code_G = 0;

Hho------ Private function prototypes --------------------------~----
voi d SCH Go_To_Sl eep(voi d);

Hho------ Private variables --------------------

/1 Keeps track of tine since last error was recorded (see bel ow)
static tWord Error_tick_count_G

/1 The code of the last error (reset after ~1 mnute)
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static tByte Last_error_code_G

SCH_Di spat ch_Tasks()

This is the 'dispatcher’ function. Wen a task (function)
is due to run, SCH Dispatch_Tasks() will run it.
This function nust be called (repeatedly) fromthe main |oop.

* * [

t Byt e | ndex;
bit Update_again = O;

do {
/1 NOTE: calculations are in *TICKS* (not mlliseconds)
for (Index = 0; Index < SCH MAX TASKS; | ndex++)

/1 Check if there is a task at this location
if (SCH_tasks_({ I ndex].pTask)

{
if (--SCH tasks_{d Index].Delay == 0)
{
/1 The task is due to run
(*SCH_ tasks_{J I ndex].pTask)(); // Run the task
if (SCH_ tasks_{ I ndex]. Period)
/1 Schedul e period tasks to run again
SCH_t asks_{J I ndex] . Del ay = SCH_tasks_{ | ndex] . Peri od;
}
el se
/1 Del ete one-shot tasks
SCH_t asks_{Jd | ndex] . pTask = 0;
}
}
}
}
/1 Disable Timer 6 interrupt
T6l E = O;
if (--Tick_count_G > 0)
{
Update_again = 1;
}
el se
{ .
Update_again = 0;

/!l Re-enable Tinmer 6 interrupt
T6IE = 1;

} while (Update_again);

/1 Fill the message data with random bytes
for (i=1; i <=7; i++)
Ti ck_message_data_JO0][i] = (tByte) (rand() % 255); // random data
e e
/1 Encoding process — for jitter reduction - is carried out here

Encode_dat a();

/'l Report system status
SCH_Report_Status();
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Slave code

/! Data sent fromthe master to this slave
tByte Tick_message_data_(d 8];

tByte Dunmy_tick data_d8]; // dummy array
/! Data sent fromthis slave to the master

/1 - data may be sent on, by the naster, to another slave
tByte Ack_nessage data_ 4] ={'1,"'1","'1",'1};

/1l The array of tasks (see Sch51.c)
extern sTask SCH_tasks_G SCH MAX_TASKS] ;

/1 The error code variable (see Sch51.c)
extern tByte Error_code_G

long int Tick_count_G

static void SCC A SLAVE Enter_Safe_State(void);

static void SCC A SLAVE Send_Ack_Message_To_Master (void);
static tByte SCC A SLAVE Process_Ti ck_Message(void);

static void SCC A SLAVE Watchdog_Init(void);
static void SCC A SLAVE Watchdog_Refresh(void);

/'l Each slave (and backup) nust have a unique (non-zero) ID
#defi ne SLAVE_|I D 0x02

#defi ne NO_NETWORK_ERRCR (1)
#defi ne NETWORK_ERROR (0)

SCC_A_SLAVE_Updat e

This is the scheduler ISR It is called at a rate
determned by the timer settings in SCC_A SLAVE Init().

This Slave is triggered by CAN interrupts.

*

{
/1 t Byt e | ndex;
tWord uwl nt | D,
tword i;

/]l *** DON' T NEED THI S ***
umM ntI D = ClIR & Ox00ff;

if ((uwmntlD & 0x00ff) != 3)
{
/1 Only interested in Message Qbject 1 Interrupt

return;

}
RECV_LED pin = 0;

/! Reset this when tick is received
Networ k_error _pin = NO_NETWORK_ERROR;

/'l Check tick data - send ack if necessary

Io------ Public variable definitions --------------------------

Hho------ Public variable declarations -------------------------

Hho------ Private function prototypes --------------------------

Hho------ Private constants ------------------------------------

/1 NOTE: ' START' nessage will only be sent after a 'time out'
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if (SCC_A _SLAVE Process_Ti ck_Message() == SLAVE_| D)
{
SCC_A SLAVE_Send_Ack_Message_To_Master ();

/'l Feed the watchdog ONLY when a *rel evant* nessage is received
/1 (noise on the bus, etc, will not stop the watchdog...)

/1

/1 START messages will NOT refresh the slave

/1 - Must talk to every slave at regular intervals

SCC_A SLAVE Wat chdog_Refresh();

}

/] Check the last error codes on the CAN bus via the status register
if ((CLCSR & 0x0700) !'= 0)

{

Error_code_G = ERROR_SCH_CAN BUS_ERRCR;

Net wor k_error _pin = NETWORK_ERROR;

/1 See Infineon Cl67CR manual for error code details
CAN_error_pin0 = ((C1CSR & 0x0100) == 0);
CAN error_pinl = ((CLCSR & 0x0200) == 0);
CAN error_pin2 = ((C1CSR & 0x0400) == 0);
}

el se
{
CAN_error_pi n0
CAN_error_pinl
CAN_error_pi n2
}

Ti ck_count _G++;

Ll

for(i=0; i<700; i++);
RECV_LED pin = 1;

SCC_A SLAVE_Process_Ti ck_Message()

The ticks nessages are crucial to the operation of this shared-clock
schedul er: the arrival of a tick message (at regular intervals)
invokes the 'Update' ISR, that drives the schedul er.

The tick nessages thenselves may contain data. These data are
extracted in this function.

tByte SCC_A SLAVE Process_Ti ck_Message(voi d)
{
tByte Tick_ID;
if ((CAN_OBJ[0].MCR & 0x0c00) == 0x0800) // if MBGLST set

/1 Indicates that the CAN controller has stored a new
/'l message into this object, while NEWAT was still set,
/1 i.e. the previously stored nmessage is |ost.

/1 W& sinply IGNORE this here and reset the flag
CAN_OBJ[0]. MCR = Oxf7ff; [/ reset MSGST

/1 The first byte is the ID of the slave for which the data are
/'l intended
Tick_ID = CAN_OBJ[ 0] . Data[0]; /! Get data byte 0 (Slave ID)

if (Tick_ID == SLAVE I D)

/!l Only if there is a match do we need to copy these fields
Ti ck_message_data_{ 0] CAN_OBJ[ 0] . Data[ 0] ;
Ti ck_message_data_(d 1] CAN_OBJ[ 0] . Data[ 1];
Ti ck_message_data_(d 2] CAN_OBJ[ 0] . Dat a[ 2] ;
Ti ck_message_data_( 3] CAN_OBJ[ 0] . Dat a[ 3];
Ti ck_message_dat a_( 4] CAN_OBJ[ 0] . Dat a[ 4] ;
Ti ck_message_data_( 5] CAN_OBJ[ 0] . Data[ 5] ;
Ti ck_message_dat a_( 6] CAN_OBJ[ 0] . Dat a[ 6] ;
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Ti ck_message_data_J 7] = CAN_OBJ[O].Data[7];
}

el se

/1 Must do sane processing to avoid jitter
Dummy_tick_data_{d 0] CAN_OBJ[ 0] . Data[ 0] ;
Dummy_tick_data_( 1] CAN_OBJ[ 0] . Data[ 1];
Dummy_tick_data_( 2] CAN_OBJ[ 0] . Dat a[ 2] ;
Dummy_tick_data_( 3] CAN_OBJ[ 0] . Dat a[ 3] ;
Dummy_tick_data_( 4] CAN_OBJ[ 0] . Dat a[ 4] ;
Dummy_tick_data_(d 5] CAN_OBJ[ 0] . Data[ 5] ;
Dummy_tick_data_( 6] CAN_OBJ[ 0] . Dat a[ 6] ;
Dummy_tick_data_{J 7] CAN_OBJ[ 0] . Data[ 7];

}
CAN_OBJ[0]. MCR = OxFDFD; // Reset NEWDAT and | NTPND

return Tick_ID;

}

SCC_A SLAVE_Send_Ack_Message_To_Master ()

Sl ave nust send and ' Acknow edge' nessage to the naster, after
tick nmessages are received. NOTE: Only tick nessages specifically
addressed to this slave should be acknow edged.

The acknow edge nessage serves two purposes:

[1] It confirns to the master that this slave is alive & well.

[2] It provides a neans of sending data to the master and - hence
- to other slaves.

NOTE: Data transfer between slaves is NOT permitted!

* * [

/'l First byte of nmessage must be slave ID
CAN_OBJ[ 1] .Data[ 0] = SLAVE_ID; /1 data byte O

CAN_OBJ[ 1] . Dat a[ 1]
CAN_OBJ[ 1] . Dat a[ 2]
CAN_OBJ[ 1] . Dat a[ 3]
CAN_OBJ[ 1] . Dat a[ 4]

Ack_nmessage_data_J 0] ;
Ack_message_data_(Jd 1] ;
Ack_nessage_data_(d 2] ;
Ack_message_data_(d 3] ;

/1 Send the message on the CAN bus
CAN_OBJ[1]. MCR = OXE7FF; // Set TXRQ (send nessage)

}

/1 The array of tasks
sTask SCH_tasks_{ SCH_MAX TASKS];

/1 Used to display the error code

/] See Main.H for details of error codes

/Il See Port.H for details of the error port

tByte Error_code_G = 0;

extern long int Tick_count_G

Hho------ Private function prototypes --------------------------~----
voi d SCH Go_To_Sl eep(voi d);

Hho------ Private variables --------------------

/1 Keeps track of tine since last error was recorded (see bel ow)
static tWord Error_tick_count_G

/1 The code of the last error (reset after ~1 mnute)
static tByte Last_error_code_G

Il ------ Private constants ---
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#defi ne NO_NETWORK_ERRCR (1)
#defi ne NETWORK_ERROR (0)

SCH_Di spat ch_Tasks()

This is the 'dispatcher’ function. Wen a task (function)
is due to run, SCH Dispatch_Tasks() will run it.
This function nust be called (repeatedly) fromthe main |oop.

* * [

t Byt e | ndex;
bit Update_again = O;

do {
/1 NOTE: calculations are in *TICKS* (not mlliseconds)
for (Index = 0; Index < SCH MAX_TASKS; | ndex++)

/1 Check if there is a task at this location
if (SCH_tasks_{ I ndex].pTask)

{
if (--SCH tasks_{d Index].Delay == 0)
{
/1 The task is due to run
(*SCH_ tasks_{J I ndex].pTask)(); // Run the task
if (SCH_ tasks_{ I ndex]. Period)
/1 Schedul e period tasks to run again
SCH_ t asks_{J I ndex] . Del ay = SCH_t asks_{ | ndex] . Peri od;
}
el se
/1 Del ete one-shot tasks
SCH_t asks_{d I ndex] . pTask = 0;
}
}
}

/] Check the last error codes on the CAN bus via the status register
if ((CLCSR & 0x0700) !'= 0)

{

Error_code_G = ERROR_SCH_CAN BUS_ERROCR;

Net wor k_error _pin = NETWORK_ERROR;

/1 See Infineon Cl67CR manual for error code details
CAN_error_pi n0 ((C1CSR & 0x0100) == 0);
CAN_error_pinl ((CL1CSR & 0x0200) == 0);
CAN_error _pi n2 ((C1CSR & 0x0400) == 0);

}

el se
{
CAN error_pin0 = 1;
CAN error_pinl = 1;
CAN_ error_pin2 = 1;

}

/1 Disable interrupts
/1 ET2 = 0;

if (--Tick_count_G > 0)

Update_again = 1;
el se

{

Update_again = 0;
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}
I1ET2 = 1;

} while (Update_again);

e PP

/1 Decoding process — to recover original data - is carried out here
Decode_Dat a();

e PP

/'l Report system status
SCH_Report_Status();

Data coding techniques
Nolte XOR masking

Master code

/1 XOR all data bytes (except the Slave ID) with Nolte bit nmask
for (i=1; i <=7; i++)
{
Ti ck_message_data_J 0][i] "= 0x55;
}

Slave code

for (i=1; i <=7; i++)
{

Ti ck_message_data_Ji] ~= 0x55; // random data

}

Frame-based XOR masking

Master code

i f(Data_Config() == YES)

for (i=1; i <=7; i++)
{

Ti ck_message_data_Ji] ~= 0x55; // random data

}

/1 send 0010 0000 to indicate that the frame has been nasked
Ti ck_message_data_J 0][0] = 0x20;
}

tByte Data_Config(void)
{
Consec_Bits = 0;
Ti ck_message_data_J0][0] = O;

frame = Tick_nessage_data_JO0][7];
Prev_bit = frane & Ox1;

z = 2

if (Check_Bit_Stuff(8,5) == NO
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{
frame = Tick_nessage_data_J0][6];
Prev_bit = Last_Bit;
z =1,
if (Check _Bit_Stuff(8,5) == NO
{
frame = Tick_nessage_data_J 0][5];
Prev_bit = Last_Bit;
z =1,
if (Check _Bit_Stuff(8,5) == NO
{
frame = Tick_nessage_data_J 0][4];
Prev_bit = Last_Bit;
z = 1,
if (Check _Bit_Stuff(8,5) == NO
{
frame = Tick_nessage_data_J 0][3];
Prev_bit = Last_Bit;
z =1,
if (Check _Bit_Stuff(8,5) == NO
{
frame = Tick_nessage_data_J0][2];
Prev_bit = Last_Bit;
z =1,
if (Check_Bit_Stuff(8,5) == NO
{
frame = Tick_nessage_data_J0][1];
Prev_bit = Last_Bit;
z =1,
if (Check_Bit_Stuff(8,5) == NO
{

return NO
el se {return YES;}
el}se {return YES;}
el se {return YES;}
el}se {return YES;}
el}se {return YES;}

el se {return YES;}

el se {return YES;}

tByte Check_Bit_Stuff(tByte frame_size, tByte CONSEC BI TS)

{
t Byt e FRAMEL;
tByte k;

St uf f _bi t s=0;

for (k=z; k <= franme_size; k++)

FRAMEL = frane >> (k-1);
Curr_bit = FRAMEL & Ox1;

if (Curr_bit == Prev_bit)
{

Consec_Bits ++;

}

{
Consec_Bits =
Prev_bit = r

}

if (Consec_Bits == (CONSEC BI TS-1))

el se
0;
r

bit;
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{
Stuff_bits ++;
Consec_Bits = 0;
}
}
Last _Bit = Prev_bit;
if(Stuff_bits > 0) {return YES;}

el se {return NG}

Slave code

if (Tick_message_data_J 0] >> 5 == 1)
for(i=1; i<=7; i++)

Ti ck_message_data_Ji] ”~= 0x55;
}

Byte-based XOR masking
Online (function call)

Master code

Data_Config();

voi d Data_Config(void)

{
tByte i
Ti ck_message_data_J0][0] = O;
Ti ck_message_data_JO0][7] = O;

for(i=1; i <= NO_OF_BYTES; i ++)

{

frame = Tick_nessage_data_JO0][i];
if (Check_Bit_Stuff(8,5) == YES)

Ti ck_message_data_J0][i] "= 0x55;
if(i==4)
{
Ti ck_message_data_J 0][0] |= (0x01<<5); // 0010 0000

}

{
Tick_message_data_JO0][7] |= (0x01<<(7-i));

}

el se

}

/1 bit no 1 in byte7 nust oppose last bit in byte6

/1 bit no 5 in byte7 nust oppose bit no 4 in this byte

/1 last bit in byte7 nust oppose bit no 7 in this byte
Ti ck_message_data_JO0][7] |= (!'(Tick_message_data_{ 0] [ 6] &0x01) <<7)

| (" ((Tick_nmessage_data_{J 0] [ 7] >>4) &0x01) <<3)

| (" ((Tick_nmessage_data_J 0][ 7] >>1) &0x01));
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}
/*************************************************************************
Check_Bit_Stuff()
This function goes through the frame bit-by-bit. Wenever it finds
consecutive 1s or Os, it returns YES, otherw se returns NO
Note that this function requires two values: the frane size and the nunmber of
consecutive bits to check for. (e.g. 4 or 5)
**************************************************************************/
tByte Check_Bit_Stuff(tByte frame_size, tByte CONSEC BI TS)
{
tByte franel;
bit Curr;
bit Prev;
tWord Consec_Bits;
tWword k;
Consec_Bits = 0; // Nunber of consecutive bits
k=1;
St uf f _bi t s=0;
Prev = frane & Ox1;
for (k=2; k <= franme_size; k++)
framel = frane >> (k-1);
Curr = franel & Ox1;
if (Curr == Prev)
Consec_Bits ++;
}
el se
{ .
Consec_Bits = 0;
Prev = Curr;
}
if (Consec_Bits == (CONSEC BITS-1))
{
Stuf f_bits++;
Consec_Bits = 0;
}
}
if(Stuff_bits > 0)
{
return YES;
}
return NG
}
Slave code

Data_Config();
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voi d Data_Config(void)
{
tByte i;
for(i=1; i<= NO_OF_BYTES; i++)
{
if(i == 4)
if (((Tick_nessage_data_{d 0] >>5) & 0x01) == 1)
Ti ck_nmessage_data_{d 4] ~= 0x55;
}
}
el se
{ .
if ((Tick_nmessage_data J 7]>>(7-i)) & 0x01 == 1)
Ti ck_message_data_Ji] ”~= 0x55;
}
}
}
}

Software Bit Stuffing (SBS)

Master code

Encode_Dat a();

voi d Encode_Dat a(voi d)

{
tByte i;

/1 Consecutive bits counter
tByte Consec_Bits=0;

/1 Bit status flags
bit Prev_Bit=0;
bit Current_Bit=0;

/1 Pointers for input data
tByte In_Bit_No=0;
tByte I n_Byte_No=0;

/1 Pointers for output data
tByte Qut_Bit_No=0;
t Byte Qut_Byte_No=0;

/1 Initialise the consec bits counter
Consec_Bi t s=0;

/1 Initialise the previous bit (i.e. fromSlave ID) - can be nodified?
Prev_Bit=0;

/!l Reset the output data buffers
for(i=0; i<7; i++)

Tick_data_after_stuffing[i] = O;

}

/1 Begin the bit stuffing

for(In_Byte_No=0; | n_Byte_No<CAN_BYTES_USED _FOR_DATA; | n_Byt e_No++)
{
/1 Loop through the input bits in this byte
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for(In_Bit_No=0;In_Bit_No<8;In_Bit_No++)
{
/1 Loop through each bit
Current _Bit=(Ti ck_nessage_data_J 0] [I n_Byte_No] >>(7-1n_Bit_No))&0x01;

/l See if current bit is same as previous bit
if(Current_Bit==Prev_Bit)

{
/11t is
Consec_Bi t s++;

/1l O herwi se we are K
el se

/'l Reset counter
Consec_Bi t s=0;
Prev_Bit=Current_Bit;
}

/1 Now we copy the data as normal here
Tick_data_after_stuffing[Qut_Byte No]|=((tByte)(Current_Bit)<<(7-
Qut _Bit_No));

/1 Increment and check for roll-over
i f(++Qut_Bit_No>7)

/! Reset bit counter

Qut _Bi t _No=0;

/'l Increnent byte counter
Qut _Byt e_No++;

}

/Il Are we at bit limt?
i f (Consec_Bi t s==CONSECUTI VE_BI T_LI M T)

/1 Yes-lInsert stuff bit
Tick_data_after_stuffing[Qut_Byte No]|=((tByte)(!Current_Bit)<<(7-Qut_Bit_No));

/1 Increment and check for roll-over
i f(++Qut_Bit_No>7)

/1 Reset bit counter

Qut _Bi t _No=0;

/1 Increnment byte counter
Qut _Byt e_No++;

}

/'l Reset bit counter
Prev_Bit=!Current_Bit;
Consec_Bi t s=0;
}

}

}

/1 We have now finished doing the bit stuffing

/1 Begin the conpensation stage now

for(Qut_Byte_No=Qut_Byte_ No; Qut _Byte_ No<CAN_NUM DATA BYTES- 1; Qut _Byte_No++)
{

/1 Add conpensation bits to all remaining bytes
for(Qut_Bit_No=Qut_Bit_No;Qut_Bit_No<8; Qut_Bit_ No++)

/1 Toggle the last bit we sent

Current_Bit=!Current_Bit;

Tick_data_after_stuffing[Qut_Byte No]|=((tByte)(Current_Bit)<<(7-
Qut _Bit_No));

/1 Remenber to set Qut_Bit_No equal to zero here!
Qut _Bi t _No=0;
}
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Slave code

Decode_Dat a();

voi d Decode_Dat a(voi d)

/1 Consecutive bits counter
tByte Consec_Bits=0;

/1 Bit status flags
bit Prev_Bit=0;
bit Current_Bit=0;

/1 Pointers for input data
tByte In_Bit_No=0;
tByte I n_Byte_No=0;

/1 Pointers for output data
tByte Qut_Bit_No=0;
t Byte Qut_Byte_No=0;

/1 Initialise the consec bits counter
Consec_Bi t s=0;

/1 Initialise the previous bit (i.e. fromSlave ID) - can be nodified?
Prev_Bit=0;

/1 Init pointers
Qut _Bi t _No=0;

Qut _Byt e_No=0;

I n_Bi t _No=0;

I n_Byt e_No=0;

/1 Scan through until we have decoded all usefull information
whi | e(Qut _Byt e_No<CAN_BYTES_USED_FOR_DATA)

/1 Loop through each bit
Current _Bit=(Ti ck_data_before_destuffing[ln_Byte_No]>>(7-
I n_Bit_No)) &x01;

/l See if current bit is same as previous bit
if(Current_Bit==Prev_Bit)

/11t is
Consec_Bi t s++;

}

/1 O herwi se we are OK
el se

/'l Reset counter
Consec_Bi t s=0;
Prev_Bit=Current_Bit;
}

/1 Are we at bit limt?
i f(Consec_Bits==CONSECUTI VE_BIT_LIMT)
{
/1 Yes-remove stuff bit
/1 Increment and check for roll-over
i f(++In_Bit_No>7)

/1 Reset bit counter

I n_Bi t _No=0;

/'l Increnent byte counter
I n_Byte_No++;

/'l Reset counter
Prev_Bit=!Current_Bit;
Consec_Bi t s=0;

}
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/1 Now we copy the data as normal here
Qut _Bit_No));

/1 Increment and check for roll-over
i f(++In_Bit_No>7)
{

/1 Reset bit counter

I n_Bi t _No=0;

/'l Increnent byte counter
I n_Byte_No++;

}

/1 Increment and check for roll-over
if(++Qut_Bit_No>7)

/'l Reset bit counter

Qut _Bi t _No=0;

/'l Increnent byte counter
Qut _Byt e_No++;

}

Ti ck_message_data_GJ Qut _Byte_No] | =((tByte)(Current_Bit)<<(7-

Eight-to-Eleven Modulation (EEM)
Explicit lookup table

Master code

/1 lnportant definitions

#define CAN BYTES USED FOR DATA (5)
#define CAN_NUM DATA BYTES (8)

#define NO_I NPUT_BYTES (5)
#define NO_INPUT_BI TS (11)
#define NO_OUTPUT BI TS (8)
#define DIFF_I O BI TS (NO_INPUT_BI TS - NO_OUTPUT_BI TS)

/1l Oiginal data nmessage
tByte Tick_nmessage_data_ G NUVBER_OF SLAVES] [ CAN_BYTES USED FOR DATA];

/'l Encoded data message
tByte Tick_data_after_EEM encodi ng[ CAN_NUM DATA BYTES-1];

SCC_A MASTER Send_Ti ck_Message()

This function sends a tick nessage, over the CAN network.

The receipt of this message will cause an interrupt to be generated
in the slave(s): this invoke the schedul er 'update' function

in the slave(s).

* */

{

/1 Find the slave ID for this slave

/1 ALL SLAVES MJUST HAVE A UNI QUE (non-zero) ID

tByte Slave_ID = (tByte) Current_Slave_|l Ds_{J SLAVE_| NDEX] ;
CAN_OBJ[ 0] .Data[ 0] = Slave_ID;

/1 Fill the data fields
CAN_OBJ[ 0] .Data[ 1] = Tick_data_after_EEM encodi ng[ 0] ;
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CAN_OBJ[ 0] . Dat a[ 2]
CAN_OBJ[ 0] . Dat a[ 3]
CAN_OBJ[ 0] . Dat a[ 4]
CAN_OBJ[ 0] . Dat a[ 5]
CAN_OBJ[ 0] . Dat a[ 6]
CAN_OBJ[ 0] . Dat a[ 7]

Ti ck_dat a_aft er _EEM encodi ng[ 1] ;
Ti ck_dat a_aft er _EEM encodi ng[ 2] ;
Ti ck_dat a_after _EEM encodi ng[ 3] ;
Ti ck_dat a_after _EEM encodi ng[ 4] ;
Ti ck_dat a_after _EEM encodi ng[ 5] ;
Ti ck_dat a_after _EEM encodi ng[ 6] ;

/1 Send the message on the CAN bus
CAN_OBJ[ 0] . MCR = OXEFFF; // Set TXRQ
}

voi d Encode_dat a(voi d)

{
tByte i;
tByte RS_Index; /1 right shift index

/1 Pointers for input data
tByte I n_Byte_No=0;

/1 Pointers for output data

t Byte Qut_Byte_No=0;

/1 Convert each tick nessage byte to its equivalent 11-bit EEM code using the EEM tabl e
(see EEM tabl e. H)

for (i=0; i<CAN_BYTES_USED _FOR_DATA ; i ++)

{
EEM data[i] = EEM Code[ Ti ck_message_data_JO0][i]];
}

/!l Reset the output data buffers
for(i=0; i<CAN_NUM DATA BYTES-1; i ++)
{

Ti ck_data_after _EEM encoding[i] = O;
}

RS_Index = DI FF_I O BITS;

/1 Using the EEM data, produce the encoded CAN data bytes for transmi ssion

for (In_Byte_No=0; In_Byte_No<NO_| NPUT_BYTES; |n_Byte_No++)

{

I

Ti ck_data_after _EEM encodi ng[ Qut _Byte_No] |= ((EEM data[ln_Byte_No] >>
RS I ndex) & (Ox7FF >> RS_|Index));

Qut _Byt e_No++;

if (RS_Index > NO OUTPUT_BITS)
{
RS | ndex -= NO_OQUTPUT_BI TS;
Ti ck_data_after _EEM encodi ng[ Qut _Byte_No] |= ((EEM data[ln_Byte_No] >>
RS I ndex) & (Ox7FF >> RS_Index));

Qut _Byt e_No++;
}

Ti ck_dat a_aft er _EEM encodi ng[ Qut _Byte_No] |= ((EEM data[ln_Byte_No] <<
(NO_QUTPUT_BI TS-RS_I ndex)) & (0x7FF << (NO_QUTPUT_BI TS-RS_| ndex)));

RS_I ndex += DI FF_I O BITS;

}
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Slave code (Binary Search Algorithm)

/1 lInportant definitions

#define CAN BYTES USED FOR DATA (5)
#define CAN_NUM DATA BYTES (8)

#define NO_I NPUT_BYTES (5)
#define NO_INPUT_BI TS (11)
#define NO_OUTPUT BI TS (8)
#define DIFF_I O BI TS (NO_INPUT_BI TS - NO_OUTPUT_BI TS)

/! Data sent fromthe master to this slave
tByte Tick_data_before_EEM decodi ng[ CAN_NUM DATA BYTES- 1] ;
tByte Tick_nmessage_data_G NUVBER_OF SLAVES] [ CAN_BYTES USED FOR DATA];

SCC_A SLAVE_Process_Ti ck_Message()

The ticks nessages are crucial to the operation of this shared-clock
schedul er: the arrival of a tick nmessage (at regular intervals)
invokes the 'Update' ISR, that drives the schedul er.

The tick nessages thensel ves may contain data. These data are
extracted in this function.

tByte SCC_A SLAVE Process_Ti ck_Message(voi d)

{
tByte Tick_ID;

if ((CAN_OBJ[0].MCR & 0x0c00) == 0x0800) // if MBSGLST set
{

/1 Indicates that the CAN controller has stored a new
/1 message into this object, while NEWAT was still set,
/1 i.e. the previously stored nmessage is |ost.

/1 W& sinply IGNORE this here and reset the flag
CAN_OBJ[0]. MCR = Oxf7ff; [/ reset MSGST

/1 The first byte is the ID of the slave for which the data are
/'l intended
Tick_ID = CAN_OBJ[ 0] . Data[0]; /! Get data byte 0 (Slave ID)

if (Tick_ID == SLAVE I D)

/!l Only if there is a match do we need to copy these fields
Ti ck_dat a_bef ore_EEM decodi ng[ 0] CAN_OBJ[ 0] . Data[ 1];

Ti ck_dat a_bef ore_EEM decodi ng[ 1] CAN_OBJ[ 0] . Dat a[ 2] ;

Ti ck_dat a_bef ore_EEM decodi ng[ 2] CAN_OBJ[ 0] . Dat a[ 3] ;

Ti ck_dat a_bef ore_EEM decodi ng[ 3] CAN_OBJ[ 0] . Dat a[ 4] ;

Ti ck_dat a_bef ore_EEM decodi ng[ 4] CAN_OBJ[ 0] . Data[ 5] ;

Ti ck_dat a_bef ore_EEM decodi ng[ 5] CAN_OBJ[ 0] . Dat a[ 6] ;

Ti ck_dat a_bef ore_EEM decodi ng[ 6] CAN_OBJ[ 0] . Data[ 7] ;

}

el se

/1 Must do sane processing to avoid jitter
Dummy_tick_data_(d 1] CAN_OBJ[ 0] . Data[ 1];
Dummy_tick_data_( 2] CAN_OBJ[ 0] . Dat a[ 2] ;
Dummy_tick_data_( 3] CAN_OBJ[ 0] . Dat a[ 3];
Dummy_tick_data_( 4] CAN_OBJ[ 0] . Dat a[ 4] ;
Dummy_tick_data_(d 5] CAN_OBJ[ 0] . Data[ 5] ;
Dummy_tick_data_( 6] CAN_OBJ[ 0] . Dat a[ 6] ;
Dummy_tick_data_{d 7] CAN_OBJ[ 0] . Data[ 7] ;

}
CAN_OBJ[0]. MCR = OxFDFD; // Reset NEWDAT and | NTPND
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return Tick_ID;

}

voi d Decode_dat a(voi d)

{
tword i;
tByte RS_Index; /1 right shift index

/1 Pointers for input data
tByte I n_Byte_No=0;

/1 Pointers for output data

t Byte Qut_Byte_No=0;

/! Reset the EEM data

for (i=0; i<CAN_BYTES_USED FOR_DATA ; i ++)

{
EEM data[i] = O;
RS_Index = DI FF_I O BITS;

/1 Using the EEM data, produce the decoded CAN data bytes

for (Qut_Byte_ No=0; Qut_Byte No<CAN BYTES USED FOR _DATA; CQut_Byte_No++)
{
/1

EEM dat a[ Qut _Byte_No] | = ((Ti ck_data_before_EEM decodi ng[ | n_Byte_No] <<
RS_I ndex) & Ox7FF);

In_Byte_No ++;
if (RS_Index > NO_| NPUT_BI TS)
{
RS | ndex -= NO_I NPUT_BI TS;
EEM dat a[ Qut _Byte_No] | = ((Ti ck_data_before_EEM decodi ng[ | n_Byte_No] <<
RS | ndex) & Ox7FF);// & (OxFF << RS_| ndex));

I n_Byte_No++;
}

EEM dat a[ Qut _Byte_No] | = ((Ti ck_data_before_EEM decodi ng[ | n_Byte_No] >>
(NO_I NPUT_BI TS- RS_I ndex) ) & Ox7FF);// & (OxFF >> (NO_I NPUT_BI TS-RS_| ndex)));

RS_I ndex += DI FF_I O BITS;

}

/'l Recover the original byte using binary search algorithm

for (i=0; i<CAN_BYTES_USED FOR_DATA ; i ++)

{

Ti ck_message_data_J 0][i] = binarySearch(EEM Code, EEM data[i],
ARR_M N_I NDEX, ARR_MAX_| NDEX) ;

}

bi narySearch(a, val ue)

The search begins by exam ning the value in the center of the list; because the val ues
are sorted, it then knows whether the value occurs before or after the centre val ue,
and searches through the correct half in the same way.
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This function determnes the 'index' of a given value in a sorted list 'a' between
indices 'left' and 'right'

tByte binarySearch(tWrd* a, tWrd value, tWrd left, tWrd right)
{
tByte m d=0;

if (right <left) {return 0;}

md= (left + right)/2;
if (value > a[mid]) {return binarySearch(a, value, md+1, right);}

else if (value < a[md]) {return binarySearch(a, value, left, md-1);}
el se {return md;}

Slave code (reverse array)

voi d Decode_dat a(voi d)

{
tword i;
tByte RS_Index; /1 right shift index

/1 Pointers for input data
tByte I n_Byte_No=0;

/1 Pointers for output data

t Byte Qut_Byte_No=0;

/! Reset the EEM data

for (i=0; i<CAN_BYTES_USED FOR_DATA ; i ++)

{

EEM data[i] = O;

}

RS_Index = DI FF_I O BITS;

/1 Using the EEM data, produce the decoded CAN data bytes

for (Qut_Byte_ No=0; Qut_Byte No<CAN BYTES USED FOR _DATA; CQut_Byte_No++)
{

I

EEM dat a[ Qut _Byte_No] | = ((Ti ck_data_before_EEM decodi ng[ I n_Byte_No] << RS_| ndex)
& OX7FF);

I n_Byte_No ++;

if (RS_Index > NO_| NPUT_BI TS)

{
RS_I ndex -= NO_I NPUT_BITS;
EEM dat a[ Qut _Byte_No] | = ((Ti ck_data_before_EEM decodi ng[ | n_Byte_No] <<
RS | ndex) & Ox7FF);// & (OxFF << RS_| ndex));
I n_Byte_No++;
}
EEM dat a[ Qut _Byte_No] | = ((Ti ck_data_before_EEM decodi ng[ | n_Byte_No] >>

(NO_I NPUT_BI TS- RS_I ndex) ) & Ox7FF);// & (OxFF >> (NO_I NPUT_BI TS-RS_| ndex)));

RS_I ndex += DI FF_I O BITS;

/1 Recover the original CAN data byte using the EEMreverse table
for (i=0; i<CAN_BYTES_USED FOR_DATA ; i ++)

{

Ti ck_message_data_J 0][i] = Byte_Val ue[ EEM data[i]-546];

}
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Implicit lookup table

Master code

voi d Encode_dat a(voi d)

{
tByte i, |nput_Byte;
tByte RS_Index; /1 right shift index

/1 Pointers for input data
tByte I n_Byte_No=0;

/1 Pointers for output data
t Byte Qut_Byte_No=0;

/1 Convert each tick nessage byte to its equivalent 11-bit EEM code using the EEM tabl e
(see EEM tabl e. H)

for (i=0; i<CAN_BYTES_USED _FOR_DATA ; i ++)

{

I nput _Byte = Tick_nessage_data_JO0][i];

/1 Use EEM Code function to find the EEM code for the input bytes
EEM data[i] = EEM Code(i, |nput_Byte);

}

/!l Reset the output data buffers
for(i=0; i<CAN_NUM DATA BYTES-1; i ++)
{

Ti ck_data_after _EEM encoding[i] = O;
}

/1 Using the EEM data, produce the encoded CAN data bytes for transmi ssion

RS_Index = DI FF_I O BITS;
for (In_Byte_No=0; In_Byte_No<NO_| NPUT_BYTES; I|n_Byte_No++)

/1
Ti ck_dat a_after _EEM encodi ng[ Qut _Byte_No] |= ((EEM data[ln_Byte_No] >> RS_|ndex)
& (Ox7FF >> RS_| ndex));

Qut _Byt e_No++;

if (RS_Index > NO_OUTPUT_BI TS)

{

RS | ndex -= NO_OQUTPUT_BI TS;

Ti ck_data_after _EEM encodi ng[ Qut _Byte_No] |= ((EEM data[ln_Byte_No] >>
RS I ndex) & (Ox7FF >> RS_|Index));

Qut _Byt e_No++;
}

Ti ck_dat a_after _EEM encodi ng[ Qut _Byt e_No]

| = EEM dat a[ | n_Byte_No] <<
(NO_OUTPUT_BI TS-RS_I ndex)) & (Ox7FF << (NO_OUTPUT B

((
| TS-RS_I ndex)));

RS_I ndex += DI FF_I O BITS;

}
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EEM Code()

This function finds the equival ent EEM code for an input BYTE

tWord EEM Code (tByte i, tByte BYTE)
{

tByte Array_Index = (BYTE*11)/16; /! deternmine the no of the array elenment in
/1 which the EEM code i s stored
tByte EEM Start = (BYTE*11)%46;// determine the location of the first
/1 bit of the EEM code in the array el enent

/1 if the EEM code start after 6 bits fromleft, then the code is split within two
array el ements
if(EEM Start > 5)

{
EEM data[i] = EEM ARRAY[ Array_I| ndex] << (11 - (16 - EEM Start));
EEM data[i] |= EEM ARRAY[ Array_I ndex+1] >> (16 - (11 - (16 - EEM Start)));
}
/1 if not, then the code is stored in one array el ement
el se
{
EEM data[i] = EEM ARRAY[ Array_l ndex] >> ((16 - EEM Start) - 11);
/1 filter the data by taking only the 11 LSB
EEM data[i] &= OX7FF;

return EEM data[i];
}

Slave code (sear ch element)

voi d Decode_dat a(voi d)

{
tWord i, Array_Start;
tByte RS_Index; /1 right shift index

/1 Pointers for input data
tByte I n_Byte_No=0;

/1 Pointers for output data
t Byte Qut_Byte_No=0;

/1 Variables for searching el ement
tByte EEM Start = O;

tByte Array_I ndex = O;

tWrd eemdata = 0;

/1 This is to test the slave decoding

/ *Ti ck_dat a_bef or e_EEM decodi ng[ 0] =0x67;
Ti ck_dat a_bef ore_EEM decodi ng[ 1] =0x4c;
Ti ck_dat a_bef ore_EEM decodi ng[ 2] =0Oxca;
Ti ck_dat a_bef ore_EEM decodi ng[ 3] =0x6e;
Ti ck_dat a_bef ore_EEM decodi ng[ 4] =0x25;
Ti ck_dat a_bef ore_EEM decodi ng[ 5] =0x27;
Ti ck_dat a_bef ore_EEM decodi ng[ 6] =0x56;
*/

/! Reset the EEM data
for (i=0; i<CAN_BYTES_USED FOR_DATA ; i ++)
{
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EEM data[i] = O;
}
RS_Index = DI FF_I O BITS;

/1 Using the EEM data, produce the decoded CAN data bytes

for (Qut_Byte_No=0; Qut_Byte_ No<CAN BYTES USED FOR _DATA; CQut_Byte_No++)
{

I

EEM dat a[ Qut _Byte_No] | = ((Ti ck_data_before_EEM decodi ng[ I n_Byte_No] << RS_| ndex)
& OX7FF);

I n_Byte_No ++;

if (RS_Index > NO_| NPUT_BI TS)

{
RS_I ndex -= NO_I NPUT_BITS;
EEM dat a[ Qut _Byte_No] | = ((Ti ck_data_before_EEM decodi ng[ | n_Byte_No] <<
RS | ndex) & Ox7FF);// & (OxFF << RS_| ndex));
I n_Byte_No++;
}
EEM dat a[ Qut _Byte_No] | = ((Ti ck_data_before_EEM decodi ng[ | n_Byte_No] >>

(NO_I NPUT_BI TS- RS_I ndex) ) & Ox7FF);// & (OxFF >> (NO_I NPUT_BI TS-RS_| ndex)));

RS_I ndex += DI FF_I O BITS;

/1 Deternmine the range to save tine

if (EEM dat a[ Qut _Byte_No] < 578) {Array_Start =0 i}
else if (EEM data[ Qut_Byte No] < 647) {Array_Start = 11 i}

else if (EEM data[ Qut_Byte No] < 706) {Array_Start = 22 i}

else if (EEM data[ Qut_Byte No] < 802) {Array_Start = 33 i}

else if (EEM data[ Qut_Byte No] < 834) {Array_Start = 44 i}

else if (EEM data[ Qut_Byte No] < 930) {Array_Start = 55 i}

else if (EEM data[ Qut_Byte No] < 962) {Array_Start = 66 i}

el se if (EEM data[ Qut _Byte_No] < 1058) {Array_Start = 77 i}
el se if (EEM data[ Qut_Byte_No] < 1090) {Array_Start = 88 i}
else if (EEM data[ Qut _Byte_No] < 1186) {Array_Start = 99 i}
else if (EEM data[ Qut_Byte_No] < 1218) {Array_Start = 110 i}
else if (EEM data[ Qut_Byte_No] < 1314) {Array_Start = 121 i}
el se if (EEM data[ Qut _Byte_No] < 1346) {Array_Start = 132 i}
else if (EEM data[ Qut_Byte_No] < 1442) {Array_Start = 143 i}
else if (EEM data[ Qut _Byte_No] < 1474) {Array_Start = 154 i}

el se {Array_Start = 165;}

/1 Recover the original CAN data byte using the EEMtable
EEM St art =0;

Array_Index = Array_Start;

for (i=0; i<16; i++)

EEM Start = (i*11) % 16;

// if the EEM code start after 6 bits fromleft, then the code is split within
two array el enents
if(EEM Start > 5)

eem data = EEM ARRAY[ Array_I ndex] << (11 - (16 - EEM Start));
eem data | = EEM ARRAY[ ++Array_I ndex] >> (16 - (11 - (16 - EEM Start)));
}

/1 if not, then the code is stored in one array el ement
el se

{
eem data = EEM ARRAY[ Array_I ndex] >> ((16 - EEM Start) - 11);
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}

/1 filter the data by taking only the 11 LSB
eem data &= Ox7FF;

/1 Now check if the current EEV value (in the table) natches the received
EEM wor d

if (EEM data[ Qut _Byte_No] == eem data)
{

Ti ck_message_data_J 0] [Qut_Byte_No] =i + (Array_Start/11) * 16;
/1 (Array_Start/11) is the array division in which the EEM code is | ocated.

/1 (Array_Start/11) *
16 determnes the index of the first elenment in the division.
br eak;

}

Algorithmic coding

Master code

voi d Encode_dat a(voi d)

{
tByte i, Current_Bit, Next_Bit;
tByte RS_I ndex; /1 right shift index

/1 Pointers for input data
tByte I n_Byte_No=0;
tByte In_Bit_No=0;

/1 Pointers for output data
t Byte Qut_Byte_No=0;
tByte Qut_Bit_No=0;

/1 Convert each tick nessage byte to its equivalent 11-bit EEM code
/1 Note that the nunber of input bits = 8, and the output bits = 11
for (i=0; i<CAN_BYTES_USED FOR_DATA ; i ++)

Qut _Bi t _No=0;

;or (I'n_Bit_No=0; In_Bit_No<8; In_Bit_No++)

Current _Bit = (Tick_message_data_JO0][i] >> (7-1n_Bit_No)) & 0x01;
EEM data[i] |= Current_Bit <<(10-Cut_Bit_No);

if((In_Bit_No==0) ||(In_Bit_No==3)||(In_Bit_No==6))
{

/1 Stuff the opposite bit afterward

Next _Bit = !Current_Bit;

Qut _Bit_No++;

EEM data[i] |= Next_Bit <<(10-CQut_Bit_No);

}

Qut _Bit_No++;
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}

/!l Reset the output data buffers
for(i=0; i<CAN_NUM DATA BYTES-1; i ++)

{
Ti ck_data_after_EEM encoding[i] = O;
}

RS_Index = DI FF_I O BITS;
/1 Using the EEM data, produce the encoded CAN data bytes for transmi ssion
/1 Note that the nunber of input bits = 11, and the output bits = 8
for (In_Byte_No=0; In_Byte_No<NO_| NPUT_BYTES; |n_Byte_No++)
{
I
Ti ck_dat a_after _EEM encodi ng[ Qut _Byte_No] |= ((EEM data[ln_Byte_No] >> RS_|ndex)
& (Ox7FF >> RS_| ndex));

Qut _Byt e_No++;

if (RS_Index > NO_OUTPUT_BI TS)

{

RS | ndex -= NO_QUTPUT_BI TS;

Ti ck_data_after _EEM encodi ng[ Qut _Byte_No] |= ((EEM data[ln_Byte_No] >>
RS I ndex) & (Ox7FF >> RS_|Index));

Qut _Byt e_No++;
}

Ti ck_dat a_after _EEM encodi ng[ Qut _Byt e_No]

| = ((EEM dat a[ | n_Byte_No] <<
(NO_OUTPUT_BI TS-RS_I ndex)) & (Ox7FF << (NO_OUTPUT_BI

TS-RS_I ndex)));

RS_I ndex += DI FF_I O BITS;

}

Slave code

voi d Decode_dat a(voi d)

{
tWord i, Current_Bit;//Array_Start;
tByte RS_Index; /1 right shift index

/1 Pointers for input data

tByte I n_Byte_No=0;
tByte In_Bit_No=0;

/1 Pointers for output data
t Byte Qut_Byte_No=0;
tByte Qut_Bit_No=0;

/! Reset the EEM data
for (i=0; i<CAN_BYTES_USED FOR_DATA ; i ++)

{

EEM data[i] = O;

}

RS_Index = DI FF_I O BITS;

/1 Using the EEM data, produce the decoded CAN data bytes

for (Qut_Byte_ No=0; Qut_Byte No<CAN BYTES USED FOR _DATA; CQut_Byte_No++)
{
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I
EEM dat a[ Qut _Byte_No] | = ((Ti ck_data_before_EEM decodi ng[ I n_Byte_No] << RS_| ndex)
& OX7FF);
I n_Byte_No ++;
if (RS_Index > NO_| NPUT_BI TS)
RS_I ndex -= NO_I NPUT_BITS;
EEM dat a[ Qut _Byte_No] | = ((Ti ck_data_before_EEM decodi ng[ | n_Byte_No] <<
RS | ndex) & Ox7FF);// & (OxFF << RS_| ndex));

I n_Byte_No++;
}

EEM dat a[ Qut _Byte_No] | = ((Ti ck_data_before_EEM decodi ng[ | n_Byte_No] >>
(NO_I NPUT_BI TS- RS_I ndex) ) & Ox7FF);// & (OxFF >> (NO_I NPUT_BI TS- RS_| ndex)));

RS_I ndex += DI FF_I O BITS;

}

/'l Recover the original CAN data byte by renoving the stuff-bits
for (i=0; i<CAN_BYTES_USED FOR_DATA ; i ++)

Qut _Bi t _No=0;
for(In_Bit_No=0; In_Bit_No<1l; In_Bit_No++)
{
Current_Bit = (EEM data[i] >> (10-1n_Bit_No)) & 0x01;
if ('((In_Bit_No==1) ||(In_Bit_No==5)||(In_Bit_No==9)))
{
Ti ck_message_data_G 0][i] |= Current_Bit <<(7-Qut_Bit_No);
Qut _Bit_No++;
}
}

Mathematical coding

Master code

voi d Encode_dat a(voi d)

{

tByte i;

tByte RS_Index; /1 right shift index

/1 Pointers for input data
tByte I n_Byte_No=0;

/1 Pointers for output data
t Byte Qut_Byte_No=0;

/1 Convert each tick nessage byte to its equivalent 11-bit EEM code using the EEM
mat hemati cal equati on

for (i=0; i<CAN_BYTES_USED FOR_DATA ; i ++)

{

/1 The used equation is derived fromthe | ookup table val ues
Il f(x) =f(0) + x + 4*floor(x/4) + 64*fl oor(x/32)

EEM data[i] = 546 + Tick_nessage_data JO][i] + ((Tick_nessage_data G O0][i]/4)*4) +
((Tick_message_data_J0][i]/32)*64);

}
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/!l Reset the output data buffers
for(i=0; i<CAN_NUM DATA BYTES-1; i ++)

{
Ti ck_data_after_EEM encoding[i] = O;
}

RS_Index = DI FF_I O BITS;

/1 Using the EEM data, produce the encoded CAN data bytes for transmi ssion

for (In_Byte_No=0; In_Byte_No<NO_| NPUT_BYTES; I|n_Byte_No++)

I

Ti ck_dat a_after _EEM encodi ng[ Qut _Byte_No] |= ((EEM data[ln_Byte_No] >> RS | ndex)
& (Ox7FF >> RS_| ndex));

Qut _Byt e_No++;

if (RS_Index > NO_OUTPUT_BI TS)

{

RS | ndex -= NO_OQUTPUT_BI TS;

Ti ck_data_after _EEM encodi ng[ Qut _Byte_No] |= ((EEM data[ln_Byte_No] >>
RS I ndex) & (Ox7FF >> RS_|Index));

Qut _Byt e_No++;
}

Ti ck_dat a_after _EEM encodi ng[ Qut _Byt e_No]

| = EEM dat a[ | n_Byte_No] <<
(NO_OUTPUT_BI TS-RS_I ndex)) & (Ox7FF << (NO_OUTPUT B

((
| TS-RS_I ndex)));

RS_I ndex += DI FF_I O BITS;

}

Slave code

voi d Decode_dat a(voi d)
{

tByte i;
tByte RS_Index; /1 right shift index

/1 Pointers for input data
tByte I n_Byte_No=0;

/1 Pointers for output data

t Byte Qut_Byte_No=0;

/! Reset the EEM data

for (i=0; i<CAN_BYTES_USED FOR_DATA ; i ++)

{
EEM data[i] = O;
}

RS_Index = DI FF_I O BITS;

/1 Using the EEM data, produce the decoded CAN data bytes

for (Qut_Byte_ No=0; Qut_Byte No<CAN BYTES USED FOR _DATA; CQut_Byte_No++)
{

/1
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EEM dat a[ Qut _Byte_No] | = ((Ti ck_data_before_EEM decodi ng[ I n_Byte_No] << RS_| ndex)
& OX7FF);

I n_Byte_No ++;

if (RS_Index > NO_| NPUT_BI TS)

{
RS_I ndex -= NO_I NPUT_BITS;
EEM dat a[ Qut _Byte_No] | = ((Ti ck_data_before_EEM decodi ng[ | n_Byte_No] <<
RS | ndex) & Ox7FF);// & (OxFF << RS_| ndex));
I n_Byte_No++;
}
EEM dat a[ Qut _Byte_No] | = ((Ti ck_data_before_EEM decodi ng[ | n_Byte_No] >>

(NO_I NPUT_BI TS- RS_I ndex) ) & Ox7FF);// & (OxFF >> (NO_I NPUT_BI TS- RS_| ndex)));

RS_I ndex += DI FF_I O BITS;

/1 Recover the original CAN data byte using the EEMtable
for (i=0; i<CAN_BYTES_USED _FOR_DATA ; i ++)

/'l The encoder equation is used here in reverse way to calculate the
val ue of each byte
Il x =f(x) - f(0) - 2*floor[(f(x)-f(0))/4] - 16*floor[(f(x)-f(0))/64]
Tick_message_data_JO0][i] = EEM data[i] - 546 - ((EEM data[i]-546)/4)*2 -
((EEM data[i]-546)/64) * 16;
}
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