

SPACE EFFICIENT IN-MEMORY

REPRESENTATION OF XML DOCUMENTS

Thesis submitted for the degree of

Doctor of Philosophy

at the University of Leicester

by

O’Neil Delpratt BSc (Leicester)

Department of Computer Science

University of Leicester

October 2008

 i

Author’s Declaration

I hereby declare that this submission is my own work and that it is the result of work

done mainly during the period of registration. To the best of my knowledge, it contains

no material previously published or written by another person nor material which to a

substantial extent has been accepted for the award of any other degree or diploma of the

university or other institute of higher learning, except where due acknowledgement has

been made in the text.

Parts of this submission appeared in the following conjoint publications, to each of

which I have made substantial contributions:

• Delpratt, O., Rahman, N., and Raman, R. 2006. Engineering the LOUDS

Succinct Tree Representation. In Proc. of 5th Workshop on Experimental

Algorithms (Menorca, Spain, May 24-27, 2006) WEA ’06. LNCS, Springer-

Verlag, Berlin Heidelberg New York, NY, Vol. 4007, pp. 134-145.

• Delpratt, O., Rahman, N., and Raman, R. 2007. Compressed Prefix Sums. In

Proc. of the Theory and Practice of Computer Science (Harrachov, Czech

Republic, January 20-26, 2007). SOFSEM ’07. LNCS, Springer-Verlag, Berlin

Heidelberg New York, NY, Vol. 4362, pp. 235-247.

• Delpratt, O., Raman, R., and Rahman, N. 2008. Engineering succinct DOM. In

Proceedings of the 11th international Conference on Extending Database

Technology: Advances in Database Technology (Nantes, France, March 25-29,

2008). EDBT '08, Vol. 261. ACM International Conference Proceeding Series,

New York, NY, pp. 49-60.

 ii

SPACE EFFICIENT IN-MEMORY REPRESENTATION OF XML DOC UMENTS

O’Neil Delpratt

Abstract

Extensible Markup Language (XML) is a multi-purpose text-based format, used for
storage, transmission and manipulation of data. XML documents are often held in main
memory and processed via standard interfaces such as the Document Object Model
(DOM). However, XML is inherently verbose, and the in-memory representation of
XML documents by existing DOM implementations is up to ten times larger than the
file size. This is a problem for machines with limited memory, such as mobile devices,
where processing even moderately-sized XML documents requires more memory than
is available. We focus on in-memory representations of XML documents for situations
where space is limited and where rapid processing time is important. We propose a
compact representation of XML documents that uses succinct or highly space-efficient
data structures, that allows XML processing to be executed efficiently.

Succinct data structures use space that approaches the information-theoretic lower
bound on the space that is required to represent the data, and support operations upon
the representation in constant time. In the context of XML documents, we study and
improve succinct representations for ordinal trees by adding features that make them
more suitable for use in XML documents. We explore fast and space-efficient
representations of the textual data of XML documents. Our basic approach is to
concatenate all the textual data in the XML document into a single string, and extract
individual textual values by computing the appropriate substring of the concatenated
string. Computing the substring requires us to store offsets into the text. The storage of
the offsets is surprisingly expensive, if stored naively (as 32 or 64-bit integer values).
We give a succinct representation and provide data-aware representations (adapted from
work on inverted indices in information retrieval), and show their close connection.

We describe Succinct DOM (SDOM), which is a DOM implementation that has low,
stable and predictable memory usage. We show, via an experimental evaluation, that
SDOM is extremely fast. A variant, SDOM-CT, applies BZip-based compression to
textual and attribute data, and its space usage is comparable with “query-friendly” XML
compressors. Some of these compressors support navigation and/or querying (e.g.
subpath queries) of the compressed file. SDOM-CT does not support querying directly,
but remains extremely fast: it is several orders of magnitude faster for navigation than
query-friendly XML compressors that support navigation (and only a few times slower
than popular DOM implementations such as the Apache Foundation’s Xerces-C).

 iii

Acknowledgements

Firstly, I thank the Lord Jesus Christ, who took me through this course and made the
way for me to complete it. He provided me great people to work with, who took interest
in my accomplishments. I therefore express my sincere gratitude to them all.

I thank my supervisor Rajeev Raman, who, while I was an undergraduate, sparked the
interest and desire that was in me, to start and follow through the journey to complete
the PhD. During my period of study, he gave me fantastic support, guidance, help and
aided my professional development. He has surely made a great impact upon me, which
shall be with me throughout the future. Naila Rahman wrote the code for the succinct
data structures that underline SDOM, and I am very grateful for her help in
understanding the working of these data structures, for putting in the work to port the
code to a newer version of the GNU C++ compiler. Without these two very special
people, this thesis would not have been possible. Special thanks to Richard Geary for
very useful discussions in the early stages of SDOM.

Clive Page and Tony Linde, from the department of Physics, were my co-supervisors.
They offered useful advice and an invaluable external perspective. I express special
thanks to all the members of the Computer Science Department at the University of
Leicester, notably Rick Thomas for his support throughout the years. Thanks also to the
PhD tutor, Fer-Jan de Vries and to Thomas Erlebach for their encouragement, advice
and assessing yearly reports presented to them.

I convey my gratitude to my PhD colleagues, Cristóvão Oliveira, Osama El-Hassan,
João Abreu and Ahmed Al-Ghamdi for the many useful discussions throughout my time
at the University.

My PhD studies were supported by PPARC e-Science Studentship
PPA/S/E2003/03749 (co-investigators: Tony Linde, Clive Page, Rajeev Raman and
Mike Watson).

Special thanks to my examiners, Peter Wood and Thomas Erlebach, for enduring the
work represented to them and their recommendations to steer my thesis to a
comprehensible document.

To the special people in my life, my father, Bishop Mark Anderson, my mother,
Sharon Anderson, and my brother, Jordan, my gratitude cannot be put into words. They
have been a great support in my development; without them, studying at a university
would have been a mere thought. Dad has given me the drive to push beyond my
limitation and to achieve my greatest potential. I thank my dearest brethren at the
Emmanu-‘El Apostolic Church who have been very supportive especially Sister Ellah
Kandi and Pastor Samuel Gapara.

 v

Table of Contents

List of Figures .. ix

List of Tables .. xii

Chapter 1 Introduction .. 1

1.1 XML Processing.. 1

1.2 Memory Architecture .. 3

1.3 XML Bloat .. 4

1.3.1 XML compression .. 5

1.3.2 Our approach .. 5

1.4 Contributions and Organisation of Thesis ... 6

Chapter 2 XML Background .. 9

2.1 XML .. 9

2.1.1 Markup and Text .. 9

2.1.2 Well-formed and valid XML documents ... 9

2.1.3 Components of an XML document .. 10

2.1.4 Advanced features of XML documents .. 12

2.2 XML Parsing and Processing .. 14

2.3 DOM Architecture and Standards ... 15

2.3.1 DOM Node Types .. 17

2.3.2 Traversal Module .. 19

Chapter 3 Implementations of DOM and XML Compressors .. 22

3.1 DOM Implementations.. 22

3.1.1 Xerces ... 23

3.1.2 Saxon’s TinyTree ... 28

3.2 XML Compression .. 32

3.2.1 XML Compressors with DOM-like support ... 35

3.2.2 XML Compressors ... 43

3.2.3 Query-friendly XML Compressors .. 47

3.2.4 XML Compressor Summary .. 64

3.3 Statistics of XML documents .. 65

3.3.1 Textual Data ... 68

 vi

3.4 Summary ... 70

Chapter 4 Succinct Data Structures .. 72

4.1 Information-theoretic lower bounds on space usage ... 72

4.1.1 Bit-strings ... 72

4.1.2 Balanced Parentheses ... 72

4.1.3 Ordinal trees ... 73

4.1.4 Binary Tree ... 74

4.1.5 Prefix-sums ... 74

4.1.6 Succinctness vs Data Compression .. 75

4.2 Succinct Data Structure ... 75

4.2.1 Bit-Vector Data structure ... 75

4.2.2 Balanced parentheses string .. 84

4.2.3 Binary Trees .. 86

4.2.4 Ordinal Trees ... 88

4.2.5 Succinct Prefix sums ... 94

4.3 Summary ... 96

Chapter 5 Engineering Succinct Tree Representations ... 99

5.1 Motivation ... 99

5.2 XML and DOM Characteristics .. 101

5.2.1 DOM functionality ... 101

5.2.2 XML Document Characteristics ... 103

5.2.3 Requirements .. 103

5.3 Double Numbering .. 107

5.4 Optimising LOUDS further... 114

5.4.1 Adding isLeaf bit-string ... 114

5.4.2 Partitioned Representation .. 116

5.5 Comparison of tree representations ... 118

5.6 Experimental Evaluation ... 120

5.6.1 Setup ... 120

5.6.2 Space Usage .. 121

5.6.3 Running Time ... 124

 vii

5.7 Technical ideas summary .. 127

Chapter 6 Representing Textual Data ... 129

6.1 Overview ... 129

6.2 Prefix Sums Problem... 131

6.2.1 Data aware Measures .. 132

6.2.2 Related Work .. 133

6.2.3 Succinct Representations and Golomb Codes .. 134

6.2.4 Gamma and Delta Codes .. 136

6.2.5 Implementation Details .. 138

6.3 Textual data ... 141

6.4 Experimental Evaluation ... 142

6.4.1 Basic Setup ... 142

6.4.2 Prefix-sums experiments .. 142

6.4.3 Text DS experiments .. 148

6.5 Summary ... 149

Chapter 7 Succinct DOM .. 151

7.1 SDOM architecture ... 151

7.1.1 STree & Node Object ... 152

7.1.2 NameCode Data Structure .. 157

7.1.3 Textual Data Structure .. 162

7.1.4 Attribute Data Structure ... 164

7.2 SDOM Interface .. 171

7.2.1 Class Structure .. 171

7.2.2 DOM TreeWalker Interface ... 173

7.3 Experimental Evaluation ... 174

7.3.1 Setup ... 174

7.3.2 Space Usage .. 175

7.3.3 Running Time ... 178

7.3.4 Pre-processing Performance ... 184

7.4 Summary ... 185

Chapter 8 Conclusion .. 187

8.1 Technical Contributions .. 187

 viii

8.2 Future Work .. 189

Appendix A Experimental Setup .. 190

Appendix B DOM methods supported by SDOM .. 191

Bibliography ... 197

 ix

List of Figures

Figure 1.1 – (a) Simple XML document. (b) Corresponding DOM tree. 3

Figure 1.2 – Node representation of a DOM implementation. Arrows represent

pointers. ... 7

Figure 2.1 – XML tree of the bookshop document. Data values shaded in grey. 13

Figure 2.2 – DOM modules defined in the DOM specification [77]. 15

Figure 3.1 - Left: Simple XML document. Right: Example of Homomorphism. 34

Figure 3.2 - Left: Original XML document. DDOM Centre: Structure arrays, Right:

Dictionaries. .. 36

Figure 3.3 – (a): Unranked tree of XML document. (b): Binary Tree representing the

unranked tree. .. 38

Figure 3.4 - Abstract view of XMill for a single book in the XML document of Figure

2.1. .. 44

Figure 3.5 - Ordered label tree of a simple XML document ... 49

Figure 3.6 – Left: Set S after the pre-order visit of �. Right: The set � after the stable

sort. Bottom:The three arrays � �, ����� and �pcdata, output of the XBW transform. 49

Figure 3.7 – (a): Unranked tree of XML document. (b): Compressed DAG version of

(a). ... 52

Figure 3.8 – (a) Fragment of an XML tree structure: node has degree 7, of the same

node. (b) Binary tree representation of (a). ... 55

Figure 3.9 – (a) DAG representation of XML tree structure in Figure 3.8 (a). (b)

Minimised binary tree of Figure 3.8 (b). .. 55

Figure 3.10 – XCQ. Decompressed data blocks when processing query example. 61

Figure 3.11 – Left: Example XML document. Right: compressed XGrind

representation. ... 61

Figure 4.1 – The set of balanced parentheses for � � 3. ... 73

Figure 4.2 – The set of ordinal trees for � � 4. Root node is shaded in grey. 73

Figure 4.3 - The set of binary trees for � � 3. ... 74

Figure 4.4 - Parentheses string sequence. .. 84

Figure 4.5 - (a): Binary Tree example, (b): Labelled Extended tree and (c): Bit-string

representation. ... 88

 x

Figure 4.6 – Ordinal tree example. .. 90

Figure 4.7 – The LBS of the ordinal tree of Figure 4.6. Zeros-based and ones-based

numberings. ... 90

Figure 4.8 - Parentheses string of the ordinal tree in Figure 4.6. 91

Figure 4.9 – (a): Binary tree equivalent of the ordinal tree in Figure 4.6. (b): its binary

tree bit-string. .. 93

Figure 4.10 – (a) The binary representation of the numbers in �. We circle the top-

order bits of each number. (b) The multiplicity of the top-order numbers – given

indirectly by listing their decimal values. (c) Top-order bits encoded. (d) Lower-order

bits of (a) concatenated together. .. 96

Figure 5.1 - (a): Example XML document. (b): XML tree structure of (a). 100

Figure 5.2 – (a) Ordinal tree. (b) LOUDS bit-string of tree in (a). (c) Equivalent

partitioned bit-vector. .. 115

Figure 5.3 – Top: Ordinal tree structure of Orders.xml . Bottom: Bit-string

representation of Orders.xml (subscripts indicate repetition of sub-string sequence). . 124

Figure 6.1 – Binary encoding for � values in (a) when � � 3 and in (b) when � � 6. 133

Figure 6.2 - Formation of tree(�); shaded nodes are removed from the output. 137

Figure 6.3 – libBZip2-block compression: Textual data of XML documents is arranged

in document order. .. 147

Figure 7.1 - DOM architecture. SDOM stored in the Document node. SDOM

components shown with dotted boxes. Connecting lines show relationships between

data structures, i.e. compute operations by passing of data in either direction. 152

Figure 7.2 - (a): Simple XML document fragment. (b): Corresponding DOM tree

representation. (c) Parentheses representation of the tree structure with double

numbering of nodes. E.g., the 11th node (the element ‘year’) is at the 20th position in the

bit-string. The entity &ent; represents the text ‘GmbH’. ... 156

Figure 7.3 - (a) Example XML document with elements and associated attributes. (b)

Bit-string of the attribute representation. .. 167

Figure 7.4 – (a) Simple XML document. (b) Tree structure of (a) with attribute nodes

(not including textual data) in the tree. (c) Tree structure of (a) with attributes and their

values in the tree as nodes. .. 171

 xi

Figure 7.5 – Class Diagram of TinyTree and interface classes [61]. 173

Figure 7.6 - Space usage distribution of SDOM components excluding textual data. 175

Figure 7.7 - Space usage of SDOM components from Figure 7.6 (shaded in grey) with

textual data compressed (shaded in dark-grey). .. 175

Figure 7.8 - Space usage of DOM implementations compared to original file. 177

Figure 7.9 - Compression ratio comparisons of the XML compressors. 177

Figure 7.10 - Running times, document-order and reverse document-order traversals

gathering basic statistics, of Xerces and SDOM using nextNode() and

previousNode() operations. Average time of a single traversal reported for

XCDNA.xml. .. 180

Figure 7.11 – Running times, for document-order and reverse document-order

traversals using DOM navigation, with basic statistics for Xerces and SDOM. Average

time of a single traversal reported for XCDNA.xml. ... 180

Figure 7.12 – Running times of Xerces and SDOM for ‘upward path enumeration’

gathering basic statistics. Average time of a single traversal reported for XCDNA.xml.

 .. 181

Figure 7.13 – Average running times for DOM full test including examination of

attributes and substring test on text and attribute node values. 182

Figure 7.14 - Running times for DOM full test including examination of attributes and

substring test on contents of text and attribute nodes for XMark files (sizes

2MB-512MB). Average times are reported. ... 183

Figure 7.15 – Valgrind Massif profiler [65]: SDOM vs Xerces parsers, using

XCDNA.xml (594MB). .. 183

Figure 7.16 – Construction time of SDOM-(CT) vs Xerces using the XMark files. ... 184

Figure 8.1 – DOM performances graph. .. 188

 xii

List of Tables

Table 1.1 – Memory usage of representing XML documents in Xerces-C, as a

percentage of the original file size. ... 5

Table 2.1 – Summary of the DOM Node types. Asterisk (*) indicates maximum of one

child node allowed for that node type. .. 20

Table 3.1 – Xerces internal classes, with their class members and memory usage

details. ... 25

Table 3.2 – Xerces auxiliary classes that appear as class members in Table 3.1. We give

the class members and space usage. ... 26

Table 3.3 – TinyTree class members. .. 31

Table 3.4 –Multiplexed hierarchical modelling in XMLPPM. The Model is a snippet of

an XML document in Figure 2.1. ... 46

Table 3.5 - The interval �0.65, 0.66� is obtained for the simple path

university/department/module . .. 62

Table 3.6 – Comparison of XML processors and compressors. 64

Table 3.7 - Description of XML files in our XML corpus taken from [73]. 66

Table 3.8 – Size and node distribution according to DOM node type of all the XML

documents in our corpus. Assume all XML documents have a document node. (EL:

Element, ATT: Attribute, ER: EntityReference, ENT: Entity, COM: Comment, DT:

DocType, NS: Namespace) ... 67

Table 3.9 - Statistics of XML documents trees for our corpus. 68

Table 3.10 – Statistics on textual data distribution. We report file size, text & attributes

node count, % leaf nodes in tree (% of text nodes) and average textual data length. For

negligible we use NEG. .. 69

Table 4.1 – Space usage of the three bit-vector implementations used. We denote � and

�’ as the length of the bit-strings � and �’, respectively, where � � � . �0 and �1 are

the count of 1s and 0s present in the bit-string, respectively. �, �, " and �" are

parameters in the data structures. �0, �1 are the number of the zeros and ones large gaps,

respectively. In KNKP the term # is the number of extracted blocks in the input bit-

string. The terms $0 and $1 are the sizes of the clump array. .. 82

 xiii

Table 4.2 – Assume a bit-string with �/2 1s. We show the space usage of the three bit-

vector implementations. For CJ and CNEW, the parameter values are " � 64, � � 32

and '(� 256, and for KNKP we use 256-bit superblocks and 64-bit blocks. Results

are based on Table 4.1 formulas. .. 84

Table 4.3 – Space usage of implementations of Jacobson’s (Jacob) and Geary et al.’s

Parentheses DS (New), taken from Figure 6 in [36]. The units are bits per node

(parenthesis pair). PD stands for pioneer density. .. 86

Table 4.4 - Navigation operations for zeros-based and ones-based numberings (� is the

LBS). ... 91

Table 4.5 – Navigation operations for ordinal tree via the balanced parentheses

representation. � is the parentheses bit-string and ��)* retrieves the bit at position) in

the bit-string �. Let an opening (closing) parenthesis be represented by 1(0) is the bit-

string. .. 92

Table 4.6 – The Navigation operations for ordinal tree via binary tree. � is the bit-

string. Caps represent the binary tree operations; these operations are PARENT

(SELECT call), LEFT-CHILD (RANK call) and RIGHT-CHILD (RANK call)............... 94

Table 5.1 - Pseudocode for the non-recursive document-order traversal of a tree �. .. 102

Table 5.2 - Count of navigational operations called in the Traversals: document-order

(DFO) that is recursive (Rec) or non-recursive (Non-rec), also reverse DFO that is

recursive or non-recursive. � is the count of nodes in the tree, and � is the count of non-

leaf nodes. ... 103

Table 5.3 – Comparison of the succinct tree representations to support the

requirements; we give the operation calls per node. + is a node degree. 107

Table 5.4 - Navigational operations for LOUDS1+ and LOUDS0+ (� is the LBS). 109

Table 5.5 – Parentheses sequence representation with double numbering. 112

Table 5.6 - Navigational operations for PAREN+ (double-numbering support). � is the

parentheses bit-string and ��)* retrieves the bit at position) in the bit-string �. Let an

opening (closing) parenthesis be represented by 1(0). ... 112

Table 5.7 – Operations of the Binary Tree representations with double-numbering. (� is

the LBS). ... 114

 xiv

Table 5.8 – Operations of the partitioned representation. Bit-strings Runs0 and Runs1

defined in Section 5.4.2. ... 115

Table 5.9 – Total number of RANK and SELECT calls for recursive and non-recursive

document-order traversals. Comparison of LOUDS1, LOUDS0, LOUDS1+, LOUDS0+,

LOUDS1++ and PLOUDS. � is # nodes and � is # non-leaf nodes in the tree. , operation

call for the tree representations is not included. ... 119

Table 5.10 – Space Usage of tree reps. Columns are test file, number of nodes, % leaf

node and total space usage of tree representations given per node. LOUDS0 and

LOUDS1 use the same space usage therefore call them LOUDS: For PLOUDS, LOUDS

space per node for the clump data structure using KNKP; space per node to support long

gaps using CJ. For PAREN: space per node, cf Table 4.3. For negligible we use NEG.

 .. 122

Table 5.11 - CJ and KNKP speed comparison ... 124

Table 5.12 – Performance evaluation on Intel-P4. Coloumns are: Test file, slowdown

relative to the Xerces for recursive and non-recursive depth-first order (DFO) traversals

for LOUDS1 (L1), LOUDS1+ (L1+), LOUDS1++ (L1++) LOUDS0+ (L0+), PLOUDS

(PL), BinaryTree (BT), BinaryTree+ (BT+) all using CJ bit-vector and for PAREN (Par)

and PAREN+ (Par+). Fastest data structure for each set is in bold font. 125

Table 5.13 - Performance evaluation for DFO on Sun-UltraSparc. The setup is the same

as in Table 5.12. .. 126

Table 5.14 - Performance evaluation for BFO on Intel-P4 and Sun-UltraSparc. The

setup is the same as in Table 5.12. .. 126

Table 6.1 – Naive representation of offset values. �’ denotes the number of text and

attribute nodes (- represents a thousand and . represents a million), cost of storing

data values uncompressed, and of a naive representation for the offset values,

respectively. .. 144

Table 6.2 – Compression performance. Compressibility measures: gap(/), 01��, 21��,
(3'3."1�, �� as 1(3'�, "14, �� as 1�56�. Tree overhead: Γ89:: ; � < Γ1��/�.

Space usage: Total space in bits (spac) and wasted space in bits (wast) per prefix value

using the succinct prefix sum data structure and using the explicit-= and succinct-= data

 xv

structures. Data structure parameters for explicit-= and succinct-= were selected such

that wasted space is roughly equal. ... 145

Table 6.3 – Speed evaluation on Intel-P4 and Sun-UltraSparc. Test file, number of text

nodes, time in >� to determine a prefix sum value for succinct data structures using CJ,

KNKP and CNEW. Time to determine a prefix sum for explicit-= (Exp) and for

succinct-= (Succ) data structure, both of which are based on the new bit-vector. The best

runtime for each file on each platform is in bold. ... 147

Table 6.4 – Textual data compression. File names, text + attribute node count (�),

uncompressed text data size, compression ratio for BZip, FM-Index in document order,

and libBZip2 in document order and path-order. LibBZip2 block size = 8KB. 148

Table 7.1 – Pseudocode of DOM Methods, (a): getNodeType() and (b):

getNodeName() . .. 161

Table 7.2 – Pseudocode of Attribute DS interfacing with DOM methods. <), ?> is the

double number of the node in the tree. ... 169

Table 7.3 - Space usage of XML representations. ... 178

Table 7.4 – Running times for Xerces and SDOM for ‘upward path enumeration’. Time

results in seconds. SDOM slowdown wrt Xerces. Average time of a single traversal

reported for XCDNA.xml ... 181

Table 7.5 - Full test using TreeWalker . Shows running times in seconds for Xerces

using tree navigation operations, and using nextNode() , versus SDOM using tree

navigation and nextNode() and SDOM-CT using tree navigation. Time results in

seconds. Average time of a single traversal reported for all files. 182

 1

Chapter 1

Introduction

The World Wide Web Consortium (W3C) [79] introduced the Extensible Markup

Language (XML) specification as a text-based platform-neutral and customizable

markup language. The first use of XML was in the late 1990s; it has become a powerful

complement to HTML. XML is a multipurpose data format that is well-suited to the

representation of complex, hierarchically structured data. Its uses in data exchange,

storage and retrieval have reached much further than its creators may have anticipated.

For data exchange, standards exist in Service-Oriented Computing that provide

communication between applications and devices based upon XML. These include the

Web-Services Description Language (WSDL), Universal Description, Discovery, and

Integration (UDDI) and Simple Object Access Protocol (SOAP). In addition, web pages

are now represented in XML, such as XHTML.

XML as a storage format represents structured data, such as tables. The data format

used in the storage is often standardised, for example, the VO-Table XML format [74]

represents scientific data with emphasis on astronomical data (e.g. Astrogrid [74]), and

we have the MEDLINE XML format [50] that is used to represent the Medline

bibliographic citation database. Word processing applications are now using the XML

format as their document representation; these include Microsoft Office 2007 and Open

Office. Many companies use XML for their technical documentation based upon the

standard format called DocBook [25]. DocBook enables its users to focus on capturing

the logical structure of the content, which can then be published in a variety of formats

(e.g. HTML, PDF etc).

The retrieval of data in XML is a powerful feature. XML is used in databases, with a

number of query languages that have been developed (e.g. XQuery) to provide access

and retrieval of the data, just like the SQL standard for traditional database systems.

1.1 XML Processing

A large and growing set of specifications describe the processing of XML documents.

We focus on two low-level processing of XML documents; the first is the Simple API

for XML (SAX) [60], which provides event-driven functionality used for stream

Chapter 1 - Introduction

 2

processing. The second is the Document Object Model (DOM) APIs, which requires a

pre-processing phase to construct a representation of the document. DOM and SAX are

often used as the underlying engine in many higher-level processors; we will see

examples of these later.

The SAX parser provides sequential access to the XML document. It reads the

document from the beginning to the end, and the recent data read is provided to the user

through call-back event methods. The user is then required to manage the data received,

as SAX does not keep track of data that has been read.

The DOM represents XML documents as an in-memory representation; the XML

document is parsed, sometimes using a SAX parser, to create the DOM tree structure.

The DOM provides access to all parts of the representation of the XML document

through the navigation operations.

An example of the DOM is given in Figure 1.1, where the XML document in (a), is

represented as the DOM document tree in (b). We observe in (b) the square shaped

nodes represent the elements in the XML document, also the circular nodes represent

the element’s content and the single attribute in the document is mapped to the library

element, where it is defined.

SAX is extremely fast to read the XML document, and has very little memory

requirement, whereas DOM has to load the entire document before data can be read.

However, DOM provides flexibility of repeated navigation, retrieval and/or update on

the document. It is simpler to develop applications using DOM than only using a SAX

parser, for the reason that SAX requires the user to supplement the call-back methods

and to maintain the data received. Furthermore, in situations where we require repeated

navigation upon the XML document SAX is simply not sufficient.

DOM serves as a general-purpose tool that can be used in applications, stand-alone or

with other standards such as XPath [71], XSLT [72] and XQuery; these are the high

level processors. We observe XSLT processors (such as Xalan [66] and Saxon [61])

rely on the DOM [66] or simpler tree structure representations. The language neutral

DOM is supported in most programming languages such as JavaScript, Perl, Java,

Chapter 1 - Introduction

 3

Figure 1.1 – (a) Simple XML document. (b) Corresponding DOM tree.

ActiveX, Python, C/C++, PHP and ASP, etc. In addition, web browsers use DOM

parsers to load XML documents, such as the Microsoft IE 5 and higher, which

incorporates their XML parser to build the DOM documents.

1.2 Memory Architecture

To help understand the problems associated in representing and processing XML

documents, we give an overview of the memory architecture of a computer. The central

processing unit (CPU) of a computer receives instructions, decodes them and performs a

sequence of operations, given from a program, on data held in its memory. Data is

stored in the following types of memory [19]:

• the hard disk, which provides a permanent storage of the data, even when the

machine is switched off. This type of memory is the largest and the cheapest.

Data here is not directly accessible by the CPU, but is first loaded into RAM

memory.

• the Random-Access memory (RAM), (or main memory), which provides data

storage whilst the computer is on. Main memory is much faster than disk, but a

lot less in capacity. Main memory is connected to the CPU through a memory

bus, which has a bandwidth or maximum throughput for transferring data. A

software program loads data from the disk to the RAM memory.

• the cache, which is an intermediate storage between the CPU and the main

memory. Cache is much faster than RAM memory, but is much more expensive

 <library>
 <book catalogue=“XML”>
 <author>OND</author>
 <title>SDOM Design</title>
 <year>2007</year>
 </book>
...
</library>

(a)

(b)

Chapter 1 - Introduction

 4

and hence smaller than the main memory. It is used to reduce the average time to

access memory. If the CPU requests data stored at a certain memory address,

this data and the data stored in nearby memory locations is brought into the

cache (up to the cache’s maximum size). Due to locality of reference, it is

normally the case that requests for data from the main memory will be served

from the cache [18].

In summary, programs that make better use of fast memory are usually executed much

faster. In particular, a program that is designed for use in RAM but uses so much

memory that some of its data is stored in virtual memory on disk, may potentially

exhibit thrashing where data is repeatedly read and written back from RAM to virtual

memory. When thrashing occurs, a system will slow down to an extent that it appears to

hang.

1.3 XML Bloat

XML is inherently a verbose representation. XML adds tags to a flat text file to separate

the document into sections, or to indicate the meaning of the text enclosed in the tags.

The addition of meta-data (tags) to flat files, can easily triple its size; also, XML files

are nearly always much larger than comparable binary formats. This problem with XML

documents is what we call ‘XML bloat’. XML bloat becomes a problem for mobile

devices that have a very limited memory space, such as PalmTops or PDAs, and

increases transmission times and storage/backup costs for PCs and servers.

For a desktop PC or server, XML bloat is still a problem, particularly if the document

is processed using DOM. The DOM exacerbates the problem of XML bloat in its tree

representation of the document. Existing DOM implementations maintain the entire

DOM tree in main memory, as it is faster. However, these implementations suffer from

a high memory usage: Table 1.1 illustrates how much larger the in-memory DOM

representation (of the standard Xerces-C implementation) is than the (already bloated)

XML file. Thus, loading even a moderate size XML file using DOM may lead to

thrashing. Thus, solving these problems arising in the storage and processing of XML

data is an important research topic in the computing community.

Chapter 1 - Introduction

 5

Table 1.1 – Memory usage of representing XML documents in Xerces-C, as a percentage of the

original file size.

File File Size Xerces-C

Orders.xml 5MB 451%

Lineitem.xml 32MB 399%

1.3.1 XML compression

One way to address the space consumption of XML documents is through data

compression. Compression has a number of positive effects: in addition to space saving,

better use of memory levels closer to the processor, increased disk and memory

bandwidth and reduced (mechanical) seek time. Standard text compression like GZip

does not compress the XML-specific files as well as XML compressors, such as XMill

[48], which achieve very good compression ratios. However, XMill does not support

processing operations, such as navigation upon the compressed representation. A

number of query-friendly XML compressors have recently been developed (see e.g., [3],

[10], [14], [30], [48], [52], [55], [64], [75], [80]). The characteristic of a query-friendly

compressor is that answering the query involves inspection only of a (usually small)

fraction of the XML file, and in principle, only a fraction of the compressed file must be

decompressed as well. However, few of these compressors ([10], [30]) support DOM-

like navigation, and those that do, are significantly slower than standard DOM

implementations.

1.3.2 Our approach

In summary, existing XML compression software partially addresses XML bloat, but

little has been done to efficiently support the processing operations, such as navigation

of the documents, on an in-memory representation. The objectives of this thesis are as

follows:

(a) To develop a space-efficient in-memory representation of XML documents

with memory usage, an order of magnitude less than existing DOM

implementations.

Chapter 1 - Introduction

 6

(b) Fast support for DOM operations at a speed that is comparable to standard

DOM implementations.

The basic intuition underlying the approach in this thesis is as follows. The high

memory usage of XML DOM implementations is largely due to the use of pointers for

maintaining the relationships between nodes in the DOM tree. For example, a Xerces-C

node may contain as many as five pointers to other nodes, as shown in Figure 1.2.

These pointers occupy 160 bits, assuming 32-bit pointers. However, an information

theoretic argument shows that a tree with � nodes can be represented using just under

2� bits. It is not at first sight clear how to represent a DOM tree so compactly while still

performing navigation efficiently. The idea in this thesis is to apply the theory of

succinct data structures. Succinct data structures pioneered by Jacobson [44] show how

to represent data using close to the minimum possible space, while performing

operations quickly.

1.4 Contributions and Organisation of Thesis

We present a DOM implementation called Succinct DOM (SDOM) based on succinct

data structures. In detail, the contributions of this thesis are as follows:

(a) We study the Xerces-C DOM implementation and determine its space usage

costs, and also that of the TinyTree DOM implementation in Saxon.

(b) We study several succinct data structures, and give some implementation details

that have not previously been published.

(c) We advance the knowledge of succinct data structures in that we have created a

strong correlation between succinct tree representations and XML document

trees. The succinct tree representations now efficiently support the DOM

operations upon the tree.

Chapter 1 - Introduction

Figure 1.2 – Node representation of a DOM implementation. Arrows represent pointers.

The results show an improved running time and a much reduced space usage to

existing succinct tree representations. We detail the introduction of the idea of a

partitioned representation

experimental evaluat

of a succinct tree representation does not increase the space usage of a succinct

tree (with one exception), and gives improved running times.

(d) We advance the knowledge of representing the

by investigating

data. Where existing solutions focus on the textual data compression, we show

the importance of compressing the pointers to the individual textual

themselves, which would generally be expensive.

(e) We present a DOM implementation

succinct and other

experimental evaluation of SDOM against other DOM implementati

compressed variant called SDOM

usage of SDOM on average was 0.5 times the original file size, whereas the

space usage of the DOM implementation, i.e. Xerces on average was 5.7 times

larger than the original f

improvements, which is competitive to the query

The rest of the thesis is

XML and of the DOM specification

of Saxon’s in-memory tree representa

Introduction

7

Node representation of a DOM implementation. Arrows represent pointers.

The results show an improved running time and a much reduced space usage to

existing succinct tree representations. We detail the introduction of the idea of a

partitioned representation of bit-strings to represent tree structures. The

experimental evaluation proved our predictions that a partitioned representation

of a succinct tree representation does not increase the space usage of a succinct

tree (with one exception), and gives improved running times.

advance the knowledge of representing the textual data in

 the efficient representation and access of the individual textual

xisting solutions focus on the textual data compression, we show

the importance of compressing the pointers to the individual textual

themselves, which would generally be expensive.

We present a DOM implementation call Succinct DOM (SDOM) that

and other data structures to represent XML documents.

experimental evaluation of SDOM against other DOM implementati

compressed variant called SDOM-CT against XML compressors.

usage of SDOM on average was 0.5 times the original file size, whereas the

space usage of the DOM implementation, i.e. Xerces on average was 5.7 times

larger than the original file size. The space usage of SDOM-

improvements, which is competitive to the query-friendly compressors.

thesis is organised as follows: Chapter 2 gives background details of

the DOM specification. Chapter 3 gives an overview of Xerces

memory tree representation, a survey of related XML compressors

Node representation of a DOM implementation. Arrows represent pointers.

The results show an improved running time and a much reduced space usage to

existing succinct tree representations. We detail the introduction of the idea of a

to represent tree structures. The

ion proved our predictions that a partitioned representation

of a succinct tree representation does not increase the space usage of a succinct

in XML documents

the efficient representation and access of the individual textual

xisting solutions focus on the textual data compression, we show

the importance of compressing the pointers to the individual textual data

call Succinct DOM (SDOM) that uses

to represent XML documents. We provide

experimental evaluation of SDOM against other DOM implementations and a

XML compressors. The space

usage of SDOM on average was 0.5 times the original file size, whereas the

space usage of the DOM implementation, i.e. Xerces on average was 5.7 times

-CT showed further

friendly compressors.

gives background details of

gives an overview of Xerces-C, details

related XML compressors and

Chapter 1 - Introduction

 8

statistics of XML files used in this thesis. In Chapter 4, we define the key algorithmic

idea of succinctness, applied to the data structures we use. Chapter 5 gives an

experimental study of the succinct tree representations, where we have engineered them

further with XML specific requirements. Chapter 6 gives a study of representing the

textual data of XML documents efficiently. Chapter 7 presents the main contribution of

this thesis with the details of the SDOM implementation, interfaces for other

applications and the experimental results of SDOM. Finally, in Chapter 8 we give the

closing remarks of the thesis achievements, contributions, and outline future

development of SDOM.

 9

Chapter 2

XML Background

Firstly, this chapter introduces basic background knowledge on XML and secondly,

details of the DOM specification.

2.1 XML

2.1.1 Markup and Text

An XML document is a text file that is made up of data values and markup. The data

itself is just text. The markup is the description and structure of the data. Markup is

composed of tags, which consist of a label (characters) inside the symbols ‘<’ and ‘>’;

an example of a tag is <book> .

Tags generally appear in pairs, comprising a starting tag and ending tag. A tag help to

distinguish a piece of text from any other piece of text, and often provides information

about, or give meaning to the text it contains. For example, in the following element

“<Year>2007</Year> ” we know that the content is probably a numeric value for the

year. Elements may contain other elements providing they are properly nested; this is to

say elements cannot stand alone (unless there is only one element, the root element),

and they must be contained within a hierarchy of elements that begins with the root

element.

2.1.2 Well-formed and valid XML documents

We categorize the correctness of XML documents into two levels:

• Well-formed documents, which obey the necessary and sufficient syntactic

condition (defined in the XML specification [79]). The documents contain text

and XML tags, which are nested properly (meaning opening and closing tags

must match and tag pairs must be contained within outer tags) and data values

must appear within an enclosing tag. A document type definition (DTD), which

we define below, is not compulsory.

• Valid documents, which conforms to the above XML syntax and are error

checked against a set of rules defined in a DTD or XML Schema, which are

Chapter 2 - XML Background

 10

associated with the file. The DTD describes the format of an XML document’s

markup, such as the tags allowed, what values those tags may contain, definition

of entities or attributes allowed, and how the tags relate to each other.

2.1.3 Components of an XML document

An XML document consists of the following components:

(a) Document prolog – Is an optional component at the start of the XML

document that consists of two parts: the XML declaration, i.e. <?xml

version=“1.0”> , and the DTD. Miscellaneous statements may also exist,

such as comments or processing instructions.

(b) Document instance – This follows the prolog in the document layout and is

the main part of the XML document, containing the content of the document.

The term instance means (as in object-oriented programming) that the

document is an instance of the DTD or an unspecified class if the DTD is not

given. The document instance must contain a root element that encloses all

other nested elements and data values. We discuss below the subcomponents

of the document instance in more detail.

(c) Optionally, processing instructions may appear in the prolog and/or in the

document instance.

The document instance includes some or all of the following subcomponents:

• Elements – This is a pair of tags, enclosing pairs of tags and/or some simple

text, or a single tag with a forward slash at the end (i.e. <break/>). The

elements are named using an XML name. An XML name must begin with a

letter, underscore, or a colon. They can contain letters, digits, periods,

hyphens, underscores and colon.

• Attributes - Elements may contain some named attributes associated with

them that describe certain properties of the element. They consist of an

attribute value pair – the name of the attribute (which is an XML name), then

an equal sign, followed by the attribute value enclosed in double (or single)

Chapter 2 - XML Background

 11

quotes (an attribute must have a value). For example, the attribute catalogue

with value XML appears within an element as

<book catalogue=”XML”> ... </book> .

• Comments – These appear in either the prolog or the body of the XML

document. XML comments are like HTML comments; they can be used for

explanatory notes, which are sometimes ignored by applications. They appear

in the form <!-- comment--> .

• Entity References – An entity is understood as a named body of data, usually

text. They are often used to represent single characters that cannot be entered

on the keyboard. An entity reference is a placeholder that represents the entity.

Entity references appear in the form of a name, which is preceded by an

ampersand (&) and followed by a semicolon (;). There are five predefined

entities in XML:

o & (‘&’ or ampersand)

o < (< or less than)

o > (> or greater than)

o ' (apostrophe)

o " (quotation mark)

• CDATA section – This markup contains character data with no restrictions of

the characters used, and is in the form <![CDATA[content]]> . A CDATA

section is ideal for inserting arbitrary text e.g. programming code. All

characters enclosed in the CDATA section are interpreted as characters, not

markup or entity references. A CDATA section may look like:

<![CDATA[
for(int i=0; i<=10;i++)
 sum+=i;
]]>

Chapter 2 - XML Background

 12

• Processing Instruction – These appear in either the prolog or the body of the

XML document. A processing instruction allows documents to contain

instructions for applications, e.g., style-sheets. A processing instruction

consists of the string <? followed by an XML name, optional white spaces,

followed by a list of name-value pairs (similar to an attribute, but the name

need not be an XML name), the name is the target and the value is the data.

Finally the string ?> closes the processing instruction. The XML declaration is

not a processing instruction. Example of a processing instruction is a style-

sheet declaration connected to the document:

<?xml-stylesheet href= “headlines.css” type=“text/c ss” ?>

2.1.4 Advanced features of XML documents

Namespaces

Namespaces provide a way to identify unique elements and attributes with the same

XML name, but different meaning in the same or different XML documents. For

example, if we build an XML document of the courses taught in an educational

institution, we may use the tag module , to represent courses taught. We would like to

integrate this XML document with a document for the Computer Science department

that already uses the element name module to describe a component of a system

development. Using the module tag in a combined document causes the problem of

ambiguity in the meaning when the tag is used. To avoid this conflict of names

namespaces are used.

A namespace is defined by an attribute with the name xmlns in the start element of a

tag. When declaring the namespace the syntax is as follows xmlns: pre =‘URI ’ . The

URI uniquely identifies the namespace. The string pre is used to prefix any tag name

that belongs to the namespace denoted by the URI within the scope of its declaration,

thus helping to distinguish between two tags with identical XML names but different

meanings. In the example above, the conflicts can be resolved as follows:

Chapter 2 - XML Background

 13

<university xmlns:de= “http://www.cs.le.ac.uk/depar tment”
xmlns:cs= “http://www.cs.le.ac.uk/systems” >

...
<department name = “computer science”>

...
<de:module = “algorithms” >....</de:module>
...
<cs:module = “SDOM” >....</cs:module>

</department>
<university>

XML tree

The tags and the element content in the document instance form a hierarchical structure,

which is logically viewed as an XML tree. We label the nodes with the element names

and the data values are stored at the leaves in the tree. For example, see Figure 2.1.

The order of element nodes in the XML tree (in pre order) matches the order of the

elements in the document, reading from top to bottom.

Figure 2.1 – XML tree of the bookshop document. Data values shaded in grey.

 <bookshop>

 <book catalogue=’XML’>
 <author>OND</author>
 <title>SDOM Design</title>
 <year>2007</year>
 <note>Development in
 <code>C++</code>
 </note>
 </book>

 <book catalogue=’XML’>
 <author>
 <firstname>J</firstname>
 <surname>Andrews</surname>
 </author>
 <title>DOM processing</title>
 <year>2006</year>
 </book>

</bookshop>

Chapter 2 - XML Background

 14

2.2 XML Parsing and Processing

Parser: A parser is a program that receives input in the form of the characters of a file,

which is then analysed against a grammar for that language to check its validity. The

parser will often create tokens from the sequence of input characters.

XML Parser : The sequence of outputs received from an XML parser is the markup

tags, character data and other data of the XML document. The parser will separate the

XML document components (i.e. elements and character data), which is the output to be

handled by other programs. An XML parser applies the validity, well-formedness and

semantic rules that are given in the DTD or the Schema of the document.

To read and manipulate XML documents one can use the event-based parser (i.e.

SAX) only or use SAX to read the XML document and convert it into an XML DOM

object in memory.

The Simple API for XML (SAX), a ‘de facto’ standard, is an event-driven push model

for processing XML. As SAX reads the XML documents in a “stream” manner, it

triggers off a series of events. Event handlers must be written to process the data

retrieved from these events.

SAX maintains minimal information about the XML document at any one point while

parsing, therefore resulting in low memory consumption. Using SAX, we therefore can

parse documents that are much larger than the system memory. The disadvantage with

SAX is that the document content or its hierarchy is not maintained, during or after the

parsing phase, therefore, the content must be handled by an external application. In

essence, repeated processing cannot be achieved using SAX without repeated parsing of

the document.

DOM implementations represent the XML document as a tree structure in main

memory. The tree is constructed using a SAX parser. The tree can be navigated

efficiently, but existing DOM implementations exacerbate XML bloat.

Chapter 2 - XML Background

 15

Figure 2.2 – DOM modules defined in the DOM specification [77].

2.3 DOM Architecture and Standards

The DOM [77] is a set of application programming interfaces (APIs) that defines the

logical structure, access and manipulation of XML and HTML documents. The DOM

APIs are organised into groups that address the same features; these groups are called

modules and are given a name according to the feature they support. In addition, all

APIs are categorised into levels, each providing its own operations for the APIs. The

levels describe the functionality a user can expect from an application that supports the

module(s). In Figure 2.2, we show the hierarchical structure of the modules, where the

arrows show the dependences. For each module, level () @ 1) includes the functionality

at level). Some modules begin at level 2 or higher. We describe the modules according

to the DOM levels:

• Level 1 – The DOM APIs at this level are divided into two modules, the Core

and HTML. The HTML module provides higher-level APIs that are used along

with those in the Core module for working with HTML documents. The Core

also contains inherited APIs, which are grouped into what is called the XML

module.

Chapter 2 - XML Background

 16

• Level 2 – The DOM APIs at this level are divided into 14 modules.

• Level 3 – Adds further features for the XML module such as abstract schemas,

and has six new modules such as XPath , Load /Save , Validation , etc.

We show in Figure 2.2 all the modules in DOM as a hierarchical structure: the circled

modules in the figure are those we are interested in supporting. The details of these are

as follows:

(a) Core Module: Contains the fundamental core APIs that should be in all DOM

implementations to maintain their conformance to the DOM specification. This

module must be supported for others to exist. The APIs contained are as follows:

Node, Element , Attr , CharacterData (which has the derived APIs Text

and Comment), DOMImplementation , DocumentFragment and two helper

APIs, NodeList and NamedNodeMap. The Node is the base API, which

contains functionality common to all nodes, the other APIs inherit their methods

and properties from the Node API. In level 2, the module is updated with the

XML namespace support and further features for the XML module.

(b) XML Module: Contains the following APIs: CDATASection , DocumentType ,

Notation , Entity , EntityReference and ProcessingInstruction .

This module is an extension of the Core module. It deals with XML-specific

node types.

(c) Traversal Module: Contains the following APIs: NodeIterator ,

NodeFilter , TreeWalker and DocumentTraversal . The first three provide

node traversal functionality over a document’s nodes. The

DocumentTraversal provides operations to create instances of TreeWalker

and NodeIterator .

The Node interface consists of a number of variables, such as nodeName, nodeValue ,

and attributes . In addition, the Node interface consists of navigation operations

upon the DOM tree, which are as follows: firstChild , nextSibling ,

previousSibling , parent and lastChild .

Chapter 2 - XML Background

 17

In Level 2, the Core module has methods to access the node’s namespace URI and

prefix. Other methods exist such as for comparing document position, node identity

check, text content retrieval of all sub-tree nodes and namespace and prefix lookup

(within the sub-tree, including the current node).

2.3.1 DOM Node Types

The DOM tree consists of node objects representing the XML document. Each node has

a type, which corresponds to the XML component present in the XML document

(details of the XML components in Section 2.1.3). The DOM tree begins with a

document node, which provides a central point to access the entire document. The

document node can have several child nodes, but must have a single root node, we call

the root element node. The root node corresponds to the root element in the XML

document. Other node types exist in DOM, which are given the same name as the XML

document components in Section 2.1.3. The type of a node is stored in the variable

nodeType , there are twelve possible values, depending on the type of a node the Node

API variables will differ. The node types are as follows:

• Element node: this node type represents the elements within the XML

document. Access to a node of this type is provided through the interface

Node and Element .

• Attribute node: this node type represents an attribute of an element node.

Attributes are not part of the DOM tree, but are accessed through the

NamedNodeMap interface, which is a variable in the Node interface.

• Text node: this node type represents the ‘free’ textual content of an element.

They appear only as leaf nodes in the DOM tree. Access to a node of this type

is provided through the interface Node, CharacterData and Text .

• CDATASection node: this node type represents the CDATA section in XML

documents. The textual body is the data value. Access to a node of this type is

provided through the interface Node, however the DOM level 2 includes the

CDATASection interface, which provides direct support.

Chapter 2 - XML Background

 18

• EntityReference node: this node type represents an entity reference in the

XML document. XML allows the user to define their entities in the DTD.

Access to a node of this type is provided through the interface Node; however,

the XML module, Level 2 includes the EntityReference interface, which

provides direct support.

• Entity node: this node type represents an entity in an XML document.

Access to a node of this type is provided through the interface Node, however

Level 2 includes the Entity interface, which provides direct support. An

Entity node may be of the following types:

o Internal entity: the definition for this type of entity is within the

document’s DTD. There are five internal entities predefined in XML,

these are special codes to represent the following characters:

ampersand, less-than, greater-than, double quote and single quote.

o External entity, which allows the user to integrate entity definitions

from other documents.

o Parameter entity, which can be internal or external entity references

and are not expanded in the DTD or the internal subset (main

document body).

• ProcessingInstruction node: this node type represents a processing

instruction in the XML document. They appear as a leaf in the DOM tree.

• Comment node: this node type represents a comment in the XML document.

The comment node is a leaf node in the DOM tree.

• Document node: the DOM tree has a single Document node. It appears at the

root of the tree. The document node object supports the creation of node

objects and access to the entire DOM tree.

Chapter 2 - XML Background

 19

• DocumentType node: this node type represents the DTD in the XML

document. This node appears as a child of the document node. Only one

instance of the DocumentType node can exist in a DOM tree.

• DocumentFragment node: this node represents a sub-tree inserted to the

DOM tree. This node type is used in dynamic implementations of DOM.

• Notation node: this node type represents a notation in an XML document.

Notations have no parent nodes. They are defined in the DTD.

Table 2.1 shows a summary of the node types in the DOM and shows the corresponding

variable details nodeName and nodeValue for a given node type. In addition, we show

for the node types the children allowed, if they have any. Each node type is associated

with a special ID number.

2.3.2 Traversal Module

The two main orders of traversal are:

• Document order: We navigate the DOM tree from the root node through all

first child nodes. Then navigate the right sibling nodes if we are at a leaf node

or if we have visited the current node’s sub-tree already. This process we

repeat until we have reached the right-most leaf node in the tree.

• Reverse document order: We navigate the DOM tree from the right-most leaf

node through all previous nodes in the tree until we reach the root node. The

process is to navigate to the right-most leaf of the sub-tree of each node, then

repeat the process on the left sibling of each node, if the node is a leaf or

visited already. If there are no more left siblings of the current node, we

navigate to the node’s parent, then repeat the process with the node’s left

sibling or at an ancestor node if it has no left sibling node.

Chapter 2 - XML Background

 20

Table 2.1 – Summary of the DOM Node types. Asterisk (*) indicates maximum of one child

node allowed for that node type.

Node
No.

Node Type NodeName NodeValue Children
Allowed
(node no.)

1 Element Tagname NULL 1, 3, 4, 5, 7,
8

2 Attribute Attribute name Attribute value 3, 5
3 Text “#text” Data value None
4 CDataSection “#CDataSection” Data value None
5 EntityReference Entity name

referenced
NULL 1, 3, 4, 5, 7,

8
6 Entity Entity name NULL 1, 3, 4, 5, 7,

8
7 ProcessingInstruction Target Data value None
8 Comment “#comment” Data value None
9 Document “#document” NULL 1*, 7, 8, 10*
10 DocumentType DocType Name NULL None
11 DocumentFragment “#documentFragment” NULL 1, 3, 4, 5, 7,

8
12 Notation Notation name NULL None

The orders of traversal are applied to the TreeWalker or NodeIterator interfaces.

Details of these are as follows:

• The NodeIterator logically views the XML document in a “flat” manner, like

an array of nodes that appears in document order. Moving forward in this array

(given by the operation nextNode()) and backward (given by the operation

previousNode()) represents document-order and reverse document order

traversal, respectively.

• The TreeWalker maintains the tree (or sub-tree) structure of the document.

The operations of TreeWalker are the tree navigations similar to those in the

Node API, in addition we have nextNode() , PreviousNode() and

getCurrentNode() . A call of any navigation operation returns a node to the

user, and updates the iterator of the current node held within TreeWalker ,

providing that the node returned is not null.

TreeWalker and NodeIterator both support the operations getRoot() ,

getWhatToShow() , getFilter() and getExpandEntityReferences() . The last

Chapter 2 - XML Background

 21

two operations relate to the NodeFilter API, which allows the user to create an object

that filters out nodes. The user calls a NodeFilter , which is applied to a node in any

traversal to determine whether or not the node should be presented in the traversal’s

logical document. The user can select from thirteen different constant filters, which

describes what to show. We only list a few of these because (as their names suggest)

they are based upon the DOM node types: SHOW_ALL, SHOW_ELEMENT,

SHOW_ATTRIBUTE, SHOW_TEXT, SHOW_CDATA_SECTION, etc.

The documentation of the DOM specification can be found at [77] and [78].

Appendix B details these APIs and their methods and indicates when methods are

supported by the SDOM application that we will discuss in Chapter 7.

 22

Chapter 3

Implementations of DOM and XML Compressors

In this chapter, we examine in-memory representations of XML documents that

implement the DOM interface. We also include a survey of some XML compressors,

some of which are designed to support the DOM Core and XML modules, whereas

others support some navigation resembling the DOM.

In Section 3.1, we focus on the Xerces-C DOM implementation and Saxon’s in-

memory tree data structure. In Section 3.2, we discuss some of the related work on

XML compressors that have in-memory and/or disk-based representations. Finally, in

Section 3.3 we describe, and present statistics of, a collection consisting of real-world

and synthetically generated XML files that we will use in the experimental evaluation.

3.1 DOM Implementations

The usefulness of the DOM in many applications has led to implementations of the

DOM interface in almost all programming languages today, with several in Java and

C++. We examine the Xerces DOM implementation, which was developed by the

Apache Software Foundation [2]. Implementations are available in either Java or C++;

these are called Xerces-J [68] and Xerces-C [67], respectively. Other DOM

implementations exist, such as JDOM [45] and dom4j [25], both developed in Java, that

implement the DOM interface, as simplified APIs that are less complex and consume

less memory, than what DOM offers. We work in the C++ programming language;

therefore, we focus mainly on the Xerces-C DOM implementation in our discussions.

We abbreviated Xerces-C to just Xerces in the remainder of the thesis.

XQuery and XSLT processors often rely on internal DOM implementations that are

optimized for good performance. For example, Saxon [61] for Java and Xalan [66] for

C++ use their own interfaces as a plug-in to give access to their data structures, which

can without difficulty be wrapped into a DOM node.

We now discuss some of the implementations of DOM mentioned above, beginning

with Xerces, followed by Saxon’s tree representation.

Chapter 3 - Implementations of DOM and XML Compressors

 23

3.1.1 Xerces

Xerces is a validating XML parser (in version 2.8 at the time of writing of this thesis),

which supports the DOM, SAX and SAX2 APIs. We focus on the DOM APIs of the

Xerces implementation, which conform to the DOM Level 2 API and contains in

addition, a partial implementation of the DOM Level 3 Core . More specifically the

modules supported are Core , XML, Traversal , Range and Load /Save .

Class Structure

We now discuss Xerces’ implementation of the APIs in the Core , XML and Traversal

modules. For the Core module (and for the entire DOM) the primary API is the Node

API, this is represented by the class DOMNodeImpl. The DOMNodeImpl class consists

of a single pointer, which points to its parent node (for the nodes that are in the tree, but

for other nodes the pointer points to some other associated node, e.g. an attribute node

points to the element node where it is declared). The DOMNodeImpl also consists of a

special flag (of type short) indicating certain properties of the node, e.g., a read-only or

first child node. We observe that navigation (except the getParent() operation) and

data retrieval operations are not supported in this class, but implemented by other

classes in Xerces (which are derived from DOMNodeImpl), we will come back to this

later. The other supported DOM APIs in the Core are given as follows:

• The Element API is implemented in the DOMElementImpl class, and the

Element API, which defines a namespace is implemented in the class

DOMElementNSImpl . The Attribute API is implemented in the

DOMAttrImpl class, and the Attribute API, which defines a namespace is

implemented in the class DOMAttrNSImpl . The Text API is implemented in

the DOMTextImpl class. The other APIs relating to the node are implemented

similarly.

• The NodeList API is implemented in the DOMNodeListImpl class.

• The NamedNodeMap API is implemented in the DOMNamedNodeMapImpl class.

NamedNodeMap contains a vector of nodes (e.g. DOMTextImpl objects) and a

Chapter 3 - Implementations of DOM and XML Compressors

 24

pointer to the node, which owns the map. The DOMAttrMapImpl is a derived

class of NamedNodeMap, which provides specific support for attribute nodes,

e.g. includes a boolean value indicating default or fully declared attributes.

In Table 3.1, we show the class structure of Xerces, which implements the DOM APIs,

such as the APIs in the XML module; for example, the CDataSection API is

implemented in the class DOMCDATASectionImpl . The Xerces classes that implement

the DOM APIs have a number of pointers and internal class instances as class members,

which are shown in Table 3.1. In the following, we discuss the auxiliary classes of

Xerces (including DOMNodeImpl), which provide navigation support and the data

values, depending on the node’s position in the tree and its node type information:

a) DOMNodeImpl: We have discussed this class already, but we make special

mention here because a class representing a DOM node must contain an instance

of this class.

b) DOMParentNode : In DOM tree, a node, which can have children (see Table 2.1)

must contain an instance of this class. For such classes, e.g. DOMElementImpl ,

we need to store a first-child pointer and an instance of DOMNodeListImpl class

for the childNode() operation support. Node objects that cannot have children

such as in DOMTextImpl class do not store this class instance, and thereby avoid

this cost.

c) DOMChildNode : A node that is a part of the DOM tree must contain this class

instance. This class has pointers to previous-sibling and next-sibling nodes, if they

exist, or a null value if any of the siblings do not exist. The DOMAttributeImpl

is not part of the DOM tree, and therefore it does not contain this class instance.

d) DOMCharacterData : A node that stores a data value must contain this class

instance. For example, the DOMTextImpl and DOMAttrImpl have a value,

therefore, must contain this class instance. However, the DOMElementImpl does

not have a data value, therefore, does not contain this class instance.

Chapter 3 - Implementations of DOM and XML Compressors

 25

Table 3.1 – Xerces internal classes, with their class members and memory usage details.

 CLASS MEMBERS MEMORY

USAGE OF

CLASS

NODETYPE CLASS
DEFINITION

CLASS INSTANCES POINTERS VARIABLES

DOMDOCUMENTIMPL DOMNODEIMPL,

DOMPARENTNODE,

DOMNODEIDMAP,

VIRTUAL CLASSES ×2

elementID, fActualEncoding, fEncoding, fVersion,

fDocumentURI, fDOMConfiguration,

fUserDataTable, fRecycleNodePtr, fRecycleBufferPtr,

fNodeListPool, fCurrentBlock, fFreePtr,

fDocType, fDocElement, fNamePool, fNormalizer,

fRanges, fNodeIterators, fMemoryManager

fChanges:int,

errorChecking:bool,

fStandalone:bool,

fFreeBytesRemaining

: XMLSize_t

136 BYTES

DOMELEMENTIMPL DOMNODEIMPL,

DOMPARENTNODE,

DOMCHILDNODE

VIRTUAL CLASS

FATTRIBUTES, FDEFAULTATTRIBUTES, FNAME,

FSCHEMATYPE

 52 BYTES

DOMELEMENTNSIMPL VIRTUAL CLASS FNAMESPACEURI, FLOCALNAME, FPREFIX 68 BYTES

DOMTEXTIMPL DOMNODEIMPL,

DOMCHILDNODE,

DOMCHARACTERIMPL,

VIRTUAL CLASS

 28 BYTES

DOMATTRIBUTEIMPL DOMNODEIMPL,

DOMPARENTIMPL, VIRTUAL

CLASS

NAME, FSCHEMATYPE 36 BYTES

DOMCOMMENTIMPL DOMNODEIMPL,

DOMCHILDNODE,

DOMCHARACTERDATAIMPL,

VIRTUAL CLASS

 28 BYTES

DOMENTITYREFIMPL DOMNODEIMPL,

DOMPARENTNODE,

DOMCHILDNODE, VIRTUAL

CLASS

FNAME, FBASEURI 44 BYTES

DOMCDATASECTIONIMPL DOMNODEIMPL,

DOMPARENTNODE,

DOMCHILDNODE,

DOMCHARACTERIMPL,

VIRTUAL CLASS

 44 BYTES

DOMPROCINSTRIMPL DOMNODEIMPL,

DOMCHILDNODE,

DOMCHARACTERIMPL,

VIRTUAL CLASS

FTARGET, FBASEURI 36 BYTES

DOMENTITYIMPL DOMNODEIMPL,

DOMPARENTNODE, VIRTUAL

CLASS

FNAME, FPUBLICID, FSYSTEMID, FNOTATIONNAME

FACTUALENCODING, FENCODING, FVERSION, FBASEURI,

FREFENTITY

FENTITYREFNODECLO

NED: BOOL

68 BYTES

DOMDOCUMENTTYPEIMPL DOMNODEIMPL,

DOMPARENTNODE,

DOMCHILDNODE, VIRTUAL

CLASS

FNAME, FPUBLICID, FSYSTEMID, FINTERNALSUBSET,

FENTITIES, FNOTATIONS, ELEMENTS

FINTSUBSETREADING:

BOOL,

FISCREATEDFROMHEA

P:BOOL

68 BYTES

Chapter 3 - Implementations of DOM and XML Compressors

 26

Table 3.2 – Xerces auxiliary classes that appear as class members in Table 3.1. We give the

class members and space usage.

 CLASS ATTRIBUTES MEMORY
USAGE OF
CLASS

DOM TREE CLASS DOM CLASS POINTERS VARIABLES

DOMNODEIMPL OWNER FLAG:SHORT 8 BYTES

DOMPARENTNODE OWNERDOCUMENT,

FIRSTCHILD,

DOMNODELISTIMPL

 16 BYTES

DOMNODELISTIMPL VIRTUAL CLASS FNODE 8 ARRAY 8 BYTES

DOMCHILDNODE PREVIOUSSIBLING,

NEXTSIBLING

 8 BYTES

DOMCHARACTERDATAIMPL FDATABUF, FDOC 8 BYTES

*DOMNAMEDNODEMAPIMPL VIRTUAL CLASS FNODE, FOWNERNODE 12 BYTES

*DOMATTRMAPIMPL VIRTUAL CLASS ATTRDEFAULTS:BOOL 12 BYTES

*DOMBUFFER FBUFFER, FDOC FINDEX:INT, FCAPACITY:INT 16 BYTES

*DOMTYPE VIRTUAL CLASS NAME, NAMESPACEURI 12BYTES

*DOMNODEIDMAP **FTABLE, FSIZEINDEX, FDOC FSIZEINDEX, FSIZE,

FNUMENTRIES, FENTRIES

*DOMCONFIGURATION VIRTUAL CLASS FERRORHANDLER,

FSCHEMATYPE,

FSCHEMALOCATION,

FMEMORYMANAGER

 20 BYTES

DOMSTRINGPOOL FDOC, **FHASHTABLE, FHASHTABLESIZE:INT

DOMNODEVECTOR **DATA ALLOCATEDSIZE:XMLSIZE_T,

NEXTFREESLOT: :XMLSIZE_T

As an example of a node in Xerces, the DOMElementImpl class represents an element

node in the tree. This class contains instances of the classes DOMNodeImpl,

DOMParentNode and the DOMChildNode . In addition, schema type information is

stored. A C++ string is stored, which represents the element name information of the

node and two pointers to the class DOMAttrMapImpl representing attributes and default

attributes declared at this element node. A default attribute is given a value by the DTD

at the parsing phase if that attribute’s value is omitted in the document.

The DOMElementImpl class requires 52 bytes. This includes four bytes as overhead

because it is derived from the virtual DOM Element class. The remaining space

comprises (assuming pointers are four bytes) eight bytes for the DOMNodeImpl

instance, sixteen bytes for the DOMParentNode instance, eight bytes for the

DOMChildNode instance and four further pointers.

Chapter 3 - Implementations of DOM and XML Compressors

 27

We observe that the space usage of other nodes in Xerces can be much less than for

an element node, excluding the space for the data value. For example, the

DOMTextImpl class that represents a text node in the tree only requires 28 bytes. In

Table 3.1, we show the classes contained in the Core and XML modules. We give the

space usage of each class. The cost of using a virtual class is included in the space usage

costs. Table 3.2 shows the class members of the auxiliary classes in the Xerces

implementation of the DOM APIs. We include the space usage of each class which was

obtained using the sizeof function.

Navigation operations

Navigation in Xerces is very fast. The navigation operations such as firstChild() ,

parent() , nextSibling() and previousSibling() just return a pointer value.

For all nodes in the tree, the last child node appears as the previous sibling pointer of

the first child node. Therefore, in the lastChild() operation we first dereference the

first child node pointer then return its previous sibling pointer. This avoids traversal of

the next sibling nodes to get to the last child node. However, this potentially causes the

following problem: if we are at the node that is the first child in the tree, a call of the

previousSibling() operation would return a pointer to its parent’s last child node,

which is incorrect. Xerces avoids this problem by using a flag (in DOMNodeImpl) to

indicate in the node instance whether this node is a first child.

NodeType

Node types in Xerces are not explicitly stored. They are represented through the classes

representing the node, for example, an element node is represented by

DOMElementImpl class object in memory. Therefore, for the getNodeType()

operation, the node type of a node is known in the class, and not explicitly stored.

Node name and textual data

Xerces stores node names in two types of classes, which are as follows:

• Classes with namespace support: Contain three pointers to C++ strings,

representing the element name. The first pointer points to the namespace URI,

Chapter 3 - Implementations of DOM and XML Compressors

 28

the second to its prefix and the third to its local name. Element nodes with the

same node name (including namespaces) point to the same strings.

• Classes without namespace support: Contain a single pointer to a C++ string to

represent element name (or a local name). Nodes with the same name point to

the same string.

Xerces stores a data value as a pointer to a C++ string (here, nodes with the same text

do not point to the same string).

3.1.2 Saxon’s TinyTree

Saxon has its own internal tree structure, called TinyTree [61]. Besides reducing

memory usage, the objective is to minimize the costs of allocating and garbage-

collecting Java objects used. The TinyTree class contains a collection of arrays to

represent the content of one or more XML documents. The arrays in TinyTree give a

flat view of the tree structure in document order. Table 3.3 shows the arrays in the

TinyTree class.

The arrays, which are of length �, represent an XML document tree with � nodes.

The ith entry in the array stores information relating to the ith node in document order.

The following information is maintained for each node: its node type is maintained in

the nodeKind array, the depth of a node is maintained in the depth array, and the tag

names (represented by special namecodes) are maintained in the namecode array (we

discuss namecodes later). A node’s next and previous sibling nodes are maintained in

the next and prior arrays, respectively. The alpha and beta arrays hold different

kind of data depending on the type of the node, in the alpha array, if the)th node is of

type:

• Text node, then alpha[)] contains an offset into the text buffer (which

contains all the text data of the document, its implementation is described

below).

• Comment or processingInstruction node, then alpha[)] contains an

offset in the comment buffer (similar to the text buffer).

Chapter 3 - Implementations of DOM and XML Compressors

 29

• Element node, then alpha[)] contains an index to its first attribute node or -

1 if the element has no attribute.

In the beta array if the)th node is of type:

• Text node, then beta[)] contains the length of the data value held in the text

buffer,

• Comment or processingInstruction node, then beta[)] contains the

length of the data value held in the comment buffer.

• Element node, then beta[)] contains an index of its first namespace node in

the namespaceCode array or -1 if the element has no namespace nodes.

The text node values are stored in a class called the LargeStringBuffer , which is

an implementation of the Java CharSequence interface. The LargeStringBuffer

contains the length of the buffer, a Java List array called segments , which contains a

number of FastStringBuffer class instances (a FastStringBuffer is a character

array). Initially the individual textual data values are concatenated into a single string,

which is then split into equal size blocks. Each block is held in a FastStringBuffer

and stored in the segments array. The LargeStringBuffer also contains an integer

array of offsets used to give the position at the start of the block relating to the

individual text data. The LargeStringBuffer supports the substring(i,j)

operation which returns the substring from position) to ? in the string buffer. The

textual data of comment and processingInstruction nodes are stored in a

FastStringBuffer.

The attributes are represented in a collection of arrays of length �, where � is the total

number of attributes. The attParent array maintains information relating the)th

attribute to its parent element node, and the attribute names are represented by

namecodes maintained in the attCode array (analogous to the namecode array). The

attribute values are maintained in a CharSequence class.

The namespace information is maintained in arrays of length �, where � is the total

number of namespace declarations. The arrays contain the namespace code (these are

Chapter 3 - Implementations of DOM and XML Compressors

 30

the prefix and URI components of the namecode) and an index of the element node’s

first namespace in the array.

We now discuss the use of namecodes in TinyTree . These represent, as 32-bit

values, the fully qualified names of nodes in such a way that the namespace prefix,

namespace URI and local name can easily be retrieved. In the parsing phase, namecodes

are built as follows: we have a hash table of all unique tag names as <localname,

URI> pairs in the document. These are stored in a chained hash table, called the

NamePool , with 2AB buckets, where each bucket is (effectively) limited to hold lists of

length 2AB. A <localname, URI> pair is specified by a 10-bit hash code (specifying

the bucket) and a 10-bit offset into the list in that bucket. A further 10 bits are used to

encode the namespace prefix.

TinyTree does not create all of the above arrays at the outset, but only creates them

if the user invokes an operation that needs that array. Therefore, depending on the actual

sequence of operations, which are invoked or used by the user, the space usage of

TinyTree is between 20-30 bytes per node. In Table 3.3, we show the data structures

of TinyTree , given that we know the count of nodes of an XML document we can

easily calculate and confirm the above, space usage per node. Fast construction of the

tree representation is crucial; [46] states that the construction can take as long as a

subsequent query or transformation.

Saxon’s Class Structure

Saxon provides access to the TinyTree data structure using classes that must

implement the DocumentInfo and NodeInfo class interfaces, and which are used to

interface with other components in Saxon. The class structure of Saxon is similar to

Xerces, in that the TinyNodeImpl class, which implements the NodeInfo interface, in

essence represents a DOM Node. TinyNodeImpl class consists of the TinyTree class

object, the node number and a TinyNodeImpl class instance of its parent node. The

TinyDocumentImpl implements the DocumentInfo , which represents the document

node.

Chapter 3 - Implementations of DOM and XML Compressors

 31

Table 3.3 – TinyTree class members.

TYPE NAME SIZE MEMORY
(bits)

DETAILS
arrayList documentList 5 Default list of documents in
largeStringBuffer charBuffer 4 84 4 is the total length of text node
fastStringBuffer commentBuffer D 8D D is the total length of comment
byte nodeKind � 8� Node type
short depth � 16�

8�
Depth of node in tree

int Next � 32� Node number of next sibling
int alpha � 32� Value depending on node type
int beta � 32� Value depending on node type
int Namecode � 32� Holds the name of the node as a

code int prior � 32� Node number of previous sibling
int typeCodeArray � 32� Typecode array for elements if

needed int attParent � 32� Index of the parent element node
int attCode � 32� Namecode representing the attribute
charSequence attValue � 8�� � is the #chars. String value of the

attrs int attType � 32� Type annotations. Created if needed
int namespaceParent � 32� Index of element owning namespace
int namespaceCode � 32� Namespace code used by

Namepoolint rootIndex 8 256 Array holding level 0 root nodes in
docs lineNumberMap lineNumberMap 5 160

systemIdMap systemIdMap 5 160 Created if needed

In Chapter 7, Figure 7.5 shows the class diagram of TinyTree . These are designed for

use with XPath and XQuery operations. Saxon implements the DOM by wrapper

classes of the NodeInfo class. The DOM support in Saxon is limited to (a) only read-

only DOM operations, (b) only the Core and XML modules and (c) a separate

representation of namespace declarations from the attributes.

Navigation operations

The navigational operations in the DOM, such as firstChild() , nextSibling() ,

previousSibling() and lastChild() are supported indirectly in the NodeInfo

class using a set of XPath axis iterator classes. These classes are customized for use in

XPath, but they can support (less efficiently) the DOM. The navigation operations

require sequential access to one or more items of the array structures, the details of

which are given below:

• The parent() operation is simple because an instance of the parent node

object is included as a class member of the DOMNodeImpl class. However, if

Chapter 3 - Implementations of DOM and XML Compressors

 32

the parent node is not known for node), then we make a sequence of calls to the

next array, from next[)] until to get to the last-sibling node, say node ?. A

final call to next[?] stores the index of the parent node, since next[?] E ?.

• The firstChild() operation is simple. If we are at a node), the first-child

node will appear at position) @ 1, if depth[)] E depth[) @ 1] .

• The nextSibling () operation is simple. If we are at a node), the index of the

next-sibling node is given by next[)] . If next[)] E), then it is really the

index of the parent from the last sibling. The previousSibling() operation

is similar, but applied to the prior array.

• The lastChild() operation is slow. We require a traversal across all children

until we reach the last child node. If the count of the children of the node (the

degree) is +, then there are + array accesses made in each of the next and

nodeKind arrays. In addition, an instance of the TinyNodeImpl class is

created for each sibling node, where we check for a null value; in this case, the

last child node has been reached. The creation of the TinyNodeImpl object is

based on the design of the axis iterator class.

Saxon supports third-party tree structures as plug-ins; they are required to implement

the DocumentInfo and NodeInfo interfaces. We discuss these interfaces further in

Chapter 7.

3.2 XML Compression

We now discuss specialised compressors designed for representing XML documents,

which exploit the typical XML characteristics, such as a highly regular structure and the

predictive values of the upward path from an element in determining the element. A

path F from the root to a leaf node is defined as the sequence of tags �A, �G, … , �I, where

�A is the tag of the root node and �I is the parent of the leaf node (data value). The

upward path is the reverse, i.e. �I , … , �G, �A. In essence, a path gives valuable information

to the XML compressors. More generally, some XML compressors use containers in

grouping textual data elements with similar characteristics, and applying specialized

Chapter 3 - Implementations of DOM and XML Compressors

 33

compression algorithms to each container. Exploiting these characteristics often gain

better compression than generic text compressors, such as Gzip [43], which is not able

to use the path information in its compression algorithm.

Our survey of XML compressors focuses on in-memory representations, such as

BPLEX [10], XBZipIndex [30], DDOM [55] and SEDOM [75], which provide support

for tree navigation, with some moving towards DOM support.

We also focus on XML compressors that have a combination of in-memory and/or

disk-based data structures, often they store the structure of the document separately to

the data values compressed on disk. The use of disk-based data structures for XML

compressors is a well-studied area that has produced many interesting results [3], [6],

[8], [7], [13], [30], [32], [48], [52], [56], [64], [75] and [80]. In essence, the

representations of the XML compressors usually have one of the properties below:

(a) Local homogeneity: The final data structure separates the tree structure from the data

values. The data values are often grouped and stored into containers, according to their

paths and tend to be of the same data type, which aids the compression. The paths give

valuable information about the data that is stored. XMill [48] was the first to introduce

this technique.

(b) Homomorphic: The final data structure preserves the document structure with the data

values. XGrind [64] was the first to introduce this technique, where the advantages are

the parsing/querying can now be made directly upon the compressed documents, also

indexes and updates can directly be applied to the compressed document in the same

way as applied to the original document. In addition, the compressed document can be

checked for validity against a compressed version of the DTD.

In Figure 3.1, we show an example of an XML compressor, which uses the

homomorphic property. We have a simple XML document (left) and the compressed

representation (right), which is itself, in the form of an XML document with the tag

names replaced by some encoding (e.g. dictionary codes) and the data values encoded

using some encoder designed by the compressor.

Chapter 3 - Implementations of DOM and XML Compressors

 34

<Element1>
<Element2>valueA</Element2>
<Element3>valueB</Element3>
 <Element4></Element4>
</Element1>

 T1
 T2 encode(valueA)/
 T3 encode(valueB)/
 T4/
/

Figure 3.1 - Left: Simple XML document. Right: Example of Homomorphism.

The compression performance of the XML compressors depends upon the specific

XML document that is being compressed, a standard categorisation of XML documents

is described below; we use these in what follows:

• Data-centric documents have a regular structure of tags as their focus. For

example, Figure 2.1 shows the representation of book records in a XML

document of a book shop, we observe that data-centric document can be used as

a database representation. The tags are usually predefined in a DTD or an XML

Schema.

• Document-centric XML have the text as the focus. Tags only appear when

needed and explicitly indicate when parts of an existing document have structure

or meaning, for example, when a section of a document represents a paragraph,

or a stanza of a poem.

For the survey of XML compressors, we compare (where possible) the compression

ratio and compression time for each compressor. The compression ratio is defined as

follows:

6J4F�K��)J� ���K � �)#K JL $J4F�K��K+ M.' +���
�)#K JL J�)N)��� M.' +���

Chapter 3 - Implementations of DOM and XML Compressors

 35

3.2.1 XML Compressors with DOM-like support

DDOM

The dictionary-compression based Document Object Model (DDOM) [55] is java

implemented and is locally homogeneous. Two arrays represent the tree structure of the

document, with the nodes arranged in document-order. Given an XML document tree

with � nodes, which contains K element nodes, the arrays are of length � @ K. Elements

in the XML document are represented by two entries in the arrays, these are the

positions where the opening and closing tags would appear. Other node types, such as

text and attribute node, are represented by a single entry in the arrays. The first array,

called TYPE, uses 8 bits per entry, and maintains the node type information. For an

element node, the array entries store a special 8-bit value representing the type, and

either opening or closing tag indication. For a node that is not an element, the array

entry stores an 8-bit value representing its node type. The second array uses 32 bits per

entry, to maintain for each element node an index value to its name in the ELEMENT

dictionary (the same value is stored at the positions of the opening and closing tags).

For other nodes that have a value, the array maintains the indexes of the data values into

their respective dictionaries (discussed below).

Text nodes are maintained in dictionaries associated to their parent node (element

or attribute). The index value in the above array is specific to a dictionary given by

its parent node. The data values are stored as separate string objects within the

dictionaries.

Navigation requires a linear pass over the arrays. In Figure 3.2, we show the DDOM

data structure, with a simple XML document. We observe that the elements (e.g.

university , department) are stored in the ELEMENT dictionary array and the

textual data are stored in dictionaries according to their parent element node.

The column with the hash (#) symbol maintains the references into the dictionary

arrays. We observe all textual data under the <name> tag are grouped into the same

dictionary, for example, in Figure 3.2, even though <name> may appear as a descendant

Chapter 3 - Implementations of DOM and XML Compressors

 36

Figure 3.2 - Left: Original XML document. DDOM Centre: Structure arrays, Right:

Dictionaries.

of university or department , they share the same dictionary. A limitation of

DDOM is that for different tags, which have the same data value, the data values are

duplicated in the different dictionaries. However, it is unusual for an XML document to

have such a structure.

The implementation of DDOM supports read-only access on a document once it has

been parsed or generated, however new nodes can be added at the end of an existing

structure. The structure arrays require 5 bytes per node, plus an extra 5 bytes for each

element node in the document. The dictionaries can be very large, especially for XML

documents that have few patterns in its content. In general, document centric XML

documents will have larger space usage in DDOM than data centric documents. In

Type #
Document -
Element 1
...
Element 2
Element 3
Text 1
/ Element 3
Element 4
Text 1
/ Element 4
...
/Element 2
...
Element 2
Element 3
Text 2
/ Element 3
Element 4
Text 2
/ Element 4
...

/Element 2
/Element 1
/Document -

<university>
...
 <department>
 <name>
 Computer science
 </name>
 <module-code>
 CO1003
 </module-code>
...
 </department>
...
 <department>
 <name>
 Mathematics
 </name>
 <module-code>
 MA2012
 </module-code>
...
 </department>
</university>

ELEMENT
1 university
2 department
3 name
4 module-code

TEXT: name
1 Computer Science
2 Mathematics

TEXT: module-code
1 CO1003
2 MA2012

Chapter 3 - Implementations of DOM and XML Compressors

 37

addition, highly nested documents have larger space usage since the cost of representing

the element nodes in the structure array is paid twice, requiring 10K bytes.

DDOM does not explicitly create node objects, only the document node and

dictionaries exist initially. As in TinyTree , the DOM nodes are generated dynamically

and contain a reference into the structure array, and are garbage collected once they are

no longer needed. The internal DDOM methods work directly on the structure array.

DDOM does not directly support query operations, therefore externally a XML Query

Language (XQL) engine implemented in Java is required on top of the DOM.

DDOM showed good compression ratios compared to Xerces-J and another DOM

implementation called Crimson [21]. The compression rates of DDOM for data-centric

XML files were between 20% to 60%. For document centric XML files the approach

had minimal impact with compression rates between 70% to 80%. However, DDOM

does not solve the problem of XML bloat, as for real life XML documents the space

usage is 3 to 4 times the size of the file.

BPLEX

This XML compressor is locally homogeneous. BPLEX has a very compact pointer-

based representation of the XML tree structure and represents the data values in string

buffers [10]. There are two types of string buffers; the first is for the text nodes, which

appear in the tree at the leaf nodes, the second is for attribute values that are associated

with the element nodes. For each string buffer we store an array of integers,

representing for each text (or attribute) node the location of the text (or attribute) node

in the tree relative to other nodes in the buffer. Navigation and queries, such as the Core

XPath are supported without full decompression.

The main result of [10] is the very compact tree structure, which we now discuss.

Initially an unranked XML tree1 is transformed into a binary tree. For example, in

Figure 3.3 the tree (a) representing an XML document is transformed to the binary tree

(b) with the following labels: in the binary tree a node that has no left child (a leaf in the

1 A tree where nodes have an unbounded list of children (we discuss relationship to the binary trees in Section 4.2.3)

Chapter 3 - Implementations of DOM and XML Compressors

 38

Figure 3.3 – (a): Unranked tree of XML document. (b): Binary Tree representing the unranked

tree.

XML document) is denoted by the superscript 2, and a node with no right child has

subscript 1. A last child node that is a leaf is superscripted with a 0.

We observe in the binary tree that there are often repetitions of sub-tree patterns,

which can be shared. If a sub-tree occurs more than once, then a pointer is used (to

replace the repeated sub-tree) from the parent of the sub-tree to its first occurrence. In

this way, a minimal unique directed acyclic graph (DAG) of a tree is obtained. For

common XML documents, the minimal DAG is about one-tenth of the size of the binary

tree [7]. We then represent the minimal DAG created from the binary tree (Figure 3.3

(b)) by the regular tree grammar that has three productions:

 . P 4J+Q�KA1��Q+K��1�, ��Q+K��1�, ��Q+K��1�, ��Q+K��1�, ��Q+K��A1��������,

� P RSG(B), " P ��4KB

The BPLEX algorithm takes as input the DAG and finds a minimal context-free

grammar that is half to one-third of the size of the DAG in amortized linear time. It

identifies patterns in the grammar, and replaces these by non-terminals representing that

pattern. In the above example, we consider the production ., which contains four such

patterns of S � ��Q+K��1�, UA�. Thus, given the production 61UA� P ��Q+K��1�, UA�,

each of the occurrences can be replaced by the non-terminal 6. However, there is one

further occurrence of a similar pattern �’ � ��Q+K��A1��, which can be obtained by

removing the parameter UA from the pattern �. Since � is a first child of �, removing UA

changes ��Q+K�� into ��Q+K��A.

(a) (b)

Chapter 3 - Implementations of DOM and XML Compressors

 39

Hence, if a non-terminal appears with no argument then an empty string is used as the

marker. With this “overloading” semantics of productions in mind, we therefore have as

output from BPLEX:

. P 4J+Q�KA V6WS1S�XY , S1UA� P 6W61UA�X, 61UA� P ��Q+K��1�, UA�, �
P RSG1"�,

" P ��4KB

Construction of BPLEX is a relatively slow process. The algorithm uses a parameter for

the maximum number of nodes and production that are examined (window size) in one

process. The experiments of [10] show that a window size greater than 100 would give

better compression results of BPLEX, but would take several hours for a file size of say

100MB. However, with default parameters (i.e. window size set to 3) BPLEX takes less

than a minute. The authors of [10] mention the compression rates of the tree structure

for two files in our XML corpus: SwissProt.xml 4.1% and Treebank_e.xml 34%

(for a smaller version of this file). No experiments have been done for a complete XML

document representation.

Results from an experimental test of BPLEX in a DOM system have not been

provided, and detail of the support of navigation has not been given. However [10]

states that a DOM interface can be can be supported. The suggestion is made to store

the string buffers more space-efficiently using standard techniques in [3].

SEDOM

SEDOM [75] is a DOM implementation that supports retrieval, update and XPath

operations on the document. A schema of the XML document is required to specify the

abstract data model of the document. The data structure is locally homogeneous and

consists of the following components:

(a) Name index: This stores the unique element names in two arrays. In the first

array, the element names are stored as their paths from the root to the element.

The schema of the document is represented as a tree structure, which is used to

construct the paths; we refer to each entry in the array as an element class. If we

Chapter 3 - Implementations of DOM and XML Compressors

 40

have 4 unique element classes, an index from 1 to 4, called the token,

represents an element class in (b) below. The sorting of the element classes in

the array is given by the order of the paths in the schema tree. The second array

of size 4 stores for each entry a list of indexes where the token is found in (b).

The purpose is to find the name of an element class and find its locations in (b).

(b) Framework or document structure: This represents the document tree as a one-

dimensional array in document-order, where each entry requires 16 bits to

represent a node. The top 3 bits of the 16-bit value indicates one of six different

node types, i.e. element class token, attribute node container block number,

attribute index in the container, text node container block number, text node

index in the container, and an end symbol for the elements. The other 13 bits

are used to indicate (depending on the type of node) a token as in (a), above, or

a container block number in (c), below, for text or attribute nodes.

(c) Compressed containers: Stores the data values arranged into blocks for fast

retrieval and updating. Each element class has its own container, however, all

attribute values share the same container. This component is stored on disk,

whereas the other components are held in main memory.

(d) Container block index: This represents indexing information for each block in

the compressed containers. The information stored are as follows: the token of

the element class that owns the data values in the container, the block number,

the offset of the block in the file, length of the block, and the node type that

represents element of the first item in the block. The index information is stored

in an array structure organised as a B+ tree. A B+ tree represents sorted data in

a way that allows for efficient insertion, retrieval of records, each of which is

identified by a key [4]. The pair consisting of the element class token and the

block number are the search keys. The purpose of this index is to provide

efficient access to the individual data values in the blocks, and also to locate the

element class of the data value.

Chapter 3 - Implementations of DOM and XML Compressors

 41

All navigational operations of the DOM TreeWalker API are supported by operating

on the framework (part (b)). These are realized using an iterator approach, where the

iterator points to a position (token) in the framework. The operations require scanning

forwards and backwards (based upon nodes stored in document-order), we describe

their running time performance as follows:

• The firstChild() operation is extremely fast. If we are at a node with index

), then we require the memory access of index) @ 1.

• The nextSibling() operation is potentially slow. If the sub-tree of the

current node is large, then we require the scanning of the nodes in this solutions

tree until we reach the end symbol of the current node, the next sibling node will

be at the next position in the array. The previousSibling() operation is

implemented analogously.

• The lastChild() operation is slow, since it requires scanning through the

array of all child nodes and their sub-tree nodes, until the end symbol for the

element (parent node) is reached. Likewise the parent() operation requires the

scanning through the array of the previous siblings nodes and their sub-trees

before we get to the parent node.

• The operations nextNode() , previousNode() , and attributes retrieval are

implemented similarly to the above operations.

Retrieving text values requires retrieving index information from the container block

index (see (d)), given we know the desired block index we load the block from disk into

a buffer in main memory and then retrieve text value. The retrieval of an element name

requires a lookup in the element array (a) for the pair with matching index value from

the framework, and then to get the path.

In [75] the experimental evaluation of SEDOM is given with comparison made

against pointer-based DOM implementations. The main time delay in the parsing

process of SEDOM is due to the compression and disk I/O of the data values. As a

Chapter 3 - Implementations of DOM and XML Compressors

 42

result, accessing node names, node values and the modification of the tree is slower

than most DOM implementations, e.g. Xerces, but comparable to XML compressors.

Results of the memory usage of SEDOM and the pointer-based DOM

implementations are given only on the data structures that are held in main memory.

Therefore, they exclude the textual data containers held on disk. The main memory

usage of SEDOM is less than 6.9% of the main memory usage of the pointer-based

DOM implementations for the XML files discussed in [75]. In addition, the data

structures of SEDOM that represent the structure of the XML documents together are

only a factor of 0.1-0.3 of the file sizes of the original XML documents.

We provide a very loose comparison of SEDOM to the pointer-based DOM

implementations, which includes the textual data containers uncompressed. The textual

values of the XML files in our corpus (see Section 3.3) were on average 46% of the

XML file sizes. Therefore, SEDOM would be a factor of 0.56-0.76 of the file sizes of

the original XML documents; we assume the memory usage of the structural

components of SEDOM detailed in [75] would be the same for the XML documents in

our XML corpus. In essence, the memory usage of SEDOM including textual data

containers is smaller than the original file sizes, whereas the pointer-based DOM

implementations enlarge the original file sizes up to 8.6 times (see Table 7.3); this can

be interpreted in [75].

The advantage of SEDOM is that it supports DOM update operations and that it

supports documents of size much larger than the pointer-based DOM, given the same

memory resources because the framework is much smaller than the tree representation

of the pointer-based DOM and that the text value containers are held on disk. However,

the only navigational operation for which times are reported in the paper is the

firstChild() operation, which is around 20 times slower than the pointer-based

DOM. Clearly, the other navigation operations would show similar or much worse

running times, since several scans in the framework array is much slower than a single

pointer access for the pointer-based DOM (e.g. Xerces).

Chapter 3 - Implementations of DOM and XML Compressors

 43

3.2.2 XML Compressors

We now review two specialized XML compressors that achieve excellent compression

ratios ([13] [48]), but do not support query operations without the de-compression of the

XML document in its entirety.

XMill

XMill [48], a locally homogeneous compressed representation of XML documents

shows good compression performance in terms of time and memory usage. There are

two main phases during the parsing process:

(a) Separating Structure from Content. Start tags are replaced by an integer value

relating to the element name in a dictionary array containing all unique elements

used in the document, which reduces the space usage as repeated tags are

replaced by the codes. The end tags are replaced by the symbol /. Attributes are

represented as (element) tags with the symbol @ prefixed to its name in the

dictionary array (which distinguishes an attribute name from an element name).

Each data value (including attribute values) is replaced by a container ID

number from (b). The structure of the XML document in XMill’s compressed

structure was 1%-3% of the compressed file (for data-centric files), but was

approximately 20% of a certain document-centric file (Treebank.xml , see

Section 3.3).

(b) Grouping data values. Each data value is uniquely assigned to one data

container. The mapping from data values to containers is resolved by the data

value’s path and by user parameters to assign containers to specific paths. This

allows the user to group into the same containers data values of the same type or

with similar patterns of data, hence aids better compression. For example, the

data values relating to the path /Doc/Person/Title and /Doc/Book/Title

may have different patterns of data, and should therefore be stored in different

containers. The data containers are compressed according to semantic

compressors on the data; these are built-in encoders, designed to encode specific

data type and perform better according to the patterns of the data. For example,

Chapter 3 - Implementations of DOM and XML Compressors

 44

Figure 3.4 - Abstract view of XMill for a single book in the XML document of

Figure 2.1.

the run-length encodes integers more efficiently (particularly if we have

duplicated values) than if, we used another encoder. During compression,

default settings are applied, however the user can specify as expressions the

encoders to use for the containers, and to link-in other encoders not available in

XMill.

Figure 3.4 shows a conceptual view of the compressed document produced by XMill for

a simple XML document. The structure of the XML document is maintained by

applying dictionary encodings of the tags bookshop , book , author , etc (encoded as

T0, T1, T3, etc). The attribute @catalogue is encoded as T2. The data values are

arranged in the containers according to their parent tag.

XMill compared well against the generic compressor GZip. The compressed file was

45% < 60% the size of GZip for data-centric documents with default settings: using

semantic compressors, XMill reduced the size to 35% < 47% of GZip. For documents

with mostly text, XMill was only slightly better.

XMill is one of the first specialised XML compressors. However not supporting

querying over the compressed data has limited its application mainly to archival and

transmission.

Structure Container:

 T0 T1 T2 C2 T3 C3 / T4 C4 / T5 C5 / T6 C6 T7 C7 / / / T1

XML...

OND...

SDOM Design...

2007...

Data Containers:

 C2

 C3

 C4

C++...

Development in ...

C5

C6

C7

...

Chapter 3 - Implementations of DOM and XML Compressors

 45

XMLPPM

XMLPPM [13], a locally homogeneous compressed representation of XML documents

shows good compression in terms of time and memory by applying the technique of

encoding SAX streams and on Prediction by Partial Match (PPM) encoding [17]; this

technique is called Multiplexed Hierarchical Modeling (MHM).

In summary, the PPM model maintains statistics on previous symbols seen so far in

the uncompressed stream. For each symbol, the model is used to estimate a probability

of the next symbol in the stream. The PPM compression encodes the symbols using

arithmetic coding, although it is possible to use other encodings [13].

The MHM technique handles the SAX event streams received during parsing within

four PPM models; one for element and attribute names (Syms), one for the element

structure (Elts), one for attribute values (Atts), and the other for text values

(Chars). The models operate independently, but share access to one underlying

arithmetic coder.

Table 3.4 shows the status of the four PPM models when an XML document is

converted into a corresponding stream by XMLPPM; for the Syms model, the string of

the XML name is stored the first time the name appears, and other times a unique byte

code is used. The byte code is sent to the Elts model to indicate a start tag (e.g. in

Table 3.4 the book element has the byte code 01). When an end tag is received, the

token FF is sent to the Elts model representing the end tag. Attribute names (e.g.

catalogue) are sent to the Syms model and the attribute name token (i.e. OD) are

sent to the Att model. Attribute values, such as “XML”, are sent to the Atts model

with their corresponding attribute name token, i.e. OD. Data values, such as “OND”, are

sent to the Chars model.

Chapter 3 - Implementations of DOM and XML Compressors

 46

Table 3.4 –Multiplexed hierarchical modelling in XMLPPM. The Model is a snippet of an

XML document in Figure 2.1.

Model <book catalogue= “XML” > <author> OND </author> ... </book>

Syms: book 00 catalogue 00 author 00

Elts: 01 02 FE <02>FF <01>FF

Atts: <01>OD XML 00 FF

Chars: <02>OND 00

MHM breaks existing homogeneous property, due to the several models used. To

restore the homogeneous property in XML documents, which aids the prediction

process, XMLPPM injects the enclosing token index (i.e. the token is in the format

<nn>) into the corresponding Elts , Att , or Chars model immediately before an

element , attribute , or data value is encoded (see Table 3.4). These tokens

indicate to the models that a particular token has been seen, without explicitly encoding

or decoding it.

XMLPPM has the benefit over XMill in supporting online processing, which means

the compressor is able to stream the compressed data to the decoder, rather than

requiring the entire compressed data before decompression can begin (i.e. offline). [13]

claim XMLPPM achieves compression on XML documents that are document-centric

and data-centric, 5% and 10-35% better, respectively than the best existing XML

compressor (i.e. XMill [13]). However, in XMLPPM the compression time is slower

than others.

Chapter 3 - Implementations of DOM and XML Compressors

 47

3.2.3 Query-friendly XML Compressors

We now review eight query-friendly XML compressors.

XBZipIndex

Ferragina et al. [30] present two XML processing tools. The first is an XML compressor

called XBZip, which represents the XML document in its compressed format on disk,

and requires full decompression before any querying can be done. The other tool, on

which we focus, is a query-friendly XML compressor called XBZipIndex. These

representations are locally homogeneous and are based on the principles of the

Burrows-Wheeler Transform [9]. Their main result is the XBW transform algorithm

that represents the tree structure of the XML document better for compression.

We describe the process with an example. The XML document + of a book record

(Figure 2.1) corresponds to the tree � given in Figure 3.5. The opening tags such as

“<book> ” are replaced by the string “<book ”. Attribute nodes are stored in the tree

as element nodes, labelled with the symbol @ at the start of the attribute name (i.e.

@catalogue) to distinguish them from element names. The textual data for text

nodes or the attribute node values creates two nodes in the tree: a special node

called the skip node with the label ‘=’, and a content node, which is the child of the skip

node. The label of the content node has the form ØF, where F is the textual value, e.g.

Ø2007, and Ø is a terminating character in +.

A pre-order traversal of � is carried out to build the arrays in Figure 3.6 (left),

representing all nodes. The string �]^_` indicates for each node if it is a last child node

(if it is, the value 1 is stored otherwise, a 0 is stored). The string �� stores the label of

each node in �. The string �a shows the upward path of nodes given from the parent of

the node in the tree. The string �bcd^`^ stores a concatenation of the data values in the

document.

These strings are the input into the XBW transform, which applies a stable sort

according to the �a component, arranging the triplets e�]^_`, ��, �af in lexicographical

order to produce the set e�]^_`, ��, �af in Figure 3.6 (right). We observe that element

nodes (i.e. nodes labelled with ‘<’) appear before attributes (i.e. nodes labelled with

Chapter 3 - Implementations of DOM and XML Compressors

 48

‘@’), and in this order appear before text nodes (i.e. node labelled with ‘=’). Given that

the number of nodes in the XML tree is � � � @ �, where � is the number of internal

nodes and � the number of leaves, then ���1, �* contains the labels of the internal nodes

and ���� @ 1, �* contains the textual values (pcdata). Since leaves have no children

�]^_`�)* � 1 for) � � @ 1, . . . , �. To avoid the wasteful representation of �]^_`�� @ 1, �*
they split �� and �]^_` into e�g]^_`, �g�, �ghijklkf. The output of XBW are the sorted

strings �g�, �g]^_` and �ghijklk in Figure 3.6 (bottom). The strings are stored separately, as

the tree structure (i.e. �g� and �g]^_`) and the textual content (i.e. �ghijklk).

The two main advantages of the output representation of XBW are as follows: firstly,

the strings �ghijklk and �g� uphold the locally homogeneous property in the re-

arrangement of the textual values in the transform, hence they are highly compressible.

Secondly, search and navigation operations over � are greatly simplified.

If we are only interested in a compressed representation of + then the arrays �g�, �g]^_`

and �ghijklk are stored compactly as possible. This is done by merging �g]^_` and �g� in a

single array called �g �, where we insert after each internal label the special label </ if

the previous label corresponded to a 1 bit in �g]^_`. �g � and �ghijklk are compressed using

the general-purpose compressor PpMDI [63]. The compressed representation is called

XBZip.

If we are interested in the support of navigation and searching, the �g]^_` bit-string and

the �g� string are represented with the support of the RANK and SELECT operations

(we will study these in Chapter 4). This representation with query support is called

XBZipIndex. Also, to support navigation and searching the array of labels is split into

blocks and compressed individually using the Gzip text compressor, and decompression

is only applied to a single block instead of the entire array (in order to execute a

navigation step). The text content array is much larger and requires a more sophisticated

compression tool called the FM-Index that offers substring searching (essential for

XPath queries).

Chapter 3 - Implementations of DOM and XML Compressors

 49

Figure 3.5 - Ordered label tree of a simple XML document

Figure 3.6 – Left: Set S after the pre-order visit of �. Right: The set � after the stable sort.

Bottom:The three arrays �g�, �g]^_` and �ghijklk, output of the XBW transform.

XBZip showed the best compression ratio compared to the XML compressors that are

not query-friendly (e.g. XMill), however the compressors lie within a 5% absolute

difference in their compression ratios. XBZipIndex offers 20% to 30% better

compression compared to XPRESS, XQZip.

 RK mnop8 m� mq

1 1 <book empty string

2 1 = <author<book

3 0 @catalogue <book

4 0 <author <book

5 0 <title <book

6 1 <year <book

7 1 = <title<book

8 1 = <year<book

9 1 = @catalogue<book

10 1 ØOND =<author<book

11 1 ØSDOM Design =<title<book

12 1 Ø2007 =<year<book

13 1 ØXML =@catalogue<book

mnop8 m� mq

1 <book empty string

0 @catalogue <book

1 = @catalogue<book

1 ØXML =@catalogue<book

0 <author <book

1 = <author<book

1 ØOND =<author<book

0 <title <book

1 = <title<book

1 ØSDOM Design =<title<book

1 <year <book

1 = <year<book

1 Ø2007 =<year<book

�g]^_` � 110001111

�ghijklk � Ø3rSØ�S3. SK�)N�Ø2007ØM.'

�g�= E �JJD � @$����JNQK E �Q�sJ� E �)��K E UK�� ���

Chapter 3 - Implementations of DOM and XML Compressors

 50

XQueC

XQueC [3] has a locally homogenous compressed representation of XML documents

and supports a large sub-set of XQuery queries upon the compressed representation.

XQueC is implemented in Java, and is arranged in the following data structure:

(a) Node name dictionary: The unique element /attribute names are stored in

a dictionary. If there are K unique names, then a unique bit-string is assigned to

each name requiring tlogG Kx bits each, called a tag code (which is discussed

later).

(b) Tree structure: The non-text nodes are represented as node records stored in a

sequence. Each record entry contains its own ID (identifying the node in the

tree), the corresponding tag code, a list of IDs of its children and the ID of its

parent. A search tree is constructed and stored on top of the sequence of node

records, with the ID as the search key, to achieve better query performance. For

example, given we are at a node in the tree, to navigate to the parent node

record, we retrieve the parent ID in the current node record, which is then used

in the search tree to find the parent node record. For each node record there is a

pointer to its attribute or text value in their respective containers in (c).

(c) Value Containers. The use of containers is similar to the ideas in XMill, where

the data values are stored in containers according to ()) the root to leaf path in

the tree structure, which are strongly homogeneous hence highly compressible,

and ())) the type of the data value. XQueC makes the improvement based on

XMill by partitioning the containers into container records and a compressed

value and a pointer to its parent node record are stored in each record. The

container records are grouped into lexicographical order (for fast binary

searching) and then compressed using a text compression algorithm.

A small tree structure is stored to represent unique paths in the document, this is called

the structure summary. The leaf nodes in the structure summary point to the

corresponding value container. The storing of this structure is somewhat redundant;

however, the purpose is to cut down the cost of traversing the whole structure tree in

Chapter 3 - Implementations of DOM and XML Compressors

 51

query operations. Indeed the space usage of the structure summary is about 19% of the

original document size.

XQueC primarily focuses on querying; however, we study the potential navigation

support on the tree structure, which is given as follows:

• firstChild() : for the current node record, the first ID in the sequence of

IDs is the first child ID. We then use the search tree to find the node in the

sequence of node record.

• nextSibling() , previousSibling() : we call the parent() operation

at the current node, then get the ID of the next sibling node (or previous

sibling), which is following (or proceeding) the ID of the current node. We

then use the search tree to find the node in the sequence of node record.

• parent() : the ID of the parent node is given with each node record,

therefore we use the search tree with the parent ID to find its node record.

The retrieval of text nodes requires loading and decompressing data from disk, however

the frequently accessed data is cached. Queries are efficiently executed as follows: We

parse the structure summary for the matching path. We then navigate the tree structure

according to the path given by the structure summary. The leaf node of the path in the

tree structure points to the text value in the data container record. This is then

retrieved from the compressed storage structure.

The compression ratio of XQueC is compared with XMill, XPRESS [52] and XGrind

[64] (we discuss XPRESS and XGrind later). XMill is clearly better in terms of

compression ratio, however, among query-friendly compressors XQueC appears to

compresses as well as XPRESS, and better than XGrind. It could even be better if white

spaces in the XML document

Chapter 3 - Implementations of DOM and XML Compressors

 52

Figure 3.7 – (a): Unranked tree of XML document. (b): Compressed DAG version of (a).

were ignored in the compressed representation, as in XPRESS. Finally, XQueC

supports a larger fragment of XPath and XQuery, than XPRESS and XGrind. The query

performance of XQueC is much better than the XQuery processor called Galax [33] in

most cases.

Path Queries on Compressed XML

Buneman et al. [7] present a query-friendly XML compressor that is locally

homogeneous and supports the Core XPath queries. [7] was one of the first to provide

compression on the XML tree structure, where the novel sharing of common subtrees

technique is used to reduce the XML tree to a minimal DAG representation. They

further reduce the size of the minimal DAG representation by using multiplicity

counters for consecutive equal subtrees (see Figure 3.7 (b)). [10] and [14] later followed

with techniques to compress the XML tree structure based upon the minimal DAG

representation.

In Figure 3.7, we show the tree structure of an XML document in (a), and the

corresponding compressed DAG representation in (b). In the compressed representation

the edges that have consecutive sequence of out-edges to the same node are replaced by

a single edge and marked with the appropriate cardinality.

The pre-processing phase requires a SAX parser, a stack and a hash table to build the

DAG in one parse of the XML document. The DAG is built using pointers to node

objects in main memory in a bottom-up approach; the stack is used to track nodes under

construction and the hash table is used to keep track of nodes already in the compressed

instance that is being created.

 (a) (b)

Chapter 3 - Implementations of DOM and XML Compressors

 53

It is possible to partially decompress the DAG representation with some of the nodes in

the original tree that would be selected by an XPath query. In [7] the data values are not

compressed, therefore the original XML document is re-parsed each time we require the

access of a data value. Therefore, the compression results shown were only on the XML

tree structure and not including the data values. In [7], they claim the compressed tree is

about
A

AB to
A

Ay of the uncompressed XML tree. In regards to the query performance, [7]

reports the result that a Core XPath query z can be evaluated on an XML document

represented by a DAG S in time 312||| } |S|�, where |S| is the number of nodes of S.

Query Evaluation on Compressed Trees

Frick et al. [32] study XPath query evaluation on compressed XML tree structures; this

is related work to that in [7] where the XML tree structure is compressed as DAG

representation. The results are theoretical, i.e. there is no practical implementation

developed in this paper. However, they observed that XPath is not easy to define from a

theoretical viewpoint; therefore, the authors show that the XPath language can be

mapped efficiently to monadic datalog language [38]. Frick et al. show that the

evaluation problem of queries for monadic datalog on a compressed instance is

PSPACE-complete. They then show, again for XPath, there exists an algorithm to solve

the monadic datalog evaluation in ~1D } 2� } �� time, where D denotes the size of the

datalog program and � is the size of the compressed instance.

The complexity results above only consider unary edges in the DAG representation.

The inclusion of edge multiplicities can have a practical impact on the compression rate.

To avoid the potential problem and to represent the edge multiplicities, an XML tree

structure R is initially transformed to binary tree (called "1R�), then to a minimized

binary tree .1"1R��. We show in Figure 3.8 (b) the binary tree representation of a

fragment of the XML tree structure (a), where we have a node with degree 7 and the

child nodes are duplicate nodes. In the binary tree the node with) children is replaced

by an almost complete binary tree of height 2t���1��x. The other unary relations of R can

be directly transferred to "1R�.

Chapter 3 - Implementations of DOM and XML Compressors

 54

In Figure 3.9, we show the minimisation of "1R�. We observe that there is a blow-up in

size by a factor that is logarithmic in the maximum edge multiplicity.

We cannot draw upon any practical results in [32] to compare to the other query-

friendly XML compressors, but their study shows the correlation of DAG

representations and XML trees. Experimental evaluations is shown in [7], [8], [14] and

[10].

Vectorizing and Querying Large XML Repositories

Buneman et al. [8] presents a query-friendly XML compressor that is locally

homogeneous. The XML tree structures are compressed as DAG representations. This

work extends the work done in [7] to support XQuery without decompression, where

the compressed representation only did support XPath. The evaluation of queries yields

new, usually smaller XML tree structures, which are DAG representations.

The XQuery system of [8] is called VX. The compressed XML tree is held in main-

memory. As in XMill [48], the data values are represented as containers (also called

vectors). However, these remain uncompressed and are grouped under their unique path

from the root node to the leaf in the XML tree structure. The vectors are held on disk as

separate clustered files.

In the experimental evaluation of [8], comparison of VX is made against the SQL

Server and a few XQuery systems, including MonetDB [6], Galax [33]. The running

times for the queries in VX were competitive if not better than the other XQuery

systems for most queries evaluated. For a particular query that required constructing

portions of the original XML document VX is better than MonetDB by almost 2.5

orders of magnitude [8]. For the query that required the matching of all data values,

MonetDB was significantly better than VX.

Chapter 3 - Implementations of DOM and XML Compressors

 55

Figure 3.8 – (a) Fragment of an XML tree structure: node has degree 7, of the same node. (b)

Binary tree representation of (a).

Figure 3.9 – (a) DAG representation of XML tree structure in Figure 3.8 (a). (b) Minimised

binary tree of Figure 3.8 (b).

XQZip

XQZip [14] is locally homogeneous in its compressed representation of XML

documents and supports a number of XPath queries. As in XMill, the data items are

grouped into containers for compression. The new ideas here are a blocking strategy on

the data value containers to reduce the amount of data to be decompressed, and a

strategy on the tree structure of the XML document to reduce the tree to a DAG. The

DAG representation, called the XML Structure Index Tree (SIT), is significantly smaller

than the original tree structure.

SIT: We maintain the tree structure of the XML document with all duplicate sub-trees

removed. Initially we have a tree with all non-text nodes, such as the element and

attribute nodes (we interpret the attribute values as text nodes, which are maintained

along with text nodes in containers). Each node is assigned a tree node number that is in

(a) (b)

(a)

(b)

Chapter 3 - Implementations of DOM and XML Compressors

 56

level-order, and a hash ID representing the element or attribute name in the hash table.

The attribute names are prefixed by the special symbol @.

Define a tree structure as � � 1�� , �� , �33��, where �� and �� are the set of nodes

and edges, respectively, and �33� is the unique root of �. A tree node � є �� is a triple

� � 1K)+, �)+, K/��, where �. K)+ is a Hash ID, �. �)+ is the unique document order

number and �. K/� initially is ��. �)+�. �. K/� will subsequently contain IDs of removed

sub-tree nodes.

Each node is represented as the pair 1�. K)+, �. �)+�. The ROOT is uniquely assigned

10,0�. Before reduction of the tree, each node is connected using four pointers (to the

parent, first-child, next-sibling and previous-sibling nodes). Sibling nodes are ordered

according to their Hash ID 1K)+�, i.e. if the children of a node are "A, … , "�, then

�. "A. K)+ � �. "G. K)+ � � � �. "�. K)+. If any of the Hash IDs are equal then the �)+

number is used to break ties. This node ordering accelerates node matching by a factor

of two, since two nodes are matched by their K)+ and on average, only half the children

of a given node need be searched. We now discuss the process of reducing the tree

structure to a DAG by the following steps:

• Step 1: Branch and Branch ordering: A branch is a unique path from the

root to a leaf node in the tree �. Given two branches �A � �B P � P �A P
� P �b and �G � QB P � P QA P � P Qb, where �b and Qb are leaf nodes

of �. We say �A is ordered before �G if when we scan through the nodes there

exists a node where either �A. Q� . K)+ E �G. �� . K)+ or K)+ values are the same

but �)+ values are different with �A node lower than �G node value.

• Step 2: SIT-Equivalence: Two branches �A � �B P � P �A P � P �b and

�G � QB P � P QA P � P Q�, are SIT-equivalent if �� . K)+ � Q� . K)+ for

0 �) � F and F � �. The purpose of this step is to identify identical branches

in terms of their K)+ code. Two sub-trees are SIT-equivalent if they are siblings

and all their branches are branch ordered and the)th branch in each are SIT-

equivalent, for 0 �) � 4 and 4 � �, where 4 and � is the count of branches

in the trees, respectively.

Chapter 3 - Implementations of DOM and XML Compressors

 57

• Step 3: Merge Operator: This operator performs a merge on two sub-trees, �A

and �G to produce � in place of �A in the tree, where � is SIT-equivalent to �A

and �G. The effect of the merge operator is that the duplicate SIT-equivalent

structure is removed. The �)+s of the �A sub-tree nodes are used in � and the

�)+s of the �G sub-tree nodes are added to the K/� set of the equivalent node in

�.

The construction of the SIT maintains four pointers per node in the tree, pointers to the

parent, previous-sibling, next-sibling and first-child node. This in turn maintains the

speed of navigation for query evaluation. The space usage of SIT pointers is usually

insignificant, as many tree structures of XML documents have repeated patterns of sub-

trees, which we now reduce to only a single occurrence. Construction of SIT is achieved

using the SAX parser, with time in 31|��|� or 31|�R�||��|� in the worst case, where

�R� is the set of nodes in the SIT tree.

XQZip groups the data values with the same tag/attribute parent into the same data

value containers (similar to XQueC). We divide each container into blocks, compress

the blocks using GZip and store them on disk. We assign each compressed block an ID,

which is given as the highest node ID in the tree structure that is represented in the

block. In addition, the starting position of each block is stored in an array, as hash table

values. To retrieve a block contained in the compressed containers of a node, we match

the node ID with those stored in the blocks. Then we obtain the starting position of the

block using a binary search on the array to retrieve the block, which is then

decompressed. Other nodes such as processing instruction, comment and namespace

handling are not considered in this model; however, the authors mention that extension

for these node types is trivial. The advantage of the blocking strategy is that in many

query evaluations we only require the decompression of individual blocks hence we

avoid full decompression.

XQZip achieves approximately the same compression ratio as XMill. The

implementation of XQZip supports most of the core features of XPath, with navigation

Chapter 3 - Implementations of DOM and XML Compressors

 58

support directly focused on the eight XPath axes. The speed of queries was compared

against XGrind [64], which they out-performed by a factor of 12.84.

XCQ

XCQ [56] is locally homogenous in its compressed representation of XML documents

and supports a number of XPath queries. It makes use of the information provided by

the DTD in the compression and query evaluation process.

To compress the XML document the DTD is first represented as a tree, which is used

along with a SAX parser, this we call the DSP technique. The DSP technique has two

purposes, (1) to extract structural information from the input XML document that

cannot be directly gathered by the DTD during parsing, (2) to group data values

according to their paths given by the DTD tree.

A DTD tree is traversed as the document is parsed, so the next event of the SAX

parser is expected to match to the next node in the DTD tree. This process constructs the

following:

(a) Structure stream: The DTD tree is traversed to construct this stream; for

each node, if the next node cannot be derived directly from the DTD tree then

we output a special symbol, which indicates the node that is the one in the

XML document. For example, to keep track of how many times a repetition

node group is used in the document a 1 bit is inserted into the structure

stream, otherwise a 0 bit is inserted indicating no more repeats. Also for an

optional node, where the DTD specifies a choice of 1. . / nodes, the value) is

outputted to the structure stream, representing the existence of the)th child

that is used in the document.

(b) Data streams: The DTD tree is traversed to construct the data stream. The

DTD tree knows when the next node is a data value, which is given as output

to a container of data values grouped according to tree paths in the DTD tree.

The use of the tree path to group data into containers aids compression,

queries and improves upon the simple names used in XMill. These containers

Chapter 3 - Implementations of DOM and XML Compressors

 59

are divided in blocks (discussed below). The blocks are compressed using

GZip.

The data streams are represented using the strategies of Partitioned Path-Based

Grouping (PPG) and Block Statistics Signature (BSS). The data is compressed

according to paths in a number of streams of blocks. We have a BSS index per block,

which summarizes the content in that particular block. For example, if we had a group

of numbers in a block then the BSS index would store the minimum, maximum, sum

and count of the values present. Similar summaries can be applied to alphabetic data.

When querying for a data value in a block stored on disk, the BSS index is first

consulted, which will filter out blocks that do not contain the required data, before any

block is accessed and searched.

We explain the querying process by example. In Figure 3.7, we show a compressed

XML document in XCQ. Given the query:

record/book[@catalogue=’XML’ and year/text()=’2007’]

The query only involves the data streams D0 and D3. We first access the data stream D0

with the path key records/book/@catalogue . The entire data stream has to be

decompressed since we do not know where the text ‘XML’ appears. If the word ‘XML’

appears in blocks 0 and 1 out of many blocks, we then only have to decompress the

blocks 0 and 1 in the data stream D3 with path key /records/book/year for the matching

text ‘2007’. Once the block is found with both matches, we then decompress the related

blocks in the other data streams to construct the query output to the user.

XCQ can be used as an XML compressor by applying GZip to the structure and data

streams into a single file on disk, which compresses better than GZip and XMill (see

Figure 13 of [56]).

The compression time of XCQ is slow because there is an initial construction of a tree

structure of the DTD and the continual traversal of the DTD tree for the construction of

the structure stream. XCQ compression time is slightly longer than XMill.

Chapter 3 - Implementations of DOM and XML Compressors

 60

In contrast, without applying the GZip to the structure stream, XCQ is query-friendly;

we are required to decompress at least a single data stream for query matching. Running

time performance of XCQ is not assessed [56], but preliminary results are given in their

appendix2.

XGrind

The first of two query-friendly XML compressors we review that use a homomorphic

compressed representation is XGrind [64]. The steps required to construct the

compressed document are as follows. An initial scan of the document and DTD is

required, where statistics are gathered for converting elements and attribute names to

dictionary-based codes and to build a set of non-adaptive context-free Huffman coders

for the data values. The second scan performs the actual encoding of the XML names

and data values.

We show in Figure 3.11 a simple XML document and its compressed representation

using XGrind. Like XMill, the elements and attribute names are dictionary encoded:

each opening tag is encoded by the character ‘T’ followed by its unique element ID, i.e.

the book element is replaced by T0. The closing tags are encoded by the character ‘/’.

An attribute node is encoded by the character ‘A’ followed by its unique attribute ID.

The Huffman code of a data value / is denoted by �1/�. For attributes that are of an

enumerated type, XGrind uses the DTD to assign them a special value that is held in a

symbol table.

XGrind claim compression on average is 33.9% of the file size, which is based upon

files used in [64]. XGrind supports a variety of common XQL queries, such as exact-

match , prefix-match , range-match and partial-match . To query the

compressed representation the query expression must be converted into a compressed

equivalent form. This is achieved by a lexical analyzer that replaces the tag names in the

query expression to the

2 XCQ appendix (2005) experimental data of XCQ performance: http://www.cs.ust.hk/~wilfred/XCQ/appndix.pdf

Chapter 3 - Implementations of DOM and XML Compressors

 61

Figure 3.10 – XCQ. Decompressed data blocks when processing query example.

<book catalogue=’XML’>
<author>OND</author>
<title>SDOM Design</title>
<year>2007</year>
</book>

T0 A0 �(XML)
 T1 �(OND) /
 T3 �(SDOM Design) /
 T4 �(2007) /
/

Figure 3.11 – Left: Example XML document. Right: compressed XGrind representation.

dictionary codes and data value codes used in the compressed representation. A byte-

by-byte comparison is made on the compressed document for a pattern matching query.

We observe that although for such queries we avoid decompression, the compression

ratio of XGrind is much worse than most XML compressors and the construction time

is slow since it requires two scans of the XML document.

XPRESS

The second query-friendly XML compressor that is homomorphic in its representation

is called XPRESS [52]. The key ideas are the Reverse Arithmetic Encoding method

which encodes a labelled path of tags into unique intervals in the range �0.0,1.0� and the

automatic type inference which applies different encoders (e.g. Huffman encoding) to

the individual data values, depending on their data type. We examine the Reverse

Arithmetic Encoding by the use of a simple example. Given an XML document of a

university’s organisational structure:

 Structure Stream

Keys for path-based grouped data streams:

D0: /records/book/catalogue

D1: /records/book/author

D2: /records/book/title

D3:/records/book/year

D0 D1 D2 D3

Decompressed data block
Compressed data block

Chapter 3 - Implementations of DOM and XML Compressors

 62

<university>
 <faculty>
 <department>
 <module>module1</module>
 ...
 </department>
 </faculty>
</university>

Table 3.5 - The interval �0.65, 0.66� is obtained for the simple path

university/department/module .

Simple path Interval

module [0.5,1.0)

department/module [0.65,0.75)

university/department/module [0.65,0.66)

In the compression phase of XPRESS, we require two scans of the XML document, the

first scan performs the gathering of statistics to provide the necessary information in the

second scan, which compresses the XML document. Some of the statistics gathered in

the first scan are the element tags and their frequency of appearance. In our example

above, we have the following element tags: university , faculty , department and

module . Suppose that the frequency of appearance of university , faculty ,

department and module tags in the document is 0.1, 0.2, 0.2 and 0.5 respectively.

Initially we assign each tag name an interval, depending on how frequently they appear

in the document. In our example, we give the following intervals: university

�0.0,0.1�, faculty �0.1,0.3�, department �0.3,0.5� and module �0.5,1.0�. The size

of the interval of � is proportional to the frequency of the element �.

Reverse Arithmetic Encoding operates on paths. In Figure 3.4, we show the output

steps in the function reverse_arithmetic_encoding defined in [52] to obtain

the interval �0.65, 0.66� for the path university/department/module . We observe

that if a simple path � has an interval R, then the interval of all suffix paths of � contains

Chapter 3 - Implementations of DOM and XML Compressors

 63

R, . For example, the interval that represents the element path “/department/module ”

contains the interval that represents the element path:

“ /university/department/module ”, since “/department/module ” is a suffix.

It is easy to compute sub-path queries with the pattern “//;/�Q�F��s” .

XPRESS stores a compressed XML document by replacing the start tags by the

minimum value of the subinterval depending upon the path. In the decompression

phase, the tags can be obtained by a binary search of intervals.

Type Inference engine: The data type information received in the parsing phase is

passed to a dictionary based type inference engine for encoding. For the integer data

types, the type inference engine uses the path information to apply binary encoding and

then differential encoding to the set of values.

Data types are categorized into two types for textual data. Firstly, they have the string

type, which is for general text data; they apply the Huffman encoding to such data

types. Secondly, the enumeration type can handle distinct patterns of the textual data up

to 128. If the enumeration count is above 128 then the dictionary encoding is used for

such textual data. This selection of the best-suited data value compressor is automatic.

 To evaluate queries on the compressed data, a given path is transformed into an

interval and then XPRESS scans the compressed file for values in that interval. Integer

data values are converted to encoded values for matching in the file without

decompressing. Textual data require a partial decompression.

We observe that XPRESS does not cover all queries and navigational support is

limited. Improvement is made upon the ideas of XGrind by encoding the tree paths

instead of the element tags themselves. This provides direct support for path-based

queries. XPRESS supports exact-match and prefix-match on the compressed data,

partial-match and range-match on decompressed data, and the XPath axes

child , descendant and attribute . The support of range-match on the

compressed data is only for numeric data.

XPRESS claim compression on average is 27% of the file size, which outperforms

XGrind especially where data values are integers, enumeration and floating point.

Chapter 3 - Implementations of DOM and XML Compressors

 64

Table 3.6 – Comparison of XML processors and compressors.

XML Tool Compression
ratio

Compression
time

XML language
support

Navigation
support

Update
support

Homomorphic

TinyTree NA NA XQuery, XSLT,
XPATH, DOM

Yes No No

DDOM NA Slow DOM Yes No No

BPLEX Very good Slow DOM Yes No No

SEDOM Good Fast DOM Yes Yes No

XMILL Very good Fast Not supported No No No

XMLPPM Very Good Slow Not supported No No No

XBZipIndex Very Good Slow XPath Yes No No

XQueC Poor NA XPath, XQuery Yes No No

VX Poor NA XPath, XQuery Yes No No

XQZip Very Good Fast XPath 1.0 Yes, slow No No

XCQ Very Good Fast XPath 1.0 subset Yes, slow No No

XGRIND Poor Slow XPath subset Yes, slow No Yes

XPRESS Poor Slow XPath subset Yes, slow No Yes

However, on average it is still 20% worse than XMill. For querying, XPRESS takes few

seconds to evaluate queries in [52], which is better than XGrind by a factor of 2.83. For

navigation support, if a node has many descendants, its sibling will be located quite far

away in the (compressed or original) file. In support of the operations

nextSibling /previousSibling() , next /previous() XGrind or XPRESS may

be quite slow.

3.2.4 XML Compressor Summary

We now summarize our discussion of XML compressors, including TinyTree , in

terms of compression ratio, compression time and functionality. We found that XMill

had the best average performance in terms of compression time and compression ratio;

however, its lack of query support limits its use. The support of DOM navigational

operations by the query-friendly XML compressors was slow, this is because they are

designed to support path-based queries, whereas DOM is designed for a much wider

scope of applications in-mind and features navigation upon the documents. See Table

3.6 for the full details.

Chapter 3 - Implementations of DOM and XML Compressors

 65

3.3 Statistics of XML documents

We now describe a corpus of XML documents taken from [73] and [74]. Fifteen XML

documents have been selected based on their wide range of characteristics and are

described in Table 3.7. We also used synthetic XML files that were created using the

xmlgen data generator [70]. Xmlgen generates a typically well-structured XML

document, based upon processes of an auction website. The file sizes range from

0.13MB to 593.6MB and the DOM node count of these files range from 7,000 to 25

million nodes.

In Table 3.8, we show the count of node types, unique tag/attribute names that

appears in the DOM trees for the XML documents in our corpus, we also show the

count of element and attribute nodes that appear with a namespace. We include the

statistics of the synthetic XML files, which we name XMARK+[file size]+MB. For all our

files, the majority of the nodes are text nodes (60% of nodes in the tree, on average

over all files). The next largest types are the element nodes with 38% on average over

all files. We have not included attribute nodes in these averages, as they are not a

part of the tree and not all XML documents use them. However when they are used,

there is sometimes a large number of them, e.g. the file Mondial-3.0.xml has

104,795 nodes in the document, of these 45% are attribute nodes, also in the file

w3c1.xml 28% of the nodes are attribute nodes.

We examine the properties of the DOM tree representations of the XML documents

further in Table 3.8. The tree properties we examine in each file are the proportion of

leaf nodes to non-leaf nodes, the maximum depth in the tree, which is the maximum

number of nodes in any path from the root to a leaf node. We also examine the largest

degree of a single node, and observe that there are a large number of leaf nodes, which

have node degree zero. The maximum depth of an XML tree generally is quite low.

However, there are some documents that have a fairly deep tree, for example,

Treebank_e.xml has a maximum depth of 37.

Chapter 3 - Implementations of DOM and XML Compressors

 66

Table 3.7 - Description of XML files in our XML corpus taken from [73].

XML Documents: Description:

Elts.xml Describes chemical elements in the periodic table.

w3c1.xml W3C specification documentation

w3c2.xml W3C specification documentation

Mondial-
3.0.xml

World geographic database integrated from the CIA World Factbook, the
International Atlas, and the TERRA database among other sources. From
FLORID-Mondial case study

Partsupp.xml Part/Supplier relationship. TPC-H Benchmark, 10 MB version, in XML form.
Converted to XML by Zack Ives. From Transaction Processing Performance
Council (TPC).

Orders.xml Orders. TPC-H Benchmark, 10 MB version, in XML form. Converted to
XML by Zack Ives. From Transaction Processing Performance Council
(TPC).

xCRL.xml XML files using the Extensible Customer Representation Language format
(xCRL) on customer relationship management

Votable2.xml File created in the VOTABLE XML format defined for the exchange of data.

Nasa.xml Datasets converted from legacy flat-file format into XML and made available
to the public. From GSFC/NASA XML Project.

Lineitem.xml Line items. TPC-H Benchmark, 10 MB version, in XML form. Converted to
XML by Zack Ives. From Transaction Processing Performance Council
(TPC).

XPATH.xml Is not in [73], but uses the LocusXML schema to represent geospatial
information in an XML format, it stores annotated human genomic data.

Treebank_e.xml English sentences, tagged with parts of speech. The text nodes have been
partially encrypted because they are copyrighted text from the Wall Street
Journal. This document has a deep recursive structure. University of
Pennsylvania Treebank project.

SwissProt.xml SWISS-PROT is a curated protein sequence database, which strives to
provide a high level of annotations (such as the description of the function of
a protein, its domains structure, post-translational modifications, variants,
etc.), a minimal level of redundancy and high level of integration with other
databases. From ExPASy - SWISS-PROT and TrEMBL.

DBLP.xml The DBLP server provides bibliographic information on major computer
science journals and proceedings. DBLP stands for Digital Bibliography
Library Project. From the DBLP Homepage.

XCDNA.xml A cDNA library of a collection of cloned fragments converted into an XML
form.

Chapter 3 - Implementations of DOM and XML Compressors

 67

Table 3.8 – Size and node distribution according to DOM node type of all the XML documents

in our corpus. Assume all XML documents have a document node. (EL: Element, ATT:

Attribute, ER: EntityReference, ENT: Entity, COM: Comment, DT: DocType, NS: Namespace)

XML FILES SIZE

(MB)

NODES TREE NODES EL ATT TEXT ER ENT COM DT UNIQUE

NAMES

ELEM & ATTR

WITH NS

Elts 0.13 6927 5992 1897 936 3896 0 0 197 0 22 0

w3c1 0.22 18809 13299 4176 5190 7689 1430 321 1 1 64 4216

w3c2 0.19 16984 12169 3696 4495 7102 1367 321 1 1 63 3736

Mondial-3.0 1.1 104795 57373 22423 47423 34947 0 0 1 0 50 0

Partsupp 2.2 96004 96004 48001 1 48001 0 0 0 0 8 0

Orders 5.1 300004 300004 150001 1 150001 0 0 0 0 12 0

xCRL 8.5 333245 259423 98723 73823 155625 0 0 5073 0 112 0

Votable2 15.6 1991870 1991193 1150175 678 840989 0 0 27 0 29 2

Nasa 23.8 1481852 1425536 476646 56317 948888 0 0 0 0 70 30152

Lineitem 31.6 2045954 2045954 1022976 1 1022976 0 0 0 0 19 0

XPATH 49.8 2522571 2522572 840857 0 1681713 0 0 0 0 42 0

Treebank_e 82 7312613 7312613 2437666 1 4874945 0 0 0 0 251 0

SwissProt 109.5 10599084 8409226 2977031 2189859 5432193 0 0 0 0 99 0

DBLP 127.6 10595379 10191037 3332130 404276 6792148 66756 67 0 1 40 0

XCDNA 593.6 25221153 25221154 8407051 0 16814101 0 0 0 0 210 0

XMARK2MB 2.72 123,582 114404 40600 9178 73803 0 0 0 0 77 0
XMARK4MB 3.94 179,435 166114 58957 13321 107156 0 0 0 0 77 0
XMARK8MB 7.82 361,187 333867 118669 27320 215197 0 0 0 0 77 0
XMARK16MB 15.63 719,454 665188 236322 54266 428865 0 0 0 0 77 0
XMARK32MB 31.23 1,422,486 1315903 467275 106583 848627 0 0 0 0 77 0
XMARK64MB 63.10 2,877,347 2661006 945248 216341 1715757 0 0 0 0 77 0
XMARK128MB 124.8 5,689,748 5261055 1869171 428693 3391883 0 0 0 0 77 0
XMARK256MB 256.9 11,697,794 10816629 3842922 881165 6973706 0 0 0 0 77 0

Chapter 3 - Implementations of DOM and XML Compressors

 68

Table 3.9 - Statistics of XML documents trees for our corpus.

XML FILES TREE NODES LEAF MAX. DEPTH LARGEST

DEGREE

Elts 5992 68% 4 225

w3c1 13299 61% 16 412

w3c2 12169 62% 15 412

Mondial-3.0 57373 78% 6 1911

Partsupp 96004 50% 4 16001

Orders 300004 50% 4 30001

xCRL 259423 80% 19 3113

Votable2 1991193 58% 8 19999

Nasa 1425536 67% 9 4871

Lineitem 2045954 50% 4 120351

XPATH 2522572 67% 6 42075

Treebank_e 7312613 67% 37 112769

SwissProt 8409226 71% 6 100000

DBLP 10191037 67% 7 657717

XCDNA 25221154 67% 8 82237

XMARK2MB 114404 71% 13 1225
XMARK4MB 166114 71% 13 1785
XMARK8MB 333867 71% 13 3571
XMARK16MB 665188 71% 13 7241
XMARK32MB 1315903 71% 13 14281
XMARK64MB 2661006 71% 13 28865
XMARK128MB 5261055 71% 13 57121
XMARK256MB 10816629 71% 13 117299

3.3.1 Textual Data

Table 3.10 shows the statistics of the textual data gathered belonging to attribute values

and text nodes of files in our XML corpus. We report the percentage of text nodes in

the DOM tree, leaf nodes, average length of the individual text data and their total

length. For attribute nodes, we report the count of nodes, total length of attribute

values and average length of each attribute value.

There are a number of observations on the textual data. Firstly, textual data comprises

on average 46% of our XML file sizes. However, the proportion varies a lot depending

on whether the file is data centric or document-centric. For example, the textual data of

the Treebank_e.xml data-centric file accounted for 70% of the file size, whereas a

document-centric file such as Lineitem.xml only accounted for 19%.

Chapter 3 - Implementations of DOM and XML Compressors

 69

Table 3.10 – Statistics on textual data distribution. We report file size, text & attributes node

count, % leaf nodes in tree (% of text nodes) and average textual data length. For negligible we

use NEG.

File Size

Text Nodes Attribute Nodes

#nodes %Leaf %Text avg Text Len. #nodes Value Len. Avg

Elts 128KB 3896 68% 65% 7 25KB 936 14KB 15

w3c1 224KB 7689 61% 58% 15 116KB 5190 36KB 7

w3c2 200KB 7102 62% 58% 16 110KB 4495 26KB 6

Mondial-3 1.1MB 39.3K 78% 61% 11 392KB 47K 296KB 6

Partsupp 2.20MB 48.0K 50% 50% 23 1.1MB 1 NEG 8

Orders 5.1MB 150.0K 50% 50% 10 1.5MB 1 NEG 6

xCRL 8.5MB 155.6K 80% 60% 12 1.8MB 73K 1.2MB 17

Votable2 15.6MB 841.0K 58% 42% 7 5.2MB 678 7KB 10

Nasa 23.8MB 948.9K 67% 67% 16 14.4MB 56K 776KB 14

Lineitem 31.6MB 1.0M 50% 50% 6 6.0MB 1 NEG 8

XPATH 49.8MB 1.7M 67% 67% 8 13.0MB 0 0 0

Treebank_e 82MB 4.9M 67% 67% 12 57.4MB 1 NEG 8

SwissProt 109.5MB 5.4M 71% 65% 7 35.4MB 2.2M 13.2MB 6

DBLP 127.6MB 6.8M 67% 67% 10 64.0MB 404.2K 7.3MB 19

XCDNA 593.6MB 16.8M 67% 67% 16 255.8MB 0 0 0

The average individual data value length over all XML files for text nodes and attribute

values was approximately twelve and nine characters, respectively. The range of value

length reaches up to twenty-three characters in one file and as low as six characters long

in another file.

The proportion of leaf nodes present in all our files on average was 64%. This is

expected as we have already noted that there are large counts of text nodes in the XML

documents (see Table 3.8), and the fact that they cannot have children in the DOM. It is

interesting to note that text nodes comprise 91%-100% of the leaf nodes in our XML

files.

In summary, based on the statistics gathered in Table 3.8, Table 3.8 and Table 3.10

we make the following observations:

i. XML documents have many text nodes.

ii. average length of a text node is relatively low.

iii. XML documents often have large attribute node count.

Chapter 3 - Implementations of DOM and XML Compressors

 70

iv. unique XML names are few.

Trees have:

v. few node types that are not of the element, text or attribute node type.

vi. relatively low depth.

vii. large leaf node count.

some nodes with large degrees.

3.4 Summary

We have studied in detail the Xerces XML processor. Xerces provides an almost full

implementation of the DOM, but uses a lot of space. We have also studied in detail the

Saxon TinyTree data structure, which has reduced the space usage of representing the

tree to 20-30 bytes per node, even though it is limited to support of read-only

operations.

 The XML compressor XMill [48] appears to be the best for compression (closely

matched by XBZip [30]), and is much better than many generic text compressors. XMill

and XBZip minimize storage and transmission time, but querying is not directly

supported. We also studied a number of query-friendly XML compressors [3], [10],

[12], [30], [52], [55], [56] and [64], which answer queries inspecting only a small

fraction of the XML file and in principle only a fraction of the compressed file is

decompressed as well. However, only a few of these query-friendly XML compressors

offer fast support for DOM-like navigation, for example moving from a tag to its sibling

in one operation. Other compressors such as BPLEX [10] or XBZIPIndex [30] do

support navigation using the compressed representation. A detailed experimental

evaluation focusing on navigation speeds is not presented in either paper.

We have discussed DOM implementations such as DDOM [55] for data centric files

and SEDOM [75], which present a space efficient representation supporting both read-

only and update operations. Running time performance of the navigational operation is

reported only for the firstChild() operation, but it is stated in [75], the other

Chapter 3 - Implementations of DOM and XML Compressors

 71

navigation operations give similar response time pattern, even though they are

potentially slower, e.g. lastChild() .

We tried to get some understanding how best to represent XML documents by

examining the characteristics of a range of XML documents in our corpus.

 72

Chapter 4

Succinct Data Structures

Succinct, or highly space-efficient, data structures that support operations rapidly were

pioneered by Jacobson [44]. Succinct data structures represent certain data objects; for

each kind of object, we begin by giving their succinct lower bound, which is an

information-theoretic lower bound on the amount of space needed to represent the

object. We then discuss the corresponding data structures that use a small amount of

space in addition to the succinct bound to support a number of operations upon the data

object.

4.1 Information-theoretic lower bounds on space usa ge

The succinct lower bound on the space required to store an object can be obtained as

follows. Suppose that the algorithm knows that the object that it needs to represent is

one object from a set � of objects. Then, the algorithm must use tlg|�|x bits3 to represent

an object from � in the worst case (otherwise, the algorithm would represent two

distinct objects from � the same way). We now give examples of succinct lower bounds.

4.1.1 Bit-strings

The set of objects here is all bit-strings of length �. We assume that the algorithm

knows that it has to store a bit-string, and also knows the length of the bit-string. Since

there are 2� such bit-strings, taking the logarithm base two of this number, we get:

Proposition 4.1. The succinct lower bound for representing bit-string of length � bits is � bits.

Remark – The succinct lower bound of a bit-string indicates that the best possible

representation of a bit-string is given by writing the bit-string down itself. In other

words, the obvious representation is succinct.

4.1.2 Balanced Parentheses

The set of objects here is all balanced parentheses strings of length 2�. A balanced

parentheses string of length 2� is a string which contains � opening and � closing

parentheses, and which is balanced, i.e., within any prefix of the string, there are

3 We use lg / to denote logG /.

Chapter 4 - Succinct Data Structures

73

always at least as many opening parentheses as closing parentheses. We assume that the

algorithm knows it has to store a string of 2� balanced parentheses.

((())) () () () (()) () () (()) (() ())

Figure 4.1 – The set of balanced parentheses for � � 3.

It can be shown that there are 6� � A
��A WG�

� X such objects in the set, where 6� is the �th

Catalan number. For example, for � � 3, we have 6� � 11/4� ; 16 ; 5 ; 4�/6 � 5, and

there are five sequences of six balanced parentheses (Figure 4.1). Taking the logarithm

base 2 of 6� we obtain:

Proposition 4.2. The succinct lower bound for representing a balanced sequence of 2�

parentheses is 2� < ~1log �� bits.

4.1.3 Ordinal trees

The set of objects here is all ordinal trees with � nodes. An ordinal tree is an arbitrary

rooted tree where the children of each node are ordered. We assume that the algorithm

knows the number of nodes. It can be shown that there are 6��A ordinal trees on �

nodes. For example, there are 6� � 5 ordinal trees with � � 4 (see Figure 4.2). Since

the order of children matters, the third and fourth ordinal trees below are different.

Taking the logarithm base 2 of 6��A we obtain:

Proposition 4.3. The succinct lower bound for representing an ordinal tree with � nodes is

2� < ~1�JN �� bits.

Figure 4.2 – The set of ordinal trees for � � 4. Root node is shaded in grey.

Chapter 4 - Succinct Data Structures

74

Figure 4.3 - The set of binary trees for � � 3.

4.1.4 Binary Tree

The set of objects here is all binary trees with � nodes. A binary tree is a rooted tree

with each node having space for a pointer to a left and a right child node; nodes may

have only one child node (left or right), both, or no child nodes (leaf node). It can be

shown that there are 6� such objects in the set, for example, for � � 3, there are 6� � 5

binary trees on three nodes (see Figure 4.3).

Taking the logarithm base two of 6� we obtain:

Proposition 4.4. The succinct lower bound for representing a binary tree of � nodes is

2� < ~1log �� bits.

4.1.5 Prefix-sums

The set of objects here is a sequence � � 1/A, . . . , /�� of � positive integers that add up

to 4. We assume that the algorithm knows � and 4. It can be shown that there are

� � W��A
��A X such objects in the set. For example, for � � 3 and 4 � 6, we have � �

y!
G!�! � 10 sequences: (1,1,4), (1,4,1), (4,1,1), (1,2,3), (2,1,3), (2,3,1), (1,3,2), (3,1,2),

(3,2,1) and (2,2,2). Taking the logarithm base two of �, and using the inequality

W�
� X � V��

� Y�
 [20] we obtain:

Proposition 4.5. The information-theoretic lower bound for representing a sequence of �

positive integers that add up to 4 is tlg �x � � lg V�
� Y @ � lg K bits.

Chapter 4 - Succinct Data Structures

75

4.1.6 Succinctness vs Data Compression

Succinctness is related to, but distinct from, data compression. It can be applied to many

data types such as numeric values, strings, dictionaries, tree, etc. Representing random

data, the space usage of a succinct representation is usually good, but it misses out on

space savings for regular data, typically captured by compression algorithms, for

example, repeated tags in an XML document. In particular, the size of a representation

can be estimated quite accurately using the number of input entities in an instance of the

data structure.

4.2 Succinct Data Structure

We now describe the succinct data structures to represent the data objects given in

Section 4.1. The space usage of these data structures are designed to be close to the

corresponding succinct lower bounds and they support the desired operations rapidly. In

what follows, we say that L1�� � �1N1��� if lim�P� L1��/N1�� � 0. Thus, a space

bound of � @ J1�� bits means a space bound of 11 @ �� � bits, where � goes to

zero as � grows. For each data structure we state the operations it supports, the obvious

or naive solution, the succinct solution and its implementation details.

We give the implementation details because the implementations described here are

used together in the Succinct DOM application presented in Chapter 7. In addition,

some of these implementation details are not given in the published literature, hence the

space usage formulas we give in this chapter allow us to verify the space usage costs

stated for the DOM application.

4.2.1 Bit-Vector Data structure

The object to be represented is a bit-string / of length � (ref. Section 4.1.1). The

operations to be supported are:

• SELECT1(/,)): Given an index), returns the position of the)th 1 bit in /.

• RANK1(/,)): Returns the number of 1s to the left of, and including, position) in

/.

Chapter 4 - Succinct Data Structures

76

SELECT0 and RANK0 are defined analogously for the 0 bits in the bit-string; the

operations are collectively referred to as RANK and SELECT. We refer to a data

structure that supports (a non-empty subset of) RANK and SELECT operations on a bit-

string as a bit-vector.

For example, if / = 1 0 0 1 1 0 1 0 then SELECT1(/, 4) = 7 (the fourth 1 is in position

seven) and RANK1(/, 4) = 2 (there are two 1s in positions one to four). These operations

are inverse of each other, in that RANK1(/, SELECT11/,)�� �) and RANK0(/,

SELECT01/,)�� �) for the index) contained within /. Given RANK11/,)� � ? we

observe that RANK0(/,)) is computed for free as) < ?. Hence, by supporting RANK1,

we automatically support RANK0 without requiring any additional data structures.

Therefore, in this chapter when referring to RANK, it implies both the RANK1 and RANK0

implementation together, even though RANK1 is discussed.

Naive Representation

A naive representation to support RANK1 would be to explicitly store the count of 1s at

each position in the bit-string in an array of length �, with space usage � lg � bits. As

noted above, RANK0 would be automatically supported. For SELECT1 we would

explicitly store the position of each 1 in the bit-string in an array of length �A, where �A

is the count of 1s, therefore the space usage is �A lg � bits. Supporting SELECT0 is

analogous, but applied to the 0s. Supporting RANK and SELECT together requires 2� lg �

bits.

Succinct Solution

The following is known about a bit-string of length �:

Theorem 4.1. ([51], Chapter 37) There are bit-vector data structures that use � @ �1�� bits to

support SELECT and RANK operations in ~11� time.

Chapter 4 - Succinct Data Structures

77

Implementations

We used three bit-vector implementations developed by Naila Rahman; in what follows,

we refer to these as CJ, which is based upon ideas of [15], [16], [36] and [44], KNKP,

which is based upon ideas of [47], and CNEW, which is based upon ideas of Naila

Rahman [23]. CJ and KNKP implementations support the RANK and SELECT

operations, but we only describe the SELECT1 operation (SELECT0 works

analogously). CNEW supports RANK, and either SELECT0 or SELECT1, but not both.

The implementations and their parameters are aimed at practical performance, and some

implementations below even use ~1�� bits, rather than � @ �1�� bits, from an

asymptotic viewpoint. For all the bit-vector implementation we assume � � 2�G.

CJ Implementation

Let � be the size of the given bit-string �. The implementation uses the parameters �, ",

� and '¡ � 8�, which are all powers of two. The bit-string is stored in blocks of size "

bits and each block is divided into sub-blocks of size � bits, where � E " and " � 512.

� is limited to the value 8 or 16.

RANK: The implementation of the RANK operation is as follows:

• We use an array S of length �/", where S�)* stores the number of 1s in � up to

the start of the)th block. The space usage of S is 321�/"� bits.

• Two static lookup tables are created. The first table, which is of size 2¢ bytes,

maps all combinations of bits in a sub-block by the array index to the count of 1s

in that sub-block. The second table, which is of size � } �/8 bytes, stores a

single mask for each position in a sub-block. The total space used by the lookup

tables is 2¢ @ � } �/8 bytes.

Therefore, the total space usage of this RANK implementation is 321�/"� @ � bits,

including the bit-string but not the static lookup tables.

RANK1(�,)) is computed as follows: we first retrieve the sum of 1s for the blocks before

the)/"-th block by accessing the array element D[£)/"¤]. If) is not a multiple of " we

Chapter 4 - Succinct Data Structures

78

add to this value the count of 1s up to the sub-block where the)-th bit resides by using

the first lookup table. In the worst case we would do "/� < 1 table lookups. Finally in

the sub-block where the)-th bit resides (if) is not a multiple of �), we add the count of

1s up to and including the)-th bit using the second lookup table to mask out the bits

after) in the sub-block. Then we use the first lookup table to count the number of 1s in

the � bits up to).

SELECT: The SELECT1 operation is implemented as follows:

• For every �-th 1 in �, we store its position in the array �A. This array requires

32�A/� bits, where �A is the number of 1s in �.

• A large gap in � appears where the positions of the)�-th 1 and 1) @ 1��-th 1

differ by more than '¡ � 8�. We define a bit-string � of length �/" bits, which

stores at the ?th position a 1 bit indicating the start of a large gap somewhere in

the ?th block in �, and stores a 0 bit otherwise. We add to � data structures to

support the RANK operation. The space usage of � is 321�/"G� @ �/" bits. If

there is a large gap starting at position)�, we store in an array 6 the position of

the 1s from)� up to 1) @ 1�� < 1. The space usage of array 6 is 32 ; �A ; � bits,

where �A is the number of long gaps. Clearly, �A � �/'¡.

• We make use of the RANK lookup tables and introduce two new tables for

selecting the)th 1 in their relative sub-block position, these require � ; 2¢ bytes

each.

Since we choose '¡ � 8�, 6 takes up at most 32 ; � ; �/8� � 4� bits in the worst case.

At first sight this seems costly, however in general we observe this cost is not often

paid. However in Chapter 5 we will see an example of a bit-vector derived from an

XML document that has a large count of large gaps due to its unique structure. The cost

of large gaps is noticeable in the overall space usage.

SELECT1(�,)) is computed as follows. Letting # � £)/�¤ we get the position of the

£)/�¤ } �-th 1 by reading �A�#*. If) is a multiple of �, we return this value. If not, we

check if) is within a large gap. If �A�#* @ '¡ E �A�# @ 1* we know that the)th 1 is

Chapter 4 - Succinct Data Structures

79

within a large gap. Then we do a simple computation to find the offset F of) in values

)� … 1) @ 1�� < 1, namely we return 6[RANK(�, #)@F] as the position of the)th 1. If the

)th 1 is not within a large gap we use the RANK array S to check in which block) is

located. We now require the use of the RANK lookup tables; in the first lookup table we

count the number of 1s in each sub-block up to the sub-block of where the)-th 1 is

found. We keep the total of bits before the sub-block of the)-th 1 that is in �. The

second lookup table is used to count the number of bits up to and including the)-th 1

within its sub-block, which is achieved by a mask of the bits up to the)-th bit. Then we

use the first lookup table to count the bits, which is then added to the total and returned.

KNKP Implementation

Let � be the size of the given bit-string �. This implementation uses the parameters �, "

and �", which are all powers of two. Also, � E " E �", and the implementation

assumes �" � 256. The bit-string is stored in super-blocks of size �" bits and we

divide each super-block into blocks of size " bits, and each block is in turn divided into

sub-blocks of � bits.

RANK: The implementation of the RANK operation is as follows:

• We use an array S of length �/�", which stores as running totals, the count of

1s in � every �" bits. The space usage of S is 321�/�"� bits.

• We use an array + of length �/", which stores the running totals of the count of

1s every " bits. At the start of each super-block the totals are initialised to zero.

Since �" � 256 the values in + fit into a byte, therefore the space usage of + is

81�/"� bits.

• We use two static lookup tables. See CJ RANK implementation for details.

The total space usage of this RANK implementation (including the bit-string, but not the

static lookup tables) is 321�/�"� @ 81�/"� @ � bits.

RANK1(�,)) is computed similarly to CJ.

SELECT: The implementation of the SELECT1 operation is as follows:

Chapter 4 - Succinct Data Structures

80

• We use a bit-string z of length �A, where �A is the number of 1s in �. In z we

store at the)th position a 0 bit, if the)th 1 and 1) < 1�th 1 in � are contained

within the same block, and store a 1 bit otherwise. The first bit in z is always set

to 1. z is augmented with additional bits to support RANK. The space usage is

32W�A/1�"�X @ 81�A/"� @ �A bits.

• Conceptually, we use a bit-string P of length �/", which indicates all-zero and

non-zero blocks (i.e. blocks that contain at least one 1) in � using a 0 bit and 1

bit, respectively. � need not be maintained, we only need to support the

SELECT operation on � as follows:

o We use a bit-string �, which is similar to z, but applied to �. Its length is

the number of 1s in � and is at most �/". We define ��0* as 0 if

��0* � 1, and 1 otherwise. � is augmented with additional bits to

support RANK. If # is the number of 1s in � (this is the same as the

number of non-zero blocks in �), the space usage is 321#/1�"�� @
81#/"� @ # bits. The operation RANK1� ,)� indicates the number of

clumps before the)th 1 bit in �, where a clump is as a group of

contiguous 0s in �.

o We use an array called the clump array of length $A, where $A is the

number of clumps in �. The)th index in the array stores the accumulated

count of zeros up to the ith clump in �. The space usage is 32$A bits and

in the worse case $A � �/2"; however in practice $A is small, hence the

array is often small.

To compute SELECT11�,)�, we first compute RANK1�,)� , which reports the

number of clumps before), then we compute the number ? of 0s in front of the

)th 1 bit using the clump array. Then SELECT11�,)� �) @ ?.
The total space usage of SELECT (including the bit-string �) is � @ 321�A/1�"�� @
81�A/"� @ 321#/1�"�� @ 81#/"� @ 32$A bits.

Chapter 4 - Succinct Data Structures

81

The computation of SELECT is summarised as follows: RANK(z, U) gives the number

of non-zero blocks up to and including the block containing the Uth 1 bit of �.

SELECT1(�,RANK(z, U)) then gives the block containing the Uth 1 bit. Further scanning

of the block is required using lookup tables, to calculate SELECT11�, U�.

CNEW Implementation

Let � be the size of the given bit-string �. This implementation uses parameters � and

", which are both powers of two. We divide the bit-string into blocks of size " bits

(where " � 256) and further divide the blocks into sub-blocks of size �. We obtain the

extracted bit-string �¥ of length �’ (cf. [47]) by removing all blocks in � that contain no

1s (such blocks are called all-zero blocks). The blocks that remain in � are called

extracted blocks.

RANK: The implementation of the RANK operation uses the following data structures:

We use a bit-string � of length �/". We store at the)-th position a 0 bit if the)-
th block in � is an all-zero block, otherwise a 1 bit is stored. We augment this

bit-string with additional bits to support RANK (using the CJ implementation).

The original bit-string is not maintained as it can be reconstructed from � and �’.
RANK11�,)� is computed as follows: we get the count of extracted blocks before) by

U � RANK1 1�, £)/"¤�, map position) to its position)’ in �’ by computing)’ �) <
 1£)/"¤ < U� } ". If) was in an all-zero block (which we can check by looking at

��£)/"¤*) then it does not exist in �’, in this case we set)’ � U" < 1. In each case,

we return RANK11�’,)’� as the answer.

The implementation of RANK on �’ is done similarly to the CJ implementation, except

that the array S is replaced by the following array:

For each block in � , we store the number of 0s up to the start of the block that was in

� in an array � of length �¥/", requiring 321�¥/"� bits.

Chapter 4 - Succinct Data Structures

82

Table 4.1 – Space usage of the three bit-vector implementations used. We denote � and �’ as

the length of the bit-strings � and �’, respectively, where � � � . �B and �A are the count of 1s

and 0s present in the bit-string, respectively. �, �, " and �" are parameters in the data

structures. �B, �A are the number of the zeros and ones large gaps, respectively. In KNKP the

term # is the number of extracted blocks in the input bit-string. The terms $B and $A are the sizes

of the clump array.

 CJ KNKP CNEW
Input bit-
string

� � �

RANK
directory

32�/" 321�/�"� @ 81�/"� 321�/"G� @ 32� /"

SELECT0
directory

32�B
� @ �

" @ 32�
"G

@ 32��B

321�A/�"� @ 81�A/"� @
321#/�"� @

81#/"� @ 32$A

NA

SELECT1
directory

32�A
� @ �

" @ 32�
"G

@ 32��A

321�A/�"� @ 81�A/"� @
321#/�"� @

81#/"� @ 32$B

321�A/�� @ 8�¥/"

The change is made to help with SELECT1 as we will see later. We observe that the

number of 1s up to the start of the)th block in �’ can easily be calculated from ��)*, as

the number of 0s in �’ up to the start of the ith block is just ��)* < 1) < U� } ".

SELECT: We now come to SELECT1, for which we store the following information:

• We store the index (in �) of the location of the)� @ 1-st 1, for) � 0, 1, . . . , £�A/
�¤, in an array �, where �A is the number of 1s in the bit-string. As each block in

� contains at least a single 1, adjacent entries in � differ by at most �" < 1. The

array � requires 321�A/�� bits.

• An array "6 of length �’/" stores 8-bit values that give the count of 1s from the

start of the block to the first pointer from � that lies in the block.

SELECT1(�,)) is computed as follows. We first retrieve the position of the 1£)/�¤ }
� @ 1�-st 1 by accessing ��£)/�¤* @ ��£)/�¤*. If this is the required answer it is

returned. Otherwise, suppose that ��£)/�¤* lies in block #. We first search from the start

of block # for the block containing the)-th 1 as follows:

Chapter 4 - Succinct Data Structures

83

• We move to the start of block #, and determine the number of 1s to the start of

block #. This is done by subtracting "6�#* from) (assuming ��£)/�¤* is the first

pointer from � in #, otherwise we further subtract as many multiples of � as

necessary).

• We check if the)-th 1 lies in block #. Note that the number of 0s in block #

equals 1��# @ 1* < ��#*� mod " (since any all-zero blocks between blocks #

and # @ 1 would contribute exactly " 0s to ��# @ 1*). From this we calculate

the number of 1s in block # and therefore the number of 1s up to the start of

block # @ 1.

This allows us to determine whether the)-th 1 is in block # or not. If not, we

repeat the process with blocks # @ 1, # @ 2, . . ., until the right block is found. In

the worst case, � blocks may have to be checked.

Once the block containing the)-th 1 has been found we locate the 1 within the block

using table lookup on sub-blocks, as described previously for the CJ implementation.

In Table 4.2, we evaluate the space usage of the formulas for the bit-vector

implementations (see formulae in Table 4.1) by giving the parameters certain values.

CNEW becomes better than KNKP, when we have many all-zero blocks. The space

usage of CJ and KNKP is dependent on the number of large gaps and extracted blocks,

respectively, but CNEW has no hidden costs in the worst case.

For the bit-vectors CJ, KNKP and CNEW, the running time of the RANK operation is

a little slower than a memory access and the SELECT operation is 2.5 times slower than

RANK. In Chapter 5 and 6, we compare the running times of the bit-vectors (where

space usage is comparable) for real-life and random bit-strings.

Chapter 4 - Succinct Data Structures

84

Table 4.2 – Assume a bit-string with �/2 1s. We show the space usage of the three bit-vector

implementations. For CJ and CNEW, the parameter values are " � 64, � � 32 and '¡ � 256,

and for KNKP we use 256-bit superblocks and 64-bit blocks. Results are based on Table 4.1

formulas.

 CJ KNKP CNEW
Input bit-string � � �
RANK directory 0.5� 0.25� 0.5�¥ @ 0.008�
SELECT0
directory

0.52� @ 1024�B 0.625� @
0.25# @ 32$A

NA

SELECT1
directory

0.52� @ 1024�A 0.625� @
0.25# @ 32$B

0.125� @ 0.5�

1 2 3 4 5 6 7 8 9 10 11 12 13 14

(() (() (())) ())

Figure 4.4 - Parentheses string sequence.

4.2.2 Balanced parentheses string

The object to be represented is a balanced parentheses string � (ref. Section 4.1.2), and

the operations to be supported are:

• ENCLOSE(s, i): Return the position of the opening parenthesis of the

parentheses pair that most immediately encloses the opening parenthesis in

position i of s.

• FINDOPEN(s, i): Return the position of the opening parenthesis that matches the

closing parenthesis in the position i of �.

• FINDCLOSE(s, i): Return the position of the closing parenthesis that matches

the opening parenthesis in position i of �.

• INSPECT(s, i): Return the state of the i-th parentheses of s, which is either an

opening or closing parenthesis.

For example in Figure 4.4 the operation ENCLOSE1� , 7� � 4, the opening parenthesis

at position seven is enclosed by the parentheses opening at position four and closing at

Chapter 4 - Succinct Data Structures

85

position eleven. In operation FINDCLOSE1�, 4� � 11, here the closing parenthesis at

position eleven is the matching parenthesis to the opening parenthesis at position four.

Naive Representation

A naive representation to support the above operations would require two arrays of

length 2� each. In the first array, the values would store the index of the matching

closing (opening) parenthesis, depending on whether we are at an opening (closing)

parenthesis. Therefore we compute ? �FINDCLOSE()) by returning the value ? at array

position). If) E ? then ? is the closing parenthesis of), else ? is an opening parenthesis

of), and we therefore return null. We compute ? �FINDOPEN()) by accessing the value

at index). If) ¦ ? then ? is the opening parenthesis of), else ? is a closing parenthesis of

), therefore return null. To compute INSPECT()) we check the value at the)th index. If

this is less than) then we know we are at an opening parenthesis, otherwise a closing

parenthesis. In the second array at index) we store the index of the enclosing

parenthesis, therefore supporting ENCLOSE. The total space required is 4� lg � bits.

Succinct Solution

The following is known about a balanced parentheses string of length 2�:

Theorem 4.2. There are balanced parentheses data structures that use 2� @ �1�� bits to

support the above operations in ~11� time.

Jacobson [44] first considered this problem and gave an ~1��-bit representation. Munro

and Raman [54], and later Geary et al. [36], gave 2� @ �1��-bit representations that

support the parentheses operations in ~11� time.

Implementations

The best implementation [36] uses a parameter ", which can be set to 32, 64 or 128.

Larger values of " cause the data structure to use less space but run more slowly. The

space usage reported in [36] is summarised in Table 4.3. The space usage depends upon

the pioneer density (PD), which is a parameter that depends upon the particular

parenthesis sequence being represented. We take PD � 2.4, as this value was shown to

Chapter 4 - Succinct Data Structures

86

Table 4.3 – Space usage of implementations of Jacobson’s (Jacob) and Geary et al.’s

Parentheses DS (New), taken from Figure 6 in [36]. The units are bits per node (parenthesis

pair). PD stands for pioneer density.

Blocksize

PD=4 PD=2.4

Jacob New Jacob New

32 16.00 8.34 12.80 5.75

64 9.00 4.65 7.40 3.73

128 5.50 3.24 4.70 2.86

256 3.75 3.35

be realistic for parenthesis sequences derived from real-world XML files (in the worst

case, PD � 4). We remark here that although all operations are asymptotically O(1)

time, they vary in speed: INSPECT is the fastest, FINDOPEN/FINDCLOSE are next,

and ENCLOSE is the slowest, being typically 5-6 times slower than FINDOPEN.

4.2.3 Binary Trees

The object to be represented is a binary tree (ref. Section 4.1.4), and the operations to be

supported are:

• LEFT-CHILD (/): Return the left child of node /, if the node does not exist,

then return null.

• RIGHT-CHILD (/): Return the right child of node /, if the node does not exist,

then return null.

• PARENT(/): Return the parent of node /, if no parent exists, then return null.

Naive Representation

A naive representation of a binary tree is to use three pointers per node connecting to its

left-child, right-child and parent node. Given we have � nodes in the tree the space

usage required is 3� lg � bits.

Chapter 4 - Succinct Data Structures

87

Succinct Solution

Clark [15] and Jacobson [44] gave a succinct representation of a binary tree with �

nodes:

Theorem 4.3. There are binary tree representations that use 2� @ �1�� bits to support

the above operations in ~11� time.

This representation uses a level-order bit-string representation of a binary tree.

Consider the binary tree in

Figure 4.5 (a). To form the bit-string representation of this tree, we write a 1 in each

node. We then extend the binary tree by replacing all null pointers by pointers to

dummy “external” nodes, and we write a 0 in each dummy external node (see

Figure 4.5 (b)). The bit-string is shown in

Figure 4.5 (c). Clearly, this representation requires 2� @ 1 bits.

This representation, like all succinct tree representations, imposes a particular

numbering on the nodes of the tree. In this case, a node is numbered by the position in

which the corresponding 1 appears in the bit-string. For example, node N is given the

number eight. Note that node numbers are integers from 1 to 2� @ 1 and nodes are not

numbered consecutively (other succinct tree representations also have node numberings

with these properties).

Given this numbering, we use one of the auxiliary structures given in Section 4.2.1 that

support RANK and SELECT operations on the bit-string. We then support the required

navigational operations on the tree as follows, where � is the bit-string representing the

tree:

• LEFT-CHILD (/) � 2 ; RANK1(�, /)

• RIGHT-CHILD (/) � 2 ; RANK1(�, /)+1

• PARENT(/) � SELECT1(�, £//2¤)

Chapter 4 - Succinct Data Structures

88

Figure 4.5 - (a): Binary Tree example, (b): Labelled Extended tree and (c): Bit-string

representation.

4.2.4 Ordinal Trees

The object to be represented is an ordinal tree (ref Section 4.1.3) and the operations to

be supported are:

• FIRST-CHILD ()): Return the first child of the node),. If the node does not

exist, then return null.

• LAST-CHILD ()): Return the last child node of the node). If the node does not

exist, then return null.

• PREVIOUS-SIBLING ()): Return the previous sibling of the node). If no

previous-sibling exists then return null.

• NEXT-SIBLING ()): Return the next sibling node of i. If no next-sibling exists

then return null.

• PARENT()): Return the parent node given that we are at the ith node. If we are at

the root node then return null.

Naive Representation

A naive representation of the ordinal tree is to use three pointers per node connecting to

its first-child, parent and next-sibling node. Given we have � nodes in the tree the space

(a)
(b)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1 1 1 1 1 0 1 1 1 0 0 1 0 0 0 0 0 0 0
a b c d e f g h i

 (c)

Chapter 4 - Succinct Data Structures

89

usage is 3� lg � bits. Given that an ordinal tree can have arbitrary number of children at

each node we observe that the PREVIOUS-SIBLING and the LAST-CHILD

operations can be slow, if we were to use only 3 pointers per node. For example, to find

the last child node of a node with large degree, we would have to traverse through the

first child node and all its sibling nodes, before we reach the last child node. A simple

but costly improvement would be to have two more pointers per node, connecting to the

last child and previous-sibling nodes.

Succinct Solution

The following is known [44] about an ordinal tree with � nodes:

Theorem 4.4. There are ordinal tree representations that use 2� @ �1�� bits to support the

above operations in ~11� time.

The performance bounds in Theorem 4.4 are achieved by a number of data structures.

We outline three different representations of an ordinal tree. The numbering of the

nodes is given differently in all three representations.

Level-order unary degree sequence representation (LOUDS)

The LOUDS bit-string (LBS) is defined as follows [44]. We begin with an empty string

and visit every node in level-order, starting from the root. As we visit a node � with

+ � 0 children, we append §d¨ to the bit-string. Finally, we prefix the bit-string with

a §¨, which is the degree of an imaginary ‘super-root,’ seen as the parent of the root of

the tree (see Figure 4.7). Therefore we get:

Proposition 4.6. The LBS of an ordinal tree � with n nodes has n 1s and � @ 1 0s.The i-th

node of � in level-order is represented twice: as the)-th 1, which lies within the encoding of the

degree of its parent, and is associated with the edge that attaches it to its parent, and also as the

) @ 1-st 0, which marks the end of its own degree sequence.

Chapter 4 - Succinct Data Structures

90

Figure 4.6 – Ordinal tree example.

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Ones-based a b c d e f g h i

Zero-based a b c d e f g h i

 1 0 1 1 1 1 0 0 1 1 0 0 1 0 0 1 0 0 0

Figure 4.7 – The LBS of the ordinal tree of Figure 4.6. Zeros-based and ones-based
numberings.

In Figure 4.7, the nodes of the tree in Figure 4.6 are numbered (again, using non-consecutive

integers from 1 to 2� @ 1) in one of two different ways suggested by Proposition 4.6:

Ones-based numbering: Jacobson [44] suggested numbering the)-th node in level-

order by the position of the)-th 1 bit. This gives a node a number from {1, . . . , 2� @ 1}.

Table 4.4 indicates how the navigational operations might work on the ones-based

numbering.

Zeros-based numbering: Geary [34] suggested numbering the)-th node in level-order

by the position of the 1) @ 1�-st 0 bit, namely the bit that ends the unary sequence of

that node’s degree. Table 4.4 indicates how the navigational operations might work on

the zeros-based numbering.

Chapter 4 - Succinct Data Structures

91

Table 4.4 - Navigation operations for zeros-based and ones-based numberings (� is the LBS).

Ones-based numbering Zeros-based numbering

parent(x)
 if x = 1 return NULL
 else return

SELECT1(A, RANK0(A,x))

parent(x)
 if x = 1 return NULL
 let y:= SELECT1(A, RANK0(A,x)-1)

 return SELECT0(A, RANK0(A,y)+1)

first-child(x)
 let y :=
SELECT0(A, RANK1(A,x))+1
 if A[y] = 0 then return NULL
 else return y

first-child(x)
 if (A[x-1]=0) then return NULL
 else

 let y:= SELECT0(A, RANK0(A,x)-
1)+1
 return

SELECT0(A, RANK1(A,y)+1)

last-child(x)
 let y
:= SELECT0(A, RANK1(A,x)+1)-1
 if A[y] = 0 then return NULL
 else return y

last-child(x)
 if (A[x-1]=0) then return NULL
 else SELECT0(A, RANK1(A,x)+1)

next-sibling(x)
 if A[x+1] = 0 then return NULL
 else return x+1

next-sibling(x)

 let y := SELECT1(A, RANK0(A,x)-
1)+1
 if A[y] = 0 then return NULL

 else return SELECT0(A,y+1)

previous-sibling(x)
 if A[x-1] = 0 then return NULL
 else return x-1

previous-sibling(x)
 let y := SELECT1(A, RANK0(A,x)-
1)-1
 if A[y] = 0 then return NULL else
 return

SELECT0(A, RANK0(A,y+1))

Figure 4.8 - Parentheses string of the ordinal tree in Figure 4.6.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
a b c f g i d e h
(() (() (())) () (()))

1 1 0 1 1 0 1 1 0 0 0 1 0 1 1 0 0 0

Chapter 4 - Succinct Data Structures

92

Table 4.5 – Navigation operations for ordinal tree via the balanced parentheses representation.

� is the parentheses bit-string and ��)* retrieves the bit at position) in the bit-string �. Let an

opening (closing) parenthesis be represented by 1(0) is the bit-string.

Parentheses (node represented by opening parentheses)

parent(x)

 return ENCLOSE(A, x)

next-sibling(x)

 z := FINDCLOSE(A, x)
 if A[z+1]=1 then
 return z+1
 else return NULL

first-child(x)
 if A[x+1]=1 then
 return x+1
 else return NULL

previous-sibling(x)
 if A[x-1]=0 then
 return FINDOPEN(A, x-1)

 else return NULL
last-child(x)
 if A[x+1]=1 then
 z:=FINDCLOSE(A, x)
 return FINDOPEN(A, z-
1)
 else return NULL

Balanced Parentheses representation

The representation of an ordinal tree as a balanced parentheses string is defined as

follows. Traverse the tree in depth-first order, and output an opening parenthesis when a

node is first encountered and a closing parenthesis once all its descendants have been

visited (see Figure 4.8). The bit-string at the bottom of Figure 4.8 encodes the

parentheses sequence using the mapping “1” � 1 and “�” � 0.

Jacobson [44] suggests numbering the)-th node in depth-first order by the position of

the)-th “1” parenthesis. This gives a node the number from {1, . . . , 2�}. Table 4.6

indicates how the navigational operations might work with this representation. It is

possible to represent the nodes by their closing parentheses or by a pair of parentheses

positions, but these appear to have no particular advantage.

Chapter 4 - Succinct Data Structures

93

Figure 4.9 – (a): Binary tree equivalent of the ordinal tree in Figure 4.6. (b): its binary tree bit-

string.

Binary Tree succinct representation

An ordinal tree can be transformed into a binary tree in a one to one correspondence.

The steps required are as follows:

• Ordinal tree: first child « binary tree: left child

• Ordinal tree: right sibling « binary tree: right child

We represent the resulting binary tree (Figure 4.9) using the representation of Section

4.2.1. The resulting ordinal tree representation uses 2� @ �1�� bits and the ordinal tree

navigation operations are simulated via the binary tree operations as shown in Table 4.6.

As can be seen, the operations FIRST-CHILD , NEXT-SIBLING and PREVIOUS-

SIBLING are supported in ~11� time, but LAST-CHILD takes ~1+� time, where + is

the degree of a node, and PARENT takes ~1)� time, if called at a node that is the)-th

child of its parent. The node numbering is by level-order in the binary tree, which is

neither depth-first nor level-order in the ordinal tree.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
a b c f d g e i h
1 1 0 0 1 1 1 0 1 0 1 1 0 1 0 0 0 0 0

(a)

(b)

Chapter 4 - Succinct Data Structures

94

Table 4.6 – The Navigation operations for ordinal tree via binary tree. � is the bit-string. Caps

represent the binary tree operations; these operations are PARENT (SELECT call), LEFT-

CHILD (RANK call) and RIGHT-CHILD (RANK call).

Ordinal tree via binary tree

parent(x)
 if x=1 return NULL
 while(x mod 2 !=0)
 x:=PARENT(A, x)
 return PARENT(A, x)

next-sibling(x)
 y:=RIGHT-CHILD(A, x)
 if A[y]=1 then return y
 else return NULL

first-child(x)
 y:=LEFT-CHILD(A, x)
 if A[y]=1 return y
 else return NULL

previous-sibling(x)
 if (x mod 2) !=0
 return PARENT(A, x)
 else
 return NULL

last-child(x)
 y:=LEFT-CHILD(A, x)
 if A[y]=0 return NULL
 else
 while(A[y]!=0)
 x:=y
 y:= RIGHT-CHILD(A, x)
 return x

4.2.5 Succinct Prefix sums

The object to be represented is a sequence of positive integers (ref. Section 4.1.5) � �
1/A, … , /��, where ∑ /���A � 4. The operation to support is as follows:

• SUM(�, ?): Returns ∑ /�
I
�A .

For example, if � � 1, 1, 3, 4, 5 then SUM1�, 3� � 5.

Naive Representation

A naive representation to support the SUM operation would be to explicitly store each

prefix sum value, requiring �tlg 4x bits.

Succinct Solution

We use the following notation. For a sequence �, its length is denoted by |�| and, if

|�| � � then its components are denoted by /A, … , /�. The following theorem was

essentially shown by Elias [27]:

Chapter 4 - Succinct Data Structures

95

Theorem 4.5. A sequence � with |�| � � and ∑ /�
�
�A � 4 can be represented in � lg14/�� @

~1�� bits so that SUM1�,)� can be computed in ~11� time.

The performance bounds are achieved by the following data structure. Let U� �

SUM1�,)� for) � 1, . . . , �. Let Q be an integer, 1 � Q E lg 4:

(i) We use a bit-string � of length �1lg 4 < Q� bits, which stores the lower-order

lg 4 < Q bits of each U� value concatenated together.

(ii) We use a bit-string � of length � @ 2® bits. The multi-set of values formed by

the top-order Q bits is represented by coding the multiplicity of each of the

values 0, . . . , 2® < 1 in unary using 0s, with the 1s as separators. The unary

values are concatenated together (� has � 0s and 2® 1s).

We choose Q � £lg �¤, so |�| � 31��. We augment this bit-string with additional bits

to support SELECT0 (using an implementation from Section 4.2.1). SUM(�, ?) is

computed as follows: we first retrieve the lower-order bits represented in � by the

substring starting at pointer # � 1? < 1� } 1lg 4 < Q� @ 1 and ending at pointer

U � ?1lg 4 < Q�. The top-order bits are retrieved by computing SELECT01?� < ? on �.

The lower and upper order values are concatenated, to give UI, which is returned in

311� time.

We now give an example of the prefix-sums solution. Letting

� � 3, 3, 2, 4, 2, 3, 1, 2, 2, 3, 9, 1, 7, 7, 5, 10, � � 16 and 4 � 64. Let the sequence � be

the prefix-sums of �, that is, � � 3, 6, 8, 12, 14, 17, 18, 20,22, 25, 34, 35, 42, 49, 54, 64.

We choose Q � £lg 16¤ � 4, so we take the four top-order bits of the numbers in �, see

Figure 4.10 (a). We show the multiplicity of the numbers in � in Figure 4.10 (b) and

encode them in Figure 4.10 (c). In this example we require 16 @ 2¯ � 32 bits to

represent �. Figure 4.10 (d) shows the bit-string �.

Chapter 4 - Succinct Data Structures

96

Figure 4.10 – (a) The binary representation of the numbers in �. We circle the top-order bits of

each number. (b) The multiplicity of the top-order numbers – given indirectly by listing their

decimal values. (c) Top-order bits encoded. (d) Lower-order bits of (a) concatenated together.

The SUM(�, 6) operation on the representation in Figure 4.10 is computed follows:

SELECT01�, 6� < 6 � 4, the binary representation of 4 is 0100, which gives the top-

order bits of the answer. We now concatenate the lower-order bits in � to the top-order

bits, by extracting the substring of � starting at position 11 and ending at position 12,

which can be done in ~11� time. We return 0100 01 � 17.

4.3 Summary

We have given the succinct lower bounds for the representation of the following data

objects: bit-strings, balanced parentheses, ordinal trees, binary trees and prefix-sums

values.

Representing XML documents in succinct representations is an area of research that

needs to be explored. In Chapter 5, we provide a study of succinct tree representations

and show engineered representation of these to represent XML trees. In Chapter 6, we

investigate the problem of the storage retrieval of the textual data in XML documents;

here we employ succinct prefix sums representation and other engineered

representations to solve the textual retrieval problem. In Chapter 7, we provide a more

(b) (a

0 0 0 0 0
0 0 0 1 1
0 0 1 0 2
0 0 1 1 3
0 0 1 1 3
0 1 0 0 4
0 1 0 0 4
0 1 0 1 5
0 1 0 1 5
0 1 1 0 6
1 0 0 0 8
1 0 0 0 8
1 0 1 0 10
1 1 0 0 12
1 1 0 1 13
1 1 1 1 15

0 0 0 0 1 1
0 0 0 1 1 0
0 0 1 0 0 0
0 0 1 1 0 0
0 0 1 1 1 0
0 1 0 0 0 1
0 1 0 0 1 0
0 1 0 1 0 0
0 1 0 1 1 0
0 1 1 0 0 1
1 0 0 0 1 0
1 0 0 0 1 1
1 0 1 0 1 0
1 1 0 0 0 1
1 1 0 1 1 0
1 1 1 1 1 1

(d) - Lower-order bits:
11 10 00 00 10 01 10 00 10 01 10 11 10 01 10 11

(c) - Top-order bits:
01010100100100101100110110101101

Chapter 4 - Succinct Data Structures

97

comprehensive study of the succinct representation to support a full XML DOM

application.

We have described succinct data structures that are able to support operations, usually

in 311� time, upon the data object using space relatively close to the succinct lower

bound. In particular, we studied several representations of ordinal trees that were

implemented using the balanced parentheses, binary tree and LOUDS tree

representation. A careful analysis of the navigational operations for succinct tree

representations is provided.

The ideas of RANK and SELECT operational support on the bit-string in the succinct

representations underpin the potential speed improvements of succinct data structures in

the area of XML processing compared to other XML processors.

 99

Chapter 5

Engineering Succinct Tree Representations

In this chapter we investigate how best to represent the tree structure of XML

documents. We begin with some motivations for the study of succinct tree structures. In

Section 5.2, we summarise the basic characteristics of the tree structure of XML

documents, and also the DOM operations that impact upon the tree structure, in order to

derive requirements for our succinct tree representations. In Section 5.3 and 5.4, we

discuss our work on engineering succinct tree representations to support the

requirements, and in Section 5.6, we evaluate our implementations empirically. Parts of

this chapter were published as [22].

We obtain the tree structure of an XML document by removing:

• Non-tree nodes (i.e. attribute nodes).

• Textual data (i.e. text node, comment or CDATASection values).

• Element labels and node type information.

For example, the tree structure of the XML document in Figure 5.1 (a) is shown in

Figure 5.1 (b). Note that the tree structure of an XML document has the following

properties:

(i) It has a root, and the parent-child relationship between two connected nodes is

therefore well-defined.

(ii) The number of children of a node is unbounded.

(iii) The order of children matters, since changing the order corresponds to a

different document.

Thus, the tree structure of an XML document can be modelled as an ordinal tree (ref.

Section 4.1.3). In this chapter, we use � to denote the number of nodes in the tree

structure.

5.1 Motivation

As noted in Chapter 3, existing DOM implementations represent the tree structure using

3 < 5 pointers per node, or 96 to 320 bits per node (assuming pointers are 32 or 64 bits

Chapter 5 - Engineering Succinct Tree Representations

100

<library>
 <book catalogue=”XML”>
 <author>OND</author>
 <title>SDOM Design</title>
 <year>2007</year>
 </book>
 <book catalogue=”XML”>
 <author>Jones</author>
 <title>The DOM
Spec</title>
 </book>
</library>

(a)

 (b)

Figure 5.1 - (a): Example XML document. (b): XML tree structure of (a).

long). In theory, it is possible to represent a tree structure with � nodes using just

2� @ �1�� bits and support navigation in ~11� time (see Chapter 4). However, a

careful investigation of the practical performance of the representations is justified,

because:

• Only the parentheses representation has been investigated before. Other,

potentially practical, representations like the LOUDS and the binary tree

representations have not.

• The J1�� term in the space usage is significant in practice. The space usage of

the succinct tree implementations in [36] ranges from 2.87 bits to 5.75 bits per

node, even though the theoretical space usage is 2� @ �1�� bits.

• There has been no attempt to study these representations for the specific task

of representing the tree structure of XML documents, which have many

unique characteristics.

Chapter 5 - Engineering Succinct Tree Representations

101

5.2 XML and DOM Characteristics

The characteristics of XML files and the DOM specification are summarised in Chapter

2 and Chapter 3.

5.2.1 DOM functionality

DOM supports navigation with the operations parent() , firstChild() ,

nextSibling() , previousSibling() and lastChild() . These are contained in

the DOM Node API, in addition to the operations to retrieve information associated

with each node, for example, the getNodeName() and the getNodeType()

operations returns the name and the type of a node, respectively. The

getNodeValue() operation returns the textual value of the node that has a value.

Traversals are an important navigation operation in DOM: they allow an entire XML

document to be read and processed. The two main orders of traversal (described in

Chapter 2) are:

• Document order, which corresponds to pre-order.

• Reverse document order.

Traversals can be implemented by a user via the navigational operations provided in the

Node API. Traversals can be either recursive or non-recursive: the pseudocode of the

non-recursive (document order) traversal is shown in Table 5.1.

We recall that a traversal in DOM uses the tree navigational operations, such as

firstChild() and nextSibling(), which are for recursive and non-recursive

traversals. A non-recursive traversal requires, in addition, the parent() operation.

DOM provides direct support for the tree navigation operations in the TreeWalker

class, and in addition, has other navigational operations to traverse the tree. We come

back to this in Chapter 7. In order to understand the performance of the tree traversals

(in our context) using the tree navigation operations, we summarise in Table 5.2 the

total number of calls required to traverse a tree recursively and non-recursively. The

traversals applied are in document-order and in reverse document-order.

Chapter 5 - Engineering Succinct Tree Representations

102

Table 5.1 - Pseudocode for the non-recursive document-order traversal of a tree �.

Non-recursive document-order traversal:
Traverse(T){
 current:=root(T)
 direction:=DOWN
 while(current!=NULL){

 switch(direction){
 case DOWN:
 /* Code to process the node’s associated
information */

 if(firstChild(current)!=NULL){
 current:= firstChild(current)
 }else
 direction:=HORIZONTAL

 case HORIZONTAL:
 if(nextSibling(current)!=NULL){
 current:= nextSibling(current)
 direction:=DOWN
 }else
 direction:=UP

 case UP:
 current:=parent(current)
 direction:=HORIZONTAL
 }
 }
}

Chapter 5 - Engineering Succinct Tree Representations

103

Table 5.2 - Count of navigational operations called in the Traversals: document-order (DFO)

that is recursive (Rec) or non-recursive (Non-rec), also reverse DFO that is recursive or non-

recursive. � is the count of nodes in the tree, and � is the count of non-leaf nodes.

Navigation
operation

Traversal

DFO Reverse DFO

Rec Non-rec Rec. Non-rec

firstChild � � - -

nextSibling � � - -

Parent - � - �

previousSibling - - � �

lastChild - - � �

5.2.2 XML Document Characteristics

The tree structures of the XML documents we have gathered in our XML corpus,

generally have a large count of leaf nodes. On average over all files, about 2/3 of nodes

were leaves, the minimum count of leaves was in Orders.xml which had 1/2 of its

nodes as leaves. The file with the most leaves was xCRL.xml , which had 4/5 of its

nodes as leaves. In addition, we observe the number of nodes that appear at the last

(rightmost) child node of their parent is the same as the number of non-leaf nodes. On

average about 1/3 of the nodes in the tree are non-leaf nodes.

The average count of child nodes in the tree (the degree) of an XML document is

clearly just under one. However, we observe in each XML document that there exists at

least one node with a large degree relative to the file size. For example, the file

Partsupp.xml with 96,004 tree nodes, has a node with degree of over 2A¯. In

addition, XPATH.xml with 2,522,572 tree nodes, has a node with degree of over 2Ay.

5.2.3 Requirements

We now derive the set of requirements for the succinct tree structure representation to

efficiently represent the XML tree and support its operations.

Chapter 5 - Engineering Succinct Tree Representations

104

Requirement 1. As mentioned in Section 5.2.1, associated information is stored for

each node in the tree, this we represent using an array of length �. The associated data

of the)th node in the tree is stored at index) in the array. The succinct tree

representations do not directly support the access to the array of associated information,

for the reason that nodes are numbered from 1 to 2�. Using an array of size 2� would

mean doubling the space usage. Hence, we have:

R1: Number nodes from § to °.

Requirement 2. Locating and retrieving XML data in the DOM document relies upon

the navigation operations. Since DOM implementations use a large amount of space,

some implementations reduce space costs by not supporting all navigation operations

rapidly. However, this is often inappropriate, as DOM is used in a variety of

applications with differing traversal patterns, as the following example shows.

The C++ DOM implementation called Centerpoint DOM [12] uses less space than

Xerces by storing a pointer to the parent, first child and next sibling nodes but not to the

last child or previous sibling. However, this comes at a cost of speed for certain

operations. The lastChild() and previousSibling() operations in this

implementation are slow. The lastChild() operation requires a traversal across all

the children. Likewise the previousSibling() operation at the)th child requires a

traversal across) < 1 children; one goes to the parent node and passes through the first

child and next sibling nodes until we reach the previous sibling node. In a traversal, at a

node with + children, this process takes ~1+G� time in all, which can be very slow if

this is a node with large degree (as observed in the example in Section 5.2.2, XML

documents have node(s) with large degrees). At the cost of the space usage, Xerces

explicitly includes the previous-sibling pointer at each node and includes the last-sibling

pointer as a previous-sibling pointer of the nodes first-child, which greatly improves the

speed. Hence, we have:

R2: All navigational operations must be fast.

Chapter 5 - Engineering Succinct Tree Representations

105

Requirement 3. Traversals are common in DOM. In a document-order traversal of a

tree we require � calls to the firstChild() and nextSibling() operations each

(see Table 5.2). For example, calling the firstChild() operation in the LOUDS

representation using the one’s based numbering (see Section 4.2.4) requires calls to both

RANK and SELECT and is therefore relatively expensive. Also, firstChild()

remains equally expensive even if firstChild() is called at a leaf, where the answer

is null. Given that leaf nodes in XML documents appear 1/2 to 2/3 of the time, a fast

check for leaf nodes would avoid these operation calls. For the parentheses

representation the nextSibling() operation is slow, as it requires a call to

FINDCLOSE operation, but for 1/3 to 1/2 the nodes, nextSibling() returns null.

Hence, we have:

R3.1 Detect quickly if a given node is a leaf.

R3.2 Detect first and last-child nodes quickly.

Having formulated the requirements R1-R3 we now summarise how well the existing

succinct tree representations support these requirements in Table 5.3. We abbreviate,

from now on, the ones-based and the zeros-based numbering for the LOUDS

representation as LOUDS1 and LOUDS0, respectively. We refer to the parentheses and

the binary tree representations as PAREN and BT, respectively.

Table 5.3 shows that the tree representations given in Chapter 4 do not directly

support all requirements. In detail:

• LOUDS, PAREN and BT number nodes from 1 to 2�. To map this to numbers

from 1 to � we would need to support RANK on the bit-string that represents

the tree. For example in Figure 4.8 an opening (closing) parenthesis is denoted

by 1(0); node) which is numbered 8 in the 1 to 2� numbering is mapped to

the 1 to � numbering by RANK1(8) � 6. While BT and LOUDS anyway need

to support RANK on the bit-string that represents the tree, up to now there is no

need for PAREN to support RANK (the space bound of Table 4.3 does not

Chapter 5 - Engineering Succinct Tree Representations

106

include space for RANK). Thus, for BT/LOUDS there is a time cost to number

nodes from 1 to �, and for PAREN there is a space and time cost.

• For R2, we observe that LOUDS and PAREN navigation operations are all

~11� time. For BT the parent() and lastChild() operations are rather

slower. For example, calling the parent() operation from the)th sibling

requires) SELECT calls, and the lastChild() operation requires + RANK

calls where + is the degree of the node. However R2 is definitely satisfied by

PAREN and LOUDS1/0, and partially by BT (unlike the example of

Centerpoint XML, traversals still take ~1+� time in the BT representation).

• For R3 (leaf node detection), in LOUDS1, nodes are represented by the 1s in

the degree sequence of their parent node. We require a call of RANK and

SELECT to locate the node’s own degree sequence, and only then we can

detect whether the node is a leaf node. BT requires only a RANK call, and for

LOUDS0 and PAREN, the detection of a leaf node is fast (requiring just the

check of a single bit). The detection of the first child node in LOUDS1 and

PAREN are fast (requiring the check of a single bit), however for LOUDS0, we

require a call of RANK and SELECT, and for BT we require a RANK call. The

detection of the last child node in PAREN is slow because we require a call to

the FINDCLOSE operation. For LOUDS0 and LOUDS1 we require a call of

RANK and SELECT, and for BT we require a RANK call.

Chapter 5 - Engineering Succinct

Table 5.3 – Comparison

give the operation calls per node

Requirement LOUDS1

R1 RANK

R2

R3.1 RANK
SELECT

R3.2

5.3 Double Numbering

To address requirement

the order that they are numbered

(which is node �) is at position

third node (which is node

last to appear in level-order

(pre-order), for LOUDS1

BT has the node numbering that is neither document

1, . . . , �, we let ,1)� denote

of the tree: ,1)� is the number of node

It is important to maintain the association between

tree navigation operations are implemented

double numbering to succinct tree representations as follows.

Our new approach, called

e), ,1)�f. In Figure 4.7

observation is that for LOUDS

numbering can be done with very little extra

DOM is that it always begins at

Engineering Succinct Tree Representations

107

Comparison of the succinct tree representations to support the requirements

give the operation calls per node. + is a node degree.

LOUDS1 LOUDS0 PAREN

RANK RANK RANK

RANK and
SELECT

 RANK and
SELECT

FINDCLOSE
(FIRST-CHILD

is fast)

Double Numbering

To address requirement R1, for each representation we number the nodes from

the order that they are numbered. For example in Figure 4.7, for LOUDS1

) is at position 1, the second node (which is node �) is at position

node (which is node $) is at position 4, and so on, until the last node

order. For PAREN this means numbering nodes

1 and LOUDS0 this means numbering nodes in level

has the node numbering that is neither document-order or level

denote the position of the)th node in the bit-string representation

is the number of node) as described in Chapter 4.

It is important to maintain the association between) and ,1)� for fast navigation, as the

tree navigation operations are implemented by operations that use

ouble numbering to succinct tree representations as follows.

called double numbering, numbers the)th node as the pair

 according to LOUDS1, node $ is indicated by

LOUDS1, LOUDS0 and PAREN navigation in DOM

numbering can be done with very little extra cost. The key property of navigation in

DOM is that it always begins at the root (the double numbering of the root is usually

support the requirements; we

BT

RANK

PARENT requires
+ }SELECT,
LASTCHILD

requires + }RANK

RANK

RANK

e number the nodes from 1 to � in

LOUDS1 the first node

) is at position 3, the

ast node, which is the

this means numbering nodes in document order

numbering nodes in level-order, and

order or level-order. For) �
string representation

for fast navigation, as the

by operations that use ,1)�. We apply

th node as the pair

is indicated by e3, 4f. Our key

in DOM with double

e key property of navigation in

the root (the double numbering of the root is usually

Chapter 5 - Engineering Succinct Tree Representations

108

easy to compute). Then, each node is reached by one of the five navigation steps from a

previously reached node.

Double numbering in LOUDS

In LOUDS1 and LOUDS0, nodes are numbered from 1 to 2� in level-order. However,

note that all operations in Table 4.4 use ,1)�. For example, in LOUDS1, if ? is the

parent of), then ,1?� �SELECT1(RANK0(,1)�)). Recall that:

(a) ,1)� in LOUDS0 equals the position of the)th 0 in the bit-string. Thus, ,1)� �

SELECT01)� @ 1 and RANK0W,1)�X < 1 �).

(b) ,1)� in LOUDS1 equals the position of the)th 1 in the bit-string. Thus, ,1)� �

SELECT11)� and RANK11,1)�� �).

The key observation is:

Proposition 5.1. Computing U � SELECTi1/�, for) � 0 or 1, also computes RANK01U� and

RANK11U�.

Proof. If U � SELECT01/� then RANK01U� � / and RANK11U� � U < /. SELECT1 is

similar. �

Double numbering in LOUDS1 works as follows:

• We can calculate , of the root node, which is ,11� � 1.

• We consider the remaining navigation operations in turn:

To compute firstChild(<), ,1)�>) , we compute the position of

the first child,) as ,1) � � SELECT01 RANK11,1)�� � @ 1. Noting

that RANK1W,1)�X �), this simplifies to ,1) � � SELECT01)� @ 1.

Now we use Proposition 5.1 to observe that SELECT01)� also

essentially computes RANK1W,1) �X �) .

Chapter 5 - Engineering Succinct Tree Representations

109

Table 5.4 - Navigational operations for LOUDS1+ and LOUDS0+ (� is the LBS).

LOUDS1+ LOUDS0+

parent(<x, y>)
 if x= 1 then return NULL else
 let x’ := y - x

 let y’ := SELECT1(A, x’)
 return(<x’, y’>)

parent(<x,y>)
 if x= 1 then return NULL else
 let x’ := SELECT1(A, x) - x

 let y’ := SELECT0(A, x’ + 1)
 return(<x’, y’>)

firstChild(<x, y>)
 let y’:= SELECT0(A, x) + 1
 if(A[y’]=0) then return NULL
 else
 return <y’- x, y’>

firstChild(<x, y>)
 if (A[x-1]=0) then return NULL
 else

 let x’:= (SELECT0(A, x) + 1) - x

 let y’:= SELECT0(A, x’ + 1)
 return <x’, y’>

lastChild(<x, y>)
 let y’:= SELECT0(A, x+1) - 1
 if(A[y’]=0) then return NULL
 else
 return <y’- x, y’>

lastChild(<x, y>)
 if (A[x-1]=0) then NULL
 else
 let x’:= y –(x + 1)

 let y’:= SELECT0(A, x’ + 1)
 return <x’, y’>

nextSibling(<x, y>)
 if A[y+1] = 0 then return
NULL
 else
 return <x + 1, y + 1>

nextSibling(<x, y>)

 if A[SELECT1(A, x)+1]=0 then
return NULL
 else
 let y’:= SELECT0(A, x + 2)
 return <x + 1, y’>

previousSibling(<x, y>)
 if A[y-1] = 0 then return
NULL
 else
 return <x - 1, y - 1>

previousSibling(<x, y>)
 if A[SELECT1(A, x)-1]=0 then
return NULL
 else
 let y’:= SELECT0(A, x + 1)
 return <x - 1,y’>

o To compute parent(<), ,1)�>) , we compute the position of the

parent,) as ,1) � � SELECT11 RANK01,1)�� �. Noting that

RANK1W,1)�X �), this simplifies to ,1) � � SELECT11,1)� <)�.

Now we use Proposition 5.1 to observe that SELECT11)� also

essentially computes RANK1W,1) �X �) .

Chapter 5 - Engineering Succinct Tree Representations

110

o The other navigation operations are similar or much simpler (i.e.

nextSibling()). We show these (including the operations above) in

Table 5.4.

Double numbering in LOUDS0 works as follows:

• We can calculate , of the root node, which is ,11� � 2.

• Using double numbering, the navigation operations for LOUDS0 in Table 4.4

are simplified as shown in Table 5.4.

We call the LOUDS1 and LOUDS0 variants with double numbering support LOUDS1+

and LOUDS0+, respectively. In support of the requirement R1, LOUDS1+ and

LOUDS0+ are now faster because we avoid the RANK calls in the tree navigation

operations.

Double numbering in Parentheses

In PAREN nodes are numbered from 1 to � in depth-first or document order. Recall that

,1)� is the position of the)th opening parenthesis in the bit-string. For example, in

Table 5.5 the seventh open parenthesis, which represents node seven, is at position

twelve in the bit-string, so ,17� � 12. We map the opening (closing) parentheses as

1(0), forming a bit-string, and note that RANK11,1)�� �). Note that all operations in

Table 4.5 use ,1)�. For example, if ? is the parent of), then the parent operation is

computed as ,1?� � ENCLOSE1,1)��. We now illustrate the use of double numbering

through two examples:

o Again, suppose that ? is the parent of), and so ,1?� � ENCLOSE1,1)��. The

parentheses that lie in the bit-string between the open parentheses at ,1?�

and ,1)� comprise the representations of the previous siblings of node) and

their descendants. This means that there are an equal number of open and

close parentheses between positions ,1?� and ,1)�. Furthermore, the open

parentheses that lie in between ,1?� and ,1)� correspond precisely to the

Chapter 5 - Engineering Succinct Tree Representations

111

nodes that lie in between ? and) in document order. Thus, RANK1W,1?�X �
) < 1,1)� < ,1?� @ 1�/2 � ?.

o Another example is for the nextSibling operation, if ? is the next-sibling

of), then the nextSibling operation is computed as

,1?� � FINDCLOSEW,1)�X @ 1:

The parentheses that lie in the bit-string between the opening and closing

parenthesis ,1)� and ,1?� < 1 are the descendant nodes of). This means

that there are an equal number of open and close parentheses between ,1)�

and ,1?� < 1. As described for the parent operation the open parentheses

that lie in between ,1)� and ,1?� < 1 corresponds precisely to the nodes that

lie in between ? and) in document order. Thus, RANK1W,1?�X �) @ 1 @
1,1?� < ,1)� < 1�/2 � ?.

We modify all navigation operations to work with this “double numbering” in an

analogous manner in Table 5.6. Observe that the root is node 1, and ,11� � 1. Thus,

we obtain the double numbering of the root directly, and the double numbering of any

node reached from the root via navigation operations is correctly computed by

induction. We call the PAREN with double numbering PAREN+.

Chapter 5 - Engineering Succinct Tree Representations

112

Table 5.5 – Parentheses sequence representation with double numbering.

,1)� 1 2 3 4 5 6 7 8 9 10 11 12 13 14

) 1 2 3 4 5 6 7

 (() (() (())) ())

 1 1 0 1 1 0 1 1 0 0 0 1 0 0

Table 5.6 - Navigational operations for PAREN+ (double-numbering support). � is the

parentheses bit-string and ��)* retrieves the bit at position) in the bit-string �. Let an opening

(closing) parenthesis be represented by 1(0).

PAREN+

parent(<x, y>)
 if x=1 return NULL
 let y’ := ENCLOSE(A, y)
 let x’ := x - (y - y’ + 1)/2
 return (x’, y’)

nextSibling (<x, y>)
 let y’= FINDCLOSE(A, y)+1
 if A[y’]=1 then
 let x’:= x + (y’ - y)/2
 return <x’, y’>
 else return NULL

firstChild(<x, y>)
 if A[y+1]=0 then return NULL
 else
 return <x+1, y+1>

 previousSibling (<x, y>)
 if A[y-1]=0
 let y’:= FINDOPEN(A, y-1)
 let x’:= x - (y - y’)/2
 return <x’, y’>
 else return NULL

lastChild(<x, y>)
 if A[y+1] = 1 then
 let y’ := FINDCLOSE(TP, y)
 y’:= FINDOPEN(y’-1)
 let x’:= x + (y’ - y + 1)/2
 return (x’, y’)
 else return NULL

Double numbering in Binary tree representation

In support of requirement R1 we apply double numbering to BT, and number each node

as e), ,1)�f. Hence, ,1)� in BT is the position of the)th 1 in the bit-string and

RANK1(,1)�) �). The numbering that results is, as noted before, neither in document-

order or level-order. Note that all operations in Table 4.6 use ,1)�. For example, if ? is

the next sibling of), then ,1?� � 2 } RANK1(,1)�)) @1 � 2) @ 1.

Chapter 5 - Engineering Succinct Tree Representations

113

Operations in BT begin with the operation RANK. In other words, once you are at a

node, you cannot navigate away from the node without doing a RANK. Hence, we

compute the RANK “in advance” since it is going to be needed. We called the BT

representation with double numbering BT+. BT+ is never worse than BT. See Table 5.7

for the pseudocode of BT+ (with double numbering).

We now give an example where BT+ is faster than BT for a document-order traversal.

At a node / that is a leaf node, we make several successive navigation operation calls

even though the answer is null. This happens when we try to go to the first-child only to

discover /it is a leaf. We then go to the next-sibling of /. In BT one would do the RANK

operation for each navigation operation called from /. In BT+ the RANK operation is

performed only once by the operation that reached /. Given that the double number of /

is <), ,1)�>, for the operations firstChild() and nextSibling() we check the

bit at position) ; 2 and) ; 2 @ 1, respectively. A 0-bit indicates a leaf node, this is

without calling RANK. In a document-order recursive traversal BT requires 2� RANK

calls, where we have � nodes in the tree and we call firstChild() and

nextSibling() operations at each node. In BT+ we require � @ � RANK calls, where

� is the number of non-leaf nodes in the tree, where such nodes make up 1/3 of nodes in

the tree. Therefore we have a performance improvement in BT+.

Chapter 5 - Engineering Succinct Tree Representations

114

Table 5.7 – Operations of the Binary Tree representations with double-numbering. (� is the

LBS).

 BT+
 parent(<x, y>)
 let y’:= y, let x’:= x
 while(y’ mod 2 = 0)
 <x’,y’>:= previousSibling(x’,y’)
 x’:= y’/2
 return <x’, SELECT1(A, x’)>

nextSibling(<x, y>)
 let y’:= 2*x+1
 if A[y’]=0 then NULL else
 return < RANK1(A, y’), y’>

firstChild(<x, y>)
 let y’ := 2*x
 if A[y’] = 0 then return NULL
 else
 return < RANK1(y’), y’>

previousSibling(<x, y>)
 if (y mod 2)!=0
 x’:= y/2

 y’:= SELECT1(A, x’)
 return <x’, y’>
 else return NULL

lastChild(<x, y>)
 let y’:= 2*x
 if A[y’] = 0 then return NULL
 else

 let x’:= RANK1(A, y’)
 while(nextSibling(<x’, y’>)
!=NULL)
 <x’, y’>:=nextSibling(<x’,y’>)
 return <x’, y’>

5.4 Optimising LOUDS further

5.4.1 Adding isLeaf bit-string

We make a further optimisation to the LOUDS1+ representation by including a bit-

string of length n, which differentiates all leaf nodes from non-leaf nodes in the tree.

The bit-string of length � is defined as follows: each bit represents a single node in the

tree, in level-order; where the)th bit is set to 1 if the)th node in the tree is a leaf node,

and to 0, otherwise. This supports R2 and R3, at the cost of � extra bits overall. In a

recursive document-order traversal of a tree the required � SELECT calls are now

reduced to between 1/3 and 1/2. We refer to the LOUDS1+ representation with the

isLeaf bit-string as LOUDS1++.

Chapter 5 - Engineering Succinct Tree Representations

115

Figure 5.2 – (a) Ordinal tree. (b) LOUDS bit-string of tree in (a). (c) Equivalent partitioned bit-

vector.

Table 5.8 – Operations of the partitioned representation. Bit-strings Runs0 and Runs1 defined
in Section 5.4.2.

Partitioned representation (PLOUDS)

parent(x)
 let x’:=RANK - (Runs1,x)
 return SELECT 1(Runs0,x’)

nextSibling(x)
 if Runs1[x]=1 then NULL
else
 return x+1

firstChild(x)
 if isLeaf(x) then NULL
 else
 let x’:= RANK - (Runs0,x)
 return SELECT 1(x’)+1

 previousSibling(x)
 if Runs1[x-1]=1 then NULL
else
 return x+1

lastChild(x)
 if isLeaf(x) then NULL
else
 let x’:= RANK - (Runs0,x)+1
 return SELECT 1(x’)+1

Vertex a b c d e f g h i
Runs0 1 0 1 0 1 0 1 0 0 1
Runs1 1 0 0 0 1 0 1 1 1

(c)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

a b c d e f g h i

1 0 1 1 1 1 0 0 1 1 0 0 1 0 0 1 0 0 0

(b)

(a)

Chapter 5 - Engineering Succinct Tree Representations

116

5.4.2 Partitioned Representation

We now describe a new representation that has the simplicity of LOUDS1+ and also

allows the check of a leaf node in ~11� time. We address requirements R1, R2 (fast

navigation operations) and R3 (indicate leaf and last-child nodes rapidly). The idea is to

encode the runs of 0s and 1s in the LOUDS bit-string (LBS) in two separate bit-strings,

which we will call Runs0 and Runs1 . Specifically, if there are runs of 0s of length

�A, �G, … , �± in the LBS, then the bit-string Runs0 is simply ̈]²�A§¨]³�A§ … ¨]´�A1.

Runs1 is defined analogously (see example in Figure 5.2). Noting that the LBS begins

with a 1 and ends with a 0, it is clearly possible to reconstruct it from Runs0 and

Runs1 . PLOUDS is simply Runs0 and Runs1 , each augmented with directories to

support SELECT1 and RANK— operations, where:

RANK— (x) returns the number of 1 bits strictly to the left of position x in the bit-vector.

(RANK—(x) = RANK1(x - 1) except when x = 1).

In Table 5.8, we show the navigation operations of PLOUDS. Observe that, some

operations are now trivial:

• The check of a leaf node requires the check of the previous bit in the Runs0 bit-

string. For a node that appears at position /, it is a leaf if the bit at position / < 1

is a 0. For example, in Figure 5.2 – (a) Ordinal tree. (b) LOUDS bit-string of

tree in (a). (c) Equivalent partitioned bit-vector.

• , nodes �, +, L, s and) are leaf nodes by the criterion.

• The nextSibling() and previousSibling() operations in PLOUDS are as

simple as they were in LOUDS. The nextSibling() operation is computed in

the Runs1 bit-string. For a node at position / we check the bit position /, if the

bit is a 0 then we return / @ 1, otherwise return null.

Chapter 5 - Engineering Succinct Tree Representations

117

We now observe:

Proposition 5.2. SELECT operations on the LBS can be simulated by a SELECT1 and a

RANK− on Runs0 and Runs1 .

Proof. We claim that SELECT1(LBS,)) = SELECT1(Runs0 , RANK−(Runs1 ,)))@).
Note that RANK−(Runs1 ,)) equals the number of completed runs of 1s before the run

that) is in. There must be an equal number of completed runs of 0s before). The

SELECT1 on Runs0 then gives the total length of these runs, which is then added to) to

give the position of the)-th 1. SELECT0(LBS,)) is similar.

Corollary 1. PLOUDS supports the operations parent , firstChild() and

lastChild() .

Proof. We look at the implementation of these operations in LOUDS1. Due to double-

numbering, these operations only have a single SELECT call, which can be simulated as

in Proposition 5.2.

Proposition 5.3. The number of 1s in Runs0 and Runs1 is equal to the number of non-leaf

nodes in the input tree plus one.

Proof. A run of 1s in the LBS is a node of degree ¦ 0, i.e. a non-leaf node (with the

exception of the super-root). The number of 1s in Runs1 is the number of runs of 1s in

the LOUDS bit-string. The number of runs of 0s in the LBS equals the number of runs of

1s.

The main advantage of PLOUDS is that it requires just SELECT1 and RANK, not

SELECT0. In addition, the number of 1s in Runs0 and Runs1 is usually small.

Therefore, we would normally expect the space usage of PLOUDS to be less than

LOUDS1+. The disadvantage of PLOUDS is that to do a SELECT call we now must do

both RANK and SELECT calls.

Chapter 5 - Engineering Succinct Tree Representations

118

5.5 Comparison of tree representations

We have presented a partitioned version of Jacobson’s [44] LOUDS representation,

called PLOUDS. Although we will demonstrate experimentally that PLOUDS uses less

space than LOUDS, this could be understood on a firmer theoretical basis. It would be

interesting to see whether the partitioning idea generalises to other applications.

The idea of double-numbering and fast leaf node checking in PAREN+, LOUDS1+,

LOUDS0+, LOUDS1++ and BT+ allows us to meet the requirements (Section 5.2.3) of

representing an XML tree, where we gain good tree traversal performance competitive

to if not better than standard DOM implementations.

In summary, we show in Table 5.9 the total number of calls to the RANK, SELECT and

INSPECT operations in the document-order recursive traversal and non-recursive

traversal upon a tree for the LOUDS and BT variants. The INSPECT operation is simply

a check of a single bit, hence a memory access. As noted in Chapter 4, RANK is a little

slower than a memory access and SELECT is 2.5 times slower than RANK. For

LOUDS1, LOUDS0 and BT we require , in addition to fulfil requirement R1, which we

have omitted from the table. Even though, we see an overall improvement in the

LOUDS1+, LOUDS0+, LOUDS1++, PLOUDS and BT+ representations because we

avoid the call of the extra RANK operation, using in most cases the same space usage.

Further improvements we observe in LOUDS1++ are that the number of SELECT

calls are reduced to � in the recursive traversal and to 2� in the non-recursive traversal,

where � is the number of non-leaf nodes (usually 1/3 of tree nodes). In BT+ the number

of RANK calls have been reduced from 2� (that is in BT) to � @ �.

PLOUDS makes � } SELECT and � } RANK calls in a non-recursive traversal. In

comparison to the other tree representations (that support double numbering) they

appear to be faster at first sight because they do not require both the RANK and SELECT

operations in a non-recursive traversal. However in PLOUDS, we observe that there is a

potential operational time gain for

Chapter 5 - Engineering Succinct Tree Representations

119

Table 5.9 – Total number of RANK and SELECT calls for recursive and non-recursive document-

order traversals. Comparison of LOUDS1, LOUDS0, LOUDS1+, LOUDS0+, LOUDS1++ and

PLOUDS. � is # nodes and � is # non-leaf nodes in the tree. , operation call for the tree

representations is not included.

Tree Reps Recursive traversal Non-Recursive traversal

LOUDS1 � } SELECT, � } RANK,
2� }INSPECT

1� @ �� } SELECT, 1� @ �� } RANK,
2� } INSPECT

LOUDS0 12� @ 2�� }SELECT, (� @
2�� }RANK, 2� } INSPECT

12� @ 4�� } SELECT,
(� @ 4�� } RANK, 2� } INSPECT

LOUDS1+ � } SELECT, 2� } INSPECT 1� @ �� } SELECT, 2� } INSPECT

LOUDS0+ 12� @ �� } SELECT, 2� } INSPECT 12� @ 3�� } SELECT, 2� }
 INSPECT

LOUDS1++ � } SELECT, 2� } INSPECT 2� } SELECT, 2� } INSPECT

PLOUDS � } SELECT, � } RANK, 2� }
 INSPECT

2� } SELECT, 2� } RANK,
2� } INSPECT

BT 2� } RANK, 2� }INSPECT
2� } RANK, 2� }INSPECT,
� } SELECT

BT+ 1� @ �� } RANK, 2� }INSPECT
2� } RANK, 2� }INSPECT,
� } SELECT

computing RANK and SELECT on a bit-string that is half the size (i.e. Runs0 and

Runs1 compared to LBS) on larger bit-strings.

The disadvantage of BT and BT+ is that for the operations lastChild() and

parent() it can be much slower than the other operations. For example, given we have

a node with child degree count s, the cost to go to the last child of a node is ~1s� time,

making only RANK calls.

Likewise going to the parent node, we make only SELECT calls, in ~1s� time, in the

worst case when we are at the last-child node. Given that SELECT is a factor 2.5 slower

than the RANK operation, we predict that a non-recursive traversal for BT is slow, for

documents with large degree nodes.

Chapter 5 - Engineering Succinct Tree Representations

120

5.6 Experimental Evaluation

In this section we provide a comparative experimental analysis of the succinct tree

representations.

5.6.1 Setup

To test our data structures we obtain ordinal trees from the following six XML files in

our XML corpus (Chapter 3): Mondial-3.0.xml , Orders.xml , Nasa.xml ,

XPATH.xml , Treebank_e.xml and XCDNA.xml. We also tested the data structures on

randomly generated XML files. These were obtained by using the algorithm described

in [49] to generate random parentheses strings. A random parentheses string was

converted to an XML file by replacing the opening and closing parentheses of non-leaf

nodes by opening and closing tags. The parentheses for leaf nodes were replaced with

short text nodes.

The six XML files selected show a range of file sizes and tree structure. In all cases,

the type of each node (element , text node, etc) was stored as a 4-bit value in an

accompanying array; we call this the node-type array.

The basic setup of our experiments is outlined in Appendix A. We used the Xerces

DOM parser to construct the tree structure bit-strings of the XML documents. The tree

representations were tested on the Intel-P4 and Sun-UltraSparc machines. The

experiments were to traverse the trees and to count the total number of nodes of a

particular type by accessing the node-type array. We tested with four different types of

traversal, breadth-first order (BFO), and depth-first order (DFO), which is done both

recursively and non-recursively (using the algorithm from Table 5.1), and the reverse

recursive depth-first order (RDO), where we first visit the last child at each node and

then each of its previous siblings in turn.

We compare the running times of five variants of the LOUDS data structures, the two

BT representations and the two PAREN representations. For RANK and SELECT we use

the CJ and KNKP bit-vector implementations detailed in Section 4.2.1, where in the CJ

Chapter 5 - Engineering Succinct Tree Representations

121

bit-vector we use the parameters " � 64 and � � 32, and in the KNKP bit-vector we

use the parameters " � 64 and �" � 256.

5.6.2 Space Usage

In Table 5.10, we summarise the space usage per node of the tree structure

representations. We state the space usage per node required for long gaps and the clump

array in the CJ and KNKP bit-vectors, respectively. For our XML documents, the BT

representation has no long gaps for CJ and no clumps in the clump array for KNKP

because the pattern of 1s in the bit-string are densely distributed. Our running time

comparisons of the succinct tree representations must be done based on similar space

usage; therefore, we use parameters that produce like-for-like space usage. LOUDS1++

uses the same tree representation as LOUDS1, plus a single bit per node for the isLeaf

bit-string representation. We observe that PLOUDS generally uses less space than the

other LOUDS data structures. When implemented using KNKP its space usage is

competitive with the PAREN.

We observe that when using CJ in PLOUDS a low number of long gaps usually relates

to high number of leaves in the document. For example, Mondial-3.0.xml has 78%

of leaf nodes in its tree structure, and the long gap on average is 0.34 bits per node.

Compared to Orders.xml , which has 50% leaf nodes, the long gaps are much

higher at 1.6 bits per node. However, for the randomly generated files, that have 50%

leaves and have a negligible amount of long gaps, their space usage result per node is

consistently higher than most files. For the BT representation, we have a consistent

space usage for all files, as there are not many long gaps, and we observe in the bit-

string the 1s and 0s are usually equally distributed, i.e. there are no large runs of only

zeros or ones.

Chapter 5 - Engineering Succinct Tree Representations

122

Table 5.10 – Space Usage of tree reps. Columns are test file, number of nodes, % leaf node and

total space usage of tree representations given per node. LOUDS0 and LOUDS1 use the same

space usage therefore call them LOUDS: For PLOUDS, LOUDS space per node for the clump data

structure using KNKP; space per node to support long gaps using CJ. For PAREN: space per

node, cf Table 4.3. For negligible we use NEG.

File Nodes

%

leaf

PLOUDS LOUDS BT PAREN

KNKP CJ KNKP CJ CJ KNKP

total

clump

DS total

long

gap total

clum

p DS total

long

gap

Mondial 57,372 78 3.12 0.07 3.84 0.34 5.11 0.11 5.65 0.55 4.05 4.55 3.73

Orders 300,003 50 3.78 0.03 5.64 1.6 5.07 0.07 5.10 NEG 4.05 4.55 3.73

Nasa 1,425,535 67 3.37 0.05 4.27 0.57 5.09 0.09 5.42 0.33 4.05 4.55 3.73

XPATH 2,522,571 67 3.37 0.04 3.99 0.27 5.08 0.08 5.63 0.53 4.05 4.55 3.73

treebank_e 7,312,612 67 3.37 0.04 3.77 0.06 5.08 0.08 5.10 0.01 4.05 4.55 3.73

XCDNA

25,221,15

3 67 3.35 0.02 3.80 0.08 5.11 0.11 5.09 0.38 4.05 4.55 3.73

R65K 62,501 50 3.79 0.04 4.05 NEG 5.08 0.08 5.09 NEG 4.05 4.55 3.73

R250K 250,001 50 3.79 0.04 4.05 NEG 5.08 0.08 5.09 NEG 4.05 4.55 3.73

R1M 1,000,001 50 3.79 0.04 4.05 NEG 5.08 0.08 5.09 NEG 4.05 4.55 3.73

R4M 4,000,001 50 3.79 0.04 4.05 NEG 5.08 0.08 5.09 NEG 4.05 4.55 3.73

R16M

16,000,00

1 50 3.81 0.04 4.05 NEG 5.08 0.08 5.10 NEG 4.05 4.55 3.73

CJ bit-vector analysis on Orders.xml

We observe that PLOUDS using CJ uses more space than LOUDS1+ for the file

Orders.xml . We now explain this unusual behaviour. In essence, what we observed is

that the number of long gaps in the partitioned bit-strings (PLOUDS) is relatively large,

even though there are no long gaps in the original LBS. We first examine the tree

structure of Orders.xml , which is shown in Figure 5.3.

The root node has degree 30,001. At the next level in the tree these child nodes are

arranged in the following pattern: a leaf node followed by a node with nine children.

Chapter 5 - Engineering Succinct Tree Representations

123

The nine child nodes themselves each have a single child node. This pattern is repeated

15,000 times. Therefore, the LOUDS bit-string representing the tree structure is defined

as follows: we insert the bits 10 10 for the super root and the root node. We then insert

30,001 1s and a 0 bit representing the node with 30,001 child nodes. For the next level

we insert repeatedly (15,000 times) the bit pattern ̈ §§§§§§§§§¨, representing a leaf

node followed by a node with nine children over the 30,001 nodes. For the next level

we insert the bit pattern 10, repeated 135,000 times, representing a single child node for

each node in the groups of nine child nodes.

We use the parameters � � 32 and '¡ � 256 for the CJ implementation given in

Section 4.2.1. Recall that in the SELECT1 data structure we store explicitly every �th 1,

and a long gap appears where the difference between the)�-th and 1) @ 1��-st 1 bit is

more than '¡ bits. If a long gap appears, we store explicitly the positions of all the 1 bits

from)� to 1) @ 1�� < 1 in an array.

For the LOUDS1+ bit-string the SELECT0 data structure has one long gap between

the �-th and 2�-th 0 bit, but no more, for the reason that in the second level of the tree

representation we have two 0 bits for every nine 1s. In 256 bits there are approximately

forty-six 0s, therefore no long gaps. For SELECT1 there are no long gaps for the reason

that for every 256 bits there are approximately 210 1s.

However for the PLOUDS bit-strings, which supports SELECT1 our interest is with

the Runs1 bit-string. The first long gap appears between the first and second �-th 1,

where there are 30,000 0s. After this we have the pattern of eight 0s followed by a

single 1, repeated 15,000 times. Within these number of bits the)� and 1) @ 1�� 1 bit

appear every 288 bits, which is bigger than the long gap size ('¡ � 256), therefore the

number of long gaps ('() is 135,000/288 � 468.

Therefore as in Table 5.10, we confirm the long gap space usage for Orders.xml is

as follows:

LGs per node � 132 } #'(} ��/� � 132 } 468 } 32�/300,003 � 1.60 (2 d.p.).

Chapter 5 - Engineering Succinct Tree Representations

124

Figure 5.3 – Top: Ordinal tree structure of Orders.xml . Bottom: Bit-string representation of

Orders.xml (subscripts indicate repetition of sub-string sequence).

In other words, in the partitioned representation of the LOUDS bit-string we have found

an example where the space usage has increased.

5.6.3 Running Time

The performance measure we report for our succinct data structures is the slowdown

relative to Xerces based on the same type of traversal. We first determine which bit-

vector to use. Table 5.11 gives the slowdown relative to Xerces of PLOUDS using the

KNKP and using the CJ for a DFO traversal on a Pentium 4. The CJ based PLOUDS

outperforms the KNKP based data structure. We saw the same relative performance for

LOUDS1+, LOUDS0+ and BT traversals. This is not too surprising since the KNKP was

designed for sparse bit-vectors; the bit-vectors here are dense. In the remaining

experimental results the LOUDS and the BT data structures use CJ.

Table 5.11 - CJ and KNKP speed comparison

 Mondial Order Nasa XPATH Treebank R62K R250K R1M R4M R16M

KNKP 1.08 2.72 2.01 1.75 2.40 2.11 2.15 2.17 2.24 2.46

CJ 0.96 1.3 1.68 1.42 1.96 1.72 1.78 1.79 1.83 1.98

1010 1...130000 01111111110...0111111111015000 0 101010101010101010...101010101010101010135000 0...0135000

Chapter 5 - Engineering Succinct Tree Representations

125

Table 5.12 – Performance evaluation on Intel-P4. Coloumns are: Test file, slowdown relative to

the Xerces for recursive and non-recursive depth-first order (DFO) traversals for LOUDS1 (L1),

LOUDS1+ (L1+), LOUDS1++ (L1++) LOUDS0+ (L0+), PLOUDS (PL), BinaryTree (BT),

BinaryTree+ (BT+) all using CJ bit-vector and for PAREN (Par) and PAREN+ (Par+). Fastest data

structure for each set is in bold font.

File

Intel-P4

DFO recursive DFO non-recursive

L1 L1+ L0+ L1++ PL Par Par+ BT BT+ L1 L1+ L0+ L1++ PL Par Par+ BT BT+

Mondial 1.87 1.24 1.87 0.75 0.96 1.28 1.04 1.52 1.08 1.85 1.22 1.92 0.79 1.05 1.39 1.11 1.92 1.53

Orders 2.23 1.41 2.29 1.07 1.30 1.48 1.24 1.66 1.15 2.29 1.54 2.55 1.24 1.62 1.66 1.41 2.10 1.59

Nasa 2.97 2.04 3.19 1.32 1.68 2.08 1.67 2.25 1.59 3.09 2.13 3.38 1.52 1.95 2.44 2.00 2.96 2.39

XPATH 2.53 1.69 2.66 1.13 1.42 1.81 1.44 2.01 1.41 3.02 2.00 3.25 1.44 1.87 2.33 1.87 3.01 2.44

treebank 3.29 2.25 3.60 1.53 1.96 2.49 2.03 2.37 1.70 3.55 2.49 3.80 1.87 2.33 3.27 2.80 3.17 2.55

R65K 2.52 1.82 2.85 1.45 1.72 2.19 1.89 1.96 1.53 3.04 2.24 3.28 1.86 2.20 2.95 2.67 2.74 2.27

R250K 2.55 1.83 2.93 1.49 1.78 2.18 1.90 1.98 1.54 3.09 2.30 3.32 1.93 2.24 2.88 2.59 2.75 2.27

R1M 2.56 1.84 2.98 1.50 1.79 2.39 2.12 1.98 1.55 3.18 2.36 3.41 2.01 2.30 3.28 2.98 2.82 2.34

R4M 2.63 1.88 3.09 1.56 1.83 2.41 2.13 2.01 1.56 3.30 2.45 3.50 2.09 2.35 3.25 2.96 2.88 2.39

R16M 2.76 1.98 3.27 1.67 1.98 2.53 2.20 2.04 1.58 3.47 2.63 3.75 2.31 2.61 3.23 2.95 2.93 2.45

In Table 5.12, Table 5.13 and Table 5.14, we summarise the performance of the data

structures for the DFO and BFO traversals. For the BFO traversal, it required the queue

data structure of the C++ STL library. The storing of DOM nodes in the queue resulted

in some overhead, therefore the DOM in the BFO traversal could not fit XCDNA.xml

into the internal memory of the Intel-P4 machine. The data structures are based on the

succinct tree representations described in Chapter 4: LOUDS1, LOUDS0, PAREN and

BT. We observe that double numbering improves the running time operations of the tree

representations: Over all files, the LOUDS1+ variant was a factor of 1.44 better than

LOUDS1 on average. For PLOUDS there is an improvement of a factor of 1.60 better

than LOUDS1 on average.

Chapter 5 - Engineering Succinct Tree Representations

126

Table 5.13 - Performance evaluation for DFO on Sun-UltraSparc. The setup is the same as in

Table 5.12.

File
Sun-UltraSparc

DFO recursive DFO non-recursive

L1 L1+ L0+ L1++ PL Par Par+ BT BT+ L1 L1+ L0+ L1++ PL Par Par+ BT BT+

Mondial 1.52 1.03 1.64 0.68 0.92 1.17 0.97 1.43 0.91 1.77 1.18 1.88 0.81 1.15 1.40 1.17 2.05 1.52

Orders 1.16 0.75 1.37 0.62 0.78 0.97 0.80 1.09 0.69 1.48 0.99 1.73 0.85 1.12 1.16 1.01 1.50 1.11

Nasa 1.22 0.81 1.40 0.57 0.75 0.98 0.81 1.12 0.71 1.49 1.00 1.65 0.74 1.02 1.28 1.08 1.63 1.22

XPATH 1.19 0.77 1.35 0.55 0.76 0.96 0.78 1.11 0.70 1.46 0.96 1.61 0.73 1.03 1.17 1.00 1.62 1.20

treebank 1.23 0.83 1.38 0.58 0.79 1.06 0.89 1.09 0.70 1.48 1.01 1.64 0.75 1.05 1.52 1.35 1.59 1.20

XCDNA 1.20 0.78 1.37 0.57 0.78 0.96 0.79 1.11 0.71 1.45 0.97 1.62 0.73 1.03 1.17 0.99 1.61 1.21

R65K 2.94 2.07 3.35 1.58 2.07 2.70 2.38 2.68 1.72 3.72 2.62 4.25 2.13 2.83 3.83 3.43 3.64 2.72

R250K 1.29 0.90 1.47 0.69 0.91 1.17 1.03 1.13 0.76 1.59 1.11 1.82 0.91 1.21 1.64 1.47 1.56 1.17

R1M 1.26 0.88 1.43 0.68 0.89 1.31 1.15 1.10 0.74 1.56 1.09 1.78 0.89 1.20 1.82 1.66 1.52 1.15

R4M 1.27 0.88 1.45 0.69 0.90 1.33 1.18 1.11 0.75 1.56 1.10 1.79 0.91 1.21 1.82 1.66 1.53 1.16

R16M 1.26 0.89 1.45 0.69 0.90 1.36 1.20 1.11 0.74 1.58 1.10 1.79 0.93 1.21 1.79 1.64 1.52 1.15

Table 5.14 - Performance evaluation for BFO on Intel-P4 and Sun-UltraSparc. The setup is the

same as in Table 5.12.

File

Intel-P4
Sun-UltraSparc

BFO BFO

L1 L1+ L0+ L1++ PL Par Par+ BT BT+ L1 L1+ L0+ L1++ PL Par Par+ BT BT+

Mondial 0.86 0.57 0.80 0.38 0.47 0.65 0.55 0.80 0.56 1.13 0.74 1.12 0.53 0.65 0.83 0.73 1.09 0.69

Orders 1.26 0.86 1.27 0.71 0.83 0.99 0.85 1.05 0.71 0.78 0.51 0.85 0.43 0.53 0.59 0.54 0.74 0.49

Nasa 1.19 0.81 1.18 0.57 0.71 0.94 0.79 1.07 0.78 0.84 0.56 0.88 0.41 0.52 0.64 0.57 0.81 0.53

XPATH 1.31 0.87 1.28 0.62 0.77 1.03 0.86 1.18 0.85 0.82 0.54 0.86 0.41 0.51 0.64 0.57 0.79 0.50

treebank_e 1.12 0.77 1.11 0.54 0.67 1.01 0.87 0.98 0.71 0.73 0.50 0.78 0.36 0.46 0.66 0.60 0.73 0.48

XCDNA

0.69 0.47 0.71 0.36 0.44 0.54 0.49 0.67 0.44

R65K 1.52 1.09 1.61 0.87 1.03 1.78 1.56 1.39 1.01 3.00 1.98 3.34 1.61 2.04 2.81 2.48 2.78 1.75

R250K 1.48 1.05 1.62 0.86 1.00 1.73 1.53 1.37 1.00 1.27 0.83 1.41 0.68 0.86 1.23 1.06 1.19 0.74

R1M 1.49 1.05 1.61 0.86 1.01 1.95 1.75 1.39 1.01 1.24 0.82 1.37 0.65 0.83 1.38 1.22 1.19 0.74

R4M 1.15 0.81 1.24 0.66 0.78 1.55 1.39 1.09 0.79 1.09 0.72 1.21 0.58 0.74 1.27 1.14 1.07 0.68

R16M 0.96 0.69 1.07 0.57 0.66 1.43 1.27 1.02 0.74 0.73 0.49 0.82 0.40 0.50 0.97 0.88 0.75 0.50

Chapter 5 - Engineering Succinct Tree Representations

127

For PAREN and BT, double numbering speeded up the traversal on average by a factor

of 1.17 and 1.37, respectively. Comparing the performance of the basic tree navigation

operations we observe that LOUDS1++ is the fastest tree representation.

Note that LOUDS1++ uses � bits more than the other succinct tree representations for

the isLeaf bit-string. Therefore, we are required to add one extra bit per node to the

LOUDS1 space usage in Table 5.10 to represent LOUDS1++. For both the recursive and

non-recursive traversals LOUDS1++ is the fastest. Excluding LOUDS1++ (which

requires an extra bit per node) we observe BT+ is the fastest and PAREN+ is almost as

fast. For the non-recursive traversal the BT(+) representations suffer on the parent()

operation: given that we are at the last-child node we have to navigate through all

previous-sibling nodes before we get to the parent node. Over the entire set of files, we

observe that PLOUDS was competitive if not better than the other tree representations, if

we were to consider the trade-off between the space usage and the running time

performance.

5.7 Technical ideas summary

We studied several succinct tree representations and optimised them for DOM support.

These optimised representations number the nodes of an �-node tree with integers from

1 to �, and (recall that previous representations numbered nodes non-consecutively with

numbers from 1 to 2�), and have fast implementations for testing whether a node is a

leaf. The main new idea introduced was double numbering, and the partitioned

representation for the LOUDS bit-string. The idea of the partitioned representation has

been applied to bit-strings by [37].

Based on our requirements set out in Section 5.2.3 we chose PAREN+ as the tree

structure representation in our DOM application, which we present in Chapter 7.

PAREN+ supports the requirements R1-R3, in that it numbers nodes from 1 to �,

navigational operations are fast, and the indication of first child nodes is fast. In

addition, the direct support of document-order numbering of nodes in PAREN+ is an

Chapter 5 - Engineering Succinct Tree Representations

128

advantage and is required in DOM. Such support in the LOUDS variants, which number

nodes in level-order, would require additional data structures. The running time of

PAREN+ is not as good as some of the other tree representations, however with a lower

space usage on average, PAREN+ is still competitive.

Finally, if we were to extend our aims of supporting DOM as in an XML processor

application, we would support structural joins and the additional traversal operations

such as the following and preceding operations. These are already supported in

PAREN+, but not in the other tree representations.

 129

Chapter 6

Representing Textual Data

In this chapter, we present strategies to efficiently store and access textual data

contained in XML documents. There is an abundance of textual data in XML

documents: for example, among our test files, Treebank_e.xml has 67% of its nodes

in the document tree as text nodes. Indeed, in Chapter 3 we saw that textual data made

up between 50% and 80% of our documents.

We model the problem of storing textual data in XML documents as follows. Given

� (non-empty) strings �A, . . . , ��, we wish to store the strings in a data structure so that

we can support the operation of returning the)th string, when given the integer) by the

“user” (in our case, the “user” will be the SDOM application described in Chapter 7).

The strings are numbered consecutively by the “user” and the data structure does not

have the freedom to re-order the strings. Our basic approach is to concatenate the

strings, and store offsets into the concatenated strings that help us to get the)th string.

In order to do this in a space-efficient manner, we introduce the prefix sums problem:

given a (static) sequence of positive integers �, we wish to support the operation:

SUM(�,)), which is for the offset). This problem was described in Section 4.2.5, where a

succinct data structure was implemented. We investigate the practical performance of

this data structure as well as alternatives.

The chapter is organised as follows. We begin by giving more details of our basic

approach, and explaining how the prefix sums problem becomes relevant. Then we

give solutions to the prefix sums problem. Next, we describe details of the storage of

textual data, and finally we give an empirical evaluation of our approach. Parts of this

chapter were published in [23].

6.1 Overview

As noted above, we are given � non-empty strings �A, . . . , ��. From an implementation

perspective, we assume that the last character of each string is a string terminating

character, and for) � 1, . . . , � we let �� be the string obtained by removing the string

terminating character from ��. We let /� � |��|, / � � |��|, � � 1/A, . . . , /��, � �

Chapter 6 - Representing Textual Data

130

1/ A, . . . , / ��. Since no string is empty, we have that /� � 2, and /� � 1, for all). By

¶1�� we denote ∑ /�
|�|
�A .

We consider two basic ways of representing the strings. First, we consider

uncompressed text. In this case, we concatenate �A, . . . , �� into a single character array,

called �. In addition, we store the numbers /A, . . . , /� in a prefix sums data structure. In

order to access the)th string, we:

• compute ? �SUM(�,))

• return a pointer to ��?*

(the second step is possible since we keep the string terminating character). Next, we

consider compressed text. In this case, we let � denote the string which is the

concatenation of �A, . . . , ��. We store � in a data structure that keeps � in a compressed

form, but is rapidly able to answer subString(?,D) queries, which returns a string that

equals the substring of � from positions ? to D. In this case, we access the)th string as

follows:

• compute ? �SUM(� ,))

• compute D �SUM(� ,) @ 1)

• return subString(?,D < 1) .

We now explain why we choose this approach. It is important to remember that there

are many textual nodes and that the average length of textual data is relatively small

(particularly due to the whitespace text nodes). For example, excluding the null

terminating character, on average over all files the individual text nodes were

approximately 11 characters in length (the average text node length over all files ranges

from 6 characters to 23 characters).

We now consider the two naive approaches to the string offset storage problem. We

could, for example store the “offset” values SUM(�,1), SUM(�,2), . . . ,.SUM(�,�) in an

array of integers. This uses up 32 or 64 bits per string. Given that strings are only about

Chapter 6 - Representing Textual Data

131

88 bits long on average, the space used by the offsets is a significant portion of the

textual data. Since the textual data in turn is a significant portion of the XML

document, the offsets would be a significant part of the eventual representation. The

other approach is to store each string as a C++ string. This has the disadvantage that

somewhere we must store a pointer to this string, which again takes 32 to 64 bits. In

addition, using a number of small (dynamically-allocated) chunks of memory would

probably lead to memory fragmentation, and hence to even greater memory usage. If the

text is stored compressed, then, assuming say a typical 3:1 compression ratio, the

compressed size of a text node would be on average just 30 bits, and a naive storage of

the offsets/pointers will be even less feasible.

In what follows, therefore, we want to focus on two problems:

• How to store the lengths of the strings in a space-efficient way, so that the

SUM operation can be supported efficiently.

• How to store the string � in a compressed manner, so as to support the

subString operation rapidly.

6.2 Prefix Sums Problem

To address the problem of storing the string lengths we engineer several prefix-sums

solutions based on two compressibility measures:

(a) The succinct space bound given in Proposition 4.5 is "14, �� � ·logGW��A
��A X¸ bits,

which applies to any sequence � of size � whose elements add up to 4;

(b) Data-aware measures, which depend on the values in �, and can be lower than the

succinct bound for some sequences. Appropriate data-aware measures have been

studied extensively in the information retrieval (IR) community [76].

We demonstrate a close connection between the data-aware measure that is the best in

practice for an important IR application and the succinct bound. As (a) is already

defined we now define (b).

Chapter 6 - Representing Textual Data

132

6.2.1 Data aware Measures

The data-aware measures are based upon self-delimiting encodings of the individual

values /�; these have been studied extensively in the context of IR applications [76].

The data-aware encodings are designed so that small integers have smaller codes than

larger values. This is suitable for our application: as mentioned before the average

length of text nodes is relatively small. There are two main families which we discuss;

the first is represented by the Golomb and Rice codes, and the second by the ¹ and =

codes.

Golomb code

Given an integer parameter � � 1, the Golomb code of an integer / ¦ 0, denoted

(1�, /�, is obtained by writing the number � � £1/ < 1�/�¤ in unary (i.e. as §�¨),

followed by � � / < �� < 1 in a binary encoding using either £lg �¤ or tlg �x bits. If

0 � � E 2t��¢x < �, then use £lg �¤ bits to encode �. If 2t��¢x < � � � E �, then use

tlg �x bits to encode �. If � is a power of two, we can encode each value of � with tlg�x
bits. A Rice code is a Golomb code where � is a power of two.

In Figure 6.1, we show as a binary tree the ‘prefix-free’ encodings of � when � � 3 and

� � 6. For example, if / � 9 and � � 3, then � � 2 and � � 2 because 9 < 1 � 2 ;
3 @ 2; so the encoding (13,9� � 110 11. We observe that � � 2 is encoded as 11 as

shown in Figure 6.1 (a).

The first data-aware measure is (3'3."1�, �� � ∑ |(1�, /��|��A , where |º| denotes

the length (in bits) of the string º. In other words, (3'3." measures how well �

compresses by coding each /� using a Golomb code.

Gamma (») code

The =-code of an integer / ¦ 0, =1/�, is obtained by writing £lg /¤ @ 1 in unary,

followed by the value / < 2£�� ¼¤ in a field of £lg /¤ bits, e.g, =16� = 001 10.

Clearly |=1/�| � 2£lg /¤ @ 1 bits. The second data-aware measure of the

compressibility of � is Γ1�� � ∑ |=1/��|��A .

Chapter 6 - Representing Textual Data

133

Figure 6.1 – Binary encoding for � values in (a) when � � 3 and in (b) when � � 6.

Delta (½) code

The ¹-code of an integer / ¦ 0, ¹1/�, is obtained by writing £lg /¤ @ 1 using the =-

code, followed by / < 2£�� ¼¤ in a field of £lg /¤ bits; e.g., δ(33) = 001 10 00001. The

final data-aware measure of the compressibility of � is 01�� � ∑ |¹1/��|�
�A .

By the concavity of the log function, it follows that the 2 and 0 measures are

maximised when all the /� ’s are equal. This gives the following observation:

21�� � 01�� � ~1� log14/��� (6.1)

We observe 2 and 0 are never much worse than the succinct bound: recall that

"14, �� � ·logGW��A
��A X¸ (Chapter 4). Conversely, if the values in � are unevenly

distributed, then the 2 and 0 measures are reduced, and may be much less than the

succinct bound. This, together with the simple observation that 01�� can never exceed

21�� by more than ¾1�� bits, makes the 0 measure asymptotically attractive. However,

extensive experiments show in [76] that the 0, 2 and (3'3." measures of a sequence

arising from a particular IR application were broadly similar, and 2 is often less than 0;

(3'3." with the choice � � t14 ln 2�/�x has generally been observed to be the

smallest for a particular IR application.

6.2.2 Related Work

There is a large body of related work, which includes:

• Data structures achieving within ~1�� bits of the succinct bound were given by

many authors (e.g. [27], [37]); the optimal bound was achieved in [57].

 (a)
(b)

Chapter 6 - Representing Textual Data

134

• In recent work [41], a new data-aware measure, N�F was proposed,

where N�F1/� � ∑ tlg /�x��A . The authors considered, in addition to SUM, a

variety of operations including predecessor operations on the set represented by

the prefix sums of x. Unfortunately, N�F is not an achievable measure, i.e. there

exist sequences that provably cannot be compressed to N�F.

• In [42], Gupta et al. carried out an experimental evaluation on the data-aware

data structures. We note that some of the ideas in this chapter are similar to

those developed independently in [42].

• Other work [59] implies that 311�-time SELECT is possible if space N�F1/� @
J14� bits is used, but the second term can be much larger than N�F.

• As our main focus is on the practical performance of these data structures, we

look more closely at [42]. In [42], the focus is on RANK queries, while ours is on

SELECT, and our data sets are different. Contrary to [42], we uphold the

conclusions of [76] that Golomb coding (and hence the succinct bound) are

superior to the other gap-aware measures. Although it would be meaningless to

draw direct conclusions regarding running times between our work and theirs, in

our implementations, only the trivial gap-aware data structures came even close

to the succinct data structure.

6.2.3 Succinct Representations and Golomb Codes

The succinct solution given in 4.2.5 is represented using � lg14/�� @ ~1�� bits. We

observe that (3'3." is closely related to the succinct bound when the Golomb

parameter � is chosen to be Θ14/��. We now show the connection between the

succinct and Golomb bounds:

Proposition 6.1. Let $ � 1/2 be any constant, and let � be a sequence with ¶1�� � 4 and

|�| � � and suppose that $4/� ¦ 1. Then, taking � � t$4/�x, |(3'3."1�, �� <
 "14, ��| � 31��.

Chapter 6 - Representing Textual Data

135

Proof. We use the following inequalities:

 / < 1 E £/¤ � / � t/x for any /. (6.2)

 lg1$4/�� � lg � � lg1$4/�� @ 1. (6.3)

 �/2$ � 4/� � �/$. (6.4)

(6.2) follows from the definition. For (6.3) the first inequality is obvious. For the second

inequality, take both sides to the power of 2 and restate it as:

t$4/�x � 2$4/�

Since $4/� ¦ 1, therefore, � � t$4/�x E $4/� @ 1 � 2$4/�, which shows (6.3).

The reasoning for (6.4) is similar to that for (6.3).

We now prove the main proposition. Firstly,

(3'3."1�, /� � Á 1£1/� < 1�/�¤ @ 1 @ tlg �x�
�

�A

The RHS can be greater than the LHS since some /�s will have their binary part coded

using £lg �¤ bits. Now note that:

Á 1£1/� < 1�/�¤�

�A
@ 1 @ tlg �x� � Á 1/�/� @ 1 @ lg � @ 1�

�

�A

Since ¶1/� � 4, we get:

(3'3."1�, /� � 4/� @ �12 @ lg �� � �/$ @ �13 @ lg1$4/��� � � lg14/�� @ 13 @
1/$ @ lg $��. Thus, (3'3."1�, /� < "14, �� � ~1��.

Now note that (3'3."1�, /� � ∑ 1£1/� < 1�/�¤ @ 1 @ £lg �¤���A , and:

Á 1£1/� < 1�/�¤ @ 1 @ £lg �¤�
�

�A

� Á Â/� < 1
� @ 1 @ lg � < 2Ã

�

�A

� � lg V$4
� Y @ 4 < �

� < � � � lg1$4/�� @ �
2$ < 2�

Thus, "14, �� < (3'3."1�, /� � ~1��.

Chapter 6 - Representing Textual Data

136

We conclude that |"14, �� < (3'3."1�, /�| � ~1��.

Remark – When $ � ln 2, we see that "14, �� < 2.69� � (3'3." � "14, �� @
3.53�.

6.2.4 Gamma and Delta Codes

We now consider the compression criteria based on the = and ¹ codes. We assume that,

given =1/� or ¹1/�, we can decode / in 311� time, provided the code fits in 311�

machine words.

We define the operation ACCESS(�,)) as returning /�. We now show:

Proposition 6.2. A sequence � with |�| � � and ¶1�� � 4 can be stored so as to support

ACCESS in 311� time while using 21�� @ 31� lg lg14/��� bits.

Proof. We form the bit-string º by concatenating =1/A�, . . . , =1/��. We create the

sequence Ä, where �� � |=1/��| and store it in the data structure of Theorem 4.5.

Evaluating SUM(Ä,) < 1) and SUM(Ä,)) gives the start and end points of =1/�� in 311�

time, and /� is decoded in 311� further time. Since ¶1Ä� � 21/� = ~1� lg14/���, the

space used to represent Å is ~1� log log14/��� bits.

Remark – An obvious optimisation is to remove the unary parts altogether from º,

since they are encoded in Å, and this is what we do in practice.

A simple prefix-sum data structure is obtained as follows (Lemma 6.1 is similar to one

in [42]):

Lemma 6.1. Given a sequence � with |/| � � and ¶1�� � 4, we can store it using 21�� @
~1� lg lg14/��� bits and support SUM in ~1lg �� time.

Proof. For convenience of description, assume that � is a power of two. Consider a

complete binary tree � with � leaves, with the values /� stored in left-to-right order at

the leaves. At each internal node, we store the sum of its two children. We then list the

values at the nodes in the tree in level-order (starting from the root), except that for

Chapter 6 - Representing Textual Data

137

every internal node, we only enumerate its smaller child. This produces a new sequence

of length �, which we denote as tree(�).

For example, in Figure 6.2, � � (3, 4, 6, 2, 6, 5, 3, 3) and tree(�) = (32, 15, 7, 6, 3, 2, 5,

3). Given tree(�) and an additional � < 1 bits that specify for each internal node,

which of the two children was enumerated, we can easily reconstruct all values in nodes

on, or adjacent to, any root-to-leaf path, which suffices to answer SUM queries.

The key observation is:

21��KK1��� � 21�� @ 2� < 2. (6.5)

To prove this, consider a procedure to fill in the values in � bottom up. First, it

stores in each node at level 1 the sum of its two children. Let the values stored at

level 1 be UA, . . . , U�/G, and note that U� � /G��A @ /G� � 2 } max�/G��A, /G��, so

|=1U��| � |=14�/�/G��A, /G���| @ 2. If we now delete 4�/�/G��A, /G�� for all),
the total lengths of the =-codes of the U�s, together with the remaining �/2

values at the leaves, is � bits more than 21��. Since the construction of ��KK1��

now essentially recurses on UA, . . . , U�/G, equation (6.5) follows.

If we store ��KK1�� in the data structure of Proposition 6.2, we have ~11� time

access to each of the values in ��KK1��. Together with the bit-string that

indicates which nodes are deleted, decoding all the values from a root-to-leaf

path, and hence computing SUM, takes ~1log �� time. �

Figure 6.2 - Formation of tree(�); shaded nodes are removed from the output.

Chapter 6 - Representing Textual Data

138

6.2.5 Implementation Details

We implemented three prefix-sum data structures: the succinct data structure and two

simple

data structures that store =-codes. A preliminary implementation of Lemma 6.1 was also

made. We now discuss some implementation details, assuming a 32-bit machine.

Compacted bit-String data structure

All prefix sum data structures rely on a data structure that stores a bit-string of length �

in an integer array of size t�/32x, and supports the following operations:

• subBitString(), ?) : extracts the substring from positions) to ? from the bit-

string. We assume that the extracted substring fits into a single word, i.e.

? <) @ 1 � 32.

• getAlignedWord()) : this returns the substring from positions) to) @ 31

from the bit-string.

Since these operations are used frequently, the code is carefully optimised. For

example, assuming 32-bit integers, we need to compute £)/32¤ and) mod 32, to

determine the integer containing the)th bit, and the offset of the)th bit within the

integer. The former is computed using shifts, and the latter by AND with a pre-

computed mask. The main reason for separating the functions subBitString and

getAlignedWord is that the former requires a branch statement to separate the cases

where the substring is all in one word and where the substring is split across two words,

and the latter does not. Since branch mis-predictions are quite expensive, the latter

should be faster. In addition, the former also needs to perform division and modulo

operations on two indices, while the latter does this only on one index, and has very

simple code:

Chapter 6 - Representing Textual Data

139

getAlignedWord(i)
 let idiv = i >> 5
 imod = i & 0x1F;
 first = seq_BS[idiv];
 second = seq_BS[idiv + 1];
 return(first << imod + second >> (32-imod));

Decoding gamma-codes

The low-level representation of the =-codes is designed to decode quickly. Specifically,

we represent =(/) with the unary representation of £lg /¤ stored reversed in the lower-

order bits, and the ‘binary’ part stored in the next higher-order bits. For example,

=111� � 0001 011 is stored as 011 1000. Now suppose that we are given an integer #

that contains a =-code in the lower-order bits, e.g., # � . . . ¨11 1000. We compute

AND1<#� to leave only the ‘unary part’ of =(/) in the lower-order bits (this is a

standard trick).

For example:

.# . . .,0111000

.<# . . .,1001000

.# AND1<#� . . .,0001000

We then compute the index of the 1 in this word by a lookup table; suppose that the

result is D. We then shift # right D positions, and mask out the last D < 1 bits to obtain

the binary part of /.

Succinct prefix sums data structure

This is implemented as described in Section 4.2.5. The lower-order bits are

concatenated to form a bit-string, which is then stored in the compacted bit-string data

structure described above. In addition, if the text is stored uncompressed, then we have

to store a sequence � such that each entry /� in the sequence is greater than or equal to

2. In this case, we instead store the values /� � /� < 1; this reduces the sum of the

Chapter 6 - Representing Textual Data

140

values to be stored, and hence potentially the space usage. Note that SUM1�,)� �
 SUM1� ,)� @).
»-code data structures

We have implemented two simple data structures for the prefix sum problem that target

the 2 space bound; these we refer to as explicit-γ and succinct-γ. For the sequence

� � /A … /�, we form the bit-string Ê by concatenating =1/A�, . . . , =1/��, and storing it

using the compacted bit-string data structure. In addition, these data structures use a

parameter (¦ 0. In the explicit-γ data structure we store every (-th prefix sum, as well

as offsets into Ê to the start of the (-th γ-code, explicitly (using 32 bits); in the succinct-

= data structure, these prefix sums and offsets are stored using the succinct data

structure. To compute SUM1�,)�, we access the appropriate (-th prefix sum, and the

corresponding offset, and sequentially scan Ê from this offset using getAlignedWord ,

which we use to minimise calls to the sub-bitstring operation. The getAlignedWord

operation retrieves 32 bits of data containing =-codes. We observe that on average over

all files the =-codes are 5.43 bits long (see Table 6.2), therefore these 32 bits contain on

average five =-codes from the bit-string Ê. These can be decoded “for free” before we

need to retrieve more =-codes.

»-tree data structures

Finally, we implemented the data structure of Lemma 6.1. Here, we made the following

change: we always delete the right child of a node in the tree of prefix sums, rather than

the larger child. The advantages are that we do not need to store the additional � bits to

indicate which child was deleted, and it also speeds up the navigation down the tree. Let

��KK;(�) be the sequence obtained by always deleting the right child. We then encode

each integer of the ��KK;(�) sequence using the =-code. For the =-codes the unary and

binary parts are stored separately, the unary parts are concatenated into a bit-string,

which supports SELECT1. The binary parts are concatenated and stored using the

compacted bit-string data structure. To retrieve the)th unary value we compute:

Chapter 6 - Representing Textual Data

141

start = SELECT 1(i)
end = SELECT 1(i+1) <1
unary = start-end.

The binary part is retrieved by the operation subBitstring(start-i+1, end-

(i+1)) . The SUM1�,)� operation is computed as follows: we decode values from a

root-to-leaf path (the leaf where) is stored). To go to a right child node we compute its

value by subtracting the left child value from its parent node value. The answer is at the

leaf node. If the leaf node is a left child then we go to the node’s parent and get the

value of its previous-sibling, if there is no previous-sibling node then we traverse up the

tree and get the value of the current node’s previous-sibling node, and so on if the

node’s previous-sibling does not exist. If the leaf node is a right child then the answer is

the sum of all left child values before the current right child node, in document-order.

6.3 Textual data

We now discuss two alternatives to represent the string � in a compressed manner.

These representations support the subString() operation discussed in the

introduction to this chapter.

FM-Index

The first is using the FM-Index [29], which stores � in a compressed form (it applies a

BZip-related substring operation without fully decompressing �). In addition, it also

supports the following operation:

• Given a non-empty substring �, count the number of occurrences of � in �, or

locate one occurrence of � in �, in time dependent only on the size of � (the null

terminating character for each individual string must be left in � if the search

functionality is required).

Blocked BZip2

In the other representation, we divide � into blocks of " characters, and compress each

block using BZip2 [11]. When the individual string �� needs to be retrieved, the block(s)

Chapter 6 - Representing Textual Data

142

containing it are decompressed. Once a block is decompressed, it is stored in a text

block cache of - uncompressed blocks. Then to compute subString(?,D) we are

required to copy the required characters from position ? to D in the cache into a new

string. However, subsequent accesses to a cached block do not require decompression

so long as a block is not evicted from the text block cache because the cache is full (we

use a FIFO replacement mechanism). We use - � 4 and " � 16KB.

The code of BZip2 and FM-Index has been retrieved from [11] and [31], respectively.

6.4 Experimental Evaluation

In this section, we experimentally evaluate the prefix-sums data structures and text data

structures. We first describe the basic setup of our experiments. We then present

experiments on the prefix-sums data structures, beginning with the evaluation of the

compressibility of the test data under certain measures. We then evaluate the space

usage and (running time) performance of the prefix-sums implementations. Finally, we

evaluate the compression performance of the text data structures.

6.4.1 Basic Setup

The basic setup of our experiments is outlined in Appendix A. The test machines used

are the Intel-P4 and Sun-UltraSparc. Our test data are derived from the sixteen files in

our XML corpus (see Chapter 3). We use Xerces DOM to extract the data values from

these XML files.

In Table 6.1, we show for each file the space usage cost of the textual data and the

offsets, assuming the offsets are uncompressed. In addition, we observe that the average

cost of the naive representation of the offset values over all files was 40% of the

uncompressed textual data size.

6.4.2 Prefix-sums experiments

For the succinct prefix sums data structure we compare three bit-vector implementations

(detailed in Section 4.2.1). For the CJ and CNEW implementations, we choose the

following parameters: " � 64, � � 32 and '¡ � 256. In addition, we include the bit-

Chapter 6 - Representing Textual Data

143

vector implementation KNKP (see Section 4.2.1) with the parameters �" � 256 and

" � 64.

Compressibility and Space Usage

Table 6.2 summarises the measures of compressibility, in terms of bits per prefix sum

value, using the encoding schemes and using a succinct representation. We omit from

the prefix sums experiments the results on the attribute value lengths, as they are less

common in our XML documents and provide similar compressibility and running time

results to the results on text node lengths. In the Golomb codes we use � �
t0.694/�x.

Although N�F gives the best measure of compressibility, it cannot be decoded

without additional data structures. We see that in practice 2 and 0 are greater than

(3'3." in eleven of our test XML files, and for half our files (3'3." is at least

29% less than either 2 or 0; this is in line with many results on compressing inverted

lists [76] (however, [42] give examples where 2 and 0 are smallest). Comparing

(3'3." and the succinct bound, in all the cases in Table 6.2 we see that " < 0.25� �
(3'3." � " @ 0.33�, which is much closer than what Proposition 6.1 suggested.

Recall that 21��KK1��� � 21�� @ 2|�| < 2 (Eq. 6.5 in Lemma 6.1). In the best

case, 21��KK;1��� � 21��KK1��� � 21��. In the worst case, we claim that

21��KK;1��� � 2 21/�. Consider the sequence � � �, 1, �, 1,, where � is a value

such that |21� @ 1�| � |21��| @ 2 (for example, � � 7 is such a value). For this

sequence, 21�� � �/2 @ 1�/2�|21��|. We now construct just the first level of the

tree, by summing pairs of leaves and deleting the ones.

The resulting sequence of numbers (say #) contains �/2 �'s and �/2 1� @ 1�'s and

21�� � 1�/2� |21��| @ 1�/2�|21� @ 1�| � � @ � |21��| � 221��. Since

continuing the construction of the tree only increases the size of the numbers, it is clear

that 21��KK;1��� � 221��.

Chapter 6 - Representing Textual Data

144

Table 6.1 – Naive representation of offset values. �’ denotes the number of text and attribute

nodes (- represents a thousand and . represents a million), cost of storing data values

uncompressed, and of a naive representation for the offset values, respectively.

Files File size �′ Uncompressed text Naive offsets

Elts 128KB 4832 39KB 19KB

w3c1 224KB 12.8K 152KB 50KB

w3c2 200KB 11.6K 136KB 45KB

UNSPC-2.04 1,740KB 58.9K 531KB 230KB

Mondial-3.0 1,081KB 82.4K 688KB 322KB

Partsupp 2,253KB 48.0K 1,088KB 188KB

Orders 5,243KB 150.0K 1,488KB 586KB

xCRL 8,708KB 229.5K 3,079KB 896KB

Votable2 15,927KB 841.7K 5,376KB 3,288KB

Nasa 24,371KB 1.0M 15,530KB 3,927KB

Lineitem 32,326KB 1.0M 6,152KB 3,996KB

XPATH 50,995KB 1.7M 13,314KB 6,569KB

Treebank_e 83,968KB 4.9M 58,757KB 19,043KB

SwissProt 112,129KB 7.6M 49,795KB 29,774KB

DBLP 130,724KB 7.2M 73,077KB 28,111KB

XCDNA 607,881KB 16.8M 261,953KB 65,680KB

Table 6.2 shows 121��KK;1/�� < 21/��/|/| for our sequences. It is interesting to note

that this does not go below 1.96, which gives some insight into the distribution of

values. Neither does it go above 2.92 nor is typically much smaller showing that always

deleting the right child (which is simpler and faster) does not waste space in practice4.

We now consider the space usage of our data structures. We calculate the space used,

in bits per input sequence value, and also the difference between the space used by the

data structures and the corresponding compressibility measure (we refer to this as

wasted space). Table 6.2 summarises the space usage of the various data structures

where parameters have been selected such that the wasted space is roughly the same.

4 Recall that Γ(tree(x)) does not include the n − 1 bits needed for decoding x.

Chapter 6 - Representing Textual Data

145

Table 6.2 – Compression performance. Compressibility measures: gap(/), 01��, 21��,

(3'3."1�, �� as 1(3'�, "14, �� as 1�56�. Tree overhead: WΓW89::;1��X < Γ1��X/|�|.
Space usage: Total space in bits (spac) and wasted space in bits (wast) per prefix value using the

succinct prefix sum data structure and using the explicit-= and succinct-= data structures. Data

structure parameters for explicit-= and succinct-= were selected such that wasted space is

roughly equal.

File
Text
nodes

Compressibility measures tree
ovhd

Space usage

Succinct Explicit-= Succinct- =

Gap 0 2 GOL SUC Spac wast spac wast spac wast
Elts 3896 2.90 5.53 5.36 3.79 4.04 1.99 7.10 3.07 7.36 2.00 7.89 2.53

w3c1 7689 2.05 4.37 4.34 5.37 5.34 2.54 8.12 2.78 6.34 2.00 7.00 2.65

w3c2 7102 2.00 4.30 4.28 5.40 5.38 2.88 8.19 2.81 6.28 2.00 6.83 2.55

Mondial-3.0 34.9K 3.55 6.87 6.56 4.76 4.90 2.04 7.77 2.88 8.56 2.00 9.13 2.57

UNSPSC-2 39.3K 3.83 7.16 6.71 4.97 4.89 2.42 7.61 2.71 8.71 2.00 9.36 2.65

Partsupp 48.0K 2.53 5.24 5.23 6.14 5.95 1.99 9.36 3.41 7.23 2.00 7.94 2.71

Orders 150.0K 2.56 5.31 4.99 4.83 4.71 2.17 7.67 2.96 6.99 2.00 7.53 2.54

xCRL 155.6K 3.84 7.75 6.96 4.98 4.98 2.03 7.62 2.64 8.96 2.00 9.62 2.65

votable2 841.0K 2.56 5.67 5.28 4.22 4.03 1.97 7.26 3.23 7.28 2.00 7.85 2.57

Nasa 948.9K 3.04 5.58 5.45 5.64 5.39 2.40 8.15 2.76 7.45 2.00 8.11 2.66

Lineitem 1.0M 2.16 4.94 4.55 3.95 3.94 2.10 7.08 3.14 6.55 2.00 7.08 2.52

XPATH 1.7M 3.26 6.41 5.81 4.15 4.37 2.27 7.26 2.89 7.81 2.00 8.38 2.57

Treebank_e 4.9M 3.69 7.08 6.72 4.94 5.01 2.15 7.65 2.64 8.72 2.00 9.25 2.54

SwissProt 5.4M 2.38 5.38 4.64 4.31 4.10 2.25 7.50 3.40 6.64 2.00 7.14 2.50

DBLP 6.8M 1.78 3.88 3.89 5.00 4.67 2.92 8.25 3.58 5.89 2.00 6.45 2.56
XCDNA 16.8M 3.33 6.62 6.18 5.61 5.39 2.29 7.87 2.48 8.18 2.00 8.77 2.59

For the explicit-= and succinct-= data structures we used (� 32 and (� 8,

respectively. For these values the space usage in the =-codes data structures is

comparable to the succinct data structure.

Running time performance

The performance measure we report is time in >s for determining a random prefix sum

value. Each data point reported is the median of ten runs in which we perform eight

million random SUM operations. We have again selected parameters such that the

wasted space in each data structure is about the same.

Chapter 6 - Representing Textual Data

146

Table 6.3 summarises the performance of the data structures. The fastest runtime for

each file on the Intel-P4 and on the Sun-UltraSparc machines is shown in bold. The

table shows the performance of the succinct data structure using the three different bit-

vectors. We see that the performance of the CNEW bit-vector is similar to CJ and better

than KNKP. The table also shows the performance of the explicit-= and succinct-= data

structures using the bit-vector. We see that the explicit-= data structure out-performs the

succinct-= data structure when the space usage is roughly the same. The performance

results are preliminary, but we note that the succinct prefix sums data structure almost

always outperforms both the =-codes data structures. We observed that a single =-

decode is about twenty times faster than a SELECT operation, so improvements in the

bit-vector would make succinct-= more competitive.

We also performed some limited experiments on the relative performance of the data

structure of Lemma 6.1. We compared the time for SUM(�,)), when � is stored as in

Lemma 6.1 (but always deleting the right child), versus in a simple bit-string. At |�| �

64, 128, 256, 512 and 1024, the times in >s for the tree were 0.767, 0.91, 1.12, 1.28 and

1.5, and for the bit-string were 0.411, 0.81, 1.57, 3.08 and 6.03. We are not comparing

'like for like', as the tree uses more space. Even then we find that the (logarithmic) tree

data structure does not outperform the (linear) bit-string until |�| ¦ 128.

Unfortunately, the 2 bits per number (at least) wasted by the tree data structure means

that explicit-= with (� 64 would be less wasteful in space than the tree, and also

faster.

The tree requires two SELECT operations at each node visited, so an approach to

speeding-up the tree data structure would be to increase the arity and thereby reduce the

height of the tree.

Chapter 6 - Representing Textual Data

147

Table 6.3 – Speed evaluation on Intel-P4 and Sun-UltraSparc. Test file, number of text nodes,

time in >� to determine a prefix sum value for succinct data structures using CJ, KNKP and

CNEW. Time to determine a prefix sum for explicit-= (Exp) and for succinct-= (Succ) data

structure, both of which are based on the new bit-vector. The best runtime for each file on each

platform is in bold.

 Machine 1 - Pentium 4 Machine 2 - Sun UltraSparc-III

File
Text
nodes

Succinct prefix sums =-code Succinct prefix sums =-code
CJ KNKP CNEW Exp Succ CJ KNKP CNEW Exp Succ

Elts 3896 0.073 0.121 0.069 0.189 0.196 0.151 0.222 0.138 0.284 0.389
w3c1 7689 0.083 0.134 0.082 0.211 0.212 0.158 0.230 0.138 0.279 0.389
w3c2 7102 0.082 0.133 0.079 0.209 0.216 0.158 0.229 0.140 0.279 0.390
Mondial-3.0 34.9K 0.084 0.134 0.083 0.211 0.214 0.176 0.240 0.146 0.293 0.399
UNSPSC-2 39.3K 0.087 0.136 0.082 0.204 0.209 0.176 0.244 0.149 0.290 0.401
Partsupp 48.0K 0.084 0.133 0.080 0.204 0.213 0.168 0.240 0.150 0.284 0.396
Orders 150.0K 0.081 0.134 0.081 0.197 0.209 0.199 0.270 0.176 0.298 0.408
xCRL 155.6K 0.102 0.150 0.095 0.206 0.224 0.196 0.270 0.170 0.313 0.418
Votable2 841.0K 0.086 0.136 0.083 0.204 0.231 0.208 0.298 0.198 0.316 0.470
Nasa 948.9K 0.107 0.159 0.105 0.222 0.265 0.223 0.321 0.212 0.324 0.519
Lineitem 1.0M 0.127 0.180 0.122 0.235 0.300 0.215 0.310 0.207 0.316 0.481
XPATH 1.7M 0.113 0.172 0.115 0.221 0.274 0.218 0.308 0.203 0.328 0.510
Treebank_e 4.9M 0.118 0.183 0.127 0.243 0.310 0.241 0.341 0.244 0.345 0.545
SwissProt 5.4M 0.273 0.335 0.275 0.351 0.466 0.25 0.36 0.33 0.36 0.57
DBLP 6.8M 0.281 0.344 0.275 0.338 0.479 0.26 0.36 0.24 0.38 0.56
XCDNA 16.8M 0.248 0.306 0.253 0.330 0.403 0.742 0.951 0.733 0.646 0.989

Figure 6.3 – libBZip2-block compression: Textual data of XML documents is arranged in

document order.

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

C
o

m
p

re
ss

io
n

 r
a

ti
o

B=8KB B=16KB

Chapter 6 - Representing Textual Data

148

Table 6.4 – Textual data compression. File names, text + attribute node count (�),

uncompressed text data size, compression ratio for BZip, FM-Index in document order, and

libBZip2 in document order and path-order. LibBZip2 block size = 8KB.

File �
Uncompressed

text
DocOrder Doc-order Path-order

BZip2 FM-Index libBZip2
Elts 4,832 39 KB 12% 13% 14% 11%
w3c1 12,879 152 KB 26% 41% 33% 33%
w3c2 11,597 136 KB 27% 42% 36% 35%
Mondial-3.0 58,941 531 KB 16% 27% 19% 22%
UNSPSC-2 82,370 688 KB 15% 24% 17% 15%
Partsupp 48,002 1,088 KB 17% 27% 25% 22%
Orders 150,002 1,488 KB 20% 30% 30% 22%
xCRL 229,448 3,079 KB 8% 13% 10% 9%
Votable2 841,667 5,376 KB 30% 18% 31% 31%
Nasa 1,005,205 15,530 KB 20% 27% 29% 25%
Lineitem 1,022,977 6,152 KB 21% 27% 31% 21%
XPATH 1,681,713 13,314 KB 10% 16% 13% 9%
Treebank_e 4,874,945 58,757 KB 42% 58% 45% 42%
SwissProt 16,814,101 49,795 KB 18% 20% 29% 17%
DBLP 6,792,148 73,077 KB 25% 30% 35% 28%
XCDNA 5,432,193 261,953 KB 19% 19% 26% 17%

6.4.3 Text DS experiments

Figure 6.3 shows the compression ratio of using a compression library of the Bzip2 data

format called libBzip2 [11] with block size 8KB and 16KB. We observe that the

libBZip2 with block size 16KB is generally better than block size 8KB, but not by

much. However for the file Elts.xml the compression with block size 8KB was better

than compression with block size 16KB. Given the small difference of compression

ratios between the block size 8KB and 16KB, applications would benefit from the

smaller block size because the decompression of the smaller block is faster. In addition,

we can access individual data values quicker in the 8KB blocks, especially for a

collection of textual values that are small in length and where the text value begins far

away from the start of the block. For such a case in a 16KB block, we may have to read

double the number of characters than an 8KB block.

In Table 6.4, we show the compression ratio of BZip2 on the textual data in the XML

documents, the textual data of each file is arranged in two representations; path-order

and document-order. Path-order is where the textual data with the same upward path

Chapter 6 - Representing Textual Data

149

from leaf node to root are arranged together in the concatenated file. Document-order is

where we concatenate the textual data as we meet them in a document-order traversal of

the tree. We also compare the compression ratio of compressing the textual data with

FM-Index. We observe that textual data arranged in document-order compresses

comparably well to text in path-order. The compression ratio of BZip2 is roughly

similar to FM-Index as mentioned earlier (we exclude the fixed cost of the cache in the

BZip2 columns in Table 6.4, so FM-Index is better than it seems at first sight).

The compression performance of the two representations are roughly similar. FM-

Index allows the searching for arbitrary substrings in hundreds of megabytes within a

few milli-seconds [29]. The FM-index is recommended if the string values are not

accessed very often, or the access is highly non-local, or the search functionality is

desired, but if the strings are accessed frequently with a degree of locality, the blocked

BZip2 is recommended.

6.5 Summary

We have shown space-efficient solutions to represent the textual data arising in XML

documents, where we are using either FM-Index or blocked BZip2. The experiments

show both compression algorithms have a compression ratio that is almost the same,

i.e., on average over all files, FM-Index and blocked BZip2 compress the file to 27%

and 26%, respectively. We are now able to get good compression ratios on the text data.

In addition, the offsets for accessing the individual text data required careful

consideration to also represent space-efficiently. We engineered several prefix sums

data structures that support the SUM operation, answering the queries to retrieve the

offset values, which in turn allows us to access individual string values in the text data

structures.

We gave compressibility measures for our prefix sums data structures. For our data

sets, Golomb encoding and the succinct bound are usually very similar, and they

generally use less space than = and ¹ encoding. The succinct prefix sums data structure

is faster than the = codes data structures when space usage is comparable. The CNEW

Chapter 6 - Representing Textual Data

150

bit-vector has similar or better speed than the other bit-vectors and uses less space in the

worst case.

 151

Chapter 7

Succinct DOM

In this chapter, we present our DOM implementation, called Succinct DOM (SDOM),

bringing together as building blocks the succinct data structures studied in isolation in

previous chapters. SDOM is principally suitable for representing large, static XML

documents. We currently support almost all read-only operations of the DOM Level 3

Core API.

We analyse the space usage of SDOM compared to Xerces, Saxon’s TinyTree and to

several XML compressors. In addition, we compare to Xerces the operational

performance of traversing a DOM tree, retrieving simple textual data and node type

statistics.

We interface the DOM operations with an intermediate representation of the succinct

data structures, together with new data structures that are more XML specific. The class

structure of SDOM is similar to that of Saxon.

The chapter is organized as follows: We begin by presenting the architecture of the

SDOM implementation. Here we discuss each component giving its purpose, operations

supported, existing solutions and our own solution. In what follows, we assume that an

integer or pointer is 32 bits long. In Section 7.2 we discuss the interface of SDOM to

other XML applications. Finally, in Section 7.3, we present the experimental evaluation

of SDOM. Parts of this chapter were published as [24].

7.1 SDOM architecture

SDOM consists of 4 core components as shown in Figure 7.1. We see the DOM

document node, which contains 4 pointers to the SDOM components, these are:

• the succinct tree data structure (DS), henceforth called STree ,

• the Namecode DS, which stores the XML names for the nodes in the document,

• the Text DS, which handles the textual data in the document,

• the Attribute DS, which handles the attribute nodes in the document and their

associations to the element nodes.

Chapter 7 - Succinct DOM

152

Attribute Map

BitVector

Textual Data

string array

TextNode Offsets

PrefixSumsDS

Attr Offsets

PrefixSumsDS

BitString

TextDS

NameCodeDS

PAREN+

STree

BitVector

isTextNode

URINames

string arraystring array

string arrayHash table

BitString

AttributeDS

Short Codes

Short Codes

LocalNames

int array

Name Codes

Tree

PrefixesForURI

Document

SDOM

Figure 7.1 - DOM architecture. SDOM stored in the Document node. SDOM components

shown with dotted boxes. Connecting lines show relationships between data structures, i.e.

compute operations by passing of data in either direction.

The Text DS component consists of an uncompressed representation of the textual

data. However, a compressed representation can be achieved simply by replacing this

sub-component in the Text DS, using a text data structure given in Chapter 6.

Henceforth SDOM with compressed text we call SDOM-CT.

In what follows we discuss each component in detail, and mention the DOM

operations that are directly supported by it. Clearly, some operations rely on more than

one data structure, however we give the primary operations here. In Appendix B, we

provide a full detailed list of DOM operations (DOM levels 1, 2 and 3), indicating those

supported in SDOM.

7.1.1 STree & Node Object

Purpose: Provide support of the navigational operations for the XML tree structure in

DOM.

Chapter 7 - Succinct DOM

153

Operations supported: This component primarily supports the operations of the DOM

Node interface:

• parent() • childNodes()

• firstChild() • hasChildNodes()

• lastChild() • compareDocumentPosition()

• nextSibling()

• previousSibling()

This component also supports:

• The TreeWalker interface. Here we have the same navigation operations as in

the Node interface, in addition to the nextNode() , previousNode() and

currentNode() operations.

• The item() and length() operations in the NodeList helper interface

available to the DOM.

• The following , preceding , descendant and ancestor axes in XPath.

Existing solution: We discussed in Chapter 3 existing solutions of the XML tree

structure, such as Xerces, which represents the tree nodes as objects consisting of

several pointers, to the parent, first-child, next-sibling and previous-sibling node. The

total cost per node of the pointers is typically 256 bits for an internal node and 128 bits

for a leaf node since there are no first-child or child-node list pointers.

Our solution: We use the PAREN+ representation as the tree structure and recall from

Chapter 5 that a node is represented by a double number; the node number) in

document order (from 1 to �) and its position ,1)� in the succinct tree bit-string

representation (from 1 to 2�), where � is the number of nodes in the tree. Recall that

) � RANK01,1)��, if we represent ‘(’ by 0 and “)” by 1. The new node objects each

contain the integers) and ,1)� and a reference to the containing document node.

Chapter 7 - Succinct DOM

154

The navigation operation process works as follows: we first access in the node the

pointer to the document node, then access the PAREN+ object, which allows us to call

the navigation operations of the underlying succinct tree representation which in turn

gives the answer as a double number, which is then wrapped in a node object. It is

important to remember that, unlike a pointer-based DOM implementation, SDOM does

not create all node objects in a document when the XML document is parsed but

creates a node object whenever a navigational operation is invoked on an existing node

object (the implementation currently does not check if an object has previously been

created for the same node). The double number and the document node pointer

requires 96 bits to represent a node internally. The document node pointer is required

in SDOM nodes because the document node object stores pointers to all SDOM

internal components. For example, a navigational operation at a node requires access to

the tree representation via the document node. Nevertheless, the node representation in

SDOM is better than Xerces, which requires several more pointers to represent a node

(particularly an internal node). We navigate the tree representation through the

navigational operations in the node object. The C++ object must be explicitly freed. As

an alternative to avoid the creation of node objects, we recommend the use of the

TreeWalker class for navigation (see Section 7.2 for details).

The parentheses sequence of the XML document in Figure 7.2 (a) is shown in (b); we

identify element nodes in circles and text nodes in boxes. We ignore for now the

storage of the node type information and thus focus only on the structure of the DOM

tree, as shown by the parentheses string (c). Nodes are represented by the double

numbering encapsulated in a node class object.

We improve PAREN+ with the speedup of the primitive operation to go from a node

to the next/previous node in document order. This primitive is available in the DOM

TreeWalker class (see Section 7.2.2), and is also required to iterate along the XPath

axes following or preceding . We define two new operations on the parentheses

representation:

Chapter 7 - Succinct DOM

155

• NEXTOPEN(/): To return the position and RANK of the next opening parenthesis

given that we are at the opening parenthesis at position / in the bit-string.

Formally, NEXTOPEN returns 1) @ 1, ,1) @ 1�� if) E � and NULL otherwise,

where / � E), ,1)� ¦.

• PREVIOUSOPEN(/): Analogous.

These are implemented straightforwardly by inspecting bits in the parentheses sequence.

An individual call to NEXTOPEN (PREVIOUSOPEN) skips over at most + closing

(opening) parentheses, where + is the depth of the tree; thus its worst-case time

complexity is 31+�, but with a small constant. In our experiments (Section 7.3.3), we

show that using NEXTOPEN is the fastest option for document-order traversals.

To understand why, we need to understand how going to the next node using the

standard navigational operations varies with the location of the current node (we

consider document-order traversal, a reverse document order traversal is symmetric).

For a non-leaf node, the next node is its first child. The pseudocode for FIRST-CHILD

(Table 5.6) shows that this only requires the inspection of a bit in the parentheses

sequence, and is consequently very fast. For a leaf node, the next node is its following

sibling, and locating it is almost as fast as finding the first child of a non-leaf node,

except when the leaf node is the last child of its parent. Note that the number of nodes

that are the last child nodes equals the number non-leaf nodes, which is usually a 1/3 of

nodes in the tree. Thus, for at least 1/3 of the nodes, moving to the next node in

document order requires significant computation. A series of alternating parent and

next-sibling calls is made, both of which are relatively expensive (generally similar to a

few memory accesses). Using NEXT/PREVIOUSOPEN is much faster in this case.

Chapter 7 - Succinct DOM

156

Figure 7.2 - (a): Simple XML document fragment. (b): Corresponding DOM tree

representation. (c) Parentheses representation of the tree structure with double numbering of

nodes. E.g., the 11th node (the element ‘year’) is at the 20th position in the bit-string. The entity

&ent; represents the text ‘GmbH’.

Finally, we consider non-navigational operations, specifically, comparing the position

of two nodes � and Ë. Note that:

• if � precedes Ë in document order, both components in the double-numbering for

� will be less than their corresponding components in Ë. Thus, given two

nodes, we can check to see if a node precedes another in document-order by

just looking at the double-numbering of the two nodes.

• � is an ancestor of Ë if and only if ,1�� E ,1Ë� E FINDCLOSE(,1��).

Thus, we can check if Ë is an ancestor of � by a single call to FINDCLOSE,

since FINDCLOSE(,1Ë�) must precede FINDCLOSE(,1��) because the

XML document is well-formed.

These operations allow us to support the compareDocumentPosition() function

quickly. The PAREN+ representation also allows us to compare two nodes � and Ë by

any of the main XPath axes:

• ancestor /descendant : as above.

 (a) (b)

f (i) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
i 1 2 3 4 5 6 7 8 9 10 11 12 13

(() (() (())) () (()) () (()) ())

 catbook

titleauthor year
[cr][sp] [cr][sp] [cr][sp][cr][sp]

“XML”1

1072 133

4

8

9

11

12

&ent;

co

5

6

catbook

titleauthor year
[cr][sp] [cr][sp]

OND & SDOM Design 2007

[cr][sp][cr][sp]

“XML”1

1072 133

4

8

9

11

12

&ent;

GmbH

5

6

catbook

titleauthor year
[cr][sp] [cr][sp] [cr][sp][cr][sp]

“XML”1

1072 133

4

8

9

11

12

&ent;

co

5

6

catbook

titleauthor year
[cr][sp] [cr][sp]

OND & SDOM Design 2007

[cr][sp][cr][sp]

“XML”1

1072 133

4

8

9

11

12

&ent;

GmbH

5

6

<book catalogue=“XML”>
<author>OND
&&ent;</author>
<title>SDOM Design</title>
<year>2007</year>

</book>

(c)

Chapter 7 - Succinct DOM

157

• preceding : � is in the set of nodes preceding Ë if FINDCLOSE(,1��) E
,1Ë� .

• following : similar to preceding.

• parent /child : obtained directly from the navigation operations.

• following- /preceding-sibling : � is a following (preceding) sibling of

Ë if � is after (before) Ë in document-order and � and Ë have the same

parent.

7.1.2 NameCode Data Structure

Purpose: Store the name and type information of each node in the DOM tree.

Operations supported: This component primarily supports the operations of the DOM

Node interface:

• getNodeName() • getNodeType()

• getTagName() • hasChildNodes()

• getPrefix() • lookupPrefix()

• getLocalName() • getPrefix()

This component also supports:

• The operations getElementByTagName() and

getElementByTagNameNS() in the Document interface.

• The operation getTagName() in the Element interface.

Existing solutions: Xerces stores the node names as three pointers, each to a C++

string, requiring 96 bits per node. For an element node name with a namespace prefix,

the first pointer points to the namespace URI, the second to its prefix and the third to its

local name. An element node without a namespace prefix has a single pointer (instead

of the three) to its local name. Nodes with the same name point to the same string.

Chapter 7 - Succinct DOM

158

Node types in Xerces are not explicitly stored. They are represented through the class

representing the node (see Section 3.1.1 for details), for example, an element node is

an instance of the DOMElementImpl class derived from the DOMNode class. Therefore,

for the getNodeType operation, the node type of a node is known in its derived class.

In Saxon’s TinyTree data structure, node names are represented using an Namepool

data structure [61] (as discussed in Section 3.1.2), and are mapped to 32-bit integers

(name-codes). The name-codes are stored in an array structure of length �, representing

the XML document in document-order. Each name-code has three components, which

represent the fully qualified name information (prefix, URI and local-name). The node

type information is represented in an array called the nodeKind, which is of length �,

requiring eight bits each. For text nodes, the 32-bit value stored gives an offset into an

array containing the textual data.

Our solution: Our solution comprises three parts: isTextNode bit-vector, the

Namepool and the shortCode data structure.

Namepool data structure.

Initially in SDOM, the fully-qualified names for elements and attributes are converted

into 32-bit name-codes. The data structure for mapping string names to name-codes and

back follows Saxon’s Namepool data structure closely.

However, the use of a 32-bit name-code is costly, since there tend to be very few

distinct name-codes. For example, one of our XML documents SwissProt.xml has a

total of 5166890 element and attribute nodes in the document, but only ninety-

nine of these are distinct name-codes. In SDOM, to save space, we use an additional

level of indirection. Initially, we store each unique element name as 32 bits in an array

we call a name-code table (these can be decoded as in Saxon using the Namepool data

structure).

Our approach begins by splitting the nodes into text nodes and non-text tree nodes.

Specifically, we number all text nodes from 1. . � in document order, and all non-text

Chapter 7 - Succinct DOM

159

tree nodes (mostly element nodes, but including comment nodes, entityReference

nodes etc.) from 1. . K, where � and K are the number of text nodes and non-text tree

nodes, respectively (note that � @ K � �). The reason for this split is, in brief, that

while the information associated with non-text tree nodes and text nodes can be

compressed effectively, the compression methods are rather different. The splitting is

done using the isTextNode bit-vector, as we now explain.

IsTextNode Bit-Vector

The isTextNode is defined as follows: the)th bit is set to 1 if the)th node in document

order is a text node, otherwise it is set to 0. By augmenting the isTextNode bit-vector

with the RANK operation, we provide a consecutive numbering of text nodes from 1 to �

and of non-text tree nodes from 1 to K. For example, if node) is a text node, then

RANK1(isTextNode ,)) gives the ordinal position of node) among the text nodes,

considered in document order, and if node) is a non-text tree node,

RANK0(isTextNode ,)) gives the ordinal position of node) among the non-text nodes.

The CJ bit-vector implementation (discussed in Section 4.2.1) is used to support the

RANK operation, therefore the space usage of isTextNode is 1.5� bits.

 Short-code data structure

We then create an “array” of size K. The)th entry of this array is a short-code for the)th

non-text tree node in document order. A short-code is a positive integer, interpreted as

follows:

• If the)th short-code is 12 or less, then the)th node is not an element node, and

the short-code value gives its node type. The possible node types and their

values are: CDataSection (4), entityRef (5), processingInstruction

(7), comment (8) or docType (10). The other node types supported in SDOM

(i.e. Entity (6), Notation (12)) are only present in the XML document

prolog (see Section 2.1.3), therefore not in the DOM tree. The

Chapter 7 - Succinct DOM

160

DocumentFragment (11) node type is a feature of dynamic DOM

implementations, therefore not supported in SDOM.

• If the)�h short-code ? is 13 or greater, then the)th node is an element node,

and ? – 13 is an index into the name-code table, pointing to the entry in this

table corresponding to the)th element name.

The short-codes thus take � � tlog1F @ 12�x bits each, where F is the number of distinct

name-codes in the document. The short-codes are usually much smaller than name-

codes. For example, in SwissProt.xml F � 99 and each short-code is tlog199 @
12�x � 7 bits long. We concatenate all short-codes into a bit-string, using the

compacted bit-string data structure, described in Section 6.2.5. To extract the)th short-

code we call subBitString (� }), � } 1) @ 1� < 1).

We now explain some of the design decisions. It is worth bearing in mind that text

nodes appear to be the most common kind of node in the tree, and they comprised

nearly two-thirds of the nodes in many of our documents (as discussed in Chapter 3).

• We first consider the use of the isTextNode bit-vector. The planned

representation of textual data (described in Chapter 6) anyway requires text

nodes to be numbered consecutively. One could get around this by treating all

nodes as text nodes (those without any real textual data could be given a

dummy “null” string). This would increase the space usage of the offset data

structure. In addition, the short-code array would typically become 2-3 times

longer; since short-codes are often 6 bits or more, the savings in the short-code

array easily pay for the cost of the isTextNode bit-vector.

• Next, we argue that it does not make sense to apply the same separation to

other kinds of nodes, e.g. comment and CDataSection nodes. To do so

would require an additional bit-vector of length K, with a space cost of 1.5K

bits. However, the space savings obtained in the Short-code array by

removing the comment and CDataSection nodes would normally be small

and would not normally cover the costs of the bit-vector.

Chapter 7 - Succinct DOM

161

Table 7.1 – Pseudocode of DOM Methods, (a): getNodeType() and (b):

getNodeName() .

getNodeType(int node_i){
 if(isTextNode[node_i]=1)
 return TEXT
 else
 x= RANK 0(isTextBit, node_i)
 scode=getShortCode(x)
 if(scode>12)return ELEMENT
 else return scode
}

1
2
3
4
5
6
7
8
9

getNodeName(int node_i){
 if(isTextNode[node_i]=0)
 x= RANK 0(isTextBit, node_i)
 scode=getShortCode(x)
 if(scode>12)
 namecode=decode(scode-13)
 return QName(namecode)
 else
 return undefined
}

1
2
3
4
5
6
7
8
9

Table 7.1 shows pseudocode for the getNodeType() and the getNodeName()

operations. The identification of a node type using the getNodeType() operation is

trivial: we access the isTextNode bit-vector. If the)th bit is 1, then the)th node is a

text node (see lines 2-3). Otherwise, the)th node is some other node type and we must

make use of the short-code array to find this information out (see lines 5-8).

For the getNodeName() operation we first map the document-order number to the

non-text number in lines 2-3. As / is a number in the range 1 to K, we fetch the /th

short-code in the compacted short-codes. If the short-code value is greater than 12 then

the node in question is an element node and the short-code represents an index into the

name-code array (line 6-7). We access the name-code table to output the fully qualified

name, using the QName() operation, which is supported by the Namepool . The node

name of a non-text node that is not an element node is undefined.

Chapter 7 - Succinct DOM

162

7.1.3 Textual Data Structure

Purpose: Store and retrieve the textual data of individual nodes or groups of nodes

within the XML document.

Operations supported: This component primarily supports the DOM operations of the

Node interface:

• getNodeValue()

• getTextContent()

This component also supports:

• The getElementByID() method of the Document interface.

• The getValue() method of the Attribute interface.

• The getData() method of the ProcessingInstruction interface.

Existing solutions: Xerces stores the textual data as a pointer to a C++ string.

TinyTree represents the textual data in an array of strings. As discussed in Section

3.1.2, the alpha array provides indexes for the text , attributes and comment

nodes into the string buffers.

Our solution: In SDOM, we make the improvement of concatenating the textual data

of the XML document into a single C++ array. The textual data for the following node

types are stored:

• Text – data value associated with the text node

• Attributes – attribute node value

• ProcessingInstruction – data component of the processing instruction

• Comment – content of the comment node

• CDATASection – content of the CDATA Section

Recall that in Chapter 6, we gave a data structure for storing a collection of non-empty

strings �A, . . . , �` , concatenated into a single string, which is either held in a compressed

Chapter 7 - Succinct DOM

163

or uncompressed format. The lengths of the textual nodes are stored in a prefix-sums

data structure. The data structure retrieves the)th string.

Given an index), we have two instances of the textual data structure. The first

instance handles the text nodes. We assume the NameCode data structure numbers the

text nodes, given in the DOM tree from 1 to � in document order (using the

isTextNode bit-vector) and stores the collection of strings �A, . . . , �̀ in the string data

structure of Chapter 6, where �� is the value of the)th text node. The second instance

handles the remaining kinds of textual nodes, such as attribute , comment,

processingInstruction (target data) and CDataSection nodes. We assume the

attribute data structure (Section 7.1.4) numbers these nodes from 1 to � (where � is the

number of attribute nodes, including the other nodes given above).

The reason for doing this (rather than storing all strings in a single instance of the

string data structure) is that the other kinds of textual nodes are typically far less

numerous than text nodes (see statistics in Section 3.3), and appear to have different

distributions of lengths. The prefix sums data structure discussed in Chapter 6

represents the lengths of the text nodes, and the space usage of the data structure is

based on the average length of a text node. We observe the separation of the text

nodes and attribute nodes may have some benefit in the space usage of the prefix

sums data structure (see Proposition 4.5); if �’ is the number of attribute nodes, and

4’ is their total length, then by the convexity of the log function,

1� @ �’� log 114 @ 4’�/1� @ �’�� � � log 4/� @ �’ log 4’/�’,
so the space consumption of the offsets into the character arrays is always reduced by

separately considering the offsets. For example, this avoids the risk that one very large

comment node raises the average length of all textual nodes in the tree, and thus the

space usage of all offsets, if the offsets for text nodes and attribute nodes

(including other nodes given above) were combined.

Chapter 7 - Succinct DOM

164

7.1.4 Attribute Data Structure

Purpose: Provide mapping of attribute nodes to the element nodes (where they are

declared) in the DOM tree. Store the name information of each attribute node and

the associated node value.

Operations supported: The DOM defines a set of operations to search and access the

attribute nodes belonging to an element through the NamedNodeMap. The Node interface

specifies the operation getAttributes() , which returns a NamedNodeMap. This

component primarily supports the DOM operations of the NamedNodeMap and the

Attribute interfaces:

• item() • getName()

• length() • getOwnerElement()

• getNamedItem() • isID()

• getNamedItemNS()

This component also supports:

• The getElementById() and getElementByTagNameNS() methods of

the Document interface.

• The getAttributes() and hasAttributes() methods of the Node interface.

• The getAttribute() , getAttributeNS() , getAttributeNode() ,

getAttributeNodeNS() and hasAttribute() methods of the Element

interface.

• The getTarget() method of the ProcessingInstruction interface.

• The getName() method of the DocType interface.

• The getNotationName() method of the Entity interface.

Existing Solutions: Xerces represents attribute nodes belonging to an element

node in the NameNodeMap class. Each element node object has two pointers which are

instances of the NameNodeMap class: the first pointer is to standard attributes (where

Chapter 7 - Succinct DOM

165

the attributes’ name and value are defined), and the second pointer is to the default

attributes (where the DTD is required to retrieve the default attribute values, if not

defined in the document). These pointers are null for element nodes that do not have

any attributes. The NameNodeMap class has a pointer to its owner element object and an

instance of a vector. The vector has an array of pointers to instances of the attribute

node; in addition, we have two integer variables to maintain the vector. In total the

attribute node itself has nine pointers with information such as its name, value and

owner document (see Section 3.1.1 for details).

TinyTree represents all the attribute nodes in the document using three integer

arrays, where each array item represents an attribute in document-order. The first array

stores the node number (index) of the element that is the attribute’s parent. The second

array stores the name-codes of the attribute names. The attribute values are stored in a

string array. The navigation of elements to their attribute nodes is supported by the

alpha array, which provides the mapping from an element node to the index of its first

attribute node (see Section 3.1.2 for details).

An important issue that arises is whether to place attribute nodes within the tree

structure of the XML document. This approach is taken by a number of XML

compressors [14], [30], [48], [55], but appears to be unsuitable for SDOM. This design

decision has already been indicated by our definition of “XML document structure” in

Chapter 5, and is justified in this section.

Our solution: In SDOM, attribute nodes are represented separately from the tree

representation. We propose a mapping strategy, which maps elements to their

attributes , and attribute names to their values.

We now describe the attribute data structure. Recall from Section 7.1.2 that the

isTextNode bit-vector numbers non-text tree nodes from 1 to K. We create a sequence

of non-negative integers M � 1/A, … , /�� of length K as follows. If the)th non-text tree

node is an element node, then /� is the count of attributes it has. If the)th non-text tree

Chapter 7 - Succinct DOM

166

node is any of processingInstruction , CDataSection , docType , document or

comment nodes, we give it a dummy attribute, therefore /� � 1.

Let � be the sum of the /�s (i.e. � is the total number of attributes, including dummy

attributes). We now show how to represent M to satisfy the following goals:

(a) All attributes should be numbered from 1 to �, and the attributes associated with

a given non-text tree node should be numbered consecutively.

(b) Given a non-text tree node, it should be possible to determine quickly the range

of integers that number its (dummy) attributes, if any.

These requirements are met as follows. We consider each non-text tree node in

document order, and number all its (dummy) attributes consecutively. The attributes (if

any) of the first non-text tree node are numbered starting from one; for any other node,

its attributes (if any) are numbered starting from the next available integer. Clearly, all

attributes of a node are numbered consecutively, and (a) is satisfied.

For (b), we represent M as a bit-string (called attr_association) as follows. Each

value /� is written in unary (e.g. if /� � 4, then /� is written as 11110) and concatenated

in order (see Figure 7.3 (b) for an example). Note that this bit-string has K 0s and � 1s,

and it is stored as a bit-vector that supports SELECT0. The attributes of the)th non-text

node are numbered from SELECT01) – 1� –) @ 2 to SELECT0 ())<) (SELECT0()) –)
gives the number of 1s before the)th 0 in the bit-string). Hence (b) is satisfied.

The attribute names are represented analogously to the element names in the short-

code data structure. Initially we create an array of size �, which stores the short-codes of

the attribute names and node types of the dummy attributes. The array is then

compacted to its final representation as described in Section 7.1.2. The strings �A, . . . , �^

are numbered, where �� is the textual data associated with the)th attribute or dummy

attribute node.

Chapter 7 - Succinct DOM

167

Figure 7.3 - (a) Example XML document with elements and associated attributes. (b) Bit-string

of the attribute representation.

The attribute name and value are accessed via the Attribute class in SDOM, which is

a derived class of the Node class. Since the attribute node is not in the DOM tree,

calling operations such as previousSibling() or nextSibling() returns a null

value, but for parent() it returns the element node associated with the attribute .

In SDOM, an attribute node object has four values:

• A pointer to the document node to which it belongs. This pointer is required

because the attributeDS is referenced in the document node object.

• An attribute number in the range 1 to �,

• The double number E /, U ¦ of its parent (the element node).

The numbers E /, U ¦ are filled in at the time of creation of the attribute node (this

can only happen when navigation in the tree to the attribute’s parent node is performed).

The attribute node exists until the user deletes the object.

The operation to retrieve the attribute name is analogous to the getName() operation

of Table 7.1 for element nodes. The operation to retrieve an attribute node value is

 <root>
 <U a="val" b="val" c="val" />
 <V /> <!-- comment -->
 <W d="val" e ="val">
 <X f="val" g ="val" h="val" i="val">
 <Y j="val">
 <Z />
</root>

(a)

root U V // W X Y Z

 a b c com d e f g h i j
 1 2 3 4 5 6 7 8 9 10 11
0 1 1 1 0 0 1 0 1 1 0 1 1 1 1 0 1 0 0

(b)

Chapter 7 - Succinct DOM

168

analogous to the getNodeValue() method (Section 7.1.3), except that we have to get

the attribute node number 1 to � before operations on the attribute node are

computed.

Implementation of the NamedNodeMap

The NamedNodeMap interface represents a collection of nodes that can be accessed by

name or by selecting the)th item in the collection. We implemented a specialised

NamedNodeMap class for attribute nodes in SDOM, which contains the following

values:

• Pointer to an instance of the parent node (i.e. the element), which contains as a

class member the double node number and a pointer to the document node.

• The number of attribute nodes belonging to the element node.

• The starting attribute position in the attr_association bit-string. This is

computed upon the creation of the NamedNodeMap.

The operation item()) is simple, since upon the creation of the NamedNodeMap we

know the starting attribute number of the attribute group belonging to a particular

element. Given we know its length, the)th attribute will appear at the position

start_position+).

We show in Table 7.2 the pseudocode of the DOM node operation getAttributes() .

In lines, 2 and 3 we show the mapping of the tree node number to the non-text node

number and check that the node number is an element node. The

attrNodeCount() operation (line 4) retrieves the total count of attributes belonging

to the element. If this count is greater than zero, we then return a new NamedNodeMap

instance.

To access of an attribute node belonging to an element node we create a new

node object. We first get the non-text number of the element node from 1 to K in the

Chapter 7 - Succinct DOM

169

isTextNode bit-vector. Let # be the non-text number of the element node. We find the

first attribute belonging to the element .

With the call ? �SELECT01attr_association, # < 1� @ 1. To retrieve the)th attribute

node we compute RANK1(attr_association , (? < 1)@)). An instance of the DOM

Attribute class is returned to the user.

We now discuss alternative representations that include the attributes in the document

tree structure. One option is to make attribute nodes “special” children of their

parent element node (for the sake of concreteness, let us say that if a node has attributes,

then they appear before all its “real” children).

An obvious disadvantage of including attribute nodes in the tree structure is a

slow-down in the navigational operations. For example, if we were to perform a

firstChild() operation on a node /, then we would need to check that the node that

we have reached is not an attribute of /, and if it is, then we would need to skip over

all its attributes to reach the “real” first child. However, there are disadvantages in

terms of space usage as well; depending on how exactly this is done.

We consider two alternative ways to associate attributes with their values. In the first,

we store only the attribute nodes (not the attribute value) as the first children nodes

of their parent nodes (the element nodes where they are defined) in the tree (Figure 7.4

(b)).

Table 7.2 – Pseudocode of Attribute DS interfacing with DOM methods. <), ?> is the double

number of the node in the tree.

getAttributes(<i,j>){
 otherNr= RANK0(isTextNode, i)
 if(getShortCode(otherNr)>12)
 attCount=attrNodeCount(otherNr)
 if(attCount>0)
 return new NamedNodeMap(<i,j>,otherNr,attCoun t)
 return NULL
}

1
2
3
4
5
6
7
8

Chapter 7 - Succinct DOM

170

We filter out the text nodes using the isTextNode bit-vector as before, therefore we

have remaining non-text nodes, along with the attribute nodes.Similar to isTextNode

we require a bit-vector to number the attribute nodes from 1. . � (to access their

textual values including comment, processingInstruction etc), which we call

hasTextValue . This bit-vector would be of length K @ � bits, which is the same length

as the attr_association bit-vector above. In addition, however, we would need 2�

bits to store the attribute nodes in the tree (two bits per node). Finally, the attribute

and element name-codes are stored together in an array, their names may overlap, and

hence we use the hasTextValue bit-vector to identify the attributes nodes from the

element nodes.

Another alternative is to store the attribute (and comment, processing-

Instruction , etc) values as new text nodes in the tree (Figure 7.4 (c)). This would

add at least 2� nodes to the tree, and hence 4� bits overall. The isTextNode bit-

vector would be modified to filter out the new text nodes as well, and number all

text nodes (original and new) consecutively. Compared to the attr_association

bit-vector, adding 2� nodes to the tree could use less space if � is small.

However, this approach would put all textual data into the same data structure, which

can cause an increase in the space usage of the textual data structure, as discussed in

Section 7.1.3.

Finally, since attribute and element name-codes would be stored together in an array,

the name-codes potentially could overlap for the attributes and elements, as they might

have the same name; therefore we would need to identify attributes and element nodes.

This we can achieve by numbering the short-codes differently for the attributes and

elements even if the name-codes are the same. Potentially the space usage of the name-

code data structure would double, in this case.

Chapter 7 - Succinct DOM

171

Figure 7.4 – (a) Simple XML document. (b) Tree structure of (a) with attribute nodes (not

including textual data) in the tree. (c) Tree structure of (a) with attributes and their values in the

tree as nodes.

7.2 SDOM Interface

7.2.1 Class Structure

In this section, we discuss SDOM as an application, which is designed to support DOM

and is compatible with XSLT/XQuery processors. We have an intermediate interface

which calls the succinct data structures directly, which in turn is called by the DOM

operations. The intermediate interface is similar to that used in Saxon [61], which has

the NodeInfo and DocumentInfo interfaces directly accessing the TinyTree data

structure. We also support a ported version of the NodeInfo and DocumentInfo

interfaces in C++, thus allowing SDOM to be a plug-in replacement for TinyTree .

In Figure 7.5, we show the class diagram of the TinyTree data structure and the

interfaces operating directly on TinyTree . The class TinyNodeImpl (which

implements the NodeInfo) is used in Saxon’s implementation of DOM, as a class

member instance of the DOM APIs. The class TinyDocumentImpl is also used, as a

class member instance in the DOM Document . In essence, these class members

represent the node, i.e. the TinyNodeImpl class consists of a node number and parent

pointer. In SDOM, we replace the TinyNodeImpl with SDOM’s Node class (which

 (a) (b)

(c)

 <c> text

</c>

 <d e=”val”>

text </d>

(c)

Chapter 7 - Succinct DOM

172

consists of two integers for the node and a pointer to the Document node), which

represents the node object directly. An additional layer implements the NodeInfo . The

Document node provides access to the SDOM data structures. For SDOM, some of the

DOM operations directly match those in the NodeInfo , for example, the

getNodeKind() (in the NodeInfo), which retrieves the node type information of a

node, has the same function as the DOM operation getNodeType() . Therefore the

DOM getNodeType() operation calls directly the getNodeKind() operation.

The getNameCode() operation retrieves the name-code of a node, operating directly

with the SDOM’s NameCode data structure. This operation is used by the DOM

operation getNodeName() , where we find in the hash table the matching node name to

the name-code.

The navigational operations (with the exception of parent()) are not directly

supported in NodeInfo , but require the use of the Axis iterator. In SDOM, we provide

direct support of the DOM node navigation operations. In addition, we support the

iterateAxis operations of NodeInfo . All the axes are supported in the

iterateAxis , except the namespace axes.

Chapter 7 - Succinct DOM

173

Figure 7.5 – Class Diagram of TinyTree and interface classes [61].

7.2.2 DOM TreeWalker Interface

When traversing a document via navigation performed through the Node interface, it

results in at least one Node object being created for each node in the tree (see Section

7.1.1); this collection of Node objects will, in many cases, occupy more space than the

SDOM representation of the document. To avoid this problem, we recommend the use

Chapter 7 - Succinct DOM

174

of the TreeWalker class [78] for navigation; this has an iterator-like behaviour. For

example, the nextNode() operation in the TreeWalker moves currentNode pointer

to the next node, which is then returned if and only if the next node exists. If the

returned value is null, then the currentNode remains at the last node visited.

In essence, new Node objects are not created by a navigation operation in the

TreeWalker , but it supports all the navigational operations supported by the Node

class (our TreeWalker implementation does not yet support node filters).

7.3 Experimental Evaluation

In this section we draw comparisons of the space usage and running times between

SDOM(-CT), Xerces and TinyTree (as TinyTree is implemented in Java we did not

compare its running times). We also compare our space usage against XML-specific

compressors such as XMill, XBZipIndex, XPRESS, XQZip and XGrind (described in

Chapter 3). We do not make a detailed comparison with their running times: some do

not support queries/navigation (e.g. XMill, XBZip), and those that do, focus on

supporting various XPath-like queries rather than navigation, and do not generally

report times for navigation. (An exception is [30], where they report navigation

operations as taking milliseconds; however, we are several orders of magnitude faster.)

The DOM operations supported in SDOM are listed in Appendix B.

7.3.1 Setup

The basic setup of our experiments is outlined in Appendix A. We compare our data

structure’s running times with Xerces, with testing only done on the Intel-P4 machine.

For RANK and SELECT we use the CJ bit-vector (described in Section 4.2.1), with

parameters " � 64 and � � 32. We used the parentheses implementation of [36] (i.e.

PAREN+), with parameter " � 128.

We tested our SDOM data structure on seven XML files taken from our XML corpus

(Section 3.3). Our choice of files gives us a range of typical XML documents (with files

Chapter 7 - Succinct DOM

Figure 7.6 - Space usage distribution of SDOM components excluding text

Figure 7.7 - Space usage of SDOM components fr

size ranging from 5MB to 594MB with varied tree structures and textual data). We also

ran preliminary tests on a set of synthetically generated files using XM

7.3.2 Space Usage

The succinct data structures s

for bit-vectors and in

P
ro

po
rt

at
io

ns

Succinct DOM

175

Space usage distribution of SDOM components excluding text

Space usage of SDOM components from Figure 7.6 (shaded in grey) with

data compressed (shaded in dark-grey).

size ranging from 5MB to 594MB with varied tree structures and textual data). We also

ran preliminary tests on a set of synthetically generated files using XM

The succinct data structures share some static lookup tables (detailed in Section

vectors and in [36] for the parentheses data structure) with total size

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Stree NameCodeDS textDS AttributeDS

Space usage distribution of SDOM components excluding textual data.

(shaded in grey) with textual

size ranging from 5MB to 594MB with varied tree structures and textual data). We also

ran preliminary tests on a set of synthetically generated files using XMark [70].

up tables (detailed in Section 4.2.1

for the parentheses data structure) with total size

Chapter 7 - Succinct DOM

176

approximately 3.5MB. We have not added this cost in our figures. For relatively large

documents, this cost is negligible, and for multiple documents loaded in SDOM, we

only pay the cost once.

Figure 7.6 shows the space usage of the SDOM components in their relative

proportions (excluding the textual data). Note that with the exception of Orders.xml

and Lineitem.xml , which are not as rich in text nodes as the other files, the textual

offset data structure (shaded in black diamonds in Figure 7.6) makes up the largest

proportion of the space usage and recall that the succinct representation is four times

smaller than the naïve one discussed in Chapter 6.

In addition, the tree structure, despite being very compactly represented, still takes a

fourth of the cost of SDOM (excluding the text). The naïve representation, which would

require at least 2 } 32 � 64 bits per node, would be prohibitive. The Attribute

data structure is relatively small, as some documents do not have any (or only a few)

attribute nodes. For documents that have many attribute nodes

(SwissProt.xml) we observe the representation is still relatively small.

Figure 7.7 shows the breakdown of the space usage within SDOM-CT. We see that

the compressed text is often smaller than the SDOM components. However we see that

for treebank_e.xml the compressed text is larger than the SDOM components, which

is because the textual data is partially encrypted and therefore does not compress well.

Figure 7.8 compares the space usage of SDOM with other DOM implementations.

We observe in Table 7.3 that files that would not easily fit into main memory of our

Intel-P4 machine under Xerces, such as XCDNA.xml (size 594MB, which Xerces

increases by a factor of 4) fit comfortably into the main memory using SDOM.

Chapter 7 - Succinct DOM

Figure 7.8 - Space usage of DOM implementations compared to original file.

Figure 7.9 - Compression ratio comparisons

Figure 7.9 compares SDOM

(XPRESS, XQZip, XBZip

quote the results for the other compressors from the papers, and have not

them ourselves (however, for XMill we derived the results using their software)

only show files in Figure

Figure 7.9 the space usage is expressed as a percentage of the

Succinct DOM

177

Space usage of DOM implementations compared to original file.

Compression ratio comparisons of the XML compressors.

SDOM-CT with XML compressors: both query

(XPRESS, XQZip, XBZipIndex and XGrind) and a standard compressor, XM

quote the results for the other compressors from the papers, and have not

(however, for XMill we derived the results using their software)

Figure 7.9 that are reported by the majority of other compressors. In

the space usage is expressed as a percentage of the original file size

Space usage of DOM implementations compared to original file.

XML compressors.

CT with XML compressors: both query-friendly ones

Index and XGrind) and a standard compressor, XMill. We

quote the results for the other compressors from the papers, and have not re-derived

(however, for XMill we derived the results using their software). We

majority of other compressors. In

original file size.

Chapter 7 - Succinct DOM

178

Table 7.3 - Space usage of XML representations.

 Uncompressed repn’s Query-friendly compressed representations

File Size SDOM Xerces Saxon SDOM-CT XBZipIndex XPRESS XQZip XGRIND XMILL

Orders 5MB 37% 451% 157% 17% - - - - 12%

Lineitem 32MB 28% 399% 161% 13% - - 5% 24% 5%

XPATH 50MB 33% 383% 137% 10% - - - - 3%

Treebank_e 82MB 84% 866% 266% 43% 54% - 43% 52% 30%

SwissProt 110MB 60% 704% 272% 22% 8% 38% 38% 43% 7%

DBLP 128MB 68% 737% 240% 24% 14% 48% 30% 43% 15%

XCDNA 594MB 50% 491% 136% 14% - - - - 8%

In Table 7.3, we show the space usage of the XML processors and XML compressors,

where the percentage value is the proportion of the file size. We observe that XMill

gives the best compression ratios for all our files (we do not report the results from

XBZip, which are similar to XMill); however, XMill does not support query operations

upon the compressed representation. We observe that SDOM-CT often gives better

compression ratios than the other query-friendly XML compressors.

7.3.3 Running Time

Our tests are based on traversals of XML documents. We always use the SDOM

TreeWalker interface, and not the SDOM Node interface, as discussed in Section 7.2.

Even so, there are two different ways of traversing a document in document or reverse

document-order in SDOM(-CT):

• Using the nextNode() (previousNode()) operation.

• Using the standard DOM navigational methods. Over the course of a document-

order traversal of an �-node tree, this results in a total of � calls to each of the

operations firstChild() , nextSibling() and parent() , thus providing a

test that involves a mix of standard navigational operations. The reverse

document-order is analogous, using the operations previousSibling() ,

parent() and lastChild() .

Chapter 7 - Succinct DOM

179

In addition to document-order and reverse document-order, we perform a third kind of

traversal, called the uFËard path enumeration, which works as fo��ows. We perform a

document-order traversal using the TreeWalker navigational methods. When the main

iterator reaches a leaf, an auxiliary iterator traverses the entire upward path from the leaf

to the root using the DOM parent operation.

Along with the traversals, we either gather basic statistics, which include the count of

element and text nodes, or perform a full test. In the full test we (i) determine the

type of each node. (ii) check whether nodes have associated attributes. (iii) for nodes

with attribute data, or text nodes, we retrieve the node value, and check to see if the

value contains a substring that is unlikely to appear, hence, forcing the substring search

to scan the entire text in the node. Each test is repeated several times to obtain stable

results (50 times for Orders.xml , 10 times for Lineitem.xml , XPATH.xml ,

Treebank.xml , DBLP.xml and SwissProt.xml , and 2-5 times for XCDNA.xml).

The running times are reported as the total of the runs, unless stated otherwise. For

XCDNA.xml we get the average for a single run of a traversal.

In Figure 7.10, we show the total running times for the traversal of the documents

using either the nextNode() or the previousNode() operations, which corresponds

to document-order and reverse document-order, respectively. We observe that SDOM is

40% faster than Xerces, on average. As expected, the gap grows for larger files, e.g.

XCDNA.xml.

In Figure 7.11, we show the result of a document-order and reverse document-order

traversal using the DOM navigational operations; SDOM is always within a factor of

two of Xerces, but equals or improves upon Xerces for XCDNA.xml. We observe that

traversals appear equally fast in document-order or reverse order.

Chapter 7 - Succinct DOM

Figure 7.10 - Running times, document

gathering basic statis

previousNode

Figure 7.11 – Running times, for document

DOM navigation, with basic statistics for Xerces and SDOM. Average time

Succinct DOM

180

Running times, document-order and reverse document

gathering basic statistics, of Xerces and SDOM using nextNode

reviousNode () operations. Average time of a single traversal

XCDNA.xml.

Running times, for document-order and reverse document-order traversals using

DOM navigation, with basic statistics for Xerces and SDOM. Average time

reported for XCDNA.xml.

order and reverse document-order traversals

extNode () and

of a single traversal reported for

order traversals using

DOM navigation, with basic statistics for Xerces and SDOM. Average time of a single traversal

Chapter 7 - Succinct DOM

Table 7.4 – Running times for Xerces and SDOM for ‘upward path enumeration’.

in seconds. SDOM slowdown wrt Xerces.

File #Nodes
Orders 300003

Lineitem 2045954
XPATH 2522571

Treebank_e 7312613
SwissProt 10599084

DBLP 10595379
XCDNA 25221153

Figure 7.12 – Running times of Xerces and SDOM for ‘upward path enumeration’ gathering

basic statistics. Average

Figure 7.12 and Table 7

This traversal makes a very heavy use of the

inefficient in SDOM, and may be considered a “worst case” for SDOM. Even here,

SDOM on average was only a factor of 2.5 slower than

We show the results of a full

7.13, and Table 7.5. In

DOM navigation is only a few times slower than Xerces, for small files, and for our

largest file, the gap starts narrowing rapidly.

SDOM (using the nextNode()

faster than Xerces.

Succinct DOM

181

Running times for Xerces and SDOM for ‘upward path enumeration’.

SDOM slowdown wrt Xerces. Average time of a single traversal

XCDNA.xml

%non-leaf nodes Max depth Xerces SDOM
50% 4 0.08 0.13
50% 4 0.55 1.28
33% 6 0.80 2.52
33% 37 3.22 9.84
29% 6 2.71 8.76
33% 7 2.97 7.90
33% 8 24.50 30.72

Running times of Xerces and SDOM for ‘upward path enumeration’ gathering

basic statistics. Average time of a single traversal reported for XCDNA.xml

7.4 show the results for an upward path enumeration traversal.

makes a very heavy use of the parent() operation which is (relatively)

SDOM, and may be considered a “worst case” for SDOM. Even here,

SDOM on average was only a factor of 2.5 slower than Xerces.

We show the results of a full-test document-order traversal for our XML files in

. In Figure 7.13, we observe that even SDOM

only a few times slower than Xerces, for small files, and for our

e gap starts narrowing rapidly. Particularly noteworthy is the time of

nextNode() operation) on XCDNA.xml, which is nearly 3.5 times

Running times for Xerces and SDOM for ‘upward path enumeration’. Time results

of a single traversal reported for

SDOM Slowdown
0.13 1.64
1.28 2.33
2.52 3.16
9.84 3.05
8.76 3.23
7.90 2.66

30.72 1.25

Running times of Xerces and SDOM for ‘upward path enumeration’ gathering

XCDNA.xml.

an upward path enumeration traversal.

operation which is (relatively)

SDOM, and may be considered a “worst case” for SDOM. Even here,

order traversal for our XML files in Figure

bserve that even SDOM-CT with the slow

only a few times slower than Xerces, for small files, and for our

Particularly noteworthy is the time of

, which is nearly 3.5 times

Chapter 7 - Succinct DOM

182

Table 7.5 - Full test using TreeWalker . Shows running times in seconds for Xerces using

tree navigation operations, and using nextNode() , versus SDOM using tree navigation and

nextNode() and SDOM-CT using tree navigation. Time results in seconds. Average time of

a single traversal reported for all files.

File #Nodes
Xerces

TreeNav
Xerces

NextNode
SDOM

TreeNav
SDOM

NextNode
SDOM-CT
TreeNav

Orders 300003 0.06 0.05 0.09 0.06 0.22
Lineitem 2045954 0.37 0.32 0.64 0.39 1.22
XPATH 2522571 0.44 0.40 0.82 0.51 1.68

Treebank_e 7312613 1.40 1.25 2.85 1.57 8.51
SwissProt 10599084 1.70 1.48 3.28 2.30 7.78

DBLP 10595379 1.86 1.67 3.56 2.28 10.45
XCDNA 25221153 17.63 16.88 8.50 5.42 27.90

Figure 7.13 – Average running times for DOM full test including examination of attributes and

substring test on text and attribute node values.

In Figure 7.14, we show the scalability of SDOM on XMark files with different file

sizes. The results are of a document-order traversal on the files. We run the full DOM

test using Xerces and SDOM. We observe Xerces is faster, but for a file size of 512MB

SDOM is faster than Xerces, as Xerces uses more memory than what is available in

main memory, and so (slower) virtual memory is used.

0

5

10

15

20

25

30

Treebank_e SwissProt DBLP XCDNA

T
im

e
(s

e
cs

)

Xerces TreeNav Xerces NextNode SDOM TreeNav

SDOM NextNode SDOM-CT TreeNav

Chapter 7 - Succinct DOM

183

Figure 7.14 - Running times for DOM full test including examination of attributes and

substring test on contents of text and attribute nodes for XMark files (sizes 2MB-

512MB). Average times are reported.

Figure 7.15 – Valgrind Massif profiler [65]: SDOM vs Xerces parsers, using XCDNA.xml

(594MB).

0

5

10

15

20

25

2 4 8 16 32 64 128 256 512

T
im

e
 (

S
e

c)

File Size (MB)

Xerces

SDOM

Chapter 7 - Succinct DOM

184

Figure 7.16 – Construction time of SDOM-(CT) vs Xerces using the XMark files.

7.3.4 Pre-processing Performance

We used the Valgrind Massif profiler tool [65] to measure the (heap) memory usage of

SDOM compared to Xerces. We show the results of Massif for the XML document

XCDNA.xml, in Figure 7.15 (the full set of Massif results for all our XML files used in

this chapter can be found in [62]); we include the construction phase parsing, although

we have not spent any time discussing the parsing of XML documents and the

construction of subsequent SDOM representations. We confirm that the estimations

made by the formulas in Section 4.1.6 broadly follow the Massif result5 in Table 7.3.

Optimisations still need to be made to the parser of SDOM; therefore, we have some

irregular growth during the construction phase causing SDOM space usage to reach

above the size of the file before we reach the final state, which is smaller than the file

size. We observe Xerces exceeded the main memory of this machine, which has 2GB of

RAM and is over four times larger than the XML file.

In Figure 7.16, we show the scalability of the SDOM(-CT) parser on the XMark files,

reporting the construction speed. SDOM(-CT) requires a single parse of the XML

document to construct the internal data structures. The results include the time for

SDOM to create an intermediate representation, which is then converted to the final

5 We see up to 10% difference on some files.

0

50

100

150

200

250

2 4 8 16 32 64 128 256 512

T
im

e
 (

S
e

cs
)

File Size (MB)

Xerces SDOM SDOM-CT

Chapter 7 - Succinct DOM

185

memory-efficient representation. In the Xerces construction phase time is spent

allocating memory for each node in the tree and associated objects. We observe as the

file size gets bigger, the main memory begins to run out and the slower virtual memory

is used. In Figure 7.16, we observe that SDOM on average is 1.37 times faster than

Xerces. In contrast, SDOM-CT on average is 1.80 time slower than Xerces; this

slowdown was due to the compression of the text.

7.4 Summary

SDOM is a fast in-memory representation of XML documents with a small memory

footprint. The current implementation is close to being a plug-in replacement for a

standard DOM implementation in any application that does not require dynamic

changes to the XML document, with very little penalty in terms of CPU usage. It is

therefore not only suitable for handling moderately large (a few GB) size documents on

standard PCs, but may also be useful for enabling the use of XML on devices with

limited resources, such as smart cards or handheld computers. SDOM is built upon the

succinct data structures introduced in Chapter 4 and engineered in Chapter 5 and 6.

There has been a great deal of interest in the algorithms community in the theory of

succinct data structures, and implementations of full-text indices that are based upon

succinct data structures (see e.g. [29]). These appear to be somewhat unknown to the

database community. We believe that the data structures we use could also be applied

to other XML compressors.

Our comparison to Xerces is based on textual data that is uncompressed; SDOM uses

significantly less space than the original file. A variant, SDOM-CT, compresses the

textual data, and achieves compression ratios that are competitive with “query-friendly”

compressors, but worse than the best XML compressors (see details in Table 7.3). Yet,

SDOM-CT compares surprisingly well concerning compression performance, because:

• If one uses BZip and relatives as the compression algorithm, then in most cases,

BZip does pretty well even relative to specialized compression algorithms

applied to containers.

Chapter 7 - Succinct DOM

186

• When using BZip, the benefit of grouping text is limited in most cases.

The SDOM software library can be downloaded at [62].

 187

Chapter 8

Conclusion

The main objective of this thesis was to represent XML documents space efficiently in

memory and efficiently support DOM’s navigational and access operations upon the

space-efficient representation. We achieved this by using succinct, or highly space-

efficient, data structures, which were pioneered by Jacobson [44]. We modified existing

succinct data structures for use in representing XML documents, and carefully put the

succinct data structures together to create a space-efficient DOM implementation. Our

implementation, SDOM has processing speed that is comparable to Xerces, but the

space usage is much lower; the space usage of SDOM-CT is comparable to query-

friendly XML compressors, but the speed is much faster. The performance of SDOM(-

CT) is shown graphically in Figure 8.1. For the query-friendly compressors we estimate

the DOM processing time on the graph based upon their conclusions.

8.1 Technical Contributions

We made a number of technical contributions summarised below.

Tree representations

We studied several succinct tree representations and optimised them for DOM support.

These optimised representations number the nodes of an �-node tree with integer from 1

to �, and (recall that previous representations numbered nodes non-consecutively with

numbers from 1 to 2�) have fast implementations for testing whether a node is a leaf.

The main new idea introduced was double numbering, and the partitioned representation

for the LOUDS bit-string. The idea of the partitioned representation has been applied to

bit-strings by [37].

Textual data structure

Strategies to represent and access efficiently the large amount of textual data in XML

documents were studied. The textual data could be represented naively, where the text

nodes are concatenated into a string. Alternatively, we could compress the concatenated

string using FM-Index [48] or blocked text compressed using BZip2.

Chapter 8 - Conclusion

Based upon the experimental evaluation, we

difference in the BZip2 compression of text arranged in document

text in path-order (the method commonly used by XML compressors such as XMill). As

a result, we organise text in document

Access to the individual text nodes required the storing of offsets into the

concatenated string. Storing offsets naively would have a significant space cost,

particularly if text is stored compressed.

A careful experimental evaluation of va

Our results show significant reduction in space usage costs, with 7

offset, instead of the 32 bits

was very fast. This was achieved

problem. The best data structure

(both experimentally and mathematically) a close relationship between the succinct

bound on prefix sums and the data

had been shown to be the best for storing offsets in certain IR applications

188

Figure 8.1 – DOM performances graph.

Based upon the experimental evaluation, we found that there was no significant

difference in the BZip2 compression of text arranged in document-

order (the method commonly used by XML compressors such as XMill). As

a result, we organise text in document-order in the representations.

Access to the individual text nodes required the storing of offsets into the

concatenated string. Storing offsets naively would have a significant space cost,

particularly if text is stored compressed.

A careful experimental evaluation of various alternatives to store offsets was done.

Our results show significant reduction in space usage costs, with 7-

instead of the 32 bits per offset for a naive representation. A

This was achieved by formulating the offset problem as the prefix

problem. The best data structure targeted the succinct prefix sums bound; we showed

(both experimentally and mathematically) a close relationship between the succinct

bound on prefix sums and the data-aware (3'3." measure. The

the best for storing offsets in certain IR applications

found that there was no significant

-order compared to

order (the method commonly used by XML compressors such as XMill). As

Access to the individual text nodes required the storing of offsets into the

concatenated string. Storing offsets naively would have a significant space cost,

rious alternatives to store offsets was done.

-8 bits required per

Accessing an offset

by formulating the offset problem as the prefix-sum

targeted the succinct prefix sums bound; we showed

(both experimentally and mathematically) a close relationship between the succinct

measure. The (3'3." measure

the best for storing offsets in certain IR applications [23].

Chapter 8 - Conclusion

189

SDOM Implementation

We bring together the succinct data structures, including the tree representation (the

PAREN+ variant) and the textual data structure as building blocks of the DOM

implementation (SDOM). Additional improvements were made in SDOM, which

allowed, e.g., faster support for traversals in DOM, efficient implementation of the

element-attribute mapping and space-efficient solution to represent fully qualified

element names. We include extensive experimental tests on SDOM.

8.2 Future Work

There are a number of tasks and open questions that remain. Firstly, SDOM, as

described, can only be used for static documents. Dynamising succinct data structures is

an area of active research (see e.g. [58]), but it is far from clear how to implement a full

DOM with dynamic operations. Secondly, although loading an XML document is fast

(it needs to be – our traversal tests take so little time that reading in the XML file would

otherwise be a serious bottleneck in our experiments) and does not take anywhere near

the amount of memory required by a standard DOM parser, we have not made a serious

attempt at optimising either the speed or the memory usage of parsing. Finally, in

addition to the tests that we have performed, it would be very interesting to wrap

SDOM in an application such as Xalan or Saxon, and investigate its performance

therein.

 190

Appendix A

Experimental Setup

Xerces DOM

We use the Xerces-C v2.8 C++ [67] DOM implementation to parse the XML files,

gather statistics and construct the internal data structures.

Data structures

The implemented data structures were in the C++ programming language.

Running Time

The specification of the test machines used for the experiments on the data structures

are as follows:

• Intel-P4: Dual processor Pentium 4 machine, with 2GB RAM of memory, dual

core 3.4 GHz CPUs and a 2MB L2 cache, running Ubuntu 6.06 Linux. The

compiler was g++ 3.3.5 with optimisation level 2.

• Sun-UltraSparc: Sun UltraSparc-III machine, with 8GB RAM of memory, a

1.2GHz CPU and an 8MB L2 cache, running SunOS 5.9. The compiler was g++

3.3.2 with optimisation level 2.

191

Appendix B

DOM methods supported by SDOM

Document

Returns Method DOM
Level

Related SDOM
component

Attr createAttribute(String name) 1 NA

 Attr
createAttributeNS(String namespaceURI,
String qualifiedName) 2 NA

 CDATASection createCDATASection(String data) 1 NA
 Comment createComment(String data) 1 NA
 Document-
Fragment createDocumentFragment() 1 NA
 Element createElement(String tagName) 1 NA

 Element
createElementNS(String namespaceURI,
String qualifiedName) 2 NA

 EntityReference createEntityReference(String name) 1 NA
 Processing-
Instruction createProcessingInstruction(String target, String data) 1 NA
 Text createTextNode(String data) 1 NA
 DocumentType getDoctype() 1 Document
 Element getDocumentElement() 1 Document
 Element getElementById(String elementId) 2 AttributeDS
 NodeList getElementsByTagName(String tagname) 1 NameCodeDS

 NodeList
getElementsByTagNameNS(String namespaceURI,
String localName) 2 NameCodeDS

 DOM-
Implementation getImplementation() 1
 Node importNode(Node importedNode, boolean deep) 2 NA
String getActualEncoding() 3 Document
void setActualEncoding 3 Document
String getEncoding 3 Document
void setEncoding(String enc) 3 NA
void getStandalone 3 Document
String getVersion 3 Document
void setVersion(string version) 3 NA
String getDocumentURI() 3 Document
bool getStrictErrorChecking 3 Document
void setStrictErrorChecking 3 NA
void renameNode(Node n, String uri, String name) 3 NA
Configuration getDOMConfiguration() 3

192

Node

Returns Method DOM
Level

Direct SDOM
component
supported

 Node appendChild(Node newChild) 1 NA
 Node cloneNode(boolean deep) 1 NA
 NamedNodeMap getAttributes() 1 AttributeDS
 NodeList getChildNodes() 1 STree
 Node getFirstChild() 1 STree
 Node getLastChild() 1 STree
 String getLocalName() 2 NameCodeDS
 String getNamespaceURI() 2 NameCodeDS
 Node getNextSibling() 1 STree
 String getNodeName() 1 NameCodeDS
 short getNodeType() 1 NameCodeDS
 String getNodeValue() 1 TextDS
 Document getOwnerDocument() 1 STree
 Node getParentNode() 1 STree
 String getPrefix() 2 NameCodeDS
 Node getPreviousSibling() 1 STree
 boolean hasAttributes() 1 AttributeDS
 boolean hasChildNodes() 1 STree
 Node insertBefore(Node newChild, Node refChild) 1 NA
 boolean isSupported(String feature, String version) 2 Document
 void normalize() 2 NA
 Node removeChild(Node oldChild) 1 NA
 Node replaceChild(Node newChild, Node oldChild) 1 NA
 void setNodeValue(String nodeValue) 1 NA
 void setPrefix(String prefix) 2 NA
short compareTreePosition(Node other) 3 STree
String getTextContent() - missing minority nodes 3 TextDS
void isSameNode(Node other) 3 Not implemented
String lookupPrefix(String uri, bool usedefault) 3 Not implemented

NodeList

The NodeList here is an interface class. We give details of the class designed for

attribute nodes.

Returns Method DOM
Level

Direct SDOM
component supported

Int getLength() 1 STree
Node item(int index) 1 STree

193

NamedNodeMap

The namedNodeMap here is an interface class. We give details of the class designed for

attribute nodes.

Returns Method DOM
Level

Direct SDOM
component
supported

Int getLength() 1 AttributeDS
Node getNamedItem(String name) 1 AttributeDS

Node
getNamedItemNS(String namespaceURI,
String localName) 2 AttributeDS

Node item(int index) 1 Attribute
Node removedNamedItem(String name) 1 NA

Node
removedNamedItemNS(String
namespaceURI, String localName) 2 NA

Node setNamedItem(Node arg) 1 NA
Node setNamedItemNS(Node arg) 2 NA

Attribute

Returns Method DOM
Level

Direct SDOM
component
supported

String getName 1 AttributeDS
Element getOwnerElement 2 AttributeDS
Bool getSpecified 1 NA
String getValue 1 TextDS
void setValue 1 NA
TyeInfo schemaTypeInfo 3 Not supported
boolean isID 3 AttributeDS

Document Type

Returns Method DOM
Level

Direct SDOM
component
supported

NamedNodeM

ap getEntities() 1 DocType

 String getInternalSubset() 2 Not Supported

 String getName() 1 NameCodeDS

 NamedNodeM

ap getNotations() 1 DocType

 String getPublicId() 2 DocType

 String getSystemId() 2 DocType

194

Element

Returns Method DOM
Level

Direct SDOM
component
supported

String getAttribute(String name) 1 AttributeDS
 Attr getAttributeNode(String name) 1 AttributeDS

 Attr
getAttributeNodeNS(String namespaceURI,
String localName) 2 AttributeDS

 String
getAttributeNS(String namespaceURI,
String localName) 2 AttributeDS

 NodeList getElementsByTagName(String name) 1 STree, NameCodeDS

 NodeList
getElementsByTagNameNS(String namespace
URI, String localName) 2 NameCodeDS

 String getTagName() 1 NameCodeDS
 boolean hasAttribute(String name) 1 AttributeDS

 boolean
hasAttributeNS(String namespaceURI,
String localName) 2 AttributeDS

 void removeAttribute(String name) 1 NA
 Attr removeAttributeNode(Attr oldAttr) 1 NA

 void
removeAttributeNS(String namespaceURI,
String localName) 2 NA

 void setAttribute(String name, String value) 1 NA
 Attr setAttributeNode(Attr newAttr) 1 NA
 Attr setAttributeNodeNS(Attr newAttr) 2 NA

 void
setAttributeNS(String namespaceURI,
String qualifiedName, String value) 2 NA

Entity

Returns Method DOM
Level

Direct SDOM
component
supported

String getNotationName() 1 DocType
String getPublicId() 1 DocType
String getSystemId() 1 DocType

Notation

Returns Method DOM
Level

Direct SDOM
component
supported

String getPublicId() 1 DcoType
String getSystemId() 1 DocType

195

ProcessingInstruction

Returns Method DOM
Level

Direct SDOM
component
supported

String getData() 1 TextDS
String getTarget() 1 AttributeDS
void setData(String data) 1 NA

Text

Returns Method DOM
Level

Direct SDOM
component
supported

Text splitText(int offset) 1 NA
bool iselementContentWhitespace() 3 Not Supported
String wholeText() 3 Not Supported

DOM-Implementation

Returns Method DOM
Level

Direct SDOM
component
supported

Document

createDocument(String uri, String

qualifiedName, DocType doctype) 3 NA

DocType

createDocType(String qualifiedName, String

pubId, String sysId) 3 NA

bool hasFeature(String feature, String version) 3 Document

 197

Bibliography

[1] Antoshenkov, G. 1997. Dictionary-based order-preserving string compression. The

VLDB Journal 6, 1 (Feb. 1997), pp. 26-39. DOI= 10.1007/s007780050031

[2] Apache XML Project. http://xml.apchae.org

[3] Arion, A., Bonifati, A., Manolescu, I., and Pugliese, A. 2007. XQueC: A query-

conscious compressed XML database. ACM Trans. Inter. Tech. vol. 7, issue 2 (May.

2007), pp. 10. DOI=10.1145/1239971.1239974

[4] B+ Tree. (2008, September 13). In Wikipedia, The Free Encyclopedia. Retrieved

21:09, September 15, 2008, from http://en.wikipedia.org/wiki/B%2B_tree

[5] Benoit, D., Demaine, E. D., Munro, J. I., Raman, R., Raman, V. and Rao, S. S.

2005. Representing trees of higher degree. Algorithmica, vol. 43, issue 4, (2005),

pp. 275-292. DOI= 10.1007/s00453-004-1146-6

[6] Boncz, P., Grust, T., van Keulen, M., Manegold, S., Rittinger, J., and Teubner, J.

2006. MonetDB/XQuery: a fast XQuery processor powered by a relational engine.

In Proceedings of the 2006 ACM SIGMOD International Conference on

Management of Data (Chicago, IL, USA, June 27 - 29, 2006). SIGMOD '06. ACM,

New York, NY, pp. 479-490. DOI=10.1145/1142473.1142527

[7] Buneman, P., Grohe, M., and Koch, C. 2003. Path queries on compressed XML. In

Proceedings of the 29th international Conference on Very Large Data Bases -

Volume 29 (Berlin, Germany, September 09 - 12, 2003). J. C. Freytag, P. C.

Lockemann, S. Abiteboul, M. J. Carey, P. G. Selinger, and A. Heuer, Eds. Very

Large Data Bases. VLDB Endowment, pp. 141-152.

[8] Buneman, P., Choi, B., Fan, W., Hutchison, R., Mann, R., and Viglas, S. D. 2005.

Vectorizing and Querying Large XML Repositories. In Proceedings of the 21st

international Conference on Data Engineering (April 05 - 08, 2005). ICDE. IEEE

Computer Society, Washington, DC, pp. 261-272. DOI=10.1109/ICDE.2005.150

[9] Burrows, M., Wheeler, D. 1994. A block sorting lossless data compression

algorithm. Technical Report 124, Digital Equipment Corporation.

Bibliography

198

[10] Busatto, G., Lohrey, M., and Maneth, S. 2005. Efficient Memory Representation of

XML Documents. In Database Programming Languages, 10th International

Symposium, proceedings (Trondheim, Norway, August 28-29, 2005). DBPL 2005.

LNCS, Springer-Verlag, Berlin Heidelberg New York, NY, vol. 3774, pp. 199-216.

DOI= 10.1007/11601524_13

[11] BZip2. http://www.bzip.org

[12] CenterPoint DOM Implementation. http://www.cpointc.com/XML/ (note: not

delivered anymore as open source)

[13] Cheney, J. 2006. Tradeoffs in XML Database Compression. In Proceedings of the

2006 IEEE Data Compression Conference, (Vancouver, Canada, 2006). DCC 2006.

IEEE Computer Society Press, Ls Alamitos, California, 2006, pp. 392-401.

DOI=10.1109/DCC.2006.79

[14] Cheng, J., Ng, W., 2004. XQzip: Querying Compressed XML Using Structural

Indexing. In Advances in Database Technology - 9th International Conference on

Extending Database Technology, proceedings (Heraklion, Crete, Greece, March 14-

18, 2004). EDBT ’04. LNCS, Springer-Verlag, Berlin Heidelberg New York, NY,

vol. 2992, pp. 219-236. DOI= 10.1007/b95855

[15] Clark, D. R. 1996. Compact Pat Trees. PhD thesis, University of Waterloo.

[16] Clark, D. R. and Munro, J. I. 1996. Efficient suffix trees on secondary storage. In

Proc. of the 7th Annual ACM-SIAM Symposium on Discrete Algorithms (Atlanta,

Georgia, United States, January 28 - 30, 1996). SODA ‘96. Symposium on Discrete

Algorithms. Society for Industrial and Applied Mathematics, Philadelphia, PA, pp.

383-391.

[17] J. Cleary and I. Witten. 1984. Data compression using adaptive coding and partial

string matching. IEEE Transactions on Communications, Vol. 32, issue 4, pp. 396-

402.

[18] CPU Cache. (2008, September 13). In Wikipedia, The Free Encyclopedia. Retrieved

21:09, September 15, 2008, from http://en.wikipedia.org/wiki/CPU_cache

Bibliography

199

[19] Computer Architecture. (2008, September 12). In Wikipedia, The Free

Encyclopedia. Retrieved 21:09, September 15, 2008, from

http://en.wikipedia.org/wiki/Computer_architecture

[20] Cormen, Thomas H.; Leiserson, Charles E.; Rivest, Ronald L. (1990). Introduction

to Algorithms, first edition, MIT Press and McGraw-Hill. ISBN 0-262-03141-8.

[21] Crimson DOM implementation. http://xml.apache.org/crimson/

[22] Delpratt, O., Rahman, N., and Raman, R. 2006. Engineering the LOUDS Succinct

Tree Representation. In Proc. of 5th Workshop on Experimental Algorithms

(Menorca, Spain, May 24-27, 2006) WEA ’06. LNCS, Springer-Verlag, Berlin

Heidelberg New York, NY, Vol. 4007, pp. 134-145. DOI = 10.1007/11764298_12.

[23] Delpratt, O., Rahman, N., and Raman, R. 2007. Compressed Prefix Sums. In

SOFSEM 2007: Theory and Practice of Computer Science, 33rd Conference on

Current Trends in Theory and Practice of Computer Science (Harrachov, Czech

Republic, January 20-26, 2007). SOFSEM ’07. LNCS, Springer-Verlag, Berlin

Heidelberg New York, NY, Vol. 4362, pp. 235-247. DOI = 10.1007/978-3-540-

69507-3_19.

[24] Delpratt, O., Raman, R., and Rahman, N. 2008. Engineering succinct DOM. In

Proceedings of the 11th International Conference on Extending Database

Technology: Advances in Database Technology (Nantes, France, March 25-29,

2008). EDBT '08, vol. 261. ACM International Conference Proceeding Series, New

York, NY, pp. 49-60. DOI = 10.1145/1353343.1353354.

[25] DocBook. http://www.docbook.org

[26] DOM4j. http://www.dom4j,org

[27] Elias, P. 1974. Efficient storage retrieval by content and address of static files. J.

ACM, 21 (1974), pp. 246–260. DOI = 10.1145/321812.321820.

[28] eXist-db. http://exist.sourceforge.net/

Bibliography

200

[29] Ferragina, P. and Manzini, G. 2001. An experimental study of an opportunistic

index. In Proc. of the 12th Annual ACM-SIAM Symposium on Discrete Algorithms

(Washington, D.C., United States, January 07 - 09, 2001). Society for Industrial and

Applied Mathematics, Philadelphia, PA, pp. 269-278.

[30] Ferragina, P., Luccio, F., Manzini, G., Muthukrishnan, S. 2006. Compressing and

Searching XML Data Via Two Zips. In Proc. of the 15th International World Wide

Web Conference (Edinburgh, Scotland, May 23 - 26, 2006). WWW '06. ACM Press,

New York, NY, pp. 751-760.

[31] FM-Index. http://pizzachili.dcc.uchile.cl/indexes/FM-indexV2/

[32] Frick, M., Grohe, M., and Koch, C. 2003. Query Evaluation on Compressed Trees

(Extended Abstract). In Proceedings of the 18th Annual IEEE Symposium on Logic

in Computer Science (June 22 - 25, 2003). LICS. IEEE Computer Society,

Washington, DC, pp. 188.

[33] Galax XQuery Implementation. http://www.galaxquery.org/

[34] Geary, R. 2005. Private communication.

[35] Geary, R. F., Raman, R., and Raman, V. 2006. Succinct ordinal trees with level-

ancestor queries. ACM Trans. Algorithms, vol 2, issue 4 (Oct. 2006), pp. 510-534.

DOI=10.1145/1198513.1198516

[36] Geary, R. F., Rahman, N., Raman, R., and Raman, V. 2006. A simple optimal

representation for balanced parentheses. Theor. Comput. Sci. Vol. 368, issue 3 (Dec.

2006), pp. 231-246. DOI=10.1016/j.tcs.2006.09.014

[37] Golynski, A., Grossi, R., Gupta, A., Raman, R., Rao, S. S. On the Size of Succinct

Indices. In Proc 15th Annual European Symposium on Algorithms (Eilat, Israel,

October, 2007). ESA ’07. LNCS, Springer-Verlag, Berlin Heidelberg New York,

NY, vol. 4698, pp. 371-382.

[38] Gottlob, G. and Koch, C. 2002. Monadic datalog and the expressive power of Web

information extraction languages. J. ACM 51, 1 (Jan. 2004), 74-113. DOI=

http://doi.acm.org/10.1145/962446.962450.

Bibliography

201

[39] Grossi, R. and Vitter, J. S. 2000. Compressed suffix arrays and suffix trees with

applications to text indexing and string matching (extended abstract). In Proc. 32nd

Annual ACM Symposium on Theory of Computing (Portland, Oregon, United States,

May 21 - 23, 2000). STOC '00. ACM, New York, NY, pp. 397-406.

DOI=10.1145/335305.335351

[40] Grossi, R., and Vitter, J. S. 2004. Private communication.

[41] Gupta, A., Hon, W., Shah, R., and Vitter, J. S. 2007. Compressed data structures:

Dictionaries and data-aware measures. Theor. Comput. Sci. Vol. 387, issue 3, (Nov.

2007), pp. 313-331. DOI=10.1016/j.tcs.2007.07.042

[42] Gupta, A., Hon, W. K., Shah, R., and Vitter, J. S. Compressed dictionaries: space

measures, data sets, and experiments. 2006. In Proc. 5th International Workshop on

Experimental Algorithms (Menorca, Spain, May 2006). WEA ‘06. LNCS, Springer-

Verlag, Berlin Heidelberg New York, NY, vol. 4007, pp. 158–169.

[43] Gzip. http://www.gzip.org

[44] Jacobson, G. 1989. Space-efficient static trees and graphs. In Proc. of the 30th

Annual Symposium on the Foundations of Computer Science (NC, USA, 10/30/1989

- 11/01/1989). FOCS ‘89. IEEE Computer Society, Washington, DC, vol. 225,

Cat.No.89CH2808-4, pp. 549-554, 1989.

DOI=10.1109/SFCS.1989.63533

[45] JDOM. http://www.jdom.org

[46] Kay, Michael. 2006. Optimization in XSLT and XQuery. In Proc. XMLPrague: a

conference on XML (Prague, Czech Republic, June 17-18, 2006). ITI Series Vol.

2006-294, pp. 29-41, 2006. Link= http://iti.mff.cuni.cz/series

[47] Kim, D. K., Na, J. C., Kim, J. E., and Park, K. 2005. Efficient implementation of

rank and select functions for succinct representation. In Proc. of the 4th Workshop

on Experimental Algorithms (Santorini Island, Greece, May 10-13, 2005). WEA

2005. LNCS, Springer-Verlag, Berlin Heidelberg New York, NY, Vol. 3503, pp.

315-327. DOI= 10.1007/11427186_28.

Bibliography

202

[48] Liefke, H. and Suciu, D. 2000. XMill: an efficient compressor for XML data. 2000.

In Proc. of the ACM SIGMOD international Conference on Management of Data

(Dallas, Texas, United States, May 15 - 18, 2000). SIGMOD '00. ACM Press, New

York, NY, Vol. 29, Issue 2, pp. 153-164. DOI=10.1145/342009.335405

[49] Martin, H. W. and Orr, B. J. 1989. A random binary tree generator. Proc. of the

17th ACM Annual Computer Science Conference, pp. 33–38, 1989.

[50] Medline. http://www.nlm.nih.gov/mesh/gcmdoc2004.html

[51] Mehta, D. P., Sahni, S. (Ed.). 2004. Handbook of Data Structures and Applications.

Chapman & Hall/CRC publishers. ISBN = 1584884355.

[52] Min, J., Park, M., and Chung, C. 2006. A compressor for effective archiving,

retrieval, and updating of XML documents. ACM Trans. Internet Technol. 6, 3

(Aug. 2006), 223-258. DOI=10.1145/1151087.1151088.

[53] Munro, J. I. Tables. 2006. In Proceedings of the 16th Conference on Foundations of

Software Technology and theoretical Computer Science (December 18 - 20, 1996).

V. Chandru and V. Vinay, Eds. LNCS, vol. 1180. Springer-Verlag, London, pp. 37-

42.

[54] Munro, J. I. and Raman, V. 2002. Succinct representation of balanced parentheses

and static Trees. SIAM J. Comput. 31, 3 (Mar. 2002), pp. 762-776. DOI

=10.1137/S0097539799364092

[55] Neumüller, M. and Wilson, J. N. 2003. Improving XML Processing Using Adapted

Data Structures. In Revised Papers from the Node 2002 Web and Database-Related

Workshops on Web, Web-Services, and Database Systems (October 07 - 10, 2002).

LNCS, Springer-Verlag, Berlin Heidelberg London, vol. 2593, pp. 206-220.

[56] Ng, W., Lam, W., Wood, P. T., and Levene, M. 2006. XCQ: A queriable XML

compression system. Knowl. Inf. Syst. 10, 4 (Oct. 2006), pp. 421-452.

DOI=10.1007/s10115-006-0012-z

Bibliography

203

[57] Raman, R., Raman, V., and Rao, S. S. 2002. Succinct indexable dictionaries with

applications to encoding D-ary trees and multisets. In Proc. 13th Annual ACM-SIAM

Symposium on Discrete Algorithms (San Francisco, California, January 06 - 08,

2002). SODA ‘02. Society for Industrial and Applied Mathematics, Philadelphia,

PA, pp. 233-242.

[58] Raman, R. and Rao, S. S. 2003. Succinct dynamic dictionaries and trees. In Proc.

Automata, Languages and Programming, 30th International Colloquium

(Eindhoven, The Netherlands, June 30 - July 4, 2003). ICALP ‘03. LNCS, Springer-

Verlag, Berlin Heidelberg New York, NY, vol. 2719, pp. 357-368. DOI=10.1007/3-

540-45061-0_30

[59] Sadakane, K. and Grossi, R. 2006. Squeezing succinct data structures into entropy

bounds. In Proc. 17th Annual ACM-SIAM Symposium on Discrete Algorithm

(Miami, Florida, January 22 - 26, 2006). SODA '06. ACM, New York, NY, pp.

1230-1239. DOI= 10.1145/1109557.1109693

[60] SAX Parser. http://www.saxproject.org/

[61] Saxon. http://saxon.source.forge.net/

[62] SDOM Software Libraries. http://hdl.handle.net/2381/3363

[63] Shkarin, D. 2002. PPM: One Step to Practicality. In Proceedings of the Data

Compression Conference (DCC '02) (April 02 - 04, 2002). DCC. IEEE Computer

Society, Washington, DC, pp. 202.

[64] Tolani, P., Haritsa, J.R. 2002. XGRIND: A Query-Friendly XML Compressor. In

Proc. 18th International Conference on Data Engineering (February 26 - March 01,

2002). ICDE. IEEE Computer Society, Washington, DC, pp. 225.

[65] Valgring Massif Profiler Tool. http://valgrind.org/

[66] Xalan XSLT Processor The Apache XML project. http://xml.apache.org/xalan-c/

[67] Xerces C++ Parser. http://xerces.apache.org/xerces-c/

[68] Xerces Java 2 Parser. http://xerces.apache.org/xerces2-j/

Bibliography

204

[69] XIndice. http://xml.apache.org/xindice/FAQ

[70] XMark - XML Benchmark Project. http://monetdb.cwi.nl/xml/

[71] XPath. http://www.w3.org/TR/xpath

[72] XSLT. http://www.w3.org/TR/xslt

[73] UW XML Repository.

http://www.cs.washington.edu/research/xmldatasets/www/repository.html

[74] VOTable Documentation. http://www.us-vo.org/VOTable/

[75] Wang, F., Li, J., and Homayounfar, H. 2007. A space efficient XML DOM parser.

Data Knowl. Eng. 60, 1 (Jan. 2007). Elsevier Science Publishers B. V. Amsterdam,

The Netherlands. pp. 185-207. DOI=10.1016/j.datak.2006.01.002

[76] Witten, I., Moffat, A., Bell, I. Managing Gigabytes, 2e. Morgan Kaufmann, 1999.

[77] W3C DOM API documentation. 2004. http://www.w3.org/TR/2004/REC-DOM-

Level-3-Core-20040407/

[78] W3C DOM Traversal, 2000. http://www.w3.org/TR/DOM-Level-2-

TraversalRange/traversal.html

[79] W3C XML Specification. http://www.w3.org/TR/REC-xml/

[80] Zhang, N., Kacholia, V., and Özsu, M. T. 2004. A Succinct Physical Storage

Scheme for Efficient Evaluation of Path Queries in XML. In Proc. 20th

international Conference on Data Engineering (March 30 - April 02, 2004). ICDE.

IEEE Computer Society, Washington, DC, pp. 54.

