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Abstract

This thesis is concerned with the fundamental physics of the superconducting-to-normal transition

(sn-transition), particularly the mechanisms which give rise to massive gauge bosons and applica-

tions of the superconducting-to-normal transition, particularly in the form of superconducting radia-

tion detectors.The basics of three of the most common types of superconducting particle detectors are

discussed in Chapter 2: Superconducting Tunnel Junctions (STJs), Transition Edge Sensors (TESs),

and Metallic Magnetic Calorimeters (MMCs). The chapter continues with an investigation of the

phenomenon of TES excess noise, a white noise source of uncertain origin apparently intrinsic to the

device [1]. The current theories of Phase Slip Shot Noise (PSSN) and percolation noise are discussed

and the quantitative analytical model proposed by Fraser [2] is extended to include the magnetic

field dependence of the noise spectral current density. An analytical expression for the dependence

of the percolation noise spectral current density on experimental parameters is derived.

In Chapter 3 the author addresses the question of whether quantum mechanical fluctuations of the

vacuum energy can influence the sn-transition. The existing theory is refined by developing a treat-

ment of the system using superconductor-specific electrodynamics. A mathematical model of the

relevant vacuum interactions is derived and a quantitative estimate of the magnitude of the cou-

pling is presented.

In superconductors photons have a non-zero rest mass arising from the Higgs mechanism. Chapter

4 discusses the optical properties of a hypothetical transparent superconductor and finds practical

applications. In Chapter 5 it is found that the Higgs mechanism applies to any gauge field generated

by the superconducting electrons, including their gravitational field and a theory of massive gravity

is developed. The massive gravitational field is propagated by non-zero rest mass gravitons, and the

theory predicts the sum of gravitomagnetic flux and magnetic flux through a superconducting ring

to be quantised. Some of the implications and possible experiments are explored.
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Chapter 1

Introduction

This work covers what, at first glance, may appear to be a confusingly wide spread of topics. They

range from terrestrial applications of superconductivity in the form of spectrometer technology to

theoretical astrophysics when discussing neutron star cores, from refining operation of experimental

devices (transition edge sensor excess noise) to the almost purely theoretical (massive gauge bosons).

Even the practical applications of superconductivity discussed range from the well studied experi-

mental (superconducting tunnel junctions) to completely new technologies (heavy photon optics).

However, one basic unifying concept exists for the plethora of topics - all of them depend on super-

conductivity as the central principle. Superconductivity, and the physics of transitions between the

normal and superconducting states, is then the central topic of this thesis.

A complete introduction to the topic of superconductivity is well beyond the scope of this work, and

the interested reader is referred to Tilley[4] for a thorough discussion of the basic principles. Never-

theless, the following section gives a short overview of some of the basics concepts of superconduc-

tivity. In the literature different symbols may be used for standard parameters, and by including a

quick introduction at this point the symbols used in the following chapters are established.

Following this introduction to superconductivity, section 1.2 outlines the organization of this thesis

and provides a draft outline of the arguments and conclusions developed in its course. This overview

is intended to provide the motivation for the work undertaken in the following chapters.

3
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1.1 Introduction to Superconductivity

Certainly the most prominent image associated with superconductivity is that of a disc magnet float-

ing above a piece of high temperature superconductor (fig.1.1). This is just one of the many surprising

effects that superconductivity is capable of producing, but it is by far the most visual one. Still, this

experiment does not explain what a superconductor actually is.

From an experimentalist point of view a superconductor is any piece of material in which the electric

resistivity ρ drops to zero discontinuously at a critical temperature Tc. Unlike so many other real

world effects where a parameter of interest appears to vanish the resistivity in a superconducting

sample is not practically zero or almost zero. It is actually, exactly, zero. A current in a superconducting

loop of wire can persist forever.

In addition to having zero resistivity, a superconductor will exclude magnetic fields from its interior,

producing the floating-disc effect in figure 1.1. This is known as the Meissner effect, or more ac-

curately the Meissner-Ochsenfeld effect [15]. Together with zero electrical resistivity, magnetic flux

exclusion is one of the two most widely known symptoms of superconductivity.

The Meissner effect highlights the difference between a superconductor and a perfect conductor. A per-

fect conductor will obey all classical physics while having a resistivity ρ = 0. A perfect conductor

will ”freeze-in” any magnetic field present in its interior at the time when perfect conductivity is

established, while a superconductor will expel it. This is the first hint that something far more fun-

damental than just a transition to zero resistivity is happening inside a superconductor. It is the

author’s hope that, at the end of this work and after having considered the many modifications and

alterations required to classical physics in the presence of superconductivity, the attribute of zero

electrical resistance will appear as an almost trivial side effect of something far more interesting.

1.1.1 A Brief History of Superconductivity

It has long been known that the resistivity of virtually all conductors reduces with decreasing tem-

perature of the conductor. In 1911 liquid Helium had just become available as a refrigerant and

when the Dutch physicist Heike Kammerlingh Onnes investigated the conductivity of solid Mercury

he observed that the resistivity dropped to zero discontinuously at 4.2K [16]. This discovery was the

beginning of the field of superconductivity.

In 1913 the heavy metal lead(Pb) was found to be superconducting and Kammerlingh Onnes received

the Nobel prize in physics the same year for his work on the subject. Still, the physical basis for the
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Figure 1.1: A disc magnet floating above a nitrogen cooled sample of Yttrium Barium Copper Oxide

(YBCO). Image taken from Wikimedia [3]

effect was a mystery.

The first significant progress on the theoretical side of the field was made when in 1933 Walter Meiss-

ner and Robert Ochsenfeld showed that a superconductor expels any external magnetic field from

its interior [15]. It was of tremendous importance, since the fact that also magnetic fields present at

the time of the superconducting-to-normal transition (sn-transition) are excluded demonstrates that

the superconducting state is a true thermal equilibrium state. In this way, Meissner and Ochsenfeld

made superconductivity accessible to the theory of equilibrium thermodynamics.

A true understanding of the physical mechanism underlying superconductivity remained elusive

until more than two decades after the publication of the Meissner-Ochsenfeld effect. The first sig-

nificant breakthrough was achieved when the theoretical physicist Lev Davidovich Landau, who

had previously worked on the mathematics and general physics of phase transitions, worked to-

gether with Vitaly Lazarevich Ginzburg to produce a phenomenological theory of superconductivity

known as Ginzburg-Landau theory (GL-theory), which was first published in 1950 [17].

Besides successfully predicting a number of experimental results near the critical temperature, a

very important feature of GL-theory was the introduction of a Schroedinger-like wave equation Ψ.

From his earlier work, Landau knew that phase transitions were almost always transitions from an

ordered to a disordered state. An example would be the melting of a solid crystal: The ordered

crystal lattice is replaced by the disordered state of freely moving, uncorrelated atoms or molecules.
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In order to be able to perform quantitative work on the basis of these assumptions Ginzburg and

Landau introduced the GL-order parameter φ. The nature of the order parameter introduced for the

sn-transition was unclear, but its relative magnitude was measured by the expectation value of the

GL-wave function φ ∝ Ψ2.

Building on GL-theory, Alexei Alexeyevich Abrikosov showed that two different types of supercon-

ductors should exist [18]: Those observed by Kammerlingh Onnes and discussed by Meissner and

Ochsenfeld, which expel magnetic fields completely from their interior up to a critical field strength

above which they revert to the normal state and those which, above a first critical field, would admit

some magnetic flux to their interior and then smoothly make the transition back to the normal state

with increasing magnetic field. The former class of superconductor was labeled type I, while the

latter was labeled type II. In 2003 Ginzburg and Abrikosov shared a Nobel Prize for their combined

works.

Yet another vital discovery was made in 1950, one which would lay the foundation for an actual

understanding of the physical source of superconductivity, rather than ”just” provide a phenomeno-

logical framework. Since the initial discovery in 1911 a whole host of materials had been shown to

be superconducting at sufficiently low temperature. Maxwell and Reynolds showed [19][20] that the

critical temperature varies with the isotopic masses of the constituent elements. This was taken as

an indicator that interactions of the conduction electrons with the material’s ion lattice might be the

source of superconductivity, and led directly to the consideration of electron-phonon interactions in

the context of superconductivity. Phonons are quantised vibrations of a material’s ion lattice.

The approach of trying to use electron-phonon interactions as a source for superconductivity was

finally successful in 1956 when Leon Nathan Cooper [21] showed that electron-phonon interactions

lead to an attraction between electrons which, for sufficiently cold electron systems, leads to pairing

of spin-antiparallel electrons. These electron Cooper pairs have zero net spin and as such cease to

be leptons but become bosons. In consequence they are no longer subject to the Pauli Exclusion

Principle (PEP) and all electrons inside the cold volume condense into the same quantum state. In

this way the nature of the GL order parameter φ and wave function Ψ was discovered: Ψ is the

macroscopic wave function of the electrons in the condensed quantum state and the order parameter

φ ∝ Ψ2 is the number density of electrons in the superconducting state. All this was expressed in

the microscopic theory of superconductivity by Bardeen, Cooper and Schrieffer [22], today known

as BCS theory. It was later shown that near Tc the GL equations are a rigorous consequence of BCS

theory [4].

One might think that with the advent of BCS theory the mystery of superconductivity was basically

solved, but far from it. A multitude of unexpected effects was yet to be discovered and quantified.
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Magnetic fields create gradients in the superconducting order parameter, and the order parameter

phase changes across electronically weak links (such as point contacts) between superconductors.

These weak link effects are known as the Josephson effects, named after Brian David Josephson

who predicted their existence in 1962 [23]. Since than, Josephson effects have led to the creation of

Superconducting Quantum Interference Devices (SQUIDs), which are the most sensitive magnetic

field sensors available today. They are routinely used in research and development, in small-field

Magnetic Resonance Imaging (MRI) and Magnetoencephalography (MEG). A MEG allows for the

contact-free measurement of a patients brain activity. Furthermore, SQUIDS are becoming more

and more common in industrial applications, and scanning SQUID microscopes are used by the oil

industry for prospecting tasks. A good overview of the potential applications of SQUIDS is given by

Clarke [24].

Besides the Josephson effect, even the fundamental physics of superconductivity itself was still only

poorly understood. It was thought that the intrinsic maximum temperature at which superconduc-

tivity could occur was set by BCS theory to be approximately 25− 30K [25]. This meant that helium

would be required as a refrigerant, keeping the cost of operating superconducting equipment too

high for bulk industrial exploitation and limiting superconductors to a few specialist research labs

and applications. Against this background Johannes Bednorz and Karl Mueller presented in 1986 a

superconducting cuprate ceramic compound with a critical temperature of 35K [26]. The compound

presented by Mueller and Bednorz was Lanthanum-Barium-Copper-Oxide and the first of the high

temperature (high-Tc) superconductors. BCS theory does not apply to this compound and the mech-

anism for superconductivity in cuprate ceramics is poorly understood even today.

The discovery of high-Tc superconductivity spurred a flurry of research into the subject of finding

what is to this day the holy grail of the field: A room temperature superconductor. While no such

compound has been found, a different extremely important temperature level has been reached. In

1987 Maw-Kuen Wu at the University of Alabama and Paul Chu at the University of Houston devel-

oped, together with their students, the compound Yttrium Barium Copper Oxide (YBCO) [27], which

had a critical temperature Tc ≈ 93K. This was the first superconductor with a critical temperature

above the boiling point of liquid nitrogen (77K), thereby making superconductivity accessible with-

out expensive and sophisticated cryogenic equipment and cooling affordable enough for industry to

start taking an interest.

In 1987 the originators of the field of high-Tc superconductivity received a very prompt Nobel prize

for their work. To date the record critical temperature, achieved under laboratory conditions under

standard pressure, is still held by a cuprate ceramic, with Tc ≈ 138K. High-Tc superconductivity

will not be considered any further during this thesis for two reasons: The high transition temper-

ature implies a large energy gap ∆g between the superconducting and normal states which makes
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high-Tc compounds unsuitable for the detectors considered in chapter 2, and the absence of a good

microscopic quantum mechanical theory means that the applicability of the heavy photon theories

developed in chapters 3 to 5 is questionable for high-Tc compounds. However, in the authors opin-

ion an introduction to superconductivity would be incomplete without mention of these interesting

materials.

The research following the 1957 breakthroughs was not limited to practical applications of super-

conductivity. Superconductors themselves proved to be a rich source of fundamental physics. In

modern theoretical physics, zero resistance and exclusion of the magnetic fields are just symptoms of

something deeper: Modifications to the fundamental form of electromagnetism, changing Maxwell’s

equations in the presence of superconductors. And, it seems, even new gravitational effects can be

observed in the superconducting state [28]. These changes to what we consider fundamental and

unchangeable physical principles are explored in more detail in chapters 3, 4 and 5, along with some

of their consequences.

1.1.2 Basic Properties of Superconductors

In this section the basic properties of superconductors are established, along with some of the math-

ematical background required to make meaningful qualitative and quantitative assessments of prob-

lems involving superconductors. The only types of superconductors considered will be low temper-

ature (low-Tc) superconductors. While of great scientific and industrial interest, high-Tc systems are

poorly understood and, as already mentioned in the introduction, the underlying theory (as far as it

is known) makes them unsuitable or just plain difficult to deal with in the context of the ideas and

devices considered in the course of this work.

1.1.2.1 Zero resistivity, the Order Parameter and Critical Temperature

The property that has given superconductivity its name is that of zero electrical resistance. According

to Gallop [29], of the 75 metals (single element and alloy) tested before 1991 the resistivity of 28 will

drop to zero discontinuously below a critical temperature Tc. Below Tc dissipationless supercurrents

will flow without any applied voltage, up to a total critical magnitude Ic.

The specific heat of any material that can be made to go superconducting has a discontinuous jump

at Tc, called the lambda anomaly due to its distinct shape (figure 1.2).

The sn-transition has zero latent heat in the absence of an external magnetic field. Thus, with no

external field applied, the sn-transition is a true second order transition. Second order transitions
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Figure 1.2: Discontinuity in specific heat at sn-transition temperature (lambda-anomaly). The dotted

lines are extrapolation of the respective superconducting and normal state heat capacities and are

merely provided as a guide to the eye. Sketch according to [4].
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are those with no latent heat and no mixed phase associated with it: The entire volume changes

phase at the same time. In the case of an external magnetic field, the field expanding into a material

going from the superconducting into the normal state will absorb thermodynamic heat and thus add

a non-zero latent heat to the transition. Consequently, a mixed phase may exist in the presence of an

ambient magnetic field. This effect will become important for the discussion of the percolation noise

in transition edge sensors in section 2.3.3.

In 1934 Hendrik Brugt Gerhard Casimir and Cornelis Jacobus Gorter were investigating the current

carrying characteristics of superconductors and found that the behavior of a superconductor could

be described by two separate electron populations, one in the normal state and one in the supercon-

ducting state, interpenetrating each other freely. This model is known today as the Gorter-Casimir

two fluid model. According to the two fluid model, the fraction x of electrons in the superconducting

state varies with temperature T and critical temperature Tc of the superconductor and is given by

[29]:

x(T ) = 1−
(
T

Tc

)4

(1.1)

The fact that this result holds today is remarkable, since the two fluid model was developed in 1934,

before either GL-theory or BCS-theory had managed to shed any light on the fundamental physics

behind superconductivity, and Gorter and Casimir had no concept at all about the nature of the

superconducting state their equation was describing.

Trying to find a better way to describe the sn-transition than the dimensionless fraction x we turn to

GL-theory. This theory assumes that superconducting electrons are governed by a Schroedinger-like

macroscopic wave function Ψ and that the density of superconducting electrons can be calculated as

|Ψ|2. From equation (1.1) at T = 0 all the electrons in the sample are in the superconducting state,

yielding |Ψ0| = x(0)1/2. Thus we have found the temperature dependence of the macroscopic wave

function governing the superconducting electrons for the spatially homogeneous steady state:

Ψ(T ) = Ψ(0)

(
1−

(
T

Tc

)4
)1/2

(1.2)

The variation of the wave function |Ψ| > 0 with temperature T has been plotted in figure 1.3.
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Figure 1.3: Variation of macroscopic wave function |Ψ| with temperature T according to equation

(1.2). The density of superconducting electrons is given by |Ψ2|.



12 CHAPTER 1. INTRODUCTION

1.1.2.2 Magnetic Properties of Superconductors

When in 1933 Walter Meissner and Robert Ochsenfeld investigated the magnetisation of a supercon-

ducting sample they made two very important discoveries [15]:

1. When a magnetic field is applied to a superconductor the induced supercurrents create an equal

and opposite induced field, causing ~B = 0 inside the superconductor.

2. Even an applied field present at the time of cooling across sn-transition is expelled.

The Meissner effect demonstrates that superconductivity can be treated as a true thermodynamic

equilibrium state: Below Tc it is energetically favorable for the material to make the transition into the

superconducting state, doing work to expel the present magnetic field from the interior of the bulk.

It is indeed possible to draw a phase diagram for a potentially superconducting material onto the

H −T plane, and mapping a coordinate space for which the material is superconducting (essentially

the area under the graph of figure 1.4a). Thus the superconducting state is a thermodynamic state

of specific energy ∆g(T ) below the normal state. The exclusion of magnetic flux is equivalent to the

material becoming a perfect diamagnet (magnetic susceptibility χ = −1) below Tc.

The Meissner-Ochsenfeld effect was the first significant progress towards a quantitative theory of

superconductivity. While the Meissner effect in itself offered no new insights into the actual nature

of the underlying processes it demonstrated that the sn-transition obeys equilibrium thermodynam-

ics. As such it opened the door to theories of phase transition, such as Ginzburg-Landau theory

(described in section 1.1.2.4) which greatly added to our understanding. Despite the fact that today

the sn-transition is fairly well understood (for classical low-Tc superconductors) and known to be a

quantum mechanical process, thermodynamics remains an important theoretical tool since it offers

an algebraically tractable alternative to the difficult full quantum mechanical treatment. Therefore

an understanding of the magnetic properties of the superconducting state is extremely important if

one is to understand superconductivity.

Before discussing the magnetic properties of a superconductor mathematically it is important to es-

tablish some of the symbols and naming conventions that sometimes cause confusion in this context.

Maxwell’s equations define two magnetic vectors, ~B and ~H . The vector ~H is known in the literature

as the ”magnetic field strength” or ”magnetic field intensity”, while ~B is generally referred to as the

”magnetic induction” or, casually, as the ”magnetic field”. Inside any sample magnetization currents

and spin alignment will influence ~B but not ~H . Throughout this work ”magnetic field” will refer to

~B while ”applied field” or ”magnetic field intensity” will refer to ~H .
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Expelling the magnetic field from the interior of the bulk requires an amount of workWexpel = 1
2χH

2.

When Wexpel > ∆g(T )N(kBT ) it becomes favourable for the material to revert to its normal state.

Here, N(kBT ) is the density of states at energy kBT . The thermodynamics of the superconducting

equilibrium state are discussed in more detail in section 1.1.2.3.

The critical field ~Hc can be shown to vary with temperature as [4]:

Hc = H0
c

(
1− T 2

T 2
c

)
(1.3)

where superscript 0 denotes the critical field at zero temperature. This convention will be kept

throughout the work presented: When applied to the magnetic field a superscript 0 indicates zero

temperature, while applied to the temperature a superscript 0 indicates zero applied field.

The magnetic field does not drop to zero discontinuously at the boundary of the superconducting

sample. Instead, the induced surface currents force it to decay exponentially over a characteristic

distance known as the London penetration depth λL [4], resulting in the expression:

B(x) = B(0) exp(−x/λL) (1.4)

where B(0) is the magnetic field at the surface of the superconductor and x is the distance from he

surface.

The penetration depth λL is typically of order 10 − 50 nm for a low-Tc superconductor and can be

calculated from the material parameters and fundamental constants [4]. It scales as λL ∝ 1/
√
ns

where ns is the number density of superconducting electrons, so that equation (1.1) can be used to

obtain the temperature variation of λL:

λL(T ) = λL(0)

(
1−

(
T

Tc

)4
)−1/2

(1.5)

The temperature variations of the penetration depth λL and the critical field Hc are plotted in figure

1.4.

The second major macroscopic magnetic effect observed is the fact that any rotating superconductor

generates a magnetic field. This is known as the London Moment, and the field generated at the

cross section of the axis of rotation R with the surface of a superconductor symmetrical about R can

be found to be [30]:
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Figure 1.4: Temperature variation of a) critical field according to equation (1.3) and b) penetration

depth in aluminium (Tc = 1.2K [5]) according to equation (1.5).

~BL = −2c
m∗

e∗
~ω (1.6)

where m∗ and e∗ are the effective mass and charge respectively of superconducting electron pairs

(Cooper pairs, see sec.1.1.2.5) and ~ω is the angular momentum vector.

1.1.2.3 Basic Equilibrium Thermodynamics and the Superconducting Energy Gap

This section contains a brief introduction on how to use thermodynamic equalities to derive parame-

ters of the superconducting state. It will demonstrate how magnetic field exclusion and the existence

of a critical field can be used to calculate the value of the energy difference between the normal

and superconducting states, known as the condensate energy εcond, a result that will be important

for sections 2.3.3.2 and 3.2.1 in order to discuss percolation noise in transition edge sensors and the

influence of the quantum vacuum on the sn-transition, respectively.

The Gibbs free energy G of a system is a thermodynamic equality expressing the total amount of

thermodynamically available energy (”free energy”) of a system as a function of its thermodynamic

parameters and its general differential form is given by [4]:

dG = dU − SdT − ~M.d ~H (1.7)

where U is the thermal energy of the system, S is the entropy of the system, ~M is the magnetisation

and ~H is the magnetic field.

It is possible to calculate the change in Gibbs free energy of a superconducting system Gs when a

magnetic field ~H is introduced by integrating the last term on the right hand side of eq.(1.7). To-
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tal magnetic field exclusion, also known as perfect diamagnetism, means that the superconducting

volume is magnetised with susceptibility χ = −1, yielding [4]:

Gs(H) = Gs(0)−
∫ H

0

~M.d ~H = Gs(0) +
1
2
µ0H

2 (1.8)

where Gs is the Gibbs free energy of the sample in the superconducting state, ~H is the applied exter-

nal field and ~M is the magnetisation. The integral
∫H

0
~M.d ~H determines the amount of work done

excluding the field.

We assume that the magnetic susceptibility of the normal state is negligible (Gn(H) = Gn(0)). If the

external field H reaches the critical field Hc superconductivity breaks down. At the critical field the

Gibbs free energy of the normal and superconducting states is equal (Gn(H) = Gs(H)) allowing us

to write:

Gn(H = 0)−Gs(H = 0) =
1
2
µ0H

2
c (1.9)

The left hand side of equation (1.9) is the difference in energy between the superconducting and

normal state of any type I superconductor. This energy difference between the normal and super-

conducting states is the condensate energy εcond:

εcond =
1
2
µ0H

2
c (1.10)

The condensate energy is εcond is usually of order of a few tens of Joules per unit volume [31].

The microscopic quantity corresponding to the condensate energy εcond is the superconducting en-

ergy gap ∆g . The energy gap ∆g is the energy difference between the normal fermionic state and the

superconducting state for an individual electron.

The magnitude of ∆g is approximately proportional to the critical temperature Tc [4] and is generally

small: For Aluminium (Tc = 1.2K) the energy gap ∆g = 180µeV [5].

Equation (1.8) yields the Gibbs free energy of the system per unit volume. Consequently, in the above

derivation all energies are specific energies per unit volume.

1.1.2.4 Ginzburg-Landau Theory and Coherence Length

At its core, GL-theory is a theory of second order phase transitions from an ordered to an disordered

state [17]. An order parameter φ is at a maximum for T = 0K and is smoothly reduced to zero as

T → Tc. One of the major achievements of GL-theory was to correctly identify the order parameter

as the number density of electrons in the superconducting state so that φ ∝ Ψ2.
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Figure 1.5: As the temperature decreases the minimum energy configuration of the system changes

from φ = 0 to |φ| > 0. Generally φ is a complex number, with the modulus of φ determining the

number density of superconducting electrons and the argument of φ determining the phase of the

macroscopic wave function. In the diagram above positive and negative φ are in anti phase.

The two core assumptions of GL-theory were that

1. where φ is small the Helmholtz free energy F of the system can be expanded as a power series

in φ and

2. The coefficients in the power series can themselves be expanded as a power series in T − Tc

When the system is in the normal state the only minimum in the Helmholtz free energy F can be

found at φ = 0, i.e. the fraction of electrons in the superconducting state is zero. As the system is

cooled down this minimum becomes more and more shallow until it is turned into a local maximum,

causing the system to adopt a state with φ 6= 0, as illustrated in figure 1.5.

Just below the transition temperature superconducting films can still exhibit resistivity due to vari-
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ous magnetic phenomena, such as flux flow or vortex flow resistivity (section 2.3) and consequently

it can sometimes be difficult to determine the temperature at which the actual transition to the su-

perconducting state occurs. It is possible to define the point of transition rigorously from the super-

conducting to the normal state from figure 1.5. The transition occurs when the minimum of the free

energy F occurs for an order parameter |φ| > 0.

Taking into account the kinetic energy of the superconducting electrons and various quantum me-

chanical boundary conditions the Helmholtz free energy per unit volume (specific free energy) f can

be calculated by power series methods [4]:

f(~r) = fn + α(T )|Ψ(~r)|2 +
1
2
β|Ψ(~r)|4 +

~2

2m
|∇Ψ(~r)|2 (1.11)

where α and β are coefficients of the power series expansion of Ψ. For the full derivation of equation

(1.11) the reader is referred to Tilley and Tilley [4]. We introduce eq.(1.11) at this point to illustrate

the reason for the existence of a superconducting coherence length.

Close inspection of (1.11) shows that variations of the order parameter in space cannot be infinitely

sharp: The gradient term in (1.11) introduces an energy cost for variations in the order parame-

ter that increases with increasing spatial derivative. This can be shown [4] to result in the second

characteristic distance for superconductors (in addition to the London penetration length λL), the

coherence length ξ(T ). The magnitude of the coherence length ξ(T ) indicates the minimum distance

over which the superconducting order parameter φ will vary. This parameter will be important for

the discussion of transition edge sensor noise dynamics (section 2.3).

Despite the fact that GL-theory is ”only” a phenomenological theory it has been extremely successful

in predicting experimental results, and it can be shown [4] that near the critical temperature of a

superconductor GL-theory is a rigorous consequence of the microscopic BCS theory. Since GL-theory

is mathematically far more tractable than BCS theory it is still in common use.

1.1.2.5 Cooper Pairs and Microscopic Theory

In 1950 H. Froelich proposed that interactions between electrons and phonons (quantized vibrations

of the ion lattice) might actually lead to a nett attractive force between electrons at sufficiently low

temperatures [32]. This pairing force would depend on the isotopic masses of the ions making up the

material and might be partly responsible for superconductivity. In 1956 Cooper managed to solve

the Schroedinger equation describing electrons interacting via the phonon exchange mechanism pro-

posed by Froehlich and came to the conclusion that the attractive force did indeed exist and could
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overcome Coulomb repulsion at roughly the right temperatures in order to be connected to super-

conductivity [21]. Hence superconducting electron pairs are known as Cooper pairs. In order for

pairing to occur, two spin-antiparallel electrons with approximately antiparallel momentum vectors

of equal magnitude are required. The bound pair has resultant spin zero, and as such is no longer

governed by the Pauli exclusion principle. While the normal state electrons in a material are sup-

ported against collapse into a single quantum state, any number of Cooper pairs can occupy the

same quantum state (i.e. have identical quantum numbers). The binding energy of Cooper pairs is

2∆g , i.e. the energy required to return both paired electrons to a normal state energy level.

The final break through for a true understanding of the superconducting state however was made

by Bardeen, Cooper and Schrieffer when they showed that phonon coupling had to be considered

between all the available electrons, causing them to condense into a single quantum state described

by the macroscopic wave function of GL theory.

1.2 Thesis Organization

Following this quick introduction to superconductivity, this section is provided as an outline of the

work which is presented herein. It is believed that the reader will find the considerations and deriva-

tions presented easier to follow if he is equipped with a clear idea of where they are going to lead

and how they will tie into the rest of the thesis.

We begin by considering the most popular forms of superconducting radiation detectors in chapter 2.

It is demonstrated how most superconducting detectors rely on the properties of the sn-transition to

achieve their remarkable working characteristics. In the course of this consideration we take a closer

look at the ”excess noise” phenomenon encountered in Transition Edge Sensors (TESs) and perform

a thorough investigation of the mechanisms responsible for it.

This consideration of excess noise illustrates the susceptibility of the sn-transition to small magnitude

fields and energy variations, such as the movement of a single magnetic flux quantum across a thin

superconducting film (section 2.3.2). This prompts us to consider quantum mechanical vacuum fluc-

tuations in our search for possible mechanisms which may influence the physics of the sn-transition

(chapter 3). During the investigation of the coupling mechanisms between the quantum vacuum

and the superconducting-to-normal transition we find that current theory evaluating the influence

of vacuum fluctuations on superconductors uses an inappropriate theory of electromagnetism. In

section 3.2 a possible coupling mechanism between superconducting detector performance and the

quantum vacuum is discussed. In section 3.4 the approximate magnitude of the change in STJ energy

resolution as a result of vacuum fluctuations is found.
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While it has not been possible to link vacuum fluctuations directly to excess noise, our investigation

into the theory of electromagnetism suitable for analysing the behavior of photons near to (or inside)

a superconductor leads directly to the consideration of non-zero rest mass photons in chapter 3.

We find in chapter 4 that the equations which govern such massive electromagnetism allow for the

creation of a new kind of optics technology, which we call ”Heavy Photon Optics”. The possible

implications and practical applications of this technology are discussed, along with the equations

required for a quantitative evaluation of the performance of Heavy Photon Optics devices.

The manifold applications of Heavy Photon Optics prompt a more thorough investigation of the

mechanism that allows the gauge bosons of the electromagnetic field (i.e. photons) to acquire a

rest mass. This investigation then leads to a derivation of a similar mechanism for the hypothetical

gauge field of gravity in chapter 5, and yields a theory predicting the existence of non-zero rest

mass spin-1 gravitons. The resulting theory also predicts the flux of the frame dragging field to

be quantised and derives a quantitative expression for the gravitoelectromagnetic flux quantum.

Chapter 5 concludes with speculations as to the applicability of massive spin-1 gravity to neutron

stars and the consequences.

Finally, Chapter 6 will provide a summary of conclusions for the work performed herein.

At times the order in which some of the topics are presented may appear odd. It might have been

more logical to first perform a systematic analysis of the Higgs mechanism in superconudctors, fol-

lowed by a discussion of the optical and electrodynamic properties of any medium in which non-zero

rest mass electromagnetism exists. From this basis heavy photon optical elements and the Casimir

effect could have been discussed, with an excourse into detector technology at the end. However,

the order in which the work is presented is the order in which it has been performed. It is believed

that the way in which the analysis of one topic seamlessly lead to research into another has an ad-

ditional and worthwhile story to tell, about the way that research into superconducting devices and

superconductivity has an incredible potential for creating links back and forth between what are

traditionally considered deeply theoretical topics, such as quantum electrodynamics and the Higgs

mechanism, and practical applications such as superconducting particle detectors and the (at this

point speculative) heavy photon optical elements developed in Chapter 4.
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Chapter 2

Superconducting Particle Detectors

Our investigation of superconductivity begins with a look at the superconducting particle and radi-

ation detector technologies available today. Cryogenic photon and particle detector technologies can

provide energy resolutions far superior to those afforded by semiconductor based systems. Ground

based astronomy using arrays of superconducting tunnel junctions is providing ultrahigh energy res-

olution imaging spectroscopy [33] and transition edge sensors are used in a bid to detect the Weakly

Interacting Massive Particles (WIMPS) which are a possible candidate for the nature of dark matter

[34]. Thus transition edge sensors may provide a window onto a physical phenomenon that was

hitherto entirely undetectable. Furthermore, the field of superconducting detectors is a suitable en-

try point into the topic of the superconducting-to-normal transition since between them the plethora

of available detectors exploit all the fundamental characteristics of the sn-transition.

When making and operating superconducting detectors of any kind the constraints on the operating

temperature and the magnetic environment are formidable, and even today, almost 100 years after

the advent of superconductivity, producing a working detector is not a trivial task. Often operating

temperatures significantly below 1K are required and shielding of any magnetic fields above tens of

nT may be necessary [5] [6]. If an array of superconducting detectors is to be made, for example to

produce a camera, even more problems arise. Many types of superconducting detectors are not easily

multiplexed, requiring an enormous number of wires for even moderate imaging resolutions, and

often precise (of order ±10−5T [5]) control of the applied magnetic field is required. The challenge

to provide sufficiently accurate control over the magnetic field is further enhanced if a detector array

providing imaging or spatially distributed read-out capacity is required, since the correct field has to

be provided for each individual pixel.

Against the background of progressively cheaper semiconductor imaging devices, such as Comple-

21
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mentary Metal Oxide Semiconductor (CMOS) or Charge Coupled Device (CCD) cameras, the ques-

tion is what possible advantages superconducting detectors could bring that would outweigh the

difficulties involved in fabricating, cooling and operating them. The answer is to be found in the

very mechanisms fundamental to superconductivity. In one way or another all superconducting de-

tectors exploit the very small energy gap ∆g between the normal and superconducting states which

is coupled to massive changes in electromagnetic properties (transition to zero resistance and total

field exclusion). As such, the usefulness of superconducting detectors is almost a direct consequence

of the low temperatures at which superconductivity occurs. If superconductivity occurred at higher

temperatures this would imply a larger energy gap between the superconducting and normal states,

in order to prevent thermal excitation of electrons across the gap.

The small energy gap between the superconducting and normal states means that even tiny vari-

ations in particle energy can be detected (resolving powers in excess of R = 2000 are available at

photon energies of 2.5eV [35]), allowing for the fabrication of spectrometers which are of unprece-

dented energy resolution and sensitive to even a single photon. Such photon counting ultra high

resolution spectrometers have a huge range of potential applications, from the purely scientific to

the applied medical or industrial. Superconducting detectors are baselined for the Narrow Field

Imager (NFI) on the X-ray Evolving Universe Spectroscopy mission (XEUS)[36] and the ultrahigh

resolution read-out of biomedical research assays is set to revolutionize the biomedical engineering

industry [37].

Two principal categories of superconducting spectrometers exist which are divided by their funda-

mental method of detecting and measuring energy deposited in the detector:

1. Particle counting detectors such as Superconducting Tunnel Junctions (STJs) exploit the low

superconducting-normal energy gap (∆g of order meV ) by counting the large number of elec-

trons lifted from the superconducting into the normal state when a quantum of energy is

deposited in the detector. The superconducting energy gap ∆g is approximately 1000 times

smaller than the semiconductor energy gap (which is of order eV ) [5] and consequently 1000

times as many particle excitations occur as would be the case in a semiconducting detector.

This means that the superior statistics of the STJ yield a much better full-width half-maximum

(fwhm) energy resolution (about 30 times higher than semiconductor based energy resolutions

[5]).

2. Equilibrium calorimeters such as Transition Edge Sensors (TESs) and Metallic Magnetic Calorime-

ters (MMCs) make use of the rapid change of electromagnetic parameters (resistivity and mag-

netic susceptibility) with changes in temperature of a sample material [1] [38]. In the case of

TESs this is the rapid change of resistivity with temperature in the region of the sn-transition,
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while in the case of MMCs it is the change in magnetisation with temperature of a metallic

sample. Even the energy deposited by a single photon will cause a sufficiently large response

to allow for much better fwhm energy resolution than any semiconductor based detector.

Strictly speaking an MMC is not an inherently superconducting detector. The magnetic sample

is in the normal state. The superconducting component of an MMC is the SQUID magnetic

field sensor, able to detect minute changes in sample magnetisation.

During the following discussion of basic superconducting detector types we will come across the

concept of ”excess noise” in TESs, a type of white noise originating inside TES type detectors which

is little understood. The wish to improve the energy resolution of TES type devices, and some cu-

riosity to find an explanation for an insufficiently explained phenomenon (independently of possible

applications), leads to an in-depth investigation of the excess noise phenomenon (section 2.3). In the

course of this investigation we develop some physical and mathematical concepts that can be of help

in the analysis of excess noise experimental data and motivate a more in-depth look at the fundamen-

tal physics of the sn-transition. In this way a very practical interest (suppression of excess noise) will

lead us to investigate the much more fundamental concepts of modifications to the vacuum energy,

non-zero rest mass photons and massive spin-1 gravity, discussed in chapters 3 to 5.

2.1 Types of Superconducting Detectors

2.1.1 Superconducting Tunnel Junctions

Superconducting Tunnel Junctions (STJs) are particle counting detectors making direct use of the

small superconducting-normal energy gap ∆g [5]. They consist of two superconducting films (thick-

ness ≈tens - hundreds of nm) separated by a thin(≈ 1nm) insulating barrier. A small bias voltage

(≈ 100−500µV ) is applied across the barrier. A photon absorbed in the cathode will excite a number

of Cooper pairs across the energy gap ∆g into their normal electron states. These normal electrons

are known as quasiparticles since, if the device is in the superconducting state, they can only exist by

absorbing energy from an external source. As soon as the quasiparticles lose their excitation energy

to their surroundings they will decay back into the Cooper pair state. The quasiparticles created by

a photon absorbtion event have sufficient energy to tunnel across the barrier into the anode. The

resulting tunneling current can be measured and by integrating it the total tunneling charge can be

calculated. In his way it is possible to determine the number of quasiparticles created in the photon

absorbtion event. If we assume that all the photon energy is used to create quasiparticles the photon

energy and number of quasiparticles n can be related by n = Eph/2∆g . The basic working principle
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Figure 2.1: Basic working principle of an STJ: an incoming photon is absorbed in the top electrode

and breaks a cooper pair, creating two quasi particles. Due to the bias voltage across the potential

barrier these quasi particles can now tunnel across the barrier into the bottom electrode where they

can be counted. The number of quasi particle charges created depends linearly on the energy of the

incoming photon. Diagram after Polushkin [6].

of an STJ is illustrated in figure 2.1. However, figure 2.1 is simplified significantly and only serves

to illustrate the basic working principle of a STJ. In a real device quasi particles or holes may back-

tunnel across the barrier, and contribute a number of times to the statistical processes governing STJ

energy resolution [5].

As such, the basic working principle of an STJ is similar to that of Si-based photo diodes: The in-

coming photon excites a number of particles proportional to its energy, and by integrating the re-

sulting current the number of excited particles, and consequently the absorbed photon energy, are

inferred. However, in semiconducting devices the excitation process is that of normal state electrons

across the semiconductor bandgap, which is typically of the order of a few eV [6]. By contrast, the

superconducting-normal energy gap ∆g is of order meV , resulting in ≈1000 times more excitation

events inside a superconductor.
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Since the excitation and decay of excited particles is a statistical process an intrinsic statistical limit

exists for the best energy resolution that can be achieved with a particle counting detector. The

intrinsic statistical energy resolution of a particle counting spectrometer is given by [5]:

∆E = 2.355
√

1.7F∆gEph (2.1)

where the Fano factor F < 1 (typically ≈ 0.2 [5]) results from the fact that particle excitation is not a

purely statistical process but governed by physical restrictions and interactions and the factor of 2.355

results from the conversion from Root Mean Square (RMS) energy resolution to fwhm resolution.

The factor of 1.7 has been introduced since the average energy necessary to create a quasi particle

is about 15% smaller than 2∆g [5]. From equation (2.1) the intrinsic best energy resolution scales as

∆E ∝
√

∆g . Since the energy gap for the sn-transition is three to four orders of magnitude smaller

than that for the Si bandgap [5], the intrinsic statistical resolution limit of an STJ is about 30 − 100

times better than that for any semiconducting detector.

2.1.2 Transition Edge Sensors

Much research is currently dedicated to investigating thermal equilibrium calorimeters based on

Transition Edge Sensors (TESs). Ideal thermal equilibrium calorimeters consist of a thermometer

perfectly coupled to an absorber of heat capacityC and a heat reservoir at temperature T0 coupled by

a weak link of thermal conductivityG to the absorber. Any event depositing an amount of energy ∆E

in the absorber automatically raises the absorber temperature by an amount ∆T . The temperature

in the absorber then decays exponentially back to its equilibrium value of T0 with a time constant

τ = C
G . By detecting this temperature pulse it is possible to accurately determine the amount of

energy deposited by the event.

The role of a TES is that of a high sensitivity thermometer. In reality the sn-transition is not infinitely

sharp but spans a region of typically 5 − 10mK width [7] and a TES consists of a thin film whose

temperature is balanced inside this transition region. In this way even minuscule variations in tem-

perature will result in large changes in device resistivity which can be read out by a Superconducting

Quantum Interference Device (SQUID). The steep gradient of the resistance vs. temperature curve

(figure 2.2) allows for the accurate determination of small temperature changes in the absorber while

the greatly diminished heat capacity at low temperature increases the temperature change per unit

energy deposited and allows for fast response times while helping to limit thermal fluctuation noise

through the link with the heat bath[39]. A basic sketch of a TES working set-up is provided in figure

2.3.
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Figure 2.2: Experimental resistance vs. temperature curve of a TiAu bilayer TES in the sn-transition

region. Data taken from Takei [7]

One advantage of TES based equilibrium calorimeters is the possibility to operate them in negative

feedback mode: Since the ohmic resistance of the TES is not zero, any applied constant bias voltage

will give rise to a bias current causing ohmic heating. The equilibrium temperature T0 is determined

by the ohmic heating from the bias voltage. If the TES resistance increases as a result of an increased

temperature, the bias current is reduced and ohmic heating is lessened, causing the temperature to

decay with the feedback time constant τf < τ . The possibility to use negative voltage feedback to

return the TES to its equilibrium temperature T0 is one of the reasons that the TES time response is

much faster than that of a Metallic Magnetic Calorimeter (section 2.1.3).

In contrast to calorimeters, particle counting detectors such as Si-based semiconductor detectors or

even STJs have an intrinsic energy resolution limit determined by the statistics of the particle creation

process. There are no possibilities to improve the detector resolution beyond this value. For example,

the limiting resolution for an Si semiconductor detector is 118eV@6keV [39]. Thermal equilibrium

calorimeters have, at least theoretically, no such intrinsic limit [39]. Their energy resolution is gener-

ally limited by imperfections in thermal coupling or various forms of statistical thermodynamic noise

which depends on the design details of the system [40] and can be improved by engineering efforts.
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Figure 2.3: Sketch of a basic TES setup. Photons are stopped by the absorber and the thermal energy

diffuses from the absorber into the TES. The TES resistance increases as a consequence of the change

in temperature, which decays exponentially back to its equilibrium state as thermal energy diffuses

through the weak thermal link G and returns the TES and absorber to their equilibrium temperature

T0.

In 2004 Hoevers et al. [35] report the energy resolution of their TiAu bilayer TES as 2.5eV@5.9keV .

2.1.3 Metallic Magnetic Calorimeters

The basic working principle of Metallic Magnetic Calorimeters(MMCs) is similar to that of TESs:

incoming particles deposit their energy in an absorber. The deposited energy then diffuses into the

sensor material through a strong thermal link. The sensor material in turn is coupled, via a weak

thermal link, to a heat reservoir, returning it to a specified equilibrium temperature after a setup

specific relaxation time, with the detector acting as a sensitive thermometer. Thus a MMC, just like

a TES, is an equilibrium calorimeter and as such not limited by particle counting statistics in the

way that an STJ or semiconductor detector are limited (see section 2.1.1). The difference between a

TES and a MMC is that, while the TES measures the detector material’s temperature by measuring

variations in the sensors resistance, the MMC measures the absorber’s temperature by measuring

variations in the sensors magnetisation.

The change in magnetic moment δm of a system absorbing an amount of energy δE can be calculated

if its volume V , temperature sensitivity of magnetisation ∂M/∂T and heat capacityC are known [38]:
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δm = V
∂M

∂T

δE

C
(2.2)

Upon investigating the sensitivity of the magnetization M to changes in the temperature T one finds

that the most sensitive materials are actually dielectric substrates supporting a population of para-

magnetic ions. However, these materials yield extremely long time constants τ (of order minutes)

when evaluating the exponential magnetisation decay back to the equilibrium value [38]. When a

metallic substrate is used in place of a dielectric substrate, a superior response time is achieved at the

price of reduced energy resolution [38].

The change in magnetic moment δm is due to re-alignment of N electron spins of magnetic moment

µe = e~/(2me) ≈ 6 × 10−5eV/T . The energy associated with this re-orientation is calculated as the

interaction energy of the electron magnetic moment Nµe with a background magnetic field B. The

energy resolution can than be estimated as:

∆E ≈ gNµeB (2.3)

where g ≈ 2.002 is the Lande g-factor, also called the gyromagnetic ratio, which arises from quantum

electrodynamics (QED) [5].

The change in magnetic moment δm can be detected using a SQUID magnetometer. According to

Enss et al. [1] a SQUID can be used to detect changes in magnetic moment as small as that resulting

from the reorientation of 3000 electron spins. Such high-sensitivity systems have been used to create

MMC calorimeters with energy resolutions of ≈ 4meV in a background field of 5mT [41] at time

constants of ≈ 1s.

In a simple MMC setup the magnetic sensor material is located inside a SQUID loop . The entire

setup has to be subject to an external magnetic field. A simple MMC setup is illustrated in figure 2.4.

According to Fleischmann et al. [42] MMCs have been shown to reach fwhm energy resolutions of

∆E = 3.4eV@6.5keV . As such MMCs are serious competition for TES based calorimeters when it

comes to the highest photon counting x-ray energy resolutions available. While MMCs are of great

interest to particle physics and astronomy they are not considered any further in this work and are

included merely for sake of completeness.
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Figure 2.4: Example setup for a Metallic Magnetic Calorimeter (MMC)

2.2 Transition Edge Sensor Classical Noise Sources

To date, TESs have been unable to reach their predicted energy resolution (discussed in section 2.2.1,

below) due to a phenomenon known as excess noise, a white current noise originating inside the de-

vice [1]. Before a sensible and detailed investigation of the TES excess noise phenomenon is possible,

it is necessary to understand the basic operating principles of such devices, and the identified noise

sources present. This section aims to give a quick overview of the most important types of noise

relevant to TES operation.

2.2.1 Aspects of Transition Edge Sensor Noise and Operation

As discussed in section 2.1.2 no intrinsic statistical limits exists for the energy resolution of equilib-

rium calorimeters. Instead, the resolution is limited by statistical fluctuations and random thermal

excitations and the resulting phonon noise in the calorimeter components.

A thermal equilibrium calorimeter consists of a thermometer perfectly coupled to an absorber of heat

capacity C which in turn is coupled, through a weak link of thermal conductivity G, to a heat reser-

voir at the equilibrium temperature. Thermal fluctuations across the weak thermal link G introduce

noise into the system and are well understood. They can be mathematically expressed as average

energy fluctuations of magnitude [6][39]

< ∆E2 >= kBT
2C (2.4)

It can be shown that (theoretically) thermal fluctuation noise does not impose an intrinsic resolution
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limit onto the calorimeter [39]. Taking the Fourier transform of the combined signal and noise and

separating it into discrete frequency intervals (”bins”) of fixed width ∆f we find that in the frequency

domain the signal-to-noise ratio is constant with frequency (both thermal fluctuation noise and signal

fall as 1/f ). Thus, each frequency bin provides an estimate for a signal with constant uncertainty

(due to constant signal-to-noise ratio), and the knowledge of the signal can be improved to arbitrary

statistical accuracy by sampling a sufficiently large number of bins [43]. If thermal fluctuation noise

were the only noise source in an otherwise perfect system, calorimeter resolution would be limited

only by our ability to sample arbitrarily high frequencies.

However, the ability to eliminate thermal fluctuation noise by high frequency sampling relies on the

availability of the high frequency data. In any practical system the maximum-frequency bins avail-

able are generally determined by limitations in the read-out electronics as well as imperfections in

the high frequency response of the system. Any effect that increases signal rise time will decrease

the magnitude of high frequency components in the Fourier decomposition of the signal, causing

the signal to fall faster than 1/f in frequency space. Possible reasons for increased signal rise times

are imperfect coupling between absorber and thermometer or finite thermalisation times of the en-

ergy deposited. The thermalisation time is effectively the time it takes for the energy deposited in

the absorber to relax from a set of excited phonons and electrons into thermal energy and raise the

temperature of the device. Any such reduction in the high frequency part of the power spectrum

of the signal causes the signal-to-noise ratio to rise rapidly with frequency, making the statistical

sampling described above inefficient. In this case it is no longer possible to determine the signal to

arbitrary precision. The maximum precision is then determined by the position and gradient of the

high frequency roll-off at which the signal drops faster than 1/f . Practical TES energy resolutions are

discussed below, along with the relevant quantitative equations (eq.(2.7) and (2.8)).

The most important type of noise limiting calorimeter resolution is Johnson-Nyquist noise, com-

monly referred to as Johnson noise, which is caused by statistical deviations of particle energies from

their expectation energy due to thermodynamic fluctuation/excitation effects. It occurs in any elec-

tronic component with non-zero resistance and its current spectral density iJ is of the form [44]

iJ =

√
4kBT
R

(2.5)

where R is the ohmic resistance of the component and all other symbols have their usual meaning.

Since Johnson noise is white in the frequency domain (i.e. it is constant over all frequency space) it

causes the signal-to-noise ratio to drop with frequency as 1/f . In a standard calorimetric system the

dominant sources of Johnson-Nyquist noise will be the thermometer and the load resistor.

The most significant noise source apart from Johnson noise and thermal fluctuation noise is amplifier

noise, which will not be covered here since it is irrelevant to an understanding of fundamental TES
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physics, or the physics of the sn-transition. The problem of amplifier noise is discussed in the relevant

literature [1] [6].

In order to facilitate evaluation and comparison of calorimetre performance it is accepted standard

to use the dimensionless local sensitivity α defined as [6]

α ≡ d logR
d log T

=
T

R

dR

dT
(2.6)

Using 2.6 and assuming Poisson statistics for the phonon noise in the absorber [6] the energy reso-

lution of an equilibrium calorimeter subject to Johnson noise and thermodynamic fluctuation noise

can be expressed as [39]

∆E = 5α−
1
2

√
kBT 2

0C0 (2.7)

Here C0 is the heat capacity of the TES at the equilibrium temperature. It is necessary to introduce

this constant explicitly since at the transition C is a strong function of temperature. The parameter

α is called the local sensitivity since it varies strongly with position in temperature-magnetic field

space.

The Space Research Organization of the Netherlands (SRON) is working on making a TES array

and the values they report for their array pixel design are [35]: heat capacity C0 = 0.33pJ/K, equi-

librium temperature T0 ≈ 100mK and local sensitivity α ≈ 15@5.9keV . Thus equation (2.7) yields

∆E ≈ 1.72eV@5.9keV as the estimated energy resolution. Since the parameter α varies strongly with

temperature, the actual value of α depends on the signal energy and alpha is reduced for higher en-

ergies.

The energy resolution ∆E ≈ 1.72eV@5.9keV of the SRON array pixel as estimated by equation

(2.7) is ≈ 0.8eV better than the experimental energy resolution of ≈ 2.5eV@5.9keV reported for this

design by the same group [35]. The reason for this is the presence of an unexplained constant voltage

noise source in the device. IntroducingM as the ratio of this excess noise to Johnson noise the energy

resolution can be estimated as [35]:

∆E = 2.35
√
kBT 2

0C0 × [32(1 +M2)/α2]1/4 (2.8)

For M = 2 (reasonable estimate at R = 0.2Rn, [35])the estimated energy resolution then becomes

∆E ≈ 2.9eV@5.9keV , which is much closer to the value reported. Thus energy resolution has been

decreased by more than 40% due to the presence of excess noise. This example illustrates the im-
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portance of an understanding of the mechanism behind excess noise if TES calorimeters are to reach

their full potential.

In calorimeter design the main challenge is to optimize the two parameters of energy resolution and

count rate. It is important to choose the right thermometer for the intended application, since often

increases in count rate require decreases in energy resolution and vice versa. The combination of the

comparatively high count rate and energy resolution offered by a TES gives it an edge over semi-

conductor calorimeters in many applications where the stringent cryogenic cooling capabilities for

such a device can be met [1]. However, the operation of the device on the superconducting-normal

phase boundary opens the door to a whole host of new noise sources connected to the magnetic

properties of the superconducting state (such as voltage shot noise due due magnetic vortex motion,

section 2.3.2), as well as noise phenomena related to the phase transitions (such as percolation noise,

section 2.3.3).In order to be able to understand the significance of these additional noise sources, an

understanding of some of the fundamental processes and read out mechanisms of TESs is required.

A TES exploits the low heat capacity (of order pJ/K [35]) of materials at low-temperature and the

rapid change of resistance with temperature within the superconducting-to-normal(sn)-transition

(typically α ≈ 10 − 30 for x-ray energies). The film is biased on the sn-transition of the material,

resulting in large changes in resistance for low event energies (single x-ray photon absorption event

energies of a few keV ). In the presence of normal bias currents TES transition widths are usually of

order a few mK [40]. The local sensitivity α of a TES can be up to two orders of magnitude above

that of cryogenic semiconductor thermometers [40]. The first demonstration of a sn-transition ther-

mometer by Andrews et al.[45] in 1941 was as a bolometer measuring infrared signal power. Their

device was a fine tantalum wire at its transition temperature of Tc = 3.2K rather than a thin film,

but the principle was the same. To date TESs have been used successfully across almost the entire

electromagnetic spectrum, from infrared to gamma rays, in calorimeter mode (measuring energy

deposited) as well as bolometre mode (measuring signal power) [40].

In a practical TES the signal is usually generated by an event (like photon or particle absorbtion) in

a normal metal absorber film in direct contact with the TES. The absorbers can be used to tailor the

device transition temperature by the proximity effect, as well as to improve the photon absorbtion

efficiency [6][40]. Generally normal-state absorbers are used since the heat exchange mechanisms

of a normal metal allow for faster thermalisation times. After the heat deposited by the event has

generated a local hot spot in the absorber it diffuses through the absorber and into the TES by three

main mechanisms [6]:

1. electron-electron interactions

2. electron-phonon interactions



2.3. TRANSITION EDGE SENSOR EXCESS NOISE 33

3. phonon-phonon interactions

All three interaction rates are strongly temperature dependent, with electron− electron interactions

dominant at sub-K temperatures [6], to the degree that thermalisation can be considered to be inde-

pendent of lattice interactions. The TES measures temperatures by measuring electron temperature

and is therefore most suitable for operation in the T < 500mK regime.

One of the main barriers to the proliferation of TES technology was the difficulty of impedance-

matching a TES to a suitable amplifier, a problem which was overcome with the increasing avail-

ability of SQUIDs as amplifiers [40]. The basics of SQUID theory and amplification are beyond the

scope of this text but are discussed in great detail in [29]. The possibility to use SQUIDS as read out

amplifiers for TESs gives them a major advantage over STJs, since it is possible to multiplex SQUID

input signals, allowing for a manageable number of amplifier chains and a manageable number of

wires to room temperature even for large TES arrays [29]. By contrast, STJs generally require one

amplifier per pixel, resulting in a large number of wires for arrays. Still, the production of TES arrays

as ultra high resolution imaging spectrometers remains difficult, requiring the creation of a highly

uniform array of TESs that can be operated from the same bias temperature and bias voltage.

The increasing demand for production of TESs with predictable response and noise characteristics

has driven the scientific effort to accurately model TES response to a known input signal. Accurate

theoretical modeling of TES response is a non-trivial task. The sensitivity α and heat capacity C0 are

strongly local inH−T space, causing the energy response to vary significantly with bias temperature,

ambient field, energy input, bias current and device resistance. A good introduction to an analytical

model of TES response can be found in Enss et al. [1] and Polushkin et al. [6].

While the basic mechanisms behind the sn-transition are fairly well described by BCS theory, a num-

ber of transient effects occur near the actual transition region which are difficult to quantify. We will

return to these in the following section when dealing with the excess noise phenomenon in TESs.

2.3 Transition Edge Sensor Excess Noise

Using practical TESs it has so far been impossible to reach the high resolving powers predicted by

the theory outlined in section 2.2. The reason for this is a noise source of uncertain origin intrinsic to

the device [1]. The noise appears to be white at frequencies above 100Hz and inversely proportional

to the TES bias point resistance [2]. A number of different theories have been suggested in an attempt

to explain the origin of excess noise [2][35][46] but so far no closed, self contained model has been

produced which is in agreement with all of the experimental data available.
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Figure 2.5: Noise spectral current density in a TES with normal state resistance Rn = 100mΩ. The

solid line is the total noise observed, made up from the quadrature sum of an analytical fit to exper-

imental excess noise according to equation (2.9)(dashed black line) and Johnson noise according to

equation (2.5) (dashed gray line).

In a modern TES system the most significant noise source predicted by theory is Johnson noise (dis-

cussed in section 2.2). However, experimenters report an excess noise current spectral density of a

magnitude up to ≈ 5 times larger than the noise current expected from Johnson noise [7]. Using the

expressions for Johnson noise current spectral density and empirical excess noise current spectral

density (equations (2.5) and (2.9) respectively) the magnitudes of observed noise current, Johnson

noise current and excess noise current have been plotted in figure 2.5.

We now begin a systematic investigation of the excess noise phenomenon, and two of the theories

currently attempting to provide an explanation. Besides wanting to find ways of predicting - and

suppressing - excess noise we are motivated simply by a wish to provide an unsolved question with

an answer.

In this section we compare and contrast the competing theories of Phase Slip Shot Noise (PSSN) and

Percolation Noise. We begin by recapitulating the mathematical expressions governing both theories

as well as the functional form of the excess noise. The formalism for PSSN is extended to include

the dependence of the excess noise current on the magnetic field. In the case of percolation noise a

new set of semi-empirical equations is derived in order to provide a complete analytical framework

within which to compare both theories.
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2.3.1 Mathematical form of excess noise

A number of experimenters [2][7][35] have reported the excess noise phenomenon. Excess noise

cannot be explained by the sum of Johnson noise, thermal fluctuation noise and read-out (amplifier)

noise. Its two most dominant and most consistently reported features are its inverse proportionality

to the TES bias point resistance, having led to the name ” 1
R -noise” [7] and the fact that it appears to

occur only above a given threshold bias current.

Mathematically, excess noise takes the form of a constant voltage noise source. It has been reported

by Takei et al.[7] that in the case of their TiAu bilayer TES the curve of best fit to the experimentally

observed excess noise voltage spectral density is given by:

ve = 2
√

4kBTc (2.9)

where for a typical setup Takei et al. [7] report ve ≈ 2− 5pV Hz−
1
2 .

This result was obtained using a 500µm square bridge-type TiAu bilayer TES, with operating tem-

peratures between 63mK and 77mK, and as such can only be regarded as a reliable quantitative

representation of excess noise for exactly the conditions under which it was recorded, since it con-

tains no information about how the excess noise depends on bias temperature, magnetic field or

material parameters. As such, any excess noise model that is to be compared to this data has to be

matched to the conditions under which the data was collected to which equation (2.9) is fitted [7] if

a good agreement with the empirical expression (2.9) is to be reached.

2.3.2 Phase Slip Shot Noise

The theory of Phase Slip Shot Noise is based on the dynamics of vortices in thin film superconductors

[2][47]. If magnetic flux penetrates a thin film superconductor at any one point, forcing it locally into

the normal state, it creates a circular vortex. The total phase change in the superconducting order

parameter along any closed curve containing the vortex must be 2πn due to the single valuedness of

the superconducting order parameter, where n is the number of flux quanta penetrating the vortex

[4]. In the literature n is often referred to as the vorticity and denoted q in order to differentiate it

from the net number of flux quanta n penetrating the entire superconductor.

Any current flowing in the superconductor will exert a driving force on any vortices present, in a

direction normal to the current flow [48]. If a current causes a vortex to move across the supercon-

ductor it causes the phase difference of the order parameter at two points along the direction of the

supercurrent to change with time [4][47]. Any change of the phase difference with time causes a

potential difference between the relevant points [4]. If vortex motion in the sample is random the
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voltage signal from a series of vortex movements can appear as Phase Slip Shot Noise (PSSN) [2][47].

According to [4][47] vortex motion in a 2-dimensional superconductor gives rise to a white noise

source with voltage spectral density:

vPSSN = 2ϕ0V

(
∆φ
2π

)
(2.10)

where vPSSN is the voltage spectral noise density, ϕ0 = h/2e is the magnetic flux quantum, ∆φ is the

phase change of the order parameter and V is the driving voltage.

Considering vortex dynamics in a thin film superconductor, Fraser[2] proposed the following ex-

pression for the noise spectral current density in terms of experimental variables:

i2n(V, I, T,A,R) = C

(
h2

e2

)
1

kBT
ξ0l

V I

R2A
(2.11)

where in is the noise spectral current density, l is the electronic mean free path; ξ0 is the Pippard

coherence length, A is the area of film, R is the film resistance, V is the voltage across the film, I is the

current through the film and C = 21/2π2 is a constant of proportionality [2]. Since both the electronic

mean free path l and the coherence length ξ0 are limited by the device thickness d it is possible to

approximate the normalized effective coherence length
√
ξ0l ≈ d [2].

The major deficiency of this model is that, although it is essentially a magnetic model, it makes no

predictions about the dependence of in on the applied magnetic field. Since magnetic flux exclusion

is not perfect in thin film superconductors [49] any applied magnetic field will cause the vortex

density and behavior in the film to change.

The applicability of the PSSN model across the transition will be discussed in section 2.3.2.2 and

a comparison with experimental data and with the percolation noise model (section 2.3.3) will be

performed in section 2.3.4.

2.3.2.1 Magnetic Field Dependence of Phase Slip Shot Noise

At the time of writing, the quantitative expressions of the PSSN model do not contain any predictions

as to the magnetic field dependence of the noise. In this section we derive, as an extension to the

model according to equation (2.11), the magnetic field dependence of the PSSN-type noise in the

strong field limit. We also show in section 2.3.4 that the PSSN model is in good agreement with

experimental data available.
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In the strong field limit, the vorticity of the sample is entirely due to the external magnetic field and

the external magnetic field can be linked to the free vortex density [50]:

nF =
B

ϕ0
(2.12)

where nF is the free vortex number density. Any field for which (2.12) is a good approximation is

considered strong. The index F of the free vortex number density nF has been used as a superscript

rather than a subscript for consistency with the literature [50].

An order of magnitude calculation performed by Fraser [2] predicts a reduction of excess noise with

applied magnetic field in approximate agreement with experimental results obtained by Ullom [8].

According to Minnhagen [50], the onset of resistance in a thin film is entirely due to the energy

dissipation due to vortex flux flow resistance Rff and can be related to the normal state resistance

RN and free vortex density in the sample nF by:

Rff
RN

= 2πnF ξ2 (2.13)

where ξ is the Ginzburg-Landau coherence length. The magnitude of ξ varies with the superconduct-

ing material, and for a pure superconductor at T = 0 it approximately equals the Pippard coherence

length ξ0 [4] (Example values of the Pippard coherence length are ξ0,Al ≈ 1600nm, ξ0,Pb ≈ 83nm

[14]).

Generally TESs tend to be ”dirty” superconductors. A superconductor is considered dirty when the

normal electron mean free path for elastic scattering l is much shorter than the GL coherence length

ξ0 [2]. The reason that TESs tend to be dirty superconductors is that the small film thickness has

to be taken into account when determining the three dimensional average mean free path. Using

the ”dirty limit” relation for thin films [2] we obtain the temperature dependence of the coherence

length:

ξ = 0.85
(
ξ0l

1− t

) 1
2

(2.14)

where ξ0 is the Pippard coherence length, l is the electronic mean free path, t is the reduced temper-

ature T
Tc

.

Since we established that during the onset of resistance the film resistance is entirely due to flux flow

resistance we can replace the resistivity R from expression (2.11) with the flux flow resistivity Rff .

By substituting from (2.12) to (2.14) into (2.11) we arrive at an extended PSSN model including the

magnetic field dependence of the excess noise current in strong magnetic fields:

in =

√
Ch2

2.89e2

1
kB

V I

A

1
ξ0l

ϕ0

πB

1− T/Tc√
T

1
RN

(2.15)
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2.3.2.2 Validity of the PSSN model

All theories relevant to TES operation take into account effects which broaden the transition from a

perfect step of zero width and finite height to a steep gradient of width a few mK(figure 2.2).

According to Fraser [2] the PSSN model is valid within the region of the Kosterlitz-Thouless-Berezinski

(KTB) type transition. In this model the onset of resistance is explained by the spontaneous cre-

ation of vortex-antivortex pairs which unbind above the KTB transition temperature and are non-

interacting. A detailed analysis of the dynamics of vortex-antivortex systems is performed by Minnhagen

[50].

Since KTB theory assumes vortices to be weakly- or non-interacting these relations are valid only for

relatively low vortex densities. The density of vortices in the TES increases with TES temperature.

For large vortex densities the vortices form ordered structures, known as ”Abrikosov lattices” [4]. If

a sufficiently high driving current is applied this will lead to correlated vortex movement, starting

in the form of plastic flow at relatively moderate driving currents and tending towards a single

coherently moving vortex structure at the highest driving currents [51] [52]. We would expect the

frequency of any noise generated by such a moving structure to be strongly related to the lattice

constant of the structure, and therefore noise generated by moving coherent vortex structures would

no longer be white. Consequently PSSN theory, which relies on random uncorrelated vortex motion

to generate frequency independent (i.e. white) noise, is strictly valid only near the low temperature

end of the sn-transition region, where nF is small. Also, the assumption R = Rff is only strictly

valid in the low temperature part of the transition [50].

2.3.2.3 Conlusions regarding the PSSN noise model

The functional form of Phase Slip Shot Noise (PSSN) has been investigated and the noise current

equation (2.11) as proposed by Fraser [2] has been extended in order to include magnetic field effects.

The magnetic field dependence has been derived for strong magnetic fields, where strong fields

are defined by the condition that virtually all free vortices in the TES are due to the applied field

(nF = B/ϕ0). In absence of variations in TES temperature or driving voltage/current the excess noise

current spectral density is found to scale as in ∝ 1
B (eq. (2.15)). The suggestion that an increasing and

constant magnetic field might actually suppress the noise current (as already suggested in [2]) may

appear surprising. It is, however, merely a consequence of the increased flux flow resistance and the

excess noise continuing to scale as in ∝ 1
R where in the strong field case R = Rff .

The mechanism used to include the field was the realisation that, at the low temperature end of the



2.3. TRANSITION EDGE SENSOR EXCESS NOISE 39

sn-transition, the film resistance R can be replaced by the expression for the flux flow resistance Rff

which depends directly on the number density of free vortices nF (eq. (2.12)). For dirty superconduc-

tors this changed the temperature dependence of the equation for the noise spectral current density

since eq.(2.13) contains the Ginzburg-Landau coherence length as a parameter, which depends on

the reduced temperature t = T/Tc (eq. (2.14)).

While we used assumptions specific to the low temperature part of the transition (non-interacting

vortices and R = Rff ) this does not impose any new restrictions on the regime of validity of the

field-independent PSSN model(eq. (2.11)) since the assumptions used by Fraser [2] in the derivation

of (2.11) already required the system to be in the low temperature part of the transition anyway.

While current driven vortex motion still exists at higher vortex densities, vortex motion is correlated

rather than random, and plastic flow effects need to be considered while the stationary vortex lattice

has to be treated as a glass phase [51] [52], making the PSSN model in its current form invalid in the

mid- to high temperature parts of the transition where vortex densities are substantially increased.

Since excess noise persists throughout the whole sn-transition the model either needs to be extended

to deal with interacting vortices or other theories have to be considered, despite the fact that the

PSSN model is shown in section 2.3.4 to be in very good agreement with experiment.

2.3.3 Percolation Noise

Since our investigation of excess noise in the previous section found a theory that is only strictly

valid in part of the sn-transition, investigation of an alternative theory is necessary in order to find

a complete model of the sources of excess noise in TESs. In order to find a noise theory that may be

applicable to the entirety of the sn-transition we consider an alternative to KTB theory for describing

the sn-transition. While KTB theory is a convenient tool for getting a mathematical grip on the sn-

transition it is only valid in the low temperature part of the transition and as such all conclusions

derived from it are also restricted to the low temperature part of the transition.

Looking for a different mathematical model of the sn-transition, we consider percolation theory. In

physics and material science percolation is often used to describe a variety of phase transitions. As

such, percolation theory appears an obvious candidate in the search for a theory describing the sn-

transition, which after all is a perfect second order phase transition [4], as was established in section

1.1.

The theory of percolation noise is based on the noise behavior of random resistor-superconductor

networks. The entire system is modeled as a grid of domains of area (coherence length)2. Any

domain can either be in the normal or superconducting state. A comprehensive introduction to
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percolation noise can be found in [46]. Mathematically, percolation noise is described by percolation

theory, which is the mathematical field dealing with the behavior of randomly connected grids of

vertices. The particular model used to describe percolation noise is called site percolation. In site

percolation each site in the grid can either be active or inactive. Two sites are connected if it is possible

to move from one site to the other while traversing only active sites. The set of an active site and all

active sites connected to it is called a cluster.

The average cluster size depends on the fraction of sites in the active state. In the case of infinite

networks the average cluster size goes to infinity discontinuously as the active fraction reaches a

critical value ρc. Systems with ρ > ρc are called supercritical. Systems with ρ < ρc are called subcritical.

In the case of two dimensional site percolation ρc can be determined numerically to be 0.593 [53].

Percolation noise assumes that in the sn-transition region the fluctuation of superconducting do-

mains allows superconducting channels to form and collapse spontaneously, giving rise to strong

fluctuations in the system’s resistivity and was first proposed as a source of excess noise by Linde-

mann [46]. To date, no analytical expression is available describing the dependence of percolation

noise on experimental parameters. In this section, we derive an approximate expression in order to

facilitate comparison of the theory with experiment.

2.3.3.1 Temperature Dependence

Trying to find a set of analytical expressions governing the percolation behavior of superconducting

domains during the sn-transition we start from the basic expressions given by Kiss and Svedlindh

[54] for the behavior of resistivity and noise in random resistor-superconductor networks:

Rrs ∝ (ρr − ρ′cr)s (2.16)

i2n ∝ R−lrsrs (2.17)

for supercritical networks (i.e. ρr > ρ′cr). Here Rrs is the network resistivity, ρr is the density of

normal state sites, ρ′cr is the conjugate critical fraction defined as ρ′cr = 1 − ρcs, ρcs is the critical

fraction of superconducting domains (≈ 0.593), in is the current noise power spectrum of the network

and lrs and s are geometrical scaling constants from Kiss and Svedlindh [54]. By substituting (2.16)

into (2.17) it is possible to obtain an expression for in in terms of ρr. From equation (1.1) we know:

n0
s(T ) = n0

s(0)
[
T 0
c − T
T 0
c

]4

(2.18)
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where n0
s is the density of superconducting electrons and T 0

c is the Ginzburg-Landau transition tem-

perature, keeping to the convention that superscript 0 indicates zero applied field.

If we assume n0
s ∝ ρs (the fraction of superconducting domains ρs scales linearly with the number of

superconducting electrons n0
s) and that ρr = 1 − ρs (i.e. all sites that are not superconducting are in

the normal state) it is possible to obtain an expression for the noise current spectral density in terms

of temperature. We begin by substituting (2.16) into (2.17), using ρ′cr = 1− ρcs:

i2n ∝ (ρcs − ρs)−lrss (2.19)

We now substitute ρs ∝ n0
s(T ) into equation (2.19), using (2.18) to obtain an expression for n0

s(T ):

i2n = A2

(
ρcs − kn0

s(0)
[
T 0
c − T
T 0
c

]4
)−lrss

(2.20)

where A and k are constants of proportionality. To the best of the author’s knowledge this is the first

analytical expression derived for the dependence of percolation noise on experimental parameters

(i.e. maximum superconducting electron density n0
s(0), critical temperature Tc and temperature T ).

In order to use the percolation model to make quantitative predictions of the spectral noise current

density, the constants of proportionality have to be determined by experiment. A numerical fit to of

equation (2.9) to the empirical excess noise expression (2.9) is discussed in section 2.3.4.1.

2.3.3.2 Magnetic Field Dependence

For us to obtain a complete expression for the dependence of percolation noise on experimental pa-

rameters we still require the magnetic field dependence of the noise. In order to derive the magnetic

field dependence of the noise current in it is necessary to derive the magnetic field dependence of the

fraction of domains in the superconducting state ρs(B). It would be tempting to just use the relation

between the critical temperature and magnetic field Tc = T 0
c

√
(1−H/Hc) (from eq. (1.3)) in order to

introduce a magnetic field dependence into eq. (2.20). However, it is not immediately obvious that

this is a valid substitution. An applied magnetic field will reduce the total number of superconduct-

ing electrons [4] but it has not been established whether an increasing magnetic field decreases the

number of superconducting domains with constant carrier concentration or whether it reduces the

density of carriers within a constant number of domains (or any combination of the two).

In order for the substitution Tc = T 0
c

√
(1−H/Hc) to be valid the fraction of domains in the super-

conducting state ρs has to be proportional to (1 −H/Hc)−2 which transforms into 1/
√

(1−H/Hc)

when introduced into the square brackets on the right hand side of equation (2.20).



42 CHAPTER 2. SUPERCONDUCTING PARTICLE DETECTORS

As discussed in section 1.1.2 superconductivity is a true thermodynamic equilibrium state. As such

it is possible to apply thermodynamic equalities in order to predict the properties of the sn-phase

transition and we can use conservation of energy to predict the evolution of ρs with changes in B.

We require an expression for the energy of the system as a function of the fraction of superconducting

domains ρs. The Gibbs free energy G (eq. (1.7)) can be used to express the total energy of the system

of normal and superconducting domains. If we assume that any external magnetic field is applied

slowly enough that any phase transitions are adiabatic (i.e. nett energy change of the complete sys-

tem is zero) the Gibbs free energy G can be used to obtain the change in ρs. We know from section

1.1.2.3 that the Gibbs free energies per unit volume of the superconducting state Gs and the normal

state Gn as a function of applied field H can be expressed as [4]:

Gs(H) = Gs(0) +
1
2
µ0H

2 (2.21)

Gn(H) = Gn(0) (2.22)

where a negligible magnetic susceptibility has been assumed for the material in its normal state.

At the critical field Hc, the Gibbs free energies of the normal and superconducting states have to be

equal. Equating (2.21) and (2.22) and re-arranging we arrive at:

Gn(0)−Gs(0) =
1
2
µ0H

2
c (2.23)

where GS(H) is the Gibbs free energy of a superconductor in field H , Gn(H) is the Gibbs free energy

of the same material in the normal state in field H and Hc is the critical field of the superconducting

material. This equation has already been discussed (eq.(1.9)) and is restated here for the readers con-

venience. It is not strictly correct for a thin superconducting film (as is used in a TES) since any thin

film superconductor admits some part of the external field. However, in the context of percolation

theory it is still valid for any single domain, since each domain is either in the superconducting state

(and perfectly excluding flux) or in the normal state (admitting flux). Thus the following arguments

based on the energy balance of superconducting domains inside a non-zero external field and inside

the superconducting transition region are still valid.

In zero external field the sn-transition is entirely second order, meaning that no latent heat is associ-

ated with it. In the presence of a non-zero external field the latent heat of the transition is non-zero,

requiring energy to be stored in the superconducting domains. Assuming that the total energy in the

sample stays constant with increasing field, conservation of energy will require some of the super-

conducting domains to be driven normal while a fraction fs remain superconducting. Writing the

energy balance equation for before and after introduction of a field H :

Gs(0) = fsGs(H) + (1− fs)Gn(H) (2.24)
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where fs is the fraction (by volume) of the material still superconducting after introduction of the

field H. Despite the fact that for the purposes of superconducting domain formation a TES can be

considered two dimensional it still has a real physical volume, and it is this volume for which the

Gibbs free energy is calculated. Since the thickness of the film is constant and the material state does

not vary across the TES cross section, the fraction of the volume in the superconducting state relates

linearly to the fraction of domains in the superconducting state, i.e. fs ∝ ρs. Substituting (2.21)-(2.23)

into (2.24) we obtain:

fs =
H2
c −H2

H2
c

= (1−H/Hc)2 (2.25)

Thus the fraction of superconducting domains does indeed scale as ρs ∝ (1 − H/Hc)2,as required.

We can now employ the relation Tc = T 0
c

√
(1−H/Hc) as discussed at the beginning of this sec-

tion. In order to conserve energy some of the superconducting domains revert to the normal state

as the applied field is increased, allowing the field to penetrate the TES in order to obey conserva-

tion of energy. We can now introduce a magnetic field dependence into (2.20) by using the Tc =

T 0
c

√
(1−H/Hc) relation. Rearranging T 0

c−T
T 0
c

to 1− T
Tc

we then obtain:

in = A

ρcs − kn0
s(0)

[
1− T

T 0
c

√
(1−H/Hc)

]4
−lrss/2 (2.26)

Rrs = B

ρcs − kn0
s(0)

[
1− T

T 0
c

√
(1−H/Hc)

]4
s

(2.27)

where A,B are constants of proportionality.

The values for the ”new” noise exponents (so labeled to distinguish them from the noise exponents

used for random resistor-superconductor networks before the publication of Kiss and Svedlindh [54])

lrs and s are given in table 2.1.

Thus we have derived a complete analytical model of the dependence of percolation noise on exper-

imental parameters, which can be compared with both experimental data and the predictions of the

PSSN model discussed in section 2.3.2, above.

2.3.3.3 Numerical Simulation of Finite Site Percolation Networks

While the behaviour of an infinite percolation network is reasonably well understood it is extremely

difficult to find an analytical description of the behaviour of a finite network. Investigating the rel-

evant literature for such a description one quickly ends up in the (to physicists) quite unusual field
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dimensionality s lrs λrs = 2/s

2D 1.297± 0.07 0.86± 0.02 1.54± 0.09

3D 0.73± 0.011 0.9± 0.32 2.74± 0.04

Table 2.1: New noise exponents for random resistor-superconductor networks according to [54] for

2-dimensional and 3-dimensional systems. Since TESs are thin films the 2D exponents apply.

of experimental mathematics: A simulation of a site percolation network was implemented by the

author in order to determine the shape of the finite-network transition. In order to find the probabil-

ity P that a sample spanning superconducting cluster exists for a network of n × n sites at a given

fraction of domains ρs in the superconducting state, a random distribution of active and inactive

sites of the n × n network is generated N times. The number of times Ns that a sample spanning

cluster is detected is recorded, and the probability of a sample spanning cluster existing is calculated

as P = Ns/N .

The actual simulation was written in Java. For each run a n × n grid of inactive sites is created and

the standard Java random number class (java.util.Random) is used to decide randomly for each site

whether to set it to active (with a probability of ρs that the site is set to active). Then a recursive

algorithm is employed to search for sample spanning clusters. The program returns true if a sample

spanning cluster is found. After the run the program displays the grid generated and highlights the

path found in order to allow verification of the result. Alternatively the program can be instructed to

run the simluation N times and return the percentage of runs that have yielded a sample spanning

cluster. The data for figures 2.6 and 2.10 has been generated using this program.

The recursive algorithm is implemented using a strongly object-oriented programming approach. It

searches for a cluster of active sites connecting two opposite boundaries of the network, which we

label A and B. Each site is represented by a java object and has a member function of prototype

”boolean site.span(void)” which will return true if the site is part of a cluster connected to side B.

When ”.span()” is called the site checks whether it is adjacent to side B. If this is the case ”.span()”

returns ”true”. Otherwise the site calls ”.span()” of all its nearest neighbour sites and returns ”true”

if at least one of its own ”.span()” calls returns ”true”. The search for a sample spanning cluster is

initiated by calling .span() for all active sites adjacent to side A. This method is inefficient in terms

of computation time and memory usage but it is reliable and comparatively easy to implement.

One of the most important results obtained with this simulation is that the percolation transition has

a finite width for finite networks, with a critical fraction ρcs,finite > ρcs,∞ where the critical fraction

has been defined as the fraction of active sites ρs above which the probability of a sample spanning

cluster is 100%.
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2.3.3.4 Region of Applicability for Percolation Noise

Just as with the Phase Slip Shot Noise model discussed in section 2.3.2 it is necessary to examine the

assumptions made during the derivation of the expressions governing percolation noise, in order to

establish the regime of the model’s applicability.

Percolation theory in its purest form describes the behavior of infinite networks. Since TESs are of

finite size (of order 500µm × 500µm) we start by analysing the difference between percolation tran-

sitions in finite and and infinite networks. In an infinite network the percolation transition is the

change in average cluster size from some finite value for subcritical systems to infinity for super-

critical systems. In the case of finite networks it is the change of the probability of the existence of a

cluster in contact with opposite ends of the sample from 0 for subcritical systems to 1 for supercritical

systems.

In order to fully explore the behavior of finite site percolation networks the simulation described in

section 2.3.3.3 was used. However, since it is difficult to limit the depth of the recursion responsible

for checking for sample spanning clusters and still be sure to find all existing connections, limitations

in object stack and memory sizes limit the simulation to a maximum system size of 200 × 200 site

systems. The algorithm is discussed in more detail in section 2.3.3.3.

As illustrated in figure 2.6, the change from the subcritical to the supercritical state is discontinuous

for infinite networks, with ρcs ≈ 0.59. The data for a finite network was generated using the numeri-

cal simulation programme described above for a 150 domain side length square network. The graph

shown is the average of 500 runs of the simulation. Upon inspection the graph is found to be of a

geometric shape very similar to the resistivity vs. temperature graph of the sn-transition, which seems

a very promising indicator for the validity of the percolation model.

The percolation equations and noise exponents obtained from Kiss and Svedlindh [54] are strictly

valid only for subcritical systems (ρs < ρcs). We assume that a finite system can be considered as

approximately subcritical as long as the probability of a sample spanning cluster is < 1. If the prob-

ability of a sample spanning cluster existing is 1 the steady state resistivity of the random resistor-

superconductor network is zero, no percolation noise exists (for non-zero driving currents flux flow

resistivity and thus PSSN may exist). For extremely subcritical systems (ρs << ρcs) the resistivity is

non-zero but depends on density and position of the superconducting domains, thus some form of

percolation noise may still exist despite the fact that no spontaneous formation of sample spanning

superconducting channels occurs. From figure 2.6 we see that the fraction of domains in the super-

conducting state ρs has to fall below ≈ 62% for the system to be subcritical. Thus for a finite system

ρcs,finite > ρcs,∞, using the definition that the probability for a sample spanning cluster has to be
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Figure 2.6: Shape of the percolation transition for finite and infinite networks

100% for ρs ≥ ρcs. Percolation noise only occurs when the probabillity of a sample spanning cluster

existing is < 100%. Thus, while percolation theory itself remains valid, it predicts no percolation

noise for the low temperature part of the sn-transition.

2.3.3.5 Conclusions Regarding the Percolation Noise Model

Prompted by a wish to find a theory describing excess noise which is valid throughout the entire

sn-transition we have considered the theory of percolation noise as proposed by Lindemann [46].

To date the only quantitative evaluation of this theory has been by numerical simulation [46], an

approach which makes the inclusion of spatially non-local effects, like the influence of the applied

magnetic field and vector potential, difficult.

The author has derived an analytical expression, showing the predicted dependencies of the perco-

lation noise current on temperature and external field in the sample volume. The derivations were

based on the expressions describing random resistor-superconductor networks as introduced by [54].

In order to establish the approximate region of applicability of percolation noise a numerical simu-

lation program developed by the author was employed to investigate the change in behavior for

systems when changing from infinite to finite size regimes.
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The result of these investigations is a complete set of analytical expressions describing percolation

excess noise in transition edge sensors, taking into account temperature and external magnetic fields.

No material parameters have been taken into account in the derivation of those expressions. As such

they have to be considered approximations, since material differences in the coherence length will

change the domain size and as such the resolution (i.e. the number of domains per unit area) of the

percolation network, yielding percolation transitions of varying widths depending on the TES mate-

rial. Also, it seems likely that changes in the coherence length (which depends on the temperatureT )

over the width of the transition will cause significant changes in the network percolation behaviour.

The constant of proportionality k effectively maps the fraction of superconducting domains onto

the number of superconducting electrons. Thus changes in the coherence length (and consequently

domain size) with temperature will effectively turn the constant k into function of temperature k(T ).

And while the model derived, despite all its limitations, will be shown in section 2.3.4 to be in reason-

able agreement with the experimental data available, we have yet again ended up with a model that,

while in all other respects perfectly suitable to describe excess noise, is not applicable throughout the

entirety of the transition. Percolation Noise appears only in the medium to high temperature part of

the transition (see section 2.3.3.4 where the site percolation network formed by the superconducting

domains is sub-critical. In fact, qualitatively it appears that the temperature region over which per-

colation noise is not valid is approximately the region of validity of PSSN (section 2.3.2.2), a result

which will prompt us to propose a combined noise model in section 2.3.5.

2.3.4 Comparison of Noise Theories with Experimental Data

In this section we compare the predictions of PSSN and percolation noise with experimental results,

trying to identify any shortcomings in the existing theories. The comparison with experimental data

will serve to give us confidence in both theories, and the fact that both theories will be shown to

be in approximate agreement with the data available at the time of writing will serve to encour-

age us in the development of the combined noise theory which will be outlined in section 2.3.5. In

fact, the level of quantitative agreement displayed by the PSSN model is very much better than the

predictions of our analytical percolation model. However, while phase slip shot noise in supercon-

ducting films has been studied in great detail since about 1980 [47], the topic of percolation noise in a

thin superconducting film balanced inside its transition region is very much new and the equations

presented here are the first attempt at a quantitative description of percolation noise in a TES. We

believe that future refinements may serve to either improve the predictions of percolation theory to

the point where their agreement with experimental data is of a level comparable to that of the PSSN

predictions or disprove the percolation noise model altogether.
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2.3.4.1 Excess Noise vs. Device Resistance

Several experimenters [7][55][56] report a linear scaling of excess noise with inverse bias point resis-

tance (in ∝ 1/RTES). This agrees with the PSSN model (equation (2.11)) as derived by Fraser [2].

The prediction of the PSSN model are plotted in figure 2.7. The predictions according to the PSSN

model for the TiAu TES as plotted in figure 2.7 are in extremely close agreement with the empirical

expression (2.9), increasing our confidence in the theory. The predictions for the MoCu TES are of the

right magnitude and functional form but not of the same high level of quantitative agreement with

the empirical expression (2.9). This discrepancy can be explained by the fact that expression (2.9)

according to Takei et al. [7] has been obtained by finding the best fit to experimental data gathered

from TiAu devices which have different characteristic microscopic features (like, for example, the

coherence length ξ and mean free path l) compared with MoCu devices. These different features are

not accounted for in the experimental fit (eq. (2.9)), reducing the level of quantitative agreement of

the fit with theoretical models applied to different devices. The parameters used to create the predic-

tions in figure 2.7 are not arbitrarily chosen, but are the operating parameters used by Fraser [2] for

his devices.

Attempting a similar comparison for the percolation noise model created in section 2.3.3 is much

more difficult. In order to attempt a quantitative comparison of the percolation noise spectral current

density predicted by eq. (2.26) with the empirical excess noise according to eq.(2.9) it is first neces-

sary to obtain a reasonable estimate for the constants of proportionality A, k. A first order estimate

of A and k has been achieved using Wolfram Research’s Mathematica in order to perform a best fit of

eq. (2.20) to eq. (2.9) using the conjugate gradient method, yielding A = 4.42× 10−11pAHz−1/2, k =

50m3. As can be seen from figure 2.8, the quantitative agreement of the percolation model with the

empirical noise is much less convincing than is the case with the PSSN model. Even the functional

form does not agree exactly. This may be due to the fact that the current implementation of the perco-

lation noise model assumes a perfectly linear relationship between the fraction of superconducting

domains and the density of superconducting electrons ρs ∝ ns. In a real system, any significant

change in ns will lead to changes in the microscopic parameters, like the coherence length ξ. Since

the basis for the percolation noise model is a site percolation network with domain size coherence

length2 it is likely that the total number of domains (and therefore the percolation behaviour of the

system) changes significantly with ns. As such, in order to achieve a good quality fit the temper-

ature evolution of ξ will have to be taken into account, replacing the constant k with a function of

temperature k(T ) as discussed in section 2.3.3.5. Implementing such variations of ξ into the model

is not a trivial task, since variations in the total number of domains of the finite percolation network

may change the critical fraction of superconducting domains ρcs. If the number of domains changes

significantly, it may even lead to breakdown of the large system condition discussed below(see sec-
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Figure 2.7: Predictions of the Fraser-PSSN model (eq. (2.11)) for the devices reported by Fraser [2] for

a TiAu bilayer TES with (I = 70.5µA;V = 0.55µV ;
√
ξl = 22nm;A = 0.125 × 10−6m2) and a MoCu

bilayer TES with (I = 20µA;V = 0.11µV ;
√
ξl = 39nm;A = 0.16× 10−6m2), both at T = 63mK. The

empirical excess noise (eq. (2.9)) has also been plotted for comparison.
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Figure 2.8: Noise spectral current density as a function of TES resistivity as predicted by the percola-

tion noise model, compared to the empirical noise spectral current density (eq.(2.9)).

tion 2.3.4.3). Still, we believe that in the face of the rather simple approximations made in assuming

k = constant the qualitative agreement of the percolation noise model with the empirical expression

is good enough to warrant continued interest in this model. Rather than being an exact model of

TES percolation noise, the expressions developed in 2.3.3 are a first order analytical tool which can

be used to investigate experimental results for indicators of the presence or absence of percolation

noise.

2.3.4.2 Excess Noise vs. Magnetic Field

Very little data is available at time of writing regarding the magnetic field dependence of the noise.

Ullom et al. [8] present a change in excess noise-to-Johnson noise ratio with magnetic field. It ap-

pears that the excess noise spectral current density scales approximately linearly with 1/B, in good

agreement with percolation noise and PSSN. In fact, the predictions of both models agree remarkably

well when considering strong magnetic field effects (figure 2.9).

The Ullom data has been obtained using MoCu devices at different fields (of order mG) and at con-

stant bias point resistance, implying variable (and unknown) bias point temperatures. This makes
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Figure 2.9: Comparison between the predicted noise spectral current densities as a function of mag-

netic field for percolation noise (black line) and phase slip shot noise (blue line) as a function of

magnetic field. In order for the predictions of the PSSN model to hold the field must be strong (i.e.

all vortices in the TES due to the external field). The PSSN model has been plotted using the operat-

ing parameters for the TiAu TES used for figure 2.7. Percolation model constants of proportionality

A = 4.42× 10−12, k = 50m3 were obtained by best fit to the empirical expression (eq.(2.9)).

the Ullom data unsuitable for direct quantitative comparison with our excess noise models, since

both models depend on bias point temperature. Furthermore, the constants of proportionality for

the percolation noise model have been obtained by fitting it to noise data from a TiAu TES. Still,

the agreement of the approximate 1/B dependence between both models and the experimental data

reported [8] give us a degree of confidence in the models derived.

2.3.4.3 Excess Noise vs. Device Geometry

The equations derived above (sections 2.3.3.1 and 2.3.3.2) for dealing with percolation noise do not

seem to indicate any dependence on device geometry. Intuitively, the noise level should depend

strongly on the TES aspect ratio (length-to-width ratio). Assuming the bias current to be flowing

along the length of the device, it seems reasonable to assume that a short, wide device allows random
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Figure 2.10: Position and width of percolation transition depending on TES aspect ratio. Variations

in transition behavior are small compared to variations in aspect ratioRA = height
width . It can be seen that

the critical fraction ρcs increases slowly with increasing aspect ratio RA. The graphs were generated

using the author’s own recursive numerical simulation.

superconducting bridge connections to occur more frequently than a long narrow device. However,

numerical simulations show (figure 2.10) that even for relatively small TESs (smallest relevant di-

mension tens of coherence lengths) with strongly varying aspect ratios the shift in critical fraction

ρcs at which the transition occurs is comparatively small and the width of the transition is almost

unaltered (figure 2.10). From figure 2.10 it appears that the transition temperature can be influenced

by device geometry if at least one dimension of the film approaches magnitude ≤tens of ξ0.

For large networks there is no dependence on aspect ratio at all. The large system condition can

qualitatively be expressed as: If the smallest relevant dimension d in a percolation system is large enough

for a square system of side length d to behave as a quasi-infinite system, the system can be considered large. A

system behaves as a quasi-infinite system when its critical fraction ρcs is close to the infinite network critical

fraction ρcs,∞ ≈ 0.59.

If the large system condition is fulfilled the whole system can be considered quasi-infinite and the

transition will occur at the critical value for infinite networks. The exact network size required for the

onset of large system behaviour in site percolation networks is unknown (even an exact expression

for the infinite network threshold of a site percolation system has not yet been found [53]). However,

using the data from Fraser [2] the effective coherence length of a TiAu bilayer TES may be of order
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22nm yielding≈ (20, 000 domains)2. Systems with smallest relevant dimension 100 domains already

have transitions almost independent of aspect ratio (figure 2.10). Thus we assume TESs can safely

be considered large. Percolation Noise predicts no dependence of the noise on macroscopic device

geometry if the large system condition is fulfilled. This is usually the case for TESs which consist of

≈ 20, 000 domains2. However, if the smallest effective dimension of a TES is reduced to ≈hundreds of

nm = tens of coherence lengths device aspect ratios begin to have an effect (figure 2.10).

By contrast, from equation (2.11) PSSN predicts a 1/
√
A dependence of the noise current on device

area A.

No dependence of excess noise on macroscopic device geometry has been reported by experimenters.

This agrees with percolation theory in the large system limit (see above), while it appears to be a

problem for Phase Slip Shot Noise. However, the dependence of the noise current on device area

A is weak to begin with, and variations in other parameters may have obscured the dependence.

Added to this, most experimenters appear to keep to similar device sizes. As such it is possible that

the 1/
√
A dependence of the noise current will remain undetected until an effort is made to look

for it specifically. To the best of the author’s knowledge, no dedicated effort to detect this 1/
√
A

dependency has yet been made.

It is known that the level of excess noise can be lowered by depositing normal-metal ”zebra stripe”

patterns on top of the device [46]. A detailed description of this effect can be found in [55]. These

patterns consist of a series of thin stripes protruding from one side of the TES towards the opposite

side while not quite reaching across. Zebra stripes start on alternating sides of the film and are

normal to the direction of the bias current. The proximity effect drives the portion of the TES covered

by the zebra stripes normal, forcing the supercurrent to meander across the film in a zig-zag path.

The technique is found to be most effective for dense systems of stripes [8] and the geometry is

illustrated, along with an image of an actual device, in figure 2.11. As the number density of stripes

decreases, so does the level of noise reduction. Since most experimenters only run their experiment

with two different density settings (i.e. dense stripes and rare stripes), it is not known whether this

decrease in noise suppression with stripe number density is continuous or step-shaped. The same

effect can also be observed for dense stripes perpendicular to the bias current reaching across the

entire superconducting film (”dense full perpendicular”) while no effect can be observed for dense

stripes parallel to the direction of the bias current (”dense full parallel”)[8].

Percolation theory explains the noise suppression effect of the zebra stripes by pointing out that the

super current meandering around a long zig-zag path is now effectively traversing a long, thin TES

(i.e. large aspect ratio), making randomly occurring clusters spanning the entire length of the device

less likely. While usually a TES qualifies as a large network and is as such independent of aspect ratio,
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Figure 2.11: Zebra stripe geometry to suppress TES excess noise, a) illustration b) SEM image of

actual device [8].

the introduction of the zebra stripes in figure 2.11 has separated the TES into 10 parallel units, inter-

spersed with 10 normal material stripes of approximately the same width. Thus the smallest relevant

dimension has been reduced from ≈ 20, 000 to ≈ 100, which is sufficient for the large system condi-

tion to break down (figure 2.10 shows variations in ρcs for systems with smallest relevant dimension

≈ 100 domains). Break down of the large system condition and introduction of aspect ratio as a

relevant parameter also explains why rare perpendicular stripes have little noise suppression effect

since they are presumably insufficient to cause break down of the large system condition. However,

according to this theory, dense full perpendicular stripes should turn the TES into a series of short,

wide systems while causing break down of the large system condition, increasing the noise current

significantly. This is not in agreement with experiment. Also, dense full parallel stripes should have

a noise suppressing effect, although the absence of this could be explained by the relatively lower

aspect ratio compared to the single long meandering path in the case of zebra stripes.

In the case of PSSN, no difference exists between dense full perpendicular and zebra stripes: In both

cases the noise suppression arises from the fact that vortices can get pinned or absorbed under the

normal-metal stripes. The phase slip per vortex depends on the total fraction of film width traveled

[2][47]. Since in the presence of dense perpendicular stripes the vortices are traveling a smaller

fraction of the film before becoming pinned, the noise contribution per vortex is decreased. This also

explains why dense full parallel stripes have no effect: Although vortices now travel only a fraction

of the film width before their motion is stopped in a parallel stripe, every space between stripes

has to be considered as a separate system, and a vortex traversing the complete distance between

stripes yields the full phase slip of 2π instead of just a fraction thereof. The main problem for PSSN

is the 1/
√
A dependence of (2.11). According to this, any deposition of normal material onto the

TES resulting in a reduction of the effective superconducting area should result in a measurable

reduction in excess noise, independently of geometry. This does not agree with experiment [8]. Also,
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evenly distributed normal material islands deposited onto the TES, for example, should absorb and

pin vortices in much the same way as stripes, and the total reduction in superconducting area should

also contribute to reducing the amount of excess noise. Experimentally Ullom et al. [8] find almost no

difference between the noise levels in the normal (i.e. no normal material deposited onto the TES) and

”dense island” geometries. However, it is possible that some superconducting electron pairs have

moved into the deposited structure (due to the proximity effect, citeBrammertz), effectively lowering

the Cooper pair density in the sample and thus increasing the vortex density [50]. A meaningful

analysis of this effect is not possible without a prior detailed investigation of the relevant interaction

between superconducting and normal state materials in contact, taking into account the fact that the

superconducting volume is far greater than the normal metal volume.

In conclusion, it would appear that both models are in reasonably close agreement with experimental

data on noise-geometry interactions. While PSSN predicts the hitherto unobserved dependence of

noise current on the inverse square root of the film area, percolation noise has trouble explaining

the suppression effects of some types of microscopic substructures deposited onto the film. This is

particularly troubling for the percolation noise model since its ability to explain the noise suppression

effect introduced by zebra stripes was the reason for its creation in the first place [46].

2.3.4.4 Excess Noise vs. Bias Current

The PSSN equation (2.11) contains a direct dependence on bias power IbiasVbias. According to the

data taken by Takei et al. [7] the bias power is approximately constant over the regime of bias cur-

rents of interest (Figure 4 in Takei et al.[7]), which makes a direct detection of this effect difficult.

The analytical expression for percolation noise eq.(2.26) derived above currently contains no term

expressing its dependence on bias current or voltage.

According to Voss et al. [47] the experimental noise voltage power spectrum vn in a thin superconud-

cting film of Aluminium or Tin itself is consistent with Johnson noise for zero bias current. Excess

noise then manifests as a peak in the noise vs. temperature curve that becomes more pronounced

for increasing bias currents and is located in the temperature region where sn-transition occurs. The

peak increases in magnitude with increasing bias current. Thus, excess noise is purely a feature of the

sn-transition. It does not occur in superconductors operated far from their trasnition temeprature.

Since both percolation theory and PSSN are features of the transition this is in agreement with both

theories.

Takei et al. [7] report an absence of excess noise for small bias currents (< 10µA), consistent with

the absence of excess noise in Al films at zero bias current reported by Voss et al. [47]. Excess noise

then increases steeply with bias current. It appears that a threshold current exists, below which no
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excess noise is observed. Percolation noise is currently unable to explain the existence of a threshold

current. This appears to be a major shortfall in percolation noise theory.

Kim et al.[57] have proposed that vortex motion should be inhibited by vortices being pinned at

impurities and imperfections in the superconductor. The potential energy of a vortex located at an

imperfection would be reduced by ∆E = εlp, where ε is the pinning energy per unit length and lp is

the total length over which the vortex flux line is pinned. The pinning force can then be calculated

as:

Fp =
εlp
δ

(2.28)

where δ is the distance the vortex has to be moved in order to be unpinned. We can estimate δ as the

coherence length δ ≈ ξ. The pinning energy per unit length ε is given by [58]:

ε =
φ2

0

64π2λ2
L

(2.29)

Where φ0 = h/2e is the magnetic flux quantum. In the presence of a non-zero bias current density J

the pinned vortices are subject to a driving force given by [58]:

Fd = Jφ0l (2.30)

where l is the total length of the vortex line subject to the bias current density J .

2.3.4.5 Quantitative Estimate of Pinning Force and Driving Current

In order to mathematically test the assumption that vortex unpinning is responsible for the sudden

onset of excess noise above a threshold current It we will numerically evaluate the expressions for

the driving force Fd and pinning force Fp. For the unpinning hypothesis to be correct, their ratio

Fd/Fp ≈ 1 at the threshold current. We use the TES described by Takei et al.[7] as an example.

The device is a 500µm square bridge type TiAu bilayer system with the Au absorber deposited as a

300µm square on top of the Ti layer (figure 2.12). The device has a zero field transition temperature

Tc of 151mK. At 151mK gold is not superconducting. However, according to van Son et al. [59]

Cooper pairs will leak from the 40nm thick superconducting Ti layer into the Au layer, up to a depth

of ≈ 100nm, a phenomenon known as the proximity effect. This has the effect of increasing the

thickness of the superconducting layer from 40nm to 140nm while at the same time decreasing the
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Figure 2.12: Illustration of a) the geometry of the TES as used by Takei et al. [7] when reporting

a threshold current below which excess noise does not occur and b) microscope image of the same

device (courtesy of Takei [7])

average density of Cooper pairs. For ease of calculation we assume the number density of paired

electrons to be constant throughout the superconducting volume and to drop to zero discontinuously

at a depth of 100nm inside the gold. In order to determine the driving force Fd and pinning force Fp

quantitatively from equations (2.28), (2.29) and (2.30) we require the threshold current density Jt, the

London penetration depth inside the TES λL and the effective coherence length ξ.

Assuming the current density to be approximately constant throughout the entire superconducting

region, we have to find the superconducting cross sectional area in order to determine the threshold

current density Jt from the threshold current It = 10µA as reported by [7]:

Jt =
It

tTESwTES + tabsorberwabsorber
(2.31)

Here tTES = 40nm and tabsorber = 100nm are the thicknesses of the superconducting cross sections

of the Ti layer and superconducting Au absorber layer respectively, wTES = 500µm is the width of

the bilayer and wabsorber = 300µm is the width of the Au absorber. This yields Jt = 200kA/m2.

The London penetration depth of Titanium can be determined from the electron number density ne

in Titanium as λL =
√
me/e2µ0ne [60]. From the atomic mass of Titanium mTi = 47.88u and density

ρTi = 4500kgm−3 we find the number density of Titanium atoms. Assuming Titanium to be divalent
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we obtain ne = 1.1 × 1029m−3, yielding λL = 22.3nm. However, since λL ∝
√
ne we have to take

into account the fact that superconducting electrons are shared with the Au absorber:

λL,eff =
√

VTi
VTi + VscAU

λL,T i ≈ 1.38λL,T i (2.32)

where we have calculate VTi = 40nm × (500µm)2 and VscAU = 100nm × (300µm)2 (since the pene-

tration depth of the cooper pairs into the Au layer is about 100nm [59]).

Since the vortex is assumed to penetrate the entire superconducting region its length is given by:

l = tbilayer + tabsorber ≈ 240nm (2.33)

The only missing parameter is the effective coherence length ξ which can be found from Fraser [2]

who reports ξ ≈ 22nm for a TiAu bilayer TES. We now have all the relevant parameters required in

order to evaluate Fd, Fp if we assume that the vortex is pinned over its entire length (i.e.lp = l). Using

the parameters discussed above we find

Fp/Fd = 0.87 (2.34)

at the threshold current It = 10µA (Jt = 200kAm−2). This seems to suggest that vortex unpinning

is of approximately the right order of magnitude to be responsible for the excess noise threshold

current reported [7][47] .

2.3.5 Conclusion: A Combined Excess Noise Theory

We have so far discussed both Phase Slip Shot Noise (PSSN) and percolation noise as competing

candidate theories for the origin of the excess noise phenomenon. The PSSN model has been shown

in section 2.3.4.1 to be in extremely good agreement with the experimental fit provided by Takei [7]

(equation (2.9)), but so far the 1/
√
A dependence predicted by PSSN has not been reported by ex-

perimenters. The predictions of the percolation noise model, on the other hand, only agree to within

about an order of magnitude with the experimental data, a shortcoming that can be accounted for by

the approximations made in deriving it. Percolation noise is made attractive because it readily and

intuitively explains the noise suppression effect that zebra stripe geometries have on TESs. How-

ever, the level of agreement of the current form of the percolation noise model with equation (2.9) is

very much lower than the agreement provided by the PSSN model, and currently two constants of

proportionality A, k contained in the model (equations (2.20) and (2.26)) have to be determined by a

numerical fit to experimental data. No physical derivation of those constants is available.
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The applicability of both theories is restricted to a subset of the sn-transition while experimenters re-

port excess noise throughout the whole of the sn-transition [2][7][35]. The theory of PSSN is strictly

valid only in the low temperature part of the transition, where vortex densities are low and vortices

are non-interacting. While vortices themselves exist throughout the entirety of the transition, high

vortex densities lead to non-negligible interaction between vortices. Since non-interacting vortices

are one of the basic assumptions of the PSSN model [2], the model is no longer applicable. Percola-

tion theory on the other hand remains valid throughout the entire transition but predicts zero noise

level for low temperatures where the probability of a sample spanning superconducting cluster ex-

isting is 100%. Thus, as a description of the excess noise phenomenon both theories are necessarily

incomplete.

Note that the existence of a sample spanning superconducting cluster does not signify that the sn-

transition is complete and electric currents experience zero resistivity. The remaining normal state

domains admit magnetic flux lines to penetrate the superconductor, and the resulting magnetic vor-

tices cause flux flow resistance as discussed in section 2.3.2.

As discussed above, the validity of the PSSN model is restricted to the low temperature part of the

sn-transition where KTB-theory applies and vortex densities are low 2.3.2. Percolation theory on

the other hand predicts noise near the central-to-high temperature part of the sn-transition (section

2.3.3.4) where the fraction of superconducting domains falls below the critical fraction ρcs. It ap-

pears plausible that the excess noise observed during the transition is separated into two discrete

regimes, PSSN and Percolation Noise. Provided that the sn-transition can be modelled as a percola-

tion transition, both percolation noise and PSSN have to occur as a consequence of the physics of the

sn-transition. Since the predictions of both theories are similar, a transition from the PSSN regime to

the percolation regime would be very difficult to detect.

It is important to note that both percolation noise and PSSN are necessary attributes of the sn-

transition. At low temperatures vortex motion will induce a voltage shot noise [47], while super-

conducting electrons will form into domains of approximate dimension ξ, resulting in the formation

of a random superconductor-resistor network, as described by Kiss and Svedlindh [54]. As such we

believe that any complete noise model of the sn-transition must incorporate aspects of both phase

slip shot noise as well as percolation noise, with PSSN dominant in the low-T part of the transition

and percolation noise dominant in the high-T part of the transition. Any model describing voltage

noise inside a thin superconducting film (i.e. a TES) will have to be reconcilalble with th predictions

of PSSN and percolation noise.

While the quantitative PSSN model as described by Fraser [2] and discussed in section 2.3.2 has

reached very good quantitative agreement with experimental data (see section 2.3.4) due to the high
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level of maturity of vortex dynamics theory, the percolation noise model still contains two free pa-

rameters, A and k. We attribute discrepancy in this model quality to the fact that the percolation

behaviour of thin superconducting films and TESs is almost unstudied, with only a few exceptions

[46].

A change in spectral noise density with bias current has been reported [47] and seems to indicate

the existence of at least two different noise processes. Provided that a good quantitative expression

for the parameter k in the percolation model can be developed, a speculative combined nose model

might be able to account for most, and possibly all, of the features of excess noise observed to date.

An alternative interpretation, relying on the extremely good quantitative agreement of the PSSN

model with the experimental noise expression (2.9) over the entire width of the resistive transition

(figure 2.7), is that some form of PSSN remains valid even at high resistivities. In this case the scaling

of the voltage noise caused by vortex movement remains approximately the same as vortices begin

to interact. The main difference in this model is the correlation of vortex motion which increases

with increasing bias current [51][52]. We would expect the noise spectral density to change from

being constant over all frequency space to having a pronounced peak related to the Abrikosov lattice

constant, since the rate r at which lattice points of a two dimensional lattice moving at constant

velocity v cross a boundary which runs perpendicular to the direction of lattice motion is given by

lnv where l is the length of the boundary and n is the linear density of lattice rows.

It appears clear that more experimental data is required in order to determine the actual noise mech-

anism over the entire transition with much certainty. Especially an effort to detect the 1/
√
A de-

pendence predicted by the PSSN model would be informative. However, we believe that the work

presented in this chapter presents a good outline of the experimental parameters relevant to an in-

vestigation of the excess noise phenomenon. Section 2.3.4 provides a guide as to which observations

might be necessary to either reinforce or reject the popular theories of percolation noise and phase

slip shot noise.



Chapter 3

Superconducting Phase Transition and

the Quantum Mechanical Vacuum

Up to this point all the work described in this thesis has been of a practical nature in that it was

directly applicable to experimental device physics; We have tried to develop an understanding of su-

perconductors in order to be able to analyse the device physics of superconducting detectors, namely

TESs. We discussed the physics of magnetic flux trapping, vortex motion and the sn-transition in or-

der to gain insight into the excess noise processes of TESs and methods for excess noise suppression.

So what motivates this excourse into theoretical physics?

In section 2.3 we have discussed the phenomenon of transition edge sensor excess noise, and between

them the different models discussed appear capable of explaining most of the features of excess noise

(section 2.3.5). However, chapter 2 has demonstrated the sensitivity of the sn-transition on which

STJs and TESs rely to a diverse range of unexpected effects, such as the voltage shot noise resulting

from the motion of individual flux quanta. It is this sensitivity to electromagnetic interactions that has

prompted us to take a closer look at the interactions of vacuum fluctuations with the sn-transition.

We cannot help but wonder whether the intrinsically noisy field of the quantum electrodynamic

(QED) vacuum might influence the performance of sensitive superconducting devices.

It is well known that the quantum mechanical vacuum is not a state of zero energy. The easiest route

to this conclusion is via the Heisenberg uncertainty principle, which forbids us from ever knowing

the exact energy content of any given volume of space, thus not allowing this energy to be fixed to

zero. In fact, it can be shown that the vacuum energy of a given volume fluctuates continuously. If

a mechanism existed by which this vacuum energy can couple into the sn-transition then vacuum

fluctuations might contribute to the excess noise phenomenon. In this chapter we will demonstrate

61



62 CHAPTER 3. SUPERCONDUCTING PHASE TRANSITION

that certain macroscopic manifestations of vacuum energy fluctuations can have measurable macro-

scopic effects on the sn-transition. We use equilibrium thermodynamics to evaluate the change to the

condensate energy resulting from changes in the binding energy of parallel plate cavity systems, an

idea which was first introduced by Bimonte et al.[10].

In the course of this chapter it will be necessary to consider electrodynamics in the framework of

non-zero photon rest mass electromagnetism. The theoretical frame work of non-zero photon rest

mass electromagnetism is a consequence of the breaking of electromagnetic U(1) phase rotational

symmetry in superconductors. Investigation of this traditionally almost purely theoretical branch of

physics still allows for some predictions regarding changes in the performance of superconducting

detectors, such as STJs and some kinds of TESs (section 3.4). Furthermore, the physics of massive

photons will be exploited in chapter 4 for the theoretical development of a completely new tech-

nology for the creation of active optical elements, which in turn motivates the investigation of the

Higgs mechanism responsible for the symmetry breaking and leads directly to the development of

the theory of massive spin-1 gravitational bosons developed in chapter 5.

3.1 Introduction to the Physics of the Quantum Electrodynamic

Vacuum

In order to arrive at a quantum mechanical description of electromagnetic fields we require a quan-

tum mechanical description of field-like systems which is known as Quantum Field Theory (QFT). In

1926 Max Born and Werner Heisenberg developed QFT using canonical quantisation of the degrees

of freedom of a field-like system. From QFT, quantum electrodynamics (QED) was developed, which

allows a quantum mechanical description of electromagnetic fields. Such a quantum mechanical de-

scription of electromagnetic fields consistent with Maxwellian electromagnetism was perceived as

an important step towards the unification of quantum mechanics and relativity since relativity itself

had resulted from observations of Maxwellian electromagnetism. Today QED is often referred to as

”the best theory of physics” or ”the jewel of science” since it is the most accurately tested theory in

existence; Experiments agree with theoretical predictions to an accuracy of 1 part in 1012 [61] and are

limited by experimental error, not by theoretical inaccuracies.

This remarkable theory produces one very counter intuitive result: The vacuum is not a state of zero

energy. It is possible to arrive at this result (and indeed determine the predicted energy density of the

vacuum) without recourse to the uncertainty principle but merely by the mathematical necessities of

QED. The theory of QED is based on the fact that it can be shown [62] that Maxwellian electromag-

netic fields are mathematically equivalent to harmonic oscillators. A volume of space containing n
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photons of frequency ω is then equivalent to a quantum mechanical harmonic oscillator of state n

and fundamental frequency ω. It is a standard result of quantum mechanics [63] that the quantised

energy levels En of a harmonic oscillator in state n can be written as En = ( 1
2 + n)~ω. Thus, the

energy of the harmonic oscillator describing the photon field of frequency ω in the presence of n = 0

photons is still E0 = 1
2~ω. We have found the expectation value of the vacuum energy < Ev >= E0

of the electromagnetic field of photon frequency ω, often referred to as the zero point energy (ZPE) or

Vacuum Expectation Value (VEV) of the field. The harmonic oscillator corresponding to the photon

field of frequency ω is called the ω field mode.

The zero point energy discussed above has a number of observable physical manifestations. In 1947

Hans Bethe [64] managed to explain a non-degeneracy in the energy levels of the hydrogen 2S1/2

and 2P1/2 states previously measured by Lamb et al. [65]. This is a result of n = 0 quanta of different

frequencies ω being absorbed and re-radiated by the hydrogen atom. The effect is today known as

”Lamb Shift”. The n = 0 photons are the ”virtual photons” of the zero point field.

A further ZPE effect is the Hawking radiation emitted by black holes. According to the work by

Hawking [66] ZPE fluctuations can create virtual particle-antiparticle pairs near the event horizon

of a black hole: One member of the pair falls into the black hole while the other one escapes. The

potential energy lost by the particle falling into the black hole serves to make the escaping particle

from a virtual particle into a real particle. In order to preserve energy conservation the particle

falling into the black hole must be treated as having negative energy, thus reducing the mass of the

black hole and making it appear to an external observer that the black hole has just emitted a single

particle. It can be shown [66] that the spectrum of photons emitted in this way is exactly the black

body spectrum. However, currently there is no way of verifying, experimentally or observationally,

the existence of Hawking radiation.

As an extension to Hawking radiation, Unruh [67] showed in 1976 that any non-geodetic detector (i.e.

any detector not free falling) should register a black body temperature in the vacuum proportional

to its level of acceleration. This effect is detectable in principle by electromagnetic pulse acceleration

of an electron: The interaction of a violently accelerated electron with this Unruh-Davies radiation

has been observed by Chen et al. [68].

Finally, the only known macroscopic manifestation of ZPE is the Casimir effect. This effect and its

influence on the energy balance of the sn-transition will be discussed during the following sections.
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3.2 The Casimir Effect and the Energy Balance of the Supercon-

ducting Casimir Cavity

Still with an application to superconducting detector performance in mind, we require a way to

couple the vacuum energy to the physics of the superconducting-to-normal transition. A survey of

the available literature reveals that a mechanism for a coupling between the sn-transition and the

QED vacuum does indeed exist via the Casimir effect [10]. We begin by introducing the Casimir

effect and consider the superconductivity specific effects in the following subsection (section 3.2.1).

The Casimir effect is a direct manifestation of gradients in the vacuum energy density. The ZPE

density can in principle be calculated by integrating the ZPE of a harmonic oscillator of frequency ω

over all frequency spaceEZPE =
∫∞

0
1
2~ωdω. By itself this integral will diverge, yieldingEZPE =∞.

It is possible to limit this energy density by introducing ultraviolet cut-offs as described in [62] but

they seem to be motivated by a wish to make the relevant mathematics more algebraically tractable

rather than by any real scientifically compelling reason. However, since the vacuum energy density

is uniform everywhere it can only be detected by its gradients. This is analogous to being on a high

plateau. Even though the observer is many kilometers above the true ground level he has no way of

detecting this altitude directly if he cannot see the edges of the plateau. Only changes in altitude are

detectable. The Casimir effect arises from an experimental set-up that creates a detectable gradient

in the ZPE.

The Casimir effect was predicted by H.B. Casimir and D. Polder [69] and has since been experimen-

tally verified to an accuracy of better than 1% [70]. The Casimir Effect describes the existence of an

attractive force exerted between any two or more separate macroscopic or microscopic objects sep-

arated by sufficiently small distances (usually of order < µm). The most common example is that

of the attractive force between two perfectly reflecting parallel uncharged metal plates (figure 3.1),

known as parallel plane geometry case. The attractive force is inversely proportional to the fourth

power of the plate separation and at a separation a = 10nm it is equivalent to ≈ 1 atmosphere of

pressure.

The Casimir force Fc arises directly from the mathematical form of the vacuum energy density. The

expectation value of the total zero point energy EZPE inside the cavity formed by the plates is found

from the integral over the zero point energies of all allowed modes ω. If we assume that the field

modes do not penetrate the cavity walls, the cavity effectively forms an infinite potential well, and

the continuous spectrum of allowed modes becomes quantised, turning into a discreet spectrum. The

ZPE in the cavity Ec is then the sum of the energies of all allowed modes in the quantised spectrum:

Ec =
∑
n

(2)
1
2

~ωn (3.1)
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Figure 3.1: Basic Casimir cavity. The dependence of the energy density on the discrete ZPE spectrum

in between the plates causes them to attract. Image taken from [9]
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where the sum is over all allowed modes n and the factor of(2) arises because two polarization states

exist for every allowed mode, each with their separate zero point energy [62].

Considering a perfectly reflecting cavity with plate separation a, the boundary conditions (ampli-

tude of wave on impenetrable barrier equals zero [63]) dictate that the tangential components of

the electric field have to vanish on the plate surfaces. This basically reduces the problem of finding

the allowed modes to the 3-dimensional infinite square well problem, for a well of length, height

and width equal to plate separation, plate height and plate width respectively. In a cavity of plate

separation a and plate height and width b the allowed modes are then given by:

ωlmn = πc

(
l2

b2
+
m2

b2
+
n2

a2

)1/2

(3.2)

where l,m, n are the allowed mode quantum numbers. Thus, the total number of allowed modes and

the total energy in the cavity reduce with reducing plate separation. The total energy over all allowed

modes as a function of plate separation E(a) =
∑
lmn(2) 1

2~ωlmn is infinite in the absence of any cut-

offs. However, the potential energy U(a) = E(a) − E(∞) of the plates can be shown to be finite

[62]. In this case the potential energy is defined as the energy change when one of the boundaries is

removed to infinity, and is caused essentially by the exclusion of long wavelength modes from the

cavity.

By taking the derivative of U w.r.t. plate separation it is possible to calculate the force exerted on the

plates as the gradient of the potential energy [62]. For the case of perfectly reflecting boundaries with

a << b an analytical solution exists, and is given by [62]:

FC(a) =
∂U(a)
∂a

= − π2~c
240a4

A (3.3)

with

U(a) =
π2~c
720a3

A (3.4)

where A is the area of the parallel plates.

For a full derivation and detailed discussion of the Casimir effect the reader is referred to the book

by P. Milonni [62]. In the following section we turn to the connection between the Casimir effect and

the sn-transition.

3.2.1 Thermodynamics of the Superconducting State and the Casimir Effect

A mechanism for coupling between the sn-transition and the Casimir effect has been suggested by

Bimonte et al. [10]. It is based on the influence the sn-transition of the boundaries of a Casimir cavity

has on the binding energy of the system, and how this binding energy enters the energy balance of

the sn-transition. The basic principle of the effect will be outlined in this section.
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As was discussed in the previous section, the exclusion of long wavelength vacuum modes from the

parallel plane cavity creates an attraction between the cavity boundaries. This attraction contributes

to the total energy of the system in the form of the potential binding energy Ubind(a) = E(a)−E(∞),

binding the plates together. The Gibbs free energy equation (eq. (1.8)) then becomes:

Gs(H) = Gn(0) +
1
2
µ0H

2 + ubind(a) (3.5)

where ubind(a) is the binding energy per unit volume Ubind(a)/V where V is the total volume of the

boundary material.

All quantitative expressions so far presented in this chapter have assumed perfectly reflective cavity

boundaries. In any real set up the strength of the Casimir force depends crucially on the reflectivity

of the boundaries, where higher reflectivity yields a higher binding energy [62]. It has been shown

experimentally [71] that the reflectivity and transmissivity of a film change when it undergoes sn-

transition and consequently the Casimir binding energy Ubind of the cavity system is changed when

the cavity boundaries undergo sn-transition. We recall our assumption from section 1.1.2.3 that the

magnetic susceptibility in the normal state χ ≈ 0 allowing us to write Gn(H) = Gn(0). Finding

the difference between superconducting and normal state Gibbs free energies analogous to eq.(1.9)

we now have to include the term for the difference between normal state and superconducting state

binding energies ∆ubind. Expression (1.9) then becomes:

Gn(0)−Gs(0) =
1
2
µ0H

2
c −∆ubind (3.6)

where we have used a negative sign for the change in binding energy ∆ubind in order to stress that

the change will be negative, since the superconducting material is more reflective and thus yields a

higher binding energy than the normal state material [10].

Since the difference between the normal state energy Gn and the superconducting state energy Gs is

the condensate energy Gn −Gs = εcond we can rearrange eq.(3.6) to yield:

1
2
µ0H

2
c = εcond + ∆ubind (3.7)

Thus, the change in binding energy will cause a change in the critical field Hc. And since, according

to microscopic theory, the critical temperature Tc of the superconducting system depends linearly

on the square of the critical field Tc ∝ H2
c [4], we conclude that Tc is also changed. Considering the

choice of sign for ∆ubind, which was made on the basis of our assumption that the superconducting

system is bound more strongly than the normal state system, both critical field and critical tempera-

ture of a superconducting film will be increased, compared to a free film, if the film is the boundary
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of a Casimir cavity. The reason we expect a stronger Casimir effect (= stronger binding) for the super-

conducting state is that, experimentally, the average reflectivity of a material in the superconducting

state is increased compared to its normal state reflectivity [71].

Bimonte et al. [10] use Lifshitz theory to evaluate the approximate change in Casimir force between

superconducting boundaries, taking into account the change in reflectivity reported by Glover [71].

Lifshitz theory provides the mathematical basis for evaluating the Casimir force in the presence of

imperfectly reflecting boundaries and a cavity volume with a dielectric function different from unity

(i.e. filled with a dielectric spacer, rather than vacuum). Lifshitz theory is discussed in detail by

Milonni [62]. Using Lifshitz theory to find the change in specific binding energy ∆ubind, Bimonte et

al.[10] determine the approximate change in critical field to be:

δHc

Hc
≈ ∆Ubind(T )

2εcond(T )
(3.8)

The relative change in binding energy predicted for a cavity system undergoing sn-transition is

minute, of order 1 part in 108 [10]. Despite the small magnitude of the change predicted, Bimonte et

al. [10] have proposed an experiment to measure this change in binding energy by detecting changes

in the critical field Hc of the superconductor. The key to the detectability of the field shift is in the

ratio on the right hand side of expression (3.8): The magnitude of the relative critical field change

depends on the ratio of the change in specific binding energy ∆ubind to the condensate energy εcond,

where εcond is known to be small (sub-meV per electron) [4]. Thus, the largest relative changes in

critical field δHc/Hc result from materials with low condensate energies εcond(T ) (i.e. materials with

low critical temperatures). The critical field of beryllium is just Hc ≈ 107µT [72], yielding an es-

timated condensate energy of εcond(0) = 1/2µ0H
2
c = 4.6 × 10−3Jm−3. For a cavity with unit area

parallel plane boundaries of thickness t = 50nm the total zero temperature condensate energy is then

εcond(0)× 2t× 1m2 = 4.6× 10−10J . The total binding energy Unormalbind for two boundaries of unit area

and separation 10nm according to equation (3.4) is Unormalbind = 2.7 × 10−3J . Thus, even for a change

in binding energy Unormalbind of 1 part in 108 we find the relative change in critical field according to

equation (3.8) to be Unormalbind /108

εcond(0) ≈ 6%.

For their attempt to detect the influence of the Casimir effect on the sn-transition Bimonte et al.[10]

originally proposed a double cavity layout as illustrated in figure 3.2. The sample film (centre)

is sandwiched between two insulating layers. The setup is capped at top and bottom by a high-

reflectivity metal layer. It is well known that the Casimir effect in real-material cavities(i.e. non-

perfect reflectivity) depends strongly on the reflectivity of the cavity boundaries [62]. Since the reflec-

tivity of the central sample film will change as it undergoes sn-transition [71] the Casimir attraction

between the sample film and the two capping layers respectively will change, altering the binding
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Figure 3.2: Illustration of five-layer cavity layout for detection of vacuum energy change as proposed

by Bimonte et al. [10]. In the initial version of the experiment proposed, the width of the supercon-

ducting film was 10nm, the width of the dielectric spacer was 8nm and the thickness of the normal

metal boundaries is irrelevant [10].
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energy of the system according to eq.(3.6). In this way the single superconducting film is part of two

Casimir cavities at the same time, effectively doubling the effect. Since the idea was first published

in 2006, the proposed experiment has been build and refined a number of times [73] [74].

3.3 Conclusions Regarding the Superconducting Phase Transition

and the Quantum Vacuum

The discussion up to this point has basically been a summary outlining the theory currently avail-

able for describing the interaction between the sn-transition and the QED vacuum. The purpose of

this section is to summarize the key concepts of this interaction before we begin a more rigorous

discussion of the interactions between superconductivity and the quantum vacuum.

We have established that quantum mechanical vacuum energy as predicted by QED does indeed

have the ability to influence the sn-transition, provided that the superconducting material forms

part of a Casimir cavity. The Casimir attraction between the boundaries of the cavity is increased

in the superconducting state [10] due to the increased reflectivity of the boundary compared to the

normal state [71]. The binding energy of the system introduces a new term into the Gibbs free energy

equations for the normal and superconducting state material which does not cancel when calculating

the condensate energy εcond = Gn − Gs (eq. (3.6)) resulting in an increase in critical magnetic field

~Hc(eq. (3.7)), and consequently in critical temperature Tc.

The change in critical field ~Hc has been predicted by Bimonte et al. [10] and should be measurable

in principle. Experiments are underway to try and confirm those predictions [10]. The experimental

setup described above (figure 3.2) is expected to yield a variation in critical field of as much as 6%

for beryllium (Hc ≈ 107µT ) [10]. This would constitute the first direct measurement of zero point

energy of a system rather than the Casimir force which just results from ZPE gradients. It would also

show that the ZPE field obeys equilibrium thermodynamics, a discovery that might be of similar

importance to the field of QED vacuum physics as was the Meissner effect for superconductivity,

since it might allow, in some cases, the reduction of complicated quantum field equalities to ther-

modynamic energy balance equations (like e.g. Gibbs free energy, eq. (1.7)). This alone should be

enough reason to motivate a continued interest in the interactions between vacuum energy and the

sn-transition, quite independently of the original intention of finding a mechanism that might link

vacuum fluctuations to superconducting detector performance.
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3.4 Implications for Practical Detector Operation

The Casimir effect and the strength of its coupling as predicted by Bimonte et al. [10] have been

discussed in sections 3.2 and 3.3. We found that, for variations in binding energy of order 1 part in

108, the critical fieldHc of a superconducting cavity boundary can be altered by as much as 6% in the

case of a Be film. Since the critical temperature Tc and supercondcuting energy gap ∆g scale linearly

with H2
c (using ∆g ∝ εcond [4]) this corresponds to a change of as much as 10% in Tc and ∆g .

After establishing that the Casimir effect does indeed have an influence on the sn-transition which

is of an order of magnitude that is detectable in principle, the question that needs to be addressed is

whether any implications for practical detector operation exist.

In the case of STJ based detectors the full width-half maximum (FWHM) energy resolution ∆EFWHM

is proportional to the square root of the superconducting energy gap ∆g [6] (see section 2.1.1). Cor-

recting for the influence of the Casimir energy on the sn-transition using the change in condensate

energy resulting from the system binding energy (eq.(3.7)) we obtain

∆EFWHM ∝
√
ζ∆g (3.9)

where we have defined the relative change ζ in the energy gap ∆g so that the effective energy gap

inside the cavity ∆eff is given by ∆eff = ζ∆g . The correction factor ζ = δH2
c /H

2
c . We effectively

introduce an additional factor into equation (2.1) to yield:

∆E = 2.355
√

1.7Fζ∆gEph (3.10)

Despite the relatively weak (square root) dependence of ∆E on ζ the effect may yet be measurable.

A change in ∆g of 10% (as predicted by Bimonte [10], see section 3.3) corresponds to a change in STJ

energy resolution of ≈ 5%. However, we do expect the real modifications to the energy resolution

of an STJ to be smaller than half the values predicted by Bimonte et al. [10] since the values derived

in the original paper [10] were for a double cavity as illustrated in figure 3.2. Thus, coupling with

the QED vacuum may introduce a change to STJ energy resolution on the percent level. Such a

contribution would be extremely difficult to detect, since it would require fabrication of a series of

devices with varying cavity properties and otherwise identical performance.

In the case of TESs, it is more difficult to see the relevance of the Casimir effect since, in its most basic

form, a TES is a single superconducting film on a dielectric substrate. The Corbino Disc TES (CorTES)

as discussed by Luukanen et al. [11] consists essentially of a circular TES with one superconducting
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Figure 3.3: Basic CorTES geometry[11]: An AlOx barrier separates the apex-electrode-film from the

TES film, creating a Casimir cavity as discussed in the text.

electrode at the centre (apex electrode) and an annular geometry electrode around the circumference.

In this set-up, there is no current parallel to the film edge and edge effects are effectively eliminated.

The current flows radially outwards from the apex electrode, with the direction of current flow nor-

mal to any circle drawn around the centre of the apex electrode. Since the circumference of any

such circle increases with increasing radius, the current density decreases with increasing radius. A

CorTES is usually biased at a current that will cause the device to exceed the critical current density

for small radii (i.e. close to the apex electrode) [11]. In this way a circular fraction of the CorTES

close to the centre of the device will be in the normal state, while the ring shaped region around it

will be in the superconducting state. The position of this phase boundary controls the resistivity of

the CorTES. In this way, energy deposited in the CorTES is detected by changes in the radius of the

circular phase boundary rather than by the transition of the entire device (see section 2.1.2).

The CorTES geometry requires a dielectric spacer, between the TES and the top electrode, effectively

creating a Casimir cavity (fig. 3.3).

In the case of the CorTES the position of the phase boundary depends on the critical current density

of the device. Since the change in condensate energy ∆ubind introduced by the Casimir effect will

vary with separation between cavity walls the response of the CorTES will be influenced especially

in the region between the apex electrode and the outside perimeter of the sloping part in the top

electrode. Thus the Casimir effect will indeed influence the response of a CorTES by introducing a

non-linearity into the phase boundary position vs. temperature curve of the device.

Another effect exists which is relevant to both STJs and TESs despite their very different basic work-

ing principles. Vortex dynamics are of significance for both STJ and TES based detectors. In the case

of STJs movement of vortices trapped during cool down increases detector leakage current and re-
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duces the quality of the IV-curve [5]. In the case of TESs phase slip shot noise due to vortex motion

is a possible explanation for excess detector noise (section 2.3). We recall from the discussion of TES

excess noise that vortex motion is inhibited by vortex pinning (sections 2.3.4.4 and 2.3.4.5). It can be

shown [57] that the amount of work required to remove a vortex from a pinning site scales linearly

with H2
c . Since it has been established in the course of this chapter that the Casimir effect may in-

fluence the magnitude of the critical field Hc it may well be relevant for vortex dynamics in CorTES

devices.

In conclusion, we have demonstrated a mechanism by which the Casimir effect can influence the

sn-transition of an STJ or CorTES. Increases in superconducting energy gap ∆g may influence STJ

energy resolution and changed vortex dynamics may be relevant for both TESs and STJs.

In this way our discussion has led us to the point where it appears that superconducting detectors

may be used to probe the fundamental physics of the quantum vacuum. Thus a completely new field

of physics, which was hitherto almost entirely theoretical, becomes available for experimentation.

3.5 The Superconducting Transition and Massive Electromagnetism

In the previous section we have established the basic principle by which the zero point energy of a

system may couple into the sn-transition. We have outlined the method by which Bimonte et al. [10]

arrive at a first order quantitative estimate for the influence of the Casimir effect on the sn-transition,

and that this influence is detectable in principle. In fact, it appears that even implications for practical

detector operation may exist (section 3.4). However, all previous calculations have assumed that the

only relevant coupling mechanism between the Casimir effect and the sn-transition is the change in

reflectivity of the superconducting boundaries according to Lifshitz theory as outlined by Bimonte

et al. [10] and experimentally reported by Glover [71]. This is because Bimonte et al. [10] assume in

their calculations that the boundary reflectivity is the only parameter relevant to the Casimir effect

that is changed during the sn-transition, naturally assuming that the fundamental form of electro-

magnetism is unchanged, and that therefore Maxwell’s equations (or their quantum field equivalent)

hold. This is not correct. Inside a superconductor the fundamental form of Maxwell’s equations is

changed [30]. Photons inside the superconducting region can no longer be treated as massless parti-

cles, requiring modifications to Maxwell’s equation [60]. The reasons for this, and the modifications

required, will be outlined in this section. The aim of this section is to demonstrate that in dealing

with superconducting cavity boundaries the existing theories and models are unsuitable, and that

analysis of the data predicted and obtained by Bimonte et al. [10] [74] requires a new model for the

Casimir force.
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The rest mass of the photon is an area of active research, an overview of which can be found in

Tu [75], including a number of experiments which have placed progressively smaller limits on the

magnitude of the photon rest mass. Currently the experimentally verified upper limit of the photon

rest mass is mγ ≤ 10−52kg, while ultimately cosmological arguments and the uncertainty principle

fix the smallest possible upper limit at mγ ≤ 10−69kg.

Inside a superconductor photons acquire non-zero rest mass via the Higgs mechanism [60]. This is a

complex mechanism based on the breaking (or more precisely ’hiding’) of certain gauge symmetries

and will be discussed in more detail in Chapter 5. Using the mechanism described by Aitchison and

Hey [60], it is possible to show that the photon rest mass mγ inside a superconductor is given by:

mγ =
~
λLc

(3.11)

where λL is the London penetration depth in the superconductor and all other symbols have their

usual meaning. For example, inside Niobium (λL = 39nm) we find mγ ≈ 10−35kg, far greater than

the vacuum value for the photon rest mass (≤ 10−52kg).

The scientific field of non-zero rest mass photons, called massive electromagnetism (massive-em),

is well studied and a good overview is given by Tu [75]. However, it is usually considered in the

context of determining the effects of a universal non-zero vacuum rest mass of the photon, rather

than in the context of superconductivity. Massive-em is governed by the Proca equations, which

transform smoothly into Maxwell’s equations as the photon rest mass mγ approaches zero. In vector

form and SI units the Proca equations are given by [75]:

∇. ~E =
ρ

ε0
− φ

λ2
L

(3.12a)

∇× ~E = −∂
~B

∂t
(3.12b)

∇. ~B = 0 (3.12c)

∇× ~B = µ0
~J + µ0ε0

∂ ~E

∂t
−

~A

λ2
L

(3.12d)

where φ and ~A are the scalar- and vector potentials of the electromagnetic field and all other symbols

have their usual meaning. The electric field ~E and magnetic field ~B are defined in terms of the scalar-

and vector potential in the following way:
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~E = −1
c

∂ ~A

∂t
−∇φ (3.13a)

~B = ∇× ~A (3.13b)

In order to solve any problem in electromagnetism inside a superconductor it is necessary to solve

the Proca equations (3.12a)-(3.12d).

Describing electromagnetic interactions in terms of the scalar and vector potentials (φ, ~A) is not a

method specific to superconductivity or massive-em. Some otherwise mathematically difficult prob-

lems in electromagnetism can be simplified considerably by expressing the problem in terms of the

potentials (φ, ~A) rather than in terms of the fields ( ~E, ~B). This is because the potentials themselves

are usually not observable. Consequently it is possible to change the potential under consideration

to whatever potential is best suited for solving the problem provided that the derivatives outlined in

eqs.(3.13a),(3.13b) remain unchanged. Those kind of potential changes are known as ”gauge trans-

formations” and will be discussed in more detail in Chapter 5 (particularly section 5.1).

When considering superconductors, great care must be taken in the application of such gauge trans-

formations. Inside a superconductor, the potentials (φ, ~A) are not arbitrary, forbidding the use of

gauge transformations for many(but not all) applications. This is actually the reason for the non-zero

photon rest mass and will be discussed in more detail in Chapter 5.

It is easy to see that the Proca equations transform back into the Maxwell equations as λL → ∞

(equivalent to mγ → 0). Many of the surprising characteristics of superconductors are linked to non-

zero photon rest mass. The magnetic London moment (section 1.1.2.2) can be shown to be a direct

consequence of the change from Maxwellian to massive electromagnetism [30], and the Meissner

effect magnetic field exclusion can be shown to be of the decay type required by a massive vector

field [60]. In fact, a closer look at the topic in Chapter 5 will show that the exponential decay of a

vector field inside the superconductor and a non-zero rest mass of the field’s gauge bosons are one

and the same thing. All those relations between massive-em and basic superconducting effects serve

to further motivate us in our investigation of massive electromagnetism, and the search for a theory

describing the influence of a Casimir cavity on the sn-transition of the boundary materials.

3.5.1 Longitudinal Photons

Before beginning with a quantitative discussion of the changes that need to be made to the Casimir

force in the presence of superconducting boundaries it is necessary to consider one of the funda-
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mental changes to the basis of the theory resulting from the introduction of a non-zero photon rest

mass. The Casimir force is calculated by computing the changes to the zero point spectrum of al-

lowed modes inside the cavity (section 3.2). The discrete cavity spectrum is created by reflection of

the photon vacuum modes from the cavity boundaries and a finite cavity width, essentially forming

a square well. In any real material where reflectivity is not perfect it is then necessary to consider

the two different polarisation states of an electromagnetic wave (Transverse-Electric(TE) modes and

Transverse-Magnetic(TM ) modes)separately.

Massive-em, however, introduces a third possible polarisation. The Proca equations (3.12a)-(3.12d)

allow for longitudinally polarized photons [75]. If we assume that the photons are traveling in the

z-direction, perpendicular to the boundaries of a parallel plane Casimir cavity, then longitudinal po-

larisations are those with the z component of the vector potential ~A non-zero, i.e. Az 6= 0. Therefore

longitudinal polarisations will be referred to as Az modes. Longitudinal modes are non-propagating

in Maxwellian electromagnetism, but they do contribute to the ZPE spectrum in the presence of

massive-em.

Any photon can have a polarization which is an arbitrary superposition of TM, TE and Az modes.

However, these can all be accounted for by considering the separate polarization components, so

that e.g. circular polarization states don’t have to be considered explicitly.

The separate contributions to the Casimir force F due to the different polarisations will be indicated

by a superscript according to the relevant modes, i.e. the Casimir force due to the longitudinal modes

will be written as FAz .

3.5.2 Massive Photon Velocity, Frequency and Momentum

In order to be able to discuss the interactions of non-zero rest mass photons with the cavity bound-

aries it is necessary to establish the kinetic parameters of a massive photon in relation to its Maxwellian

kinetic parameters. In this section we discuss how a photon’s velocity, frequency and momentum are

changed when it enters a region of massive-em.

The optical properties of non-zero rest mass photons (”heavy photons”) will be discussed in detail

in chapter 4. This section will merely give a concise summary of the controlling parameters in order

to allow discussion of the Casimir effect in cavities with superconducting boundaries.

Inside a region of Proca electromagnetism, electromagnetic wave fronts travel with the group ve-

locity vg , while changes in the phase of the electromagnetic wave propagate at the phase velocity

vp. The group velocity vg and phase velocity vp respectively can be derived from the Klein-Gordon
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equation [75] and are given by:

vg = c

(
1− λ2

vac

4π2λ2
L

)1/2

(3.14)

vp = c

(
1− λ2

vac

4π2λ2
L

)−1/2

(3.15)

where λvac is the vacuum wavelength of the photon, λL is the local London penetration depth and

all other symbols have their usual meaning. The heavy photon velocities will be discussed in more

detail in section 4.1.

Upon inspection of eqs. (3.14) and (3.15) we notice that the group velocity vg → 0 and the phase

velocity vp → ∞ if λvac → 2πλL. This leads us to introduce the critical wavelength λcrit as an

important parameter for the determination of photon kinetic properties in regions governed by Proca

electromagnetism. The critical wavelength λcrit is defined in terms of the London penetration depth

λL. It is given by:

λcrit = 2πλL (3.16)

In section 3.5.3 we will take a closer look at what happens as λvac exceeds the critical wavelength

λcrit. For now, it is sufficient to realize that the speed of propagation of a wavefront vg approaches

zero as the vacuum wavelength λvac approaches the critical value λcrit (fig. 3.5.2). The microscopic

dependencies of λL (and consequently of λcrit) are introduced in section 3.5.6.2 and discussed in

detail in section 4.2.2.

A further important parameter required is the complex refractive index η. Throughout this entire

chapter we will be dealing with problems of phase change of a vacuum mode across the Casimir

cavity, and the relevant complex phase refractive index ηp can be calculated as:

ηp = c/vp

=
(

1− λ2
vac

4π2λ2
L

)1/2 (3.17)

In general, the complex refractive index ηp can be written as the sum of a real part np and an imagi-

nary part ik, i.e. ηp = np + ikp. The real part np describes the free propagation/oscillation behavior

of the electromagnetic wave while ikp governs absorption effects [76]. If at anytime in the following

discussion we quote the phase refractive index as np rather than ηp this is because we have assumed

zero absorption.
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Figure 3.4: Magnitude of photon group velocity vs. photon wavelength on the surface of an alu-

minium film with λcrit ≈ 100nm, according to equation (3.14). Note that for λvac > λcrit the value of

vg will be complex. The critical wavelength λcrit has been determined from the London penetration

depth of aluminium λL = 16nm.
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The next question to answer is that of variation of frequency. We recall that the breaking of U(1) phase

rotational symmetry is what gives rise to the photon rest mass. We assume that the photon does not

exchange energy with the symmetry breaking field (i.e. the Cooper pair wave function). It is not at

all obvious whether the photon frequency will remain constant when it moves from the vacuum into

the region of broken symmetry. In the Maxwellian case a photon’s energy can be calculated from

its frequency f as Eph = hf . Some of the photon energy is now stored in its rest mass instead of

electromagnetic oscillations.

We will now show that this change in energy combined with the change in speed of propaga-

tion means that the photon frequency remains constant as a photon moves between regions of

Maxwellian and Proca electromagnetism respectively.

The total energy E of a non-zero rest mass relativistic particle is given by:

E2 = c2p2 +m2c4 (3.18)

where p is the particle’s relativistic momentum and m is the rest mass.

Assuming that no energy is exchanged between the Cooper pair field and the photon, we can equate

the energy E of the massive photon to its Maxwellian vacuum energy E0. Expressing the photon

momentum in terms of the photon rest mass mγ , photon velocity vg and the relativistic gamma

factor γ = 1√
1−

v2g
c2

we obtain:

E2
0 = c2m2

(
γ2v2

g + c2
)

(3.19)

After expressing γ in terms of vg and c and substituting (3.14) for every instance of vg we obtain:

E2
0 = m2

γc
4


(
− λ2c2

4πλ2
L

)
1−

(
− λ2c2

4πλ2
L

) + 1

 (3.20)

After substituting c
f = λ and some re-arranging we obtain:

f =
E0

2πmγλLc
(3.21)

which, after substituting E0 = hf0 and mγ = ~/λLc (from eq. (3.11)) yields f = f0. Thus the

frequency of a photon entering the region of broken symmetry is unaltered.

This is a very important result, since it implies that the energy E of a photon of frequency f can be

calculated as E = hf , independently of photon mass. It can be shown [62] that the spectral energy

density dE = (1/2 + n)~dω is the only possible Lorentz-invariant spectral energy density. Therefore

any prediction of a change in spectral energy density would violate relativity since it would imply

an absolute rest frame and thus indicate a flaw in our theory.
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The remaining parameter that could potentially be changed is the photon momentum. We know that

photon velocity is decreased for a massive photon (eq. (3.14)). Looking to the no-energy-exchange

assumption we also know that the total relativistic mass of the photon has to be unchanged. The

combination of reduced velocity and constant relativistic mass invariably leads to a decrease of rela-

tivistic momentum as the photon enters the symmetry breaking region. This implies an exchange of

momentum with the symmetry breaking field due to conservation of momentum. Exchange of mo-

mentum is not a problem for the no-energy-exchange assumption as long as the total inertial mass

of the particles associated with the symmetry breaking wave function (i.e. the sum of the mass of

all superconducting electrons) is significantly larger than the relativistic inertial mass of the incident

photon, similar to a rubber ball bouncing of the floor which exchanges momentum with the Earth,

while the amount of energy exchanged is negligible. In the future, unless stated differently, λ will

refer to the vacuum wavelength of any photon under consideration.

3.5.3 Above the Critical Wavelength: Non-Propagating Low Frequency Compo-

nents

Up to this point the discussion of the massive-photon velocity of propagation (i.e. the group velocity)

has been limited to the case of λ ≤ λcrit and no attempt was made to interpret the meaning of

the complex group velocity which occurs for λ > λcrit. In order to understand what happens as λ

reaches and exceeds λcrit it is necessary to recall the mathematical expressions governing plane wave

propagation.

In mathematical terms, λ > λcrit requires the wave velocity to be complex. However, the interpreta-

tion of a complex velocity is not always obvious. In order to yield the physical interpretation of the

phenomena at λ > λcrit it is necessary to consider the strict mathematical implications of a complex

velocity.

Consider a plane wave of amplitude a and angular frequency ω. For the purpose of this discussion,

only the mathematical form of a plane wave is of interest, independently of the physical system under

consideration. The aim is an understanding of the meaning of a complex speed of propagation.

It is possible to express a plane wave as an exponential of the form u(t) = eiωt. The angular frequency

ω can be replaced by ω = 2π vg
λlocal

where we have used the subscript ”local” to indicate that the

relevant wavelength is that inside the host medium, as opposed to the vacuum wavelength. The

plane wave equation then becomes:

u(t) = ae
i(2π

vg
λlocal

)t (3.22)
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Figure 3.5: Characteristic decay depth vs. wavelength for HPO element with critical wavelength

500nm.

For λ > λcrit the expressions for both phase and group velocity (3.14)(3.15) become complex. We

Re-express the velocity vg in (3.22) by a sum of the real and imaginary velocity components vr, ivi

respectively, with vr, vi ∈ real. The resulting sum vg = vr + ivi in the exponential of eq.(3.22) allows

for the separation into the product of two separate exponential functions:

u(t) = ae
i(2π vr

λlocal
)t exp−(2π

vi
λlocal

)t (3.23)

The second exponential on the r.h.s. of eq.(3.23) is non-oscillating and decays with characteristic time

td calculated as td = λlocal
2πvi

. From this the characteristic decay depth d can be calculated as d = td× vi
(fig. 3.5), i.e. the amplitude of the wave is attenuated by factor e−1 over a distance d. By evaluating

eqs. (3.14),(3.15) it can be seen that, for λ > λcrit, the real part of the group- and phase velocity is

zero.

Considering figure 3.5, it can be seen that sufficiently thick HPO films may be used as transmission

filters, preventing EM-radiation with λ ≥ λcrit from passing the element. From the above discussion

it becomes apparent that the separation of wavelengths into those with λ < λcrit and those with

λ > λcrit is quite a significant one. During the remainder of this work we will distinguish between

them as subcritical (λ < λcrit) and supercritical (λ > λcrit) wavelengths, respectively.
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3.5.4 Proca vs. Maxwellian Treatment

It is common in the field of superconductivity to treat problems in electromagnetism within the frame

of Maxwell’s equations. This yields a correct result in almost all instances. In fact, we will show in

the following subsection 3.5.4.1 that the dispersion relations (3.14),(3.15) can also be found from the

Maxwellian treatment. So why have we decided to use the more complicated Proca equations?

As indicated in the introductory part of section 3.5, the non-zero photon rest mass in the Proca equa-

tions originates from the broken phase rotational symmetry. In order to protect the phase of the

Cooper pair condensate from changes introduced by Maxwellian gauge transformations, it is neces-

sary to introduce addiational terms linear in the vector potential ~Awhen calculating current densities

or magnetic fields [29] using Maxwell’s equations. For example, the current density

J =
e~
m
|ψ|2∇S → e~

m
|ψ|2∇S − 2e2

m
|ψ|2 ~A. (3.24)

Without these additional phase-preserving terms it is often impossible to arrive at the correct results.

For example, phase preserving terms are required in order to predict magnetic flux quantisation

through a superconducting ring, or to predict the transition to perfect diamagnetism. Without the

phase preserving terms, Maxwell’s equations will predict a magnetic field present at the time of the

sn-transition to persist in the superconducting state and be ”frozen into” the superconductor.

It is not always easy to tell which problems require phase preserving terms and which don’t. When

using the Proca equations instead of Maxwell’s equations, these phase preservations are taken care

of automatically by the photon mass terms. For example, we can arrive at both the exponential decay

of static magnetic fields (i.e. the Meissner effect) and the magnetic London moment simply by taking

the curl of both sides of equation (3.12d) and solving the resulting differential equation.

The Proca equations (3.12a)-(3.12d) are esentially a generalization of Maxwell’s equations to an arbi-

trary photon mass mγ ∝ 1/λL. Maxwell’s equations are the special case with mγ = 0. Consequently,

the Proca are valid everywhere where 1/λL is non-negligible. As λL → ∞ they transform smoothly

back into Maxwell’s equations as the strength of the symmetry breaking is reduced to zero and mass-

less electromagnetism restored.

3.5.4.1 Deriving HPO Dispersion from Maxwell’s Equations

In ITO the low energy edge of the transparent window is set by the plasma frequency ωp of the free

electron gas and contributions of the bound electron system are negligible [77]. For this case the

group refractive index ηg as a function of incidence angular frequency ω can be calculated as [76]:
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η2
g(ω) = 1 +

nq2/ε0m

−ω2 + iγω
(3.25)

where γ is the characteristic scattering time and ωp = nq2/ε0m is the plasma frequency of a free

charge cloud with carrier mass m, carrier charge q and carrier density n. In a superoconductor the

charge carriers are Cooper pairs with q = 2qe;m = 2me, n = ns/2, where qe, me and ns are the

electronic charge, electronic mass and superconducting electron density, respectively. Furthermore,

superconducting electrons do not scatter, so γ → ∞ and the imaginary compenent of (3.25) goes to

zero.

We can write ω = 2πf , where f is the frequency in Hertz, and use f = c/λ to write:

η2(ω) = 1 +
nsq

2
eµ0

me

λ2

4π2
(3.26)

where we have used 1/c2 = µ0ε0. As will be discussed in more detail in section 4.2.2, the first fraction

on the rhs of eq.(3.26) is the squared London penetration depth λ2
L, yielding:

η2(f) = 1 +
λ2

4π2λ2
L

(3.27)

The above equation (3.27) is identical to the dispersion relation (3.14). Consequently, most of the

heavy photon effects discussed in this thesis can also be derived from Maxwell’s equations. This

result gives us a degree of confidence in our predictions.

We will continue to use the Proca treatment for two reasons: It saves us having to worry about phase

preservations and yields superconductivity specific results like the Meissner effect and magnetic

London moment directly, and it will aid our understanding of the behaviour of massive gauge bosons

when we extend the discussion to massive gravitons in Chapter 5.

3.5.5 The Massive Casimir Effect

After having discussed the basics of massive electromagnetism we return to the problem that prompted

this discussion in the first place: An evaluation of the Casimir effect in the presence of one or more

superconducting boundaries. The obvious way forward is to attempt an evaluation of the Casimir ef-

fect for Proca electromagnetism (massive-em). Barton and Dombey [78] have derived a complete set

of corrections expressing the difference between the massive-em and Maxwellian-em Casimir force,

and a short summary can be found in Tu [75]. However, at the end of this section we will realize that
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the massive-em solutions are unsuitable for most, if not all, practical cavity systems. Nevertheless, it

is instructive to evaluate the massive Casimir effect and compare it to the Maxwellian Casimir effect,

since the correct solutions will rely on a mixed state of Proca and Maxwellian electromagnetism, and

we may obtain an estimate for the order of magnitude we expect of any massive-em corrections to

the Casimir effect. An attempt at a solution suitable for practical cavity systems is made in section

3.6.

Barton and Dombey [78] suggest that two principal approaches exist for the evaluation of the massive

Casimir effect in a parallel plane geometry: One can evaluate how either the vacuum expectation

value of the electromagnetic stress tensor or the energy in the discreet spectrum of allowed ZPE

modes vary with plate separation.

Using the latter approach Barton and Dombey [78] find that massive-em corrections to the Casimir

force F consist of two principal components:

1. kinematic corrections ∆F [TE,TM ] to the Casimir effect due to non-zero rest mass TE and TM

modes

2. the contributionsFAz byAz 6= 0 modes (longitudinal photons) which are zero in the Maxwellian

case

Explicitly the massive Casimir force can be expressed as the sum of the power series of the contribu-

tions by the [TE,TM] modes and the contributions by the Az modes [78]:

Fmγ 6=0 = F [TE,TM ] + FAz (3.28)

In natural units we find:

F [TE,TM ] = − 1
a4

π2

240
+

1
a4

{
1
12
λ2 − 1

π2
λ4 log

(
1
λ

)
+

1
π2
λ4

(
1
4
− log(π)

)
+ ...

}
(3.29a)

FAz =
1
a4

1
2π2

{
−λ4 log

(
N

2a

)}
(3.29b)

where the dimensionless parameter λ equals mγa
2 in natural units (λ = a

πλL
in SI inside a supercon-

ductor [60]),mγ is the photon mass, a is the plate separation and N is the thickness of the plates,

required because longitudinal modes are penetrating even in ideal media (perfect dielectric or per-

fect conductor) [78]. The first term in expression (3.29a) is the Maxwellian electromagnetism Casimir

force, and the following power series terms are the corrections ∆F [TE,TM ].

In order to convert the above equations (3.28)-(3.29b) from natural units into SI units they have to

be prefixed by a factor ~c. Note that in the coordinate system used to derive equations 3.29a-3.29b
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Figure 3.6: a) The relative changes to the Casimir force due to transverse mode (red) and longitudi-

nal mode (black) contributions, as a function of cavity width b) The Casimir force as predicted by

Maxwellian (dashed line) and Proca (solid line) electromagnetism (according to eqns.(3.28)-(3.29b)),

as a function of cavity width. Both plots assume a photon mass of 1.4 × 10−34kg,corresponding to

superconducting aluminium (eqn.(3.11)) and a boundary thickness of 10µm.

a negative magnitude indicates an attractive force. Positive terms in equations 3.29a-3.29b dimin-

ish the Casimir attraction while negative terms increase it. According to Barton and Dombey [78],

when evaluating the above equations explicitly one finds that for any practical system the kinetic

corrections to the transverse modes (eq. 3.29a) are dominant compared to the longitudinal mode

contributions FAz . Since the leading correction to the transverse modes(i.e. the 1
12λ

2 term) is positive

the magnitude of the Casimir attraction is then diminished in the case of massive electromagnetism.

This is intuitively correct since an increased rest mass leads to smaller vacuum fluctuations [62].

However, the derivation of equations (3.28)-(3.29b) as presented by Barton and Dombey [78] is only

strictly valid for the case where a/λL < 1 (mγa < 1 in natural units [78]). Generally this is an

acceptable assumption since the upper limit on the photon vacuum rest mass of 10−52kg implies

an associated characteristic length scale of λL ≈ 3.5 × 109m, far larger than any separation a over

which calculating the Casimir force would yield a result significantly different from zero. At this

point we encounter the first problem with applying the equations (3.28)-(3.29b) to superconducting

materials. Inside a superconductor we expect a photon rest mass of order mγ ≈ 10−35kg (eq.(3.11)),

approximately 17 orders of magnitude greater than the experimental upper limit for the vacuum

value ofmγ , with the increased photon mass resulting from a London penetration depth λL ≈ 10s of

nm. Care has to be taken to ensure that the plate separation a in the setup under consideration yields

a/λL < 1. The magnitude of the finite mass corrections has been plotted in figure 3.6, along with

the total magnitudes of the Proca and Maxwellian Casimir force, assuming a London penetration

depth of λL ≈ 16nm, corresponding to Aluminium. Consequently, the equations (3.29a),(3.29b) are

applicable only for plate separations a < 16nm.
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With equations (3.29a) and (3.29b) we have a complete set of expressions for the massive Casimir

force in a parallel plane geometry cavity. However, on closer examination of the original problem,

which was to determine the magnitude of the Casimir force in a cavity with superconducting bound-

aries in order to determine the influence of vacuum fluctuations on the sn-transition, we find the

massive Casimir effect as outlined by Barton and Dombey [78] to be unsuitable. The reason for this

is that the massive Casimir effect assumes a globally constant photon mass. In a superconducting

cavity the photon mass is large (mγ ≈ 10−35kg) inside the superconducting boundaries and takes

its vacuum value (mγ < 10−52kg [75]) far from the boundary. In order to accurately determine the

boundary conditions when trying to evaluate the spectrum of allowed modes in the cavity from

which the Casimir effect is derived (see section 3.2) we have to establish how the photon mass varies

with increasing distance from the superconducting boundary.

3.5.6 Applicability of Massive Electromagnetism and the Barton and Dombey

Solutions to the Casimir Effect

In section 3.5 we have introduced the Proca equations for massive electromagnetism, which govern

the propagation of electromagnetic filed modes inside a superconductor. We have then gone on to

discuss the results obtained by Barton and Dombey [78] for the Casimir effect in the Proca frame-

work. We have however not considered the possibility that Proca electromagnetism might not be

applicable over the entire energy range of vacuum modes, or throughout the entire cavity space.

In this section we will establish that, while the Proca equations are indeed valid over the entire energy

range of vacuum modes, the photon mass varies over the cavity volume. Indeed, it will be found

that for the majour part of the cavity volume photons can be considered as massless and Maxwellian

electromagnetism can be used. These results will prompt us to attempt an implementation of a

varying-photon mass electromagnetism in section 3.6.

3.5.6.1 Cooper Pair - Vacuum Mode Interactions

It is well known that the energy gap ∆g between the normal and superconducting state is very small,

of order ≤ 1meV, and that photons may break such cooper pairs. As such, any photon of energy

Eph ≥ 2∆g can excite two electrons across the energy gap, breaking a cooper pair. Does this mean

that Proca electromagnetism is valid only for vacuum modes n with E0(ω) = 1/2~ω2 < 2∆g?

As was discussed in section 3.1, the vacuum mode E0(ω) is the lowest possible energy state of the

electromagnetic field mode of frequency ω, i.e. the n = 0 state. Like with any other quantum me-
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chanical system, energy can only be extracted from the ω-field mode by transition to a lower quan-

tum mechanical state n′ < n. However, since the field mode is in it’s ground state, no energy can be

extracted from it.

Breaking a cooper pair requires energy 2∆g . Since no energy can be extracted from a field mode in its

ground state (= vacuum state), vacuum modes cannot break cooper pairs. Consequently, the Proca

equations and all derived dispersion equations remain valid over all vacuum modes 0 < ω <∞.

3.5.6.2 Symmetry Structure of the Casimir Cavity with Superconducting Boundaries

In order to find a quantitative expression for the change in Casimir binding energy of a system

undergoing sn-transition it is necessary to calculate the change in the discreet spectrum of allowed

modes in the system. In this section we will attempt to settle the question of the boundary conditions

and the type of electromagnetism (Proca or Maxwellian) applicable to the problem.

In the previous sections, we have introduced massive electromagnetism and the concept of non-zero

rest mass photons inside superconductors (sec.3.5). We briefly discussed the massive Casimir effect

and presented the equations derived by Barton and Dombey [78] to predict the Casimir force in the

presence of a global non-zero photon rest mass mγ . It is tempting to infer that the suitable equa-

tions for describing the Casimir effect between superconducting boundaries are the Proca equations

(3.12a)-(3.12d), and that the equations derived presented in section 3.5.5 are suitable for predicting

the Casimir effect for cavities with superconducting boundaries. On closer inspection we find that

assuming global massive electromagnetism is not a suitable solution to the problem. For one, the

ground state of the quantum vacuum outside the cavity far away from the boundaries is that of

the massless Maxwellian vector field. Similarly, if the boundaries are separated far enough that the

electronic wave functions on both sides of the cavity are independent, then normal Maxwellian elec-

tromagnetism will apply at the centre of the cavity.

As has been pointed out in section 3.5, the non-zero photon rest mass inside a superconductor arises

because the phase of the electronic wave function is no longer arbitrary and U(1) phase rotational

symmetry is lost. In order to form an accurate picture of the effect of superconducting boundaries on

the form of electromagnetism inside the cavity we have to rigorously analyse the symmetry structure

of the cavity, determining the dependence of photon mass on position inside the cavity. The photon

rest mass will only be non-zero in regions of broken U(1) symmetry and the magnitude of the rest

mass will depend on the strength of the symmetry breaking.

The symmetry breaking is caused by the macroscopic wave function of the Cooper pair condensate

[60], and the strength of the symmetry breaking as well as the photon mass can be calculated directly
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from the local density of Cooper pairs via the London penetration depth λL [60].

We will now consider the electromagnetic symmetry structure structure near the surface S of the

superconducting boundary. We chose S parallel to the x, y-plane with z = 0. Inside the boundary

(i.e. for z negative) the macroscopic wave function Ψ describes the state of the superconducting

electron pairs (Cooper pairs, see section 1.1.2.4). The number density of Cooper pairs nc is given by

nc = Ψ2. Quantum mechanics requires that the macroscopic wave function Ψ and its first derivatives

∇Ψ and ∂Ψ
∂t must be continuous functions of (t, z) [63]. Thus, the wave function Ψ cannot drop to zero

discontinuously at the film’s surface. Two possible classes of solutions to the Schroedinger equation

present themselves: Either we require Ψ→ 0 as z → 0 which corresponds to the infinite square well

solutions of the Schroedinger equation [63] or we require Ψ to decay exponentially with z for z > 0,

corresponding to the finite square well solutions of the Schroedinger equation [63].

It is a well known fact that Cooper pairs can tunnel from one superconducting film to another

through a thin dielectric barrier [4]. This seems to suggest that the correct class of solutions for

Cooper pair wave functions inside a superconductor are the finite square well solutions, since the in-

finite square well solutions would imply that no communication between wave functions of particles

in different wells (i.e. in different superconductors) is possible. Furthermore, if the dielectric barrier

is thin enough a weak supercurrent can flow from one film to the other. This weak-link supercurrent

and a number of similar effects are collectively called the Josephson Effect, and they arise due to the

two films’ order parameters overlapping in the barrier [4]. Thus, it appears that the correct class of

solutions are indeed the finite square well solutions.

Returning to the problem of evaluating the electromagnetic symmetry structure near the surface S

and assuming the solutions of Ψ to correspond to finite square well solutions of the Schroedinger

equation, the wave function penetrating into the vacuum has to be of the form [63]:

Ψ = Ψ0e
−βz (3.30)

with

β =
(

2mc

~2
|E|
)− 1

2

(3.31)

wheremc = 2me is the mass of the superconducting electron pairs (Cooper pairs),me is the electronic

mass,|E| is the depth of the potential well, z > 0 is the distance from the boundary and Ψ0 is the value

of Ψ on the surface of the superconducting boundary.

The depth of the potential well for Cooper pairs penetrating the vacuum/dielectric region is of order

|E| = 10eV [4], yielding the characteristic decay constant β ≈ 2.3 × 1010m−1. Since the supercon-
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ducting electron density scales as Ψ2 we find that it decays to zero within approximately 0.1nm of the

surface of a conventional superconductor. Using the expression for the London penetration depth

λL in terms of Ψ [4] we obtain:

λL =
√

mc

e2µ0Ψ2
(3.32)

where mc is the cooper pair mass and e is the electronic charge.

From substituting (3.32) into (3.11) we obtain mγ ∝ Ψ. Recalling λcrit = 2πλL we can now write

variations in the photonic mass mγ and critical wavelength λcrit in terms of the exponential decay of

Ψ:

mγ = mγ,0e
−zβ (3.33a)

λcrit(z) = λcrit,0e
zβ (3.33b)

where mγ,0 is the photonic mass inside the boundary, λcrit is the corresponding critical wavelength

inside the boundary, z is the distance from the boundary and we have assumed that the separation

between boundaries z >> β so that only one of the sc-boundaries contributes to the photon mass.

The case of overlapping wave functions is significantly more complicated since Josephson effects and

magnetic flux quantisation in the cavity would have to be considered.

Thus, the photonic mass is non-zero in a thin sheath near the surface of the superconducting bound-

ary and decays exponentially with distance from the boundary, on length scales of order 1Å. Since

the mass of photons inside this sheath is increased from their vacuum value they are traveling more

slowly than their vacuum velocity, effectively decreasing their wavelength. Consequently, the thin

superconducting layer has an effect similar to extending the distance between cavity walls. Photon

velocity and the allowed modes will be discussed in more detail in the following section.

In a cavity of width 100 nm with two superconducting boundaries each having a massive electro-

magnetism layer of thickness ≈ 1Å this corresponds to 1 part in 500 of the cavity volume (fig. 3.7).

Since it was shown by [10] that changes of 1 part in 108 of the cavity energy can lead to measurable

changes in the superconducting critical field (sec. 3.2.1) this thin region of massive electromagnetism

may well be relevant to practical cryogenic systems.

In conclusion, we have demonstrated that neither the conventional form of the Casimir effect, as

derived from the Maxwell equations [62], nor the massive Casimir effect, as derived from the Proca

equations [78] are suitable to describe the Casimir effect in a cavity with superconducting boundaries.

The conventional Casimir effect is unable to deal with the thin, highly refractive massive-em layer
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Figure 3.7: Symmetry structure of the cavity with superconducting boundaries (not to scale).

near the boundary surface which results from Cooper pair tunneling, while the massive Casimir

effect erroneously assumes a photon mass constant throughout the cavity. In the context of the ex-

periments presented by Bimonte et al. [10] [73] [74] this failure of both the conventional as well as the

massive Casimir effect equations to correctly implement the physics of the superconducting cavity

is quite a significant result since it indicates that no good quantitative framework exists in which to

evaluate data obtained by Bimonte’s experiment.

3.5.7 Cavity Types

Based on the exponential decay of the photon mass (and consequently of the critical wavelength

λcrit) as outlined in section 3.5.6.2 we can now identify three different types of parallel plane cavities

with superconducting boundaries.

1. Cavities with superconducting boundary separation s ≤ (2β)−1. There is strong overlap be-

tween Cooper pair wave functions from opposite cavity boundaries, and the photon mass mγ

is approximately constant throughout the cavity. In this case the expressions for the massive

Casimir effect as derived by Barton and Dombey [78] and as discussed in section 3.5.5 apply.

Since in section 3.5.6.2 we have estimated β ≈ 1010m this condition only holds for cavities with

sub-Å separation, or for those with the cavity volume material selected specifically to reduce β.
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2. Cavities with superconducting boundary separation a in the range λcrit,0 ≥ a > (2β)−1, where

λcrit,0 is the critical wavelength at the boundary surface. In these cavities no significant overlap

of Cooper pair wave functions from opposite boundaries occurs, and electromagnetism can be

considered Maxwellian throughout most of the cavity. Photon velocity is reduced by massive

photon effects near the boundaries, decreasing the effective wavelength of photons with wave-

lengths λvac ≈ λcrit near the boundary. A detailed numerical solution for this cavity type is

provided in section 3.6.

3. Cavities with superconducting boundary separation a > λcrit,0 > (2β)−1. In these types of

cavity, waves with supercritical wavelengths λvac > λcrit can propagate freely near the centre.

However, there will be a critical distance zcrit from the cavity boundary at which the exponen-

tially decaying critical wavelength λcrit matches λvac, i.e. λvac = λcrit,0e
zcritβ . For z < zcrit

photons of wavelength λ will decay exponentially. We recall that from section 3.5.3 that ηp is

entirely imaginary for supercritical modes, i.e. ηp = 1/vg = ik. Taking into account the varying

photon mass with distance from the boundary, it is extremely difficult to find analytical solu-

tions for the wave function of the supercritical modes, since they would require the solution of

the Proca equations in the presence of a finite-height, finite-width, non-square potential well

with varying height and width. Nevertheless we will find a way of dealing with these modes

in section 3.6.

The discussion of type 2 and 3 modes is entirely focused on transverse-polarization photons. Lon-

gitudinal photons only have to be considered for type 1 cavities, where there is significant Cooper

pair wave function overlap. For all other cavities the Maxwellian-em center does not propagate

longitudinal photons.

3.6 The Casimir Effect for Cavities with Superconducting Bound-

aries

In the previous section 3.5 we established that inside a superconductor Maxwellian electromagnetism

is replaced by Proca electromagnetism in order to allow for non-zero rest mass photons. We dis-

cussed the Casimir effect for non-zero rest mass photons (section 3.5.5) and came to the conclusion

that it is unsuitable for evaluating the Casimir effect in the presence of superconducting boundaries

(section 3.5.6.2). While this result is in itself significant, we wish to at least estimate the magnitude of

the Casimir effect in the presence of superconducting boundaries.

In the course of this section we will show how Lifshitz theory can be employed in order to achieve
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an estimate of the order of magnitude of the corrections required to the Maxwellian-em Casimir

effect. We begin by introducing the integrals which govern the magnitude of the Casimir effect

in the presence of real material boundaries, rather than perfect reflectors. We then discuss the terms

required in order to evaluate the equations presented and conclude with an evaluation of the Casimir

effect for a cavity with superconducting aluminium boundaries. Finally, this evaluation will allow

for an estimate of the order of magnitude corrections required to the estimate of the aluminium film

critical temperature Tc and critical field Hc according to equation (3.8).

3.6.1 Lifshitz Theory

In section 3.2 we outlined how an expression for the Casimir effect can be obtained by considering a

cavity with perfectly reflecting boundaries and calculating its vacuum energy as the sum of the zero

point energies of all electromagnetic field modes permitted in the cavity. The allowed modes have

been determined as being all those modes which can be made to go to zero at both cavity boundaries

simultaneously, i.e. those modes with angular frequency ω satisfying c/(2ω) = λ/2 = a/n, with

n ∈ integer and a the cavity width. As such we have effectively treated the Casimir cavity as an

infinite square well of width a.

We now wish to consider cavities with real material boundaries. Since real materials are not perfect

reflectors, the allowed modes of the cavity are now found by finding the solutions to Maxwell’s

equations inside the cavity and inside the cavity boundaries. Any real material reflector will allow

incident electromagnetic radiation to penetrate into the reflector, with the intensity of the penetrating

radiation decaying exponentially with a characteristic decay constant known as the skin depth [76].

Consequently, in going from perfect reflectors to real material boundaries we have transformed the

problem of finding the allowed modes of the cavity from the infinite square well problem to the finite

square well problem.

Finding all the allowed solutions to the finite square well problem is a mathematically involved

process, and various approaches exist. A good introduction to the problem is given by Bransden and

Joachain [63]. The full derivation of the Lifshitz theory describing the Casimir force for cavities with

real material boundaries is given by Milonni [62].

The Casimir force for a cavity with real material boundaries according to Lifshitz theory can be

written as [62]:



3.6. THE CASIMIR EFFECT FOR CAVITIES WITH SUPERCONDUCTING BOUNDARIES 93

FL(a) = − ~
2π2c3

∫∞
1

∫∞
0
p2ξ3ε

3/2
3

([
(ε3s1+ε1p)(ε3s2+ε2p)
(ε3s1−ε1p)(ε3s2−ε2p)e

2ξp
√
ε3d/c − 1

]−1

+
[

(s1+p)(s2+p)
(s1−p)(s2−p)e

2ξp
√
ε3d/c − 1

]−1
)
dξdp

(3.34)

where

s2
1,2 = p2 − 1 +

ε1,2
ε3

(3.35)

with a the boundary separation and ξ the magnitude of the imaginary frequency iξ. The symbols

ε1, ε2, ε3 are the dielectric functions of the first and second boundary and cavity spacer material re-

spectively. The dielectric functions are discussed in detail in section 3.6.2.

The integral is over all imaginary frequencies iξ (ξ ∈ real) as a matter of mathematical convenience

during the derivation. No physical interpretation of the nature of complex frequencies is required.

Rather, an integral over all complex frequencies has been employed during the derivation to obtain

results relevant to the real frequency allowed modes, by using complex calculus identities [62].

3.6.2 Dielectric Functions and the Refractive Index

In order to evaluate equation (3.34) explicitly we require expressions for the dielectric functions ε1,2,3

as functions of imaginary frequency magnitude ξ. In general, a material’s dielectric function can be

determined from its refractive index. We recall that the refractive index ηp = np + ikp (section 3.5.2).

Then the dielectric function ε of the material is given by:

ε = η2
p

= (np + ikp)2
(3.36)

In section 3.6.3 we will discuss how to find the effective dielectric function ε3 of the vacuum near

a superconducting boundary by employing Proca electromagnetism. Section 3.6.4 is dedicated to a

discussion of the dielectric functions ε1,2 of the real material boundaries.

3.6.3 Dielectric Function of the Vacuum

We recall from section 3.5.2 that the complex phase refractive index ηp of a material can be obtained

from the photon phase velocity vp as np + ikp = c/vp yielding
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ε(ω) =
c

vp(ω)2
(3.37)

where vp(ω) is the electromagnetic phase velocity according to equation (3.15), for an electromagnetic

wave of wavelength λ = 2πc/ω, and with ω the complex frequency of the electromagnetic wave.

The critical wavelength λcrit required to evaluate equation (3.15) decays exponentially away from

the boundaries according to equation (3.33b). For type 2 and 3 cavities, the explicit form of the

dielectric function of the vacuum as a function of wavelength λ and distance z from the nearest

superconducting boundary is then given by

ε3(ω, z) = 1−
(

c2

ω2λ2
crit

e−2βz

)
(3.38)

Since the expression for the phase velocity vp has been derived directly from the Klein-Gordon equa-

tion it can be extended to complex frequencies without any modifications. The reason is that the

Klein-Gordon equation itself is defined over the entire complex plain. It is immaterial whether such

an extension does have a physical interpretation in the context of the original derivation of vp(ω).

Re-writing equation (3.38) in terms of the imaginary frequency iξ we obtain

ε3(ξ, z) = 1−
(

c2

(iξ)2λ2
crit

e−2βz

)
(3.39)

which can be simplified to

ε3(ξ, z) = 1 +
(
ξ2
crit

ξ2
e−2βz

)
(3.40)

where we have introduced the critical frequency ξcrit = c/λcrit. Equation (3.40) can be found to be

real over all imaginary frequencies iξ.

3.6.4 Dielectric Function of Real Material Boundaries

For the real material boundaries we can approximate their dielectric function using Drude theory. In

Drude theory the conduction electrons in a metal are essentially treated as a free electron gas, with

characteristic plasma frequency ωp and relaxation frequency γ [76]:

ε1,2(ω) = 1−
ω2
p

ω2 + γ2
+ i

ω2
pγ

ω3 + ωγ2
(3.41)
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Figure 3.8: Dielectric function of the vacuum due to heavy photon effects according to eq.(3.40) for

the case of aluminium boundaries (λL = 16nm)and zero distance to the boundary surface.
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where ω is the complex angular frequency of the incident photons. The real and imaginary parts of

eq.(3.41) are labeled ε′1,2 and ε′′1,2, respectively.

Equation (3.41) can be used directly with the Lifshitz equation (3.34) where it will be integrated

over all positive imaginary frequencies. However, in some situations such an approach may not be

convenient. Drude theory is only an approximation, and especially towards the high-energy end of

the optical spectrum it may differ from the real values. If experimental data describing the dielectric

constant ε1,2 of the boundary material is available it may be desirable to replace the equation (3.41)

with a fit to the experismental data. Since experimental data is in general only available over real

frequencies, such a fit is not directly applicable for computing the Casimir force according to equation

(3.34). In this case the real part of the dielectric constant for imaginary frequencies can be found from

the imaginary part of the dielectric constant at real frequencies by employing the Kramers-Kronig

relation [62]:

ε1,2(ξ) = 1 +
2
π

∫ ∞
0

ω
(

ω2
pγ

ω3+ωγ2

)
ω2 + ξ2

dω (3.42)

The expressions for the reflectivity of the boundaries discussed above are solely based on the nor-

mal state optical parameters of the materials, since a direct analytical combination of the material

based optical effects and massive-em dispersion is impossible. As such, all estimates presented for

the Casimir effect in a cavity with superconducting boundaries will only contain the corrections due

to the effect of the broken symmetry inside the cavity volume. Corrections due to changes in bound-

ary reflectivity have to be treated separately. Consequently, changes tot he binding energy ∆Ubind

predicted by our implementation of Lifshitz theory have to be added to the corrections predicted by

Bimonte [10] due to the changes in boundary reflectivity reported by Glover [71].

A comparison between the predictions of equation (3.41) and experimental data obtained from Palik

[12] shows a very good match between theory and experimental data, especially over the low fre-

quency range (figure 3.9). The data plotted is for a gold film, with plasma frequency ωp = 9eV/h and

inverse relaxation time γ = 0.045eV/h. In the course of this chapter we will use the Drude models

for Gold (Au), Aluminium (Al) and Beryllium (Be), which are summarized in table 3.6.4, below.

3.6.5 Implementation of Lifshitz Theory

Section 3.6.2 has established the correct functional form for the dielectric constants ε1,2,3(iξ) (equa-

tions (3.40),(3.41)) for using Lifshitz theory to calculate the Casimir force in parallel plane geometry

cavities with normal state, real material boundaries. Integral (3.34) cannot be solved analytically.
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Material Plasma frequency ωp[eV/h] Relaxation Frequency γ[eV/h] Reference

Aluminium (Al) 12.7 0.155 Beaglehole [79]

Gold (Au) 8.5 0.045 Palik [12]

Beryllium (Be) 18.4 29.5 LaVilla [80]

Table 3.1: Experimental values for the plasma frequency ωp and relaxation frequency γ in order to

evaluate Drude theory according to equation (3.41). All values for the plasma frequency ωp and

relaxation frequency γ are given in units of eV/h. This convention is often used in the literature in

order to facilitate comparison with photon energies.

Figure 3.9: Dimensionless dielectric function ε1,2 of gold as a function of imaginary frequency ξ. The

solid black line represents the predictions of the Drude model (eq. (3.41)), while the dashed gray line

has been recovered from experimental data provided in Palik [12].
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Figure 3.10: Relative error ∆F/F0 (left) and absolute error ∆F = FL − F0 (right) of our implementa-

tion of Lifshitz theory for the case ε3 = 0, ε1,2 →∞.

Instead, we are employing Wolfram Research’s Mathematica to attempt a numerical evaluation.

In order to assess the results obtained by numerical evaluation of (3.34), we let ε3 = 1 which corre-

sponds to the cavity volume being a vacuum. We also let ε1,2 → ∞ which corresponds to perfectly

reflecting boundaries. In this way, if our implementation of Lifshitz theory is correct, we should

recover the same force FL(a) as obtained from the analytical expression (3.3) for the Casimir force

F0(a) of a cavity with perfectly reflecting boundaries separated by a vacuum. We use FL to refer

to the Casimir force according to Lifshitz theory, while F0 refers to the analytical expression for the

Casimir force for the case of perfectly reflecting boundaries. Evaluating expression (3.34) for the Lif-

shitz theory based force FL(a) we obtain the absolute error ∆F = FL − F0 as well as the relative

error ∆F/F0 as a function of cavity width a (figure 3.10). As can be seen from figure 3.10 the relative

error remains below 1 part in 104 for small boundary separations (for large boundary separations FL

quickly goes to zero). We are satisfied with the precision of our evaluation and proceed.

In this section we will present methods for the quantitative evaluation of the Casimir effect in type 2

and type 3 cavities. We begin by considering wave propagation in the vacuum near superconducting

boundaries in general. It seems logical that the treatment of type 2 cavities should be significantly

easier than the treatment of type 3 cavities, since the spectrum of allowed modes in a type 2 cavity

contains no supercritical modes. However, since Lifshitz theory obtains its results from integrating

over ALL imaginary frequency modes, including imaginary supercritical modes (i.e. iλ > iλcrit),

both types of cavity require a valid description of supercritical modes to be implemented in their

mathematical treatment.
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3.6.6 Effective Dielectric Function of the Cavity Volume

The first step towards using Lifshitz theory according to eq. (3.34) to determine the Casimir force for a

cavity with superconducting boundaries is to establish the dielectric functions ε1,2,3 required. As was

already indicated in section 3.5.6.2, the increased refractive index as compared to its vacuum value

(and, consequently, the increased dielectric function ε3) of the cavity volume results in an increased

phase change in a mode traversing the cavity. Thus it effectively increases the cavity width. We

cannot simply use equation (3.40), since it varies with distance from the cavity boundaries z and

imaginary frequency ξ. Lifshitz theory, however, requires an expression of ε3 as a function of ξ only.

It is possible to proceed by calculating the average dielectric function of the cavity. By integrating

equation (3.40) we obtain:

ε3(ξ) =

∫ a/2
0

1 +
(
ξ2crit
ξ2 e−2βz

)
dz

a/2
(3.43)

where we have assumed the cavity to be perfectly symmetric and obtained the average by integrating

over the cavity half-width a/2. The average dielectric function ε3 will yield the correct phase change

for a mode traversing the cavity.

It is tempting to now use ε3(ξ) as the expression for the dielectric function ε3(ξ) in equation (3.34) for

the Casimir force and in this way implement the dielectric function of the vacuum and the change

to the effective cavity width for the superconducting boundary cavity at the same time. This does

not yield the correct result. The reason for this is that Lifshitz theory determines the allowed modes

from the effective reflectivity of the cavity boundaries, and this effective reflectivity is calculated

from the local differences in dielectric functions ε1,2(ξ) and ε3(ξ), respectively. Since the value for

ε3(ξ) (according to eqn.(3.40)) on the surface of the boundary (i.e. z = 0) is much larger than the

average value ε3(ξ) such a treatment would yield significant errors in the estimate of the boundary

reflectivities.

In order to obtain a correct estimate of the boundary reflectivity at frequency ξ, it is therefor necessary

to use the local vacuum dielectric constant ε3(ξ, z = 0) according to equation (3.40). This method

yields two problems:

1. It does produce a wrong estimate of the effective cavity width, since the total phase change

across the cavity has to be calculated according to eq.(3.43) rather than eq.(3.40)

2. It does not handle supercritical modes, which have a vanishing imaginary phase velocity near

the boundary
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Figure 3.11: The phase velocity vp (left) and group velocity vg (right) of Aluminium (λcrit ≈ 100nm)

as a function of wavelength. The graphs show the real (black) and imaginary (red) components of

the respective complex velocities. Note that vp, vg are either purely imaginary or purely real over the

entire real wavelength axis.

Problem one will be dealt with later, in section 3.6.8 while problem 2 will be addressed in section

3.6.7.

3.6.7 Supercritical Modes

In our search for an implementation of Lifshitz theory that can be used to calculate the Casimir force

between parallel superconducting boundaries we now turn to the problem of supercritical modes,

i.e. modes with λ > λcrit(z = 0). As was already outlined in section 3.5.7, these modes will be equal

to the vacuum critical wavelength at a distance ∆z from the boundaries, i.e. λ = λcrit(∆z) where

the critical wavelength of the vacuum due to Cooper pair tunneling λcrit(∆z) is calculated according

to eq.(3.33b). Since λ > λcrit(z) for z < ∆z the refractive index np + ikp is entirely imaginary in

the supercritical region (n = 0) (figure 3.11). For a purely imaginary refractive index, dissipationless

photon propagation is impossible and no zero-point modes exist.

The modes under consideration are subcritical for the fraction of the cavity volume with z > ∆z. For

each half-cavity with the boundary surface at z = 0 and positive-z pointing away from the boundary,

the region a/2 > z > ∆z(λ) is the region in which modes of wavelength λ can propagate freely.

Thus, the supercritical modes really see a cavity whose effective width is a function of wavelength.

Modes of sufficiently long wavelength may never reach the material cavity boundaries in order to be

reflected by them. Rather, the modes see a finite potential well of variable barrier height and width.

The variation of the phase velocity, which is essentially identical to the depth of the potential well,

is illustrated in figure 3.12. The plot is not to scale in order to allow for better visualization of the

effective variations in the phase velocity, which are usually confined to an extremely thin layer near
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Figure 3.12: Illustration of the variation of the real part of the phase velocity with cavity position (not

to scale). The cavity boundaries are located at the left and right hand extremities of the plot.

the boundary surface. The actual wave functions of the modes penetrating into the forbidden region

would be extremely difficult to calculate. However, considering the nature of Lifshitz theory, we

realize that the exact wave functions are not actually required. The only parameter of importance is

the height of the barrier (i.e. the magnitude of the decay constant [63]) at the boundary, which in the

context of Lifshitz theory is defined by the dielectric function. In this case the dielectric function of

the vacuum has to be taken as ε3(ξ,∆z) rather than ε3(ξ, 0). The value of ∆z may be computed from

equation (3.33b), using λ = λcrit(λL, z) and solving for z:

∆z(λ, λL) =

 lg
(

λ
2πλL

)
/β if λ is supercritical

0 if λ is subcritical
(3.44)

As mentioned above, the mode may not actually reach the material boundary of the cavity. The di-

electric constant for the cavity volume ε3(ξ, z) then has to be computed at z = ∆z from the boundary.

Since Lifshitz theory is formulated as an integral over the imaginary frequencies iξ we replace the

wavelength argument λ with the frequency argument c/ξ. We now have a complete expression for

the effective dielectric constant ε3(ξ, z) required for calculating the reflectivity of the boundaries with
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dielectric constant ε1,2(ξ):

ε3(ξ) = 1 +
(

c2

ξ2λ2
crit

e−2β∆z(ξ,λL)

)
(3.45)

The above expression (3.45) is the final expression we will use for evaluating (3.34) in the case of the

Casimir cavity with superconducting boundaries. The attentive reader will have realized, however,

that expression (3.45) is only valid at the points where the relevant vacuum mode is reflected, rather

than throughout the entire cavity. Therefor using eq.(3.45) to calculate the Casimir force according to

Lifshitz theory (eq. (3.34)) we underestimate the phase change of the vacuum modes traversing the

cavity by overestimating ε3. This problem will be addressed in the following section.

3.6.8 Effective Width of the Cavity

We will now deal with the problem of finding the correct effective cavity width aeff . This problem

consists of two parts: We have to implement the reduced width of the cavity in the case of supercriti-

cal modes, which cannot travel the entire width of the cavity (see section 3.6.7), and we have to find a

way to allow for the errors in phase change for modes traversing the cavity introduced by assuming

ε3(ξ) to be constant throughout the entire cavity (rather than employ ε3(ξ)).

The first part of the problem is easily solved. Supercritical modes approach the cavity boundaries to

within ∆z(ξ) according to eq.(3.44). Thus, the cavity width a has to be replaced with the frequency

dependent effective cavity width aeff (ξ):

aeff (ξ) =

 a if c/ξ is subcritical

a− 2∆z(ξ) if c/ξ is supercritical
(3.46)

where the factor of 2 has been introduced for supercritical modes since a layer of thickness ∆z(ξ) at

each end of the cavity is inaccessible to supercritical modes.

The remaining part of the problem is that, by treating ε3(ξ) as independent of z, we have not taken

the phase propagation across the cavity into account properly. As was outlined in section 3.6.3 the

dielectric function increases the effective cavity width by decreasing the effective wavelength. Since

we are using the local dielectric function ε3(ξ) according to equation (3.45) rather than the average

dielectric function ε3(ξ) according to eq. (3.43) we are overestimating the effective dielectric constant

significantly with respect to the effective wavelength of the mode ξ. However, we require ε3(ξ) in

order to properly calculate the reflective behaviour of the cavity boundaries.
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We use a geometric solution. Since the effect of ε3(ξ) is to alter the phase change of the mode ξ

traversing the cavity with respect to its vacuum value, we can also achieve the correct phase change

by manipulating the effective cavity width aeff (ξ) instead. From Lifshitz theory the relative change

Γ to the phase refractive index np scales linearly with the fourth root of the relative change to the

effective cavity width aeff . Since in the subcritical region the imaginary component of the refractive

index ikp = 0 we find ε3 = n2
p and we can write

F (a,Γε3) = F (Γ1/8a, ε3)

F (Γ−1/8a,Γε3) = F (a, ε3)
(3.47)

This relation can be easily tested by evaluating Lifshitz theory according to eq.(3.34) with ε1,2 = ∞

(perfectly reflecting boundaries) and substituting aeff with Γ ∈ Real ≥ 1 into eq.(3.34).

If we know the factor Γ by which we overestimate ε3 we can make geometric corrections to aeff in

order to compensate for this. Since we know that the correct value for ε3 with respect to calculating

the phase change for a mode traversing the cavity is given by ε3(ξ) (eq.(3.43)) we can find Γ by

dividing eq.(3.45) by (3.43). We obtain the equation for the compensation factor Γ:

Γ(ξ) =


(∫ a/2

∆z(ξ)
1 +

(
ξ2crit
ξ2 e−2βz

)
dz
)
/(a/2−∆z(ξ))

1 +
(
ξ2crit
ξ2 e−2β∆z(ξ)

)
 (3.48)

where the lower limit of the integral is given by ∆z rather than 0 in order to take into account the

cavity region in which the mode ξ is supercritical. The divisor a/2 in the numerator has been similarly

modified to a/2−∆z(ξ) in order to allow for the correct average to be calculated.

Using the correction factor Γ(ξ) from eq.(3.48) and the effective width aeff calculated in eq.(3.46) we

can now substitute the Γ-corrected effective width Γ(ξ)−1/8(a− 2∆z(ξ)) for the width d when using

the Lifshitz formula as outlined in equation (3.34). The geometric compensation factor Γ(ξ)1/8 and

the effective cavity width reduction 2∆z have been plotted in figure 3.13.

We now have a correct implementation of both the dielectric constant of the cavity volume ε3 (eq.(3.45))

and the Γ-corrected effective cavity width d = Γ(ξ)−1/8aeff (ξ) (eqs. (3.46) and (3.48)) for the cavity

with superconducting boundaries. However, there is still a problem with the implementation of the

dielectric function of the cavity boundaries ε1,2, which will be tackled in section 3.6.9, below.
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Figure 3.13: Dimensionless geometric compensation factor Γ1/8 (lift) and cavity width reduction 2∆z

(right) for aluminium as functions of wavelength. The dashed red line marks the transition from

subcritical to supercritical regime.

3.6.9 Effective Dielectric Function of the Cavity Boundaries

The dielectric function ε1,2 describes the reflectivity of the cavity boundaries as seen by the zero point

modes. However, supercritical modes do not actually penetrate all the way to the cavity boundaries,

but instead get reflected a distance ∆z from the boundary surface. For these modes we require ε1,2

to be equal to the local dielectric function of the vacuum ε3(ξ,∆z) according to equation (3.40), while

subcritical modes require the Drude theory implementation of ε1,2(ξ) according to eq.(3.41). The

correct implementation of ε1,2 can then be written as:

ε1,2(ξ) =

 1− ω2
p

(iξ)2+γ2 + i
ω2
pγ

(iξ)3+(iξ)γ2 if c/ξ is subcritical

1 +
(

c2

ξ2λ2
crit

e−2β∆z(ξ,λL)
)

if c/ξ is supercritical
(3.49)

Plotting the dielectric function ε1,2(ξ) according to equation (3.49) versus the imaginary frequency

magnitude ξ (figure 3.14) it is easy to spot the point on the frequency axis where the transition from

supercritical modes to subcritical modes occurs. For the case of supercritical modes, the boundary

dielectric function is given by the vacuum dielectric function (eq. (3.40)) while for subcritical modes

it is given for Drude theory (eq. (3.41)).

3.6.10 The Magnitude of the Casimir Effect in Superconducting Cavities

Following the mathematical discussion of the previous sections 3.5.6.2 to 3.6.9 we are now finally in a

position to quantitatively evaluate the Casimir effect for the cavity with superconducting boundaries.
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Figure 3.14: Effective dielectric function ε1,2(ξ) of superconducting Al cavity boundaries (solid black

line) vs. imaginary frequency magnitude ξ.. The predictions of the Drude model for Al boundaries

are given for comparison (dashed gray line). The graph is divided into the region of supercritical

modes (left of blue line) and sub critical modes (right of blue line).
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However, in order to correctly asses the reliability of the results we are about to present, one final

problem has to be addressed: In the previous section 3.6.9 we have assumed that supercritical modes

will not interact with the superconducting boundary at all, and that the only contribution to the

boundary dielectric function relevant for determining the cavity modes is given by the local value of

ε1,2(ξ) at the standoff distance ∆z. Effectively, we have treated the barrier width at ∆z as infinite. We

have established in section 3.5.6.2 that we are dealing with heavy photon layers of sub-Å thickness

inside the cavity. In section 3.5.3 we have established that decay depths are of order µm (figure 3.5).

Consequently, a fraction of the supercritical modes will penetrate the heavy photon layer and interact

with the boundary as well.

In the current implementation no supercritical mode will ever interact with the cavity boundaries,

even if ∆z approaches zero. Consider a supercritical mode with λ = 1.1λcrit. In this case the stand-

off distance ∆z ≈ 40pm, which is of order of an atomic radius. The model developed in section

3.6.9 to describe the dielectric function of the superconducting boundaries ε1,2(ξ) assumes that no

interaction at all can occur between supercritical modes and the boundaries, no matter how small

∆z becomes.

It seems physically dubious to specify the spatial position of the boundary to a precision better then

an atomic radius. For ∆z < λlocal we expect some interaction between the supercritical mode and

the boundary (see section 3.5.3). We speculate that effects like quantum uncertainty of the boundary

position will turn the transient step between the supercritical and subcritical regions illustrated in

figure 3.14 into a smoothly varying function. However, to precisely model the quantum level transi-

tion between a solid and the vacuum, along with all its optical implications, is beyond the scope of

this work.

In order to arrive at a good estimate of the effect the sn-transition may have on the Casimir effect (and

vice versa) we use two extreme approaches for estimating the dielectric function of the boundary. In

this way we put an upper and a lower limit on the possible values the heavy photon Casimir effect

may take.

The transient step approach discussed in section 3.6.9 will be used as one limit. This approach as-

sumes perfect isolation of supercritical modes from the cavity boundaries. Any supercritical mode

will have a dielectric function entirely due to the refractive index of the vacuum value (figure 3.14).

The other limit will be obtained conversely by assuming no isolation of the supercritical modes and

uses normal Drude theory according to equation (3.41) to determine the dielectric constant of the

cavity boundaries. In future we will refer to these two limits for ε1,2 as the total-isolation model and

the zero-isolation model respectively.

Plotting the magnitude of the Casimir effect it can be seen from figures 3.15 and 3.16 that the su-
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Figure 3.15: Casimir force in an Al cavity with superconducting boundaries. The upper boundary

of the shaded region is obtained from the normal Drude model for ε1,2, while the lower boundary is

obtained from the finite step model.

perconducting boundary Casimir effect is diminished compared to the normal state effect. This is

in qualitative agreement with the predictions made by Barton and Dombey [78] who predict a di-

minished Casimir effect for the case of globally massive electromagnetism (section 3.5.5). The upper

boundary of the relative change in Casimir cavity when the boundaries undergo sn-transition pre-

dicts changes of order a few %, which is consistent with the order of magnitude changes predicted

by Barton and Dombey [78] for the globally massive case. This boundary is generated by considering

our implemnentation of Lifshitz theory in the zero-isolation limit.

The magnitude of the predicted Casimir force varies with the critical wavelength λcrit = 2πλL on

the surface of the superconducting boundary. As can be seen from figure 3.17 a cross over exists in

the Casimir force between the total-isolation limit model and the zero-isolation limit model for ε1,2.

Most significantly, for λL > 32nm the zero-isolation model predicts a super conducting boundary

Casimir force FSC exceeding the Casimir force for normal state boundaries Fn, indicating an increase

in binding energy.

Changes in the ambient magnetic field and temperature will lead to changes in the London pene-

tration depth λL and consequently also in the critical wavelength λcrit [4]. Thus, experiments with
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Figure 3.16: Relative change in Casimir force in an Al cavity with superconducting boundaries com-

pared to the normal state boundary Casimir force. The upper boundary of the shaded region is

obtained from the normal Drude model for ε1,2, while the lower boundary is obtained from the finite

step model.
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Figure 3.17: Variation of Casimir force with London penetration depth λL for a 40nm cavity with Al

boundaries as predicted by Lifshitz theory. The black line represents the total-isolation limit, the blue

line represents the zero-isolation limit and the constant green line is the prediction of Lifshitz theory

for the case of normal state boundaries.

superconducting boundary Casimir cavities are much more susceptible to thermal and magnetic in-

terference than their normal state counter parts. It also seems to imply that precision control over the

local magnetic field might yield control over the Casimir attraction between superconducting plates.

An experiment demonstrating such a modulation of the Casimir force could provide a good window

on the physics of the massive-em vacuum. The dependence of λL, λcrit on ambient temperature and

magnetic field will be discussed in more detail in section 4.2.2.

3.6.10.1 Special Case: The Superconducting Cavity

Anticipating the discussion in Chapter 4 we now turn to the special case of a cavity filled with a

superconducting material. Generally, we would of course expect a superconducting material to be

entirely opaque, and consequently the system would not act as a Casimir cavity at all. However,

in Chapter 4 our discussion of possible applications of the optical properties of superconductors

prompts us to investigate the possibility of transparent superconducting materials, and a few good

candidate materials are indeed identified (see section 4.2.3). In this case the density of superconduct-

ing carrier density Ψ2 does not decay exponentially as described by equation (3.30) but rather stays

constant everywhere so that the dielectric function of the cavity volume ε3(ξ) is then given by
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ε(ξ, z) = 1 +
(
ξ2
crit

ξ2

)
(3.50)

where we have used equation (3.40) with z = 0. If the boundaries are a material in the normal state,

then the dielectric function of the boundaries ε1,2(ξ) can be found from Drude theory (eq.(3.41)).

Most of the candidate materials for achieving transparent superconductors are wide-band gap ox-

ides, and their optical behaviour is complicated even in the normal state. Rather than attempt to cre-

ate a speculative model on how the change to Proca electromagnetism changes the optical behaviour

of the transparent oxide we put an upper boundary on the effect by assuming the cavity volume to

be perfectly transparent over all wavelengths with the only contributions to the dielectric function

ε3(ξ) arising from heavy photon effects according to equation (3.50)). This assumption leads to a

good quality approximation of the Casimir effect since Indium Tin Oxide (ITO), which is currently

the prime candidate for a transparent superconductor, has high (> 95%) transparency from near-IR

to near-UV wavelengths [81]. The expected critical wavelength λcrit of ITO will be shown to be of

order λcrit,ITO ≈ 500nm (section 4.2.3), so that most of the heavy photon effects will be concentrated

in the transparent waveband of ITO. Since the error introduced by neglecting the optical response

of ITO away from the transparent waveband is systematic, approximately the same errors should

be introduced into the estimate of the superconducting and normal state Casimir effect, respectively.

Consequently this approach is expected to yield a good estimate of the change in Casimir effect as

the cavity undergoes sn-transition. A thorough introduction to the optical properties of transparent

conducting oxides is given by Edwards et al. [77].

We can now evaluate the difference in Casimir force between an ITO filled cavity with ITO in its

normal state and ITO in its superconducting state. We employ standard Lifshitz theory according to

eq.(3.34) for the normal state, with the dielectric function of the boundaries ε1,2(ξ) given by Drude

theory (eq. (3.41)) and treating the cavity volume as perfectly transparent (i.e. ε3 = 1). For the

superconducting state we replace the dielectric function of the cavity ε3 → ε3(ξ) = 1 +
(
ξ2crit
ξ2

)
ac-

cording to equation (3.50). The resulting difference between the normal state Casimir force Fn and

superconducting state Casimir force Fsc has been plotted in figure 3.18. Significantly, we find that for

small separations FSC > Fn. Integrating FSC we also find the cavity binding energy to be increased,

resulting in an increase in superconducting transition temperature of the cavity material.

3.6.10.2 Cavity Binding Energies

Lifshitz theory directly yields the Casimir force between two parallel reflecting plates (section 3.6.1)

from the dielectric functions of the reflectors and the dielectric function of the cavity volume, ε1,2(ξ)
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Figure 3.18: Relative variation of Casimir force with cavity width for a Al boundary cavity filled with

a perfectly transparent superconductor.

and ε3(ξ) respectively. Using the mathematical forms for ε1,2(ξ), ε3(ξ) and the corrections Γ(ξ)1/8

discussed in sections 3.6.2 - 3.6.9 we can calculate the changes to the Casimir force for the case of

superconducting boundaries by numerically integrating equation (3.34).

In order to achieve an estimate of the change to the superconducting critical field Hc (and conse-

quently to the energy gap ∆g) according to equation (3.8) we have to estimate the change to the

Casimir potential energy ∆Ubind(a) (section 3.2). Since the Casimir force per unit area F (a) was cal-

culated from the potential energy U(a) as F (a) = ∂U(a)/∂a (eq. (3.3)) we can conversely find the

potential energy per unit area of superconducting boundary cavity USC(a) by integrating the rele-

vant Casimir force FSC(a) over a. This is necessary since, as opposed to the analytical solution for

the perfectly reflecting cavity, Lifshitz theory does not provide a mechanism for directly calculating

USC(a). We then find the Casimir energy per unit area USC(a) according to

USC(a) =
∫ ∞
a

FSC(a) (3.51)

where a is the cavity separation for which the potential energy per unit area USC is to be calculated

and FSC(a) is the Casimir force per unit area according to the Lifshitz theory expression (3.34), us-

ing ε3 according to equation (3.40), ε1,2 according to equation (3.49) and cavity width d → deff =

aΓ−1/8(ξ), with a the physical plate separation. The numerical integration of equation (3.34) in order

to predict the Casimir force FSC for the cavity with superconducting boundaries is already compu-

tationally intensive, and numerical integration of the obtained result FSC is very time consuming.
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∆ULif,t ∆ULif,0 ∆USC

λL = 16nm

a = 10nm
−32.8µJm−2 −5.7µJm−2 3.55µJm−2

λL = 51nm

a = 10nm
−88.6µJm−2 0.3µJm−2

Table 3.2: Variation of Casimir energy U per unit boundary area of the superconducting state cavity

compared to normal state Casimir energy Un computed as (U − Un) for a cavity with aluminium

boundaries. Consequently a negative value indicates a decrease in binding energy, while a positive

value indicates an increase. The subscripts Lif, t, Lif, 0 and SC denote the results for the total-

isolation limit, the zero-isolation limit and the special case of the transparent superconductor cavity

respectively.

Using a 2.2Ghz dual core processor, the commercial numerical integration algorithms provided with

Mathematica can take up to a couple of hours to compute a single data point. For this reason, only a

few selected configurations have been computed. Some sample points are given in table 3.6.10.2, be-

low. A full systematic exploration of the entire parameter space a, β, λL within a reasonable amount

of time is beyond the computational resources available to the author.

In order to estimate the change we expect to the superconducting critical field Hc according to

equation (3.8) we require an estimate of the condensate energy according to equation (1.10). Us-

ing the Aluminium critical field Hc ≈ 101G [31] we find the specific condensate energy for Al to be

εAL ≈ 40Jm−3. In order to quantitatively estimate the influence of the massive electromagnetism

Casimir effect on the outcome of the experiments proposed by Bimonte et al. [10] [73] [74] we con-

sider a Al film of thickness D = 10nm. We find the corresponding condensate energy per unit area

E = 4× 10−8Jm−2.

We estimate the change to the critical field according to equation (3.8) as δHc
Hc
≈ ∆Ubind

2(2E) where we

have introduced an additional factor of 2 in front of the condensate energy, since our calculations are

for the case of a double cavity with superconducting boundaries, rather than for a single Al film as

proposed in the latest version of Bimonte’s experiment [74]. By using values for ∆Ubind according to

table 3.6.10.2 we can estimate the changes in Hc.

Considering a cavity of width awith aluminium boundaries it can be seen from table 3.6.10.2 that our

predictions for the change in Casimir energy ∆U(a) are far too large to be realistic. The entire range

of values between the total-isolation and zero-isolation limits we obtained for ∆U(a) is several times

larger than the condensate energy per unit area E = 4×10−7Jm−2. Since the binding energy change

∆U is negative for the cavity with a = 10nm, λL = 16nm the Aluminium boundaries of the cavity
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would never go superconducting since their critical field would be depressed toHc = 0. One possible

reason for this problem is that we have assumed the bulk value of the London penetration depth λL.

According to Nishio [82] the in-plane London penetration depth ΛL for thin superconducting films

can be calculated as

ΛL =
2λ2

L

d
(3.52)

where d < λL is the film thickness. For an Aluminium film with d = 10nm, λL = 16nm we obtain

ΛL = 51nm. The estimated change in binding energy ∆U predicted for an Aluminium cavity with

d = 10nm,Λ = 51nm is given by row 2 in table 3.6.10.2. Using equation (3.8) to obtain the relative

critical field shift δHc/Hc for the total isolation limit and the zero-isolation limit we find the total

range of possible field shifts δHc/Hc ∈ [−1 < +0.1875] (−1 is the maximum possible negative shift

since it indicates a critical field Hc = 0). While this is quite a large range, our predicted range of field

shifts includes ∆U = 0, indicating that it is reconcilable with conventional Lifshitz theory, even if no

critical field shift δHc is detected.

3.6.10.3 Convergence of the Model

So far our efforts to create a model of the superconducting boundary Casimir cavity appear quite

successful. We have produced a mathematical description of it which can be implemented and eval-

uated by means of Lifshitz theory, and sign and magnitude of the corrections predicted agree approx-

imately with the predictions made by Barton and Dombey [78] regarding the Casimir effect in the

presence of globally massive electromagnetism (compare figures 3.15 and 3.6). Still, it is difficult to

test our predictions directly, or to verify the correct operation of the numerical integration techniques

applied, since these are the only tools available to achieve a result in the first place.

A good test for the quality of our model is to see if it converges with the predictions of conventional

Lifshitz theory as the heavy photon effects are reduced. Our entire model is based on the interactions

of the zero point modes with the thin heavy photon layer near the cavity boundary. If the decay

constant β → ∞ the width of this layer ∆z → 0. Thus, for the case of a large decay constant β

or a small photon mass mγ (= large London penetration depth λL) the predictions by the model

for the Casimir force in the cavity with superconducting boundaries have to reduce to those made

by conventional Lifshitz theory. As can be seen from figure 3.19, as β increases the ratio of the

superconducting state Casimir force FSC to the normal state Casimir force Fn approaches Fsc/Fn =

1. This convergence gives us a good degree of confidence in the results obtained so far. However,

convergence only occurs if we specify a minimum stand-off distance zmin, which is effectively the
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precision limit to which the boundary position can be defined. If ∆z < zmin the zero-isolation limit

applies, if ∆z > zmin the total isolation model applies. If no such minimum stand-off distance is

defined, then supercritical modes will remain perfectly isolated from the boundaries for arbitrarily

high values of β, and no convergence occurs. The minimum stand-off distance used to generate

figure 3.19 is zmin = 1pm, one order of magnitude smaller than an atomic radius. Furthermore, it can

be seen from figure 3.20 that for large λL the predictions made by our model for the Casimir cavity

with superconducting boundaries reduce to those of conventional Lifshitz theory. Both figures are

plotted for the total-isolation limit.

The extremely sharp transition which can be seen in figure 3.20 is a result of modes with wavelengths

λ ≈ λcrit being excluded from the cavity when λcrit = a (where a is the cavity width). This indicates

that our model successfully accounts for the transition to Maxwellian behaviour for strongly sub-

critical modes (i.e. λ << λcrit). In the full superconducting boundary implementation of the total-

isolation limit our model succeeds in handling the very short wavelength modes as unperturbed

vacuum modes and produces predictions in agreement with conventional Lifshitz theory. Since we

have made no effort to artificially introduce such a transition to Maxwellian electromagnetism for

strongly subcritical modes, this behaviour is very encouraging.

The convergence condition for a minimum stand-off distance zmin to exist serves to reinforce our

opinion that some interaction between the boundaries and supercritical modes has to be taken into

account. The convergence of our model’s predictions with those of conventional Lifshitz theory both

for large β and large λL increases our confidence in the model.

3.6.10.4 Remaining Issues and Next Steps

While the model presented in the above sections for determining the Casimir effect in a cavity with

superconducting boundaries appears to yield physically reasonable results, it is a simplification of a

real world system. In this section we will give a quick outline of the problems attached to a practical

detection of the effect, as well as suggesting areas in which the theory requires refinement. At this

point it is important to point out again that the corrections we calculated are entirely due to heavy

photon effects inside the cavity. We have not considered any changes in boundary reflectivity itself,

which were the basis for Bimonte’s predictions [10]. A first step towards a better model might than

be to include the changes in boundary reflectivity reported by Glover [71] in our model. The exper-

imental data reported by Glover [71] are entirely over the long wavelength regime. However, we

believe that heavy photon effects might also have an effect on the boundary reflectivity for wave-

lengths with λ ≈ λcrit. Rather than just preventing supercritical modes from reaching the boundary

(section 3.6.7) the diverging refractive index near λcrit may also increase the reflectivity for subcriti-
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Figure 3.19: Variation of the Casimir force according to the total-isolation limit model with decay

constant β, assuming a minimum stand-off distance ∆zmin below which isolation breaks down. The

dashed line at FSC/Fnormal = 1 is provided as a guide to the eye.

Figure 3.20: Relative variation of the Casimir force with London penetration depth λL for a cavity

with Al boundaries as ratio of superconducting boundary force Fsc to normal state boundary force

Fnormal for a cavity of width 40 nm. The predictions of FSC sharply reduce to those of conventional

Lifshitz theory for large λcrit > 40nm since modes with wavelengths λ ≈ λcrit are excluded from the

cavity (we recall λcrit = 2πλL).
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cal wavelengths. However, a detailed mathematical description of this effect requires a theory of the

influence a non-zero photon mass has on the radiation-matter interaction.

One of the main issues is that the tunneling of Cooper pairs into the cavity volume, which creates the

thin layer of massive-em responsible for the changes in the Casimir effect in the first place, also re-

sults in a decrease in Cooper pair density inside the boundary. This decrease in Cooper pair density,

in turn, reduces the London penetration depth λL, and consequently λcrit. This ”leaking” of Cooper

pairs across an interface is described in most text books dealing with superconductivity or supercon-

ducting devices and is generally known as the proximity effect [4][29][31]. This reduction in λL near

the boundary becomes more important as β decreases. Since the London penetration depth is gen-

erally sensitive to changes in ambient temperature and magnetic field, these dependencies (which

will be discussed in more detail in chapter 4) also need to be taken into account. The magnetic field

dependence of the London penetration depth λL is especially relevant since the method employed

by Bimonte et al. [74] to detect the shift in condensate energy relies on measuring the critical tem-

perature Tc of the superconducting Al boundary at increasing ambient magnetic field values H . It

will become apparent in section 4.2.2 that an increased magnetic field Hc inside the cavity leads to a

decrease in λL and consequently in λcrit. Thus, a variation in ambient magnetic field may actually

alter the magnitude of the change to the binding energy ∆Ubind significantly.

We have already seen in section 3.6.10.2 that the magnitude of the London penetration length λL has

a strong influence on the magnitude of the change in binding energy ∆U . We have estimated the

effective London penetration depth as the in-film penetration depth Λ according to equation (3.52).

This still assumes that Λ is constant over all allowed modes. If Λ is anisotropic this is equivalent to

assuming that the wave vectors of all allowed zero point modes are parallel to each other, a clearly

erroneous assumption since the spectrum of wave vectors is quantized only in the z-direction, normal

to the cavity boundaries [62]. In a precise implementation Λ then has to be replaced by a second rand

tensor Λij , so that the photon mass effectively becomes a function of the direction of the wave vector
~̂
k.

Another potential problem can be found in the derivation of Lifshitz theory. The derivation of Lif-

shitz theory for the Casimir attraction of the plates automatically cancels any contributions which

are independent of boundary separation [62]. This is generally a very reasonable simplification,

since any observable effects in the normal state cavity are caused by changes in boundary separa-

tion. However, if the magnitude of these separation-independent contributions changes with the

sn-transition of the boundaries we could potentially have overlooked quite a significant contribution

to the energy balance of the sn-transition.

Finally, the matter of the minimum stand-off distance zmin and the interaction strength of supercrit-
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ical modes with the boundaries remains unresolved. It arises because Lifshitz theory only accepts

a single boundary dielectric constant as an argument (section 3.6.1). In principle two possibilities

exist two solve this problem. One can either re-derive Lifshitz theory from scratch, for a spatially

varying dielectric function, or one can try to determine all the allowed modes by numerical solu-

tion of the Klein-Gordon equation inside the cavity. The former approach would require a significant

mathematical research effort, and is beyond the expertise of the author, while the latter requires com-

putational resources of a magnitude not available to the author at the time of writing, since a large

number of modes would have to be determined.

3.6.11 Conclusions regarding the Casimir Effect in Cavities with Superconduct-

ing Boundaries

After all the mathematical effort of this Chapter we have now reached the end point of an inves-

tigation which began with the question of whether the performance of superconducting detectors

may be influenced by quantum mechanical vacuum fluctuations. The question as to the existence

and strength of such a coupling mechanism has already been partially answered in section 3.4: A

coupling mechanism exists, and the coupling should be detectable in principle, but it is likely to be

very small.

However, our wish to find a quantitative estimate of this coupling has lead us to consider the field

of non-zero photon rest mass electromagnetism and we now have a closed and self-consistent model

of the Casimir effect for superconducting cavities. This is a significant result in itself, entirely inde-

pendently of the question that motivated its derivation in the first place. To the best of the author’s

knowledge, this is the first systematic quantitative analysis of the massive-em vacuum energy of a

Casimir cavity with superconducting boundaries. If the effect can be demonstrated experimentally

whole new avenues of research become available. For example, experimental data about the varia-

tion of the superconducting Casimir force with the decay constant β could provide information about

the magnitude of the minimum stand-off distance zmin (section 3.6.10), providing information about

the transition between macroscopic systems (the boundary) and quantum mechanical systems (the

precision to which the boundary width can be defined from the point of view of a zero point mode).

The results presented in section 3.6.10 for the change in cavity energy are particularly interesting in

the light of the experiments currently carried out by Bimonte et al. [10]. As was discussed in section

3.2 Bimonte and his group proposed a mechanism by which a change in reflectivity of the cavity

boundaries undergoing sn-transition might change the cavity binding energy, and in this way lead

to an increase in the superconducting critical fieldHc. The original experiment proposed by Bimonte

has been refined a number of times [73] [74] but at time of writing no unambiguous result has been
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obtained [74].

The heavy photon effects discussed in this chapter appear to reduce the Casimir binding energy

of the cavity over almost the entire realistic parameter space (section 3.6.10). Thus, the changes

due to massive photon effects oppose the changes introduced by an increased boundary reflectivity

as assumed by Bimonte [10]. Independently of which effect is dominant, the overall measurable

change to the superconducting energy gap ∆g , and consequently to the critical field Hc and critical

temperature Tc, is likely to be reduced compared to the change predicted by either the heavy photon

effect or the increased boundary reflectivity mechanism individually. This could be part of the reason

for the continued difficulties with detecting this change in condensate energy predicted by Bimonte

et al. [10]. A better estimate is needed of the quantitative corrections required when calculating the

Casimir binding energy of real world cavities if a meaningful quantitative description of the change

in condensate energy of any cavity system is to be attempted (see section 3.6.10.4).

While no unambiguous proof of the critical field shift due to zero point modes has been obtained

at this point, Bimonte et al have demonstrated the basic principle by applying a microwave and

radio frequency (RF) radiation field to a Casimir cavity with one Al boundary and to a free Al film

and measured the respective critical fields and transition temperatures [74]. This setup effectively

demonstrates an amplified version of the zero-point field shift predicted. Since heavy photon effects

are most significant near λcrit (which is generally in the optical or UV band, see previous discussion),

they would not have been detected in this demonstration-of-principle setup. As was established in

section 3.6.10.2, for the case of thin films the London penetration depth for aluminium is in the

interval [16nm, 51nm] (eq.(3.52)), yielding a critical wavelength λcrit in the interval [100nm, 320nm],

significantly shorter than the microwave and RF-wavelengths in Bimonte’s test field [10].

As can be seen from the results presented in section 3.6.10, the dependencies of the Casimir effect on

system parameters such as the London penetration length λL or the decay constant β are strongly

non-linear. However, limited computational resources and the amount of time even a single evalua-

tion of the Lifshitz theory for this complex system can take are currently preventing the author from

fully exploring the entire parameter space.

Of particular interest in this regard appear systems where the Casimir cavity is filled with a trans-

parent superconductor (section 3.6.10.1). In this case the Casimir attraction is increased by heavy

photon effects. In principle, for this cavity type longitudinally polarized modes have to be taken into

account according to equation (3.29b). However, these will also serve to increase the binding energy.

Such a cavity might significantly increase the superconducting energy gap ∆g , along with the critical

temperature Tc and critical field Hc, of the transparent superconducting material. Periodic stacks

alternating between a transparent superconducting material and a reflector could have significantly
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increased critical temperatures.

Alas, a precise prediction of the binding energy in such a stack is a major theoretical and mathemat-

ical undertaking since, for the thin films and small gaps which yield the highest increase in binding

energy, neighboring cavities are interacting. Still, despite such difficulties in making quantitative

predictions about such heavy Casimir stacks, we cannot help but wonder whether a link exists be-

tween the ability of the Casimir effect to boost the critical temperature of a superconductor and high

temperature superconductivity. After all, current high-Tc compounds essentially consist of thin (of

order tens of Å) layers of copper oxide separated by equally thin layers of metal, effectively forming

a stack of Casimir cavities. At this point any such connection is highly speculative, but the potential

implications are significant enough that we still consider it an important point.
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Chapter 4

Heavy Photon Optics

In chapter 3 our desire to understand the influence of the quantum vacuum on the operation of

practical superconducting detectors lead us to investigate the nature of photon propagation in su-

perconductors. In the course of this research we found it necessary to consider photons which had

acquired a non-zero rest mass due to the Higgs mechanism (section 3.5), and we were forced to re-

place Maxwell’s equations with the Proca equations when evaluating problems in electromagnetism

(eqs. (3.12a)-(3.12d)). We also found that the velocity v of photons propagating inside a supercon-

ductor is smaller than the vacuum velocity of light c. In fact it appears that v depends strongly on

the photon vacuum wavelength λ, an effect known as dispersion.

The dispersion D of a material is quantified as the derivative of the refractive index η w.r.t. photon

wavelength λ. The magnitude of the dispersion is what governs the theoretical maximum spectral

resolving power of dispersive optics of any kind. In the following sections we show that the disper-

sion D of superconducting materials can be expected to diverge near the critical wavelength λcrit

(eq. (3.16)). The material dependent critical wavelength λcrit = 2πλL is the wavelength at which the

photon velocity goes to zero. We also show how this divergence of D can be exploited along with

the high refractive index η in order to create a new kind of optical element of unprecedented power

and flexibility.

This new kind of optical element relies on the non-zero photon rest mass as the basic concept. The

fact that the photon rest mass is independent of photon frequency or wavelength (eq.(3.11)) while the

photon energy is unchanged from its vacuum value (i.e. the spectral energy density is unchanged)

leads to the variation of photon velocity with photon wavelength (eq.(3.14)). Based on the working

principle we have decided to call this new kind of optics ”Heavy Photon Optics” (HPO), referring to

the non-zero photon rest mass as the key ingredient of the technology.
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In this way we will have closed the loop, having digressed from the practical field of superconducting

detectors into the theoretical field of vacuum fluctuations and the gauge symmetry structure of the

vacuum, and having returned to the field of practical applications with the design for a new optics

technology.

4.1 Optical Parameters of HPO Elements

In this section we begin our discussion of HPO technology by establishing the macroscopic optical

parameters, such as refractive index η and Dispersion D, of HPO elements. In the introduction of

this chapter the dispersion D was introduced as the wavelength derivative of the refractive index

η, which itself depends on the electromagnetic wave velocity v. While as a casual definition for

the purpose of qualitative discussions this may suffice, it is necessary to discriminate between the

phase velocity vp and group velocity vg of the wave, and also between their respective refractive

indices ηp, ηg and dispersions Dp, Dg . The quantitative expressions governing these optical param-

eters will be introduced in this section along with their dependencies on experimental parameters.

The expressions describing the HPO refractive indices then allow for the determination of the optical

characteristics of superconductor-vacuum boundaries, yielding quantitative expressions for the co-

efficients of reflection and refraction as functions of various experimental parameters. In this way we

will have assembled the set of equations necessary to model the optical behavior of a perfect heavy

photon optics element.

In the course of the entire discussion one key assumption is that electromagnetic radiation can prop-

agate freely inside the superconductor. For most conventional superconducting materials like alu-

minium this is obviously untrue. However, it turns out that superconductor materials transparent

to electromagnetic radiation do exist, and these will be discussed in more detail in section 4.2.3. The

question which remains is whether these materials retain their optical transparency in the super-

conducting state. In this context of finding a suitable material from which to fashion practical HPO

devices the various dependencies of the optical parameters discussed in this section are of great

importance, since they are necessary to determine the required material parameters.

In general HPO devices are based on the fact that the phase refractive index ηp and phase disper-

sion Dp of a transparent superconductor diverge near a temperature dependent critical wavelength

λcrit(T ) = 2πλL(T ) where λL(0) is dependent on the superconductor material. The critical wave-

length λcrit introduced in equation (3.16) is actually λcrit(0), and the temperature dependence stems

from the temperature dependence of the London penetration depth λL(T ) which is discussed in

more detail in section 4.2.2. The zero temperature value of λcrit(T ) is one of the most important
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parameters which determines the potential applications of any candidate material.

Unless specifically stated otherwise, when considering the optical parameters of any HPO element

we will assume that the only relevant optical mechanisms are those resulting from the non-zero

photon rest mass. A full optical treatment considering the dielectric and metallic optical response

in combination with the heavy photon response of real materials is beyond the scope of this work.

While a real device may be subject to both HPO and conventional optical mechanisms, the conven-

tional material response in the vicinity of the active wavebands considered here is so small that they

can be safely neglected for the purpose of discussing the basic effect. Thus, despite those simplifica-

tions it is still possible to make meaningful predictions about practical devices, since dispersions in

normal materials are shown in section 4.1.1 to be more than three orders of magnitude smaller than

those of HPO devices near their critical wavebands. While the transparent superconducting material

may contribute to the effective refractive index, any constant refractive index effects introduced by

the substrate material do not fundamentally change any of the predictions regarding prism or etalon

performance made in the following sections. Currently, the most promising candidate material for

the creation of practical HPO devices is Indium Tin Oxide (ITO), which will be discussed in more de-

tail in section 4.2.3. The critical wavelength of ITO will be shown to fall into the material’s window

of transparency, located in the optical band, where the material refractive index η is approximately

constant at n ≈ 2, and absorbtion effects in optimized films are small (< 1%) [81]. As such the fol-

lowing discussion of potential practical devices does not require a complete combined theory taking

into account both normal-material and HPO effects.

4.1.1 Phase Velocity, Phase Refractive Index and Phase Dispersion

The phase velocity vp describes the speed at which changes of phase of a given frequency component

of any wave propagate. Considering the plane wave equation u = aeip the phase velocity is the speed

with which changes in the phase p propagate.

The phase velocity of any photon of frequency ω and wave vector k is defined as:

vp ≡
ω

k
(4.1)

It is possible to find an expression for vp as a function of λ from expression(4.1)[75], and consequently

determine the refractive index ηp = 1/vp. Since the HPO applications investigated in this chapter are

all based around transmission optics the discussion will focus entirely on subcritical wavelengths,

where the HPO induced extinction coefficient k = 0. This allows us to use ηp = np = 1/vp throughout

the rest of this chapter. The resulting macroscopic optical parameters (phase velocity, phase refractive

index and phase dispersion) can then be found to be:
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vp = c

(
1− λ2

4π2λ2
L

)−1/2

(4.2a)

np =
(

1− λ2

4π2λ2
L

)1/2

(4.2b)

Dp = − λ

4π2λ2
L

(
1− λ2

4π2λ2
L

)−1/2

(4.2c)

Any variation of vp with λ will lead to variations of the phase refractive index np (eq.(4.2b)). The

magnitude of the variation is quantified by the phase dispersion Dp (eq. (4.2c)). Since the angle of

refraction of an electromagnetic wave depends on np, different frequency components of the wave

will undergo a different angle of refraction when incident on the material, leading to the spatial

separation of the spectral components of the incident light. Thus, phase dispersion is responsible

for the prism effect, as discussed in section 4.3.1. Because of this, phase dispersion is also known as

”chromatic dispersion”.

It can be seen from equations (4.2a) to (4.2c) how the critical wavelength λcrit arises from the heavy

photon dispersion: as the ratio in the bracket approaches λ2

4π2λ2
L

= 1, the bracket goes to zero and

vp and Dp diverge to infinity. Thus the waveband of interest when trying to exploit the diverging

refractive index and dispersion of a HPO element is near the critical wavelength λcrit given by:

λcrit = 2πλL (4.3)

Since λcrit ∝ λL it can be varied by adjusting any parameters to which λL is susceptible (i.e. zero-

temperature carrier concentration n0
s, magnetic field H and temperature T , see section 4.2.2).

Especially in older optics textbooks one often finds calculations referring to the refractive index of

a material with little or no indication of whether the phase or group refractive index are required.

When the refractive index of a material is quoted in relation with conventional optical elements such

as prisms or lenses and no indication is given as to whether the phase or group refractive index

is meant, it is usually safe to assume that the required parameter is the phase refractive index. A

comparison between normal material refractive indices and a HPO element of critical wavelength

λcrit ≈ 662nm has been plotted in figure 4.1.

It can be seen from figure 4.1 that far from λcrit the refractive index of an HPO element is a slowly

varying, well behaved function of λ. However, as λ → λcrit the function diverges because the ratio
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Figure 4.1: Refractive index of prism glass (F2 Schott Glass as offered by CVI Laser [13]) and a HPO

element made of indium tin oxide with λcrit = 667nm near the critical wavelength are plotted as a

function of vacuum wavelength of the incident radiation
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λ
4π2λL

→ 1 and the sum inside the root on the right hand side of (4.2a) goes to zero. It is this diver-

gence from which hypothetical HPO elements derive some extraordinary characteristics, allowing

for ultra-high resolution dispersion prisms and etalons which will be discussed in section 4.3.

The fact that the phase velocity is slowly varying over the entire electromagnetic spectrum except

for a narrow active waveband near the critical wavelength means that it is possible to employ HPO

technology to create optics which have a strong influence on a selected waveband while allowing

other radiation to pass. Wavelengths above λcrit can be shown to decay exponentially inside a HPO

element but their characteristic decay depths are sufficiently large to allow them to pass thin film

HPO devices (section 3.5.3).

4.1.2 Group Velocity, Group Refractive Index and Group Dispersion

The group velocity vg describes the velocity with which changes in the amplitude of the wave propa-

gate. Again considering the plane wave equation u = aeip, we find the group velocity to be the speed

with which changes in the amplitude parameter a propagate. Since the energy of any oscillation de-

pends directly on the oscillation amplitude the group velocity is also the speed at which individual

photons are transmitted, and the speed at which information and energy are conveyed.

Consider a pulse of electromagnetic radiation made up of many different frequency components (i.e.

a non-monochromatic pulse). For the purpose of this discussion we assume the pulse is ”white”, i.e.

the spectral energy density is constant over all wavelengths within the bandwidth of the pulse (the

pulse cannot contain components of half-wavelength bigger than the pulse length). Any variations

in vg with λ will cause the different wavelength components of the pulse to travel at different veloc-

ities, causing the pulse shape to change. The pulse will begin to elongate, and the deformation of

the pulse will increase with distance traveled. The strength of the effect is quantized by the group

dispersion Dg . If Dg < 0 the high frequency components of any pulse will travel slower than the low

frequency components. In this case any receiver will detect a pulse whose frequency is continuously

rising with time, an effect called ”up-chirping”. Conversely, if Dg > 0 the frequency will decrease

continuously while the pulse is received (”down-chirping”). The group dispersion inside a super-

conductor diverges to +∞ at λ = λcrit. Thus, electromagnetic signals inside a superconductor will

be down-chirped.

Since the group velocity governs the time delay between sending and receiving a photon group, the

dispersion Dg is sometimes referred to as ”group delay dispersion parameter” in the literature.
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Figure 4.2: Group velocity vg (left) and group dispersion (right) as functions of normalized wave-

length λ/λcrit for a hypothetical HPO element.

The group velocity of any photon of frequency ω and wave vector k is defined as:

vg ≡
dω

dk
(4.4)

Again employing the Proca equations to find the photonic group velocity vg inside any HPO element

[75] we obtain the following expressions for the group velocity dependent optical parameters (Group

refractive index ng and group dispersion Dg):

vg = c

(
1− λ2

4π2λ2
L

)1/2

(4.5a)

ng =
(

1− λ2

4π2λ2
L

)−1/2

(4.5b)

Dg =
λ

4π2λ2
L

(
1− λ2

4π2λ2
L

)−3/2

(4.5c)

The group velocity vg and group dispersion Dg of a HPO element have been plotted in figure 4.2 as

functions of normalized wavelength λ/λcrit. Upon inspection of figure 4.2 we see that the group ve-

locity vg → 0 as λ→ λcrit. Since the group velocity vg is actually the velocity of photon propagation

this implies that photons are slowed down inside a HPO element, coming to a complete standstill at

λ = λcrit.
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4.1.3 Reflection and Reflectance of HPO Elements

One of the controlling parameters for most types of potentially interesting HPO application is the

behavior of light incident on the superconductor-normal (or superconductor-vacuum) boundary. In-

dependently of the nature of the application, the light has to penetrate the boundary if HPO mech-

anisms are to be exploited, since the ultrahigh dispersion and refractive index specific to HPO ele-

ments require the light to be inside the region of massive-em.

At normal incidence, the fraction of light reflected can be calculated as:

RI =
[
n2 − n1

n2 + n1

]2

(4.6)

where RI is the coefficient of reflection (fraction of incident energy reflected), also known as reflec-

tivity. In the absence of absorbtion, conservation of energy dictates that the coefficient of reflection

RI and the coefficient of transmission TI satisfyRI +TI = 1. The parameter n1 is the refractive index

of the medium on the incidence side of the boundary and n2 is the refractive index of the medium

on the transmission side of the boundary [76]. We have used the subscript I in order to prevent

confusion of the transmission coefficient TI with the temperature T .

Expression (4.6) is derived from Fresnel’s equations [83] and valid at normal incidence. Considering

the two refractive indices np, ng available, we find the correct refractive index to use with equation

(4.6) to be the phase refractive index np. The reason for this is that we are concerned with wave

propagation rather than individual photons. For the same reason, whenever considering interference

effects it is also the phase velocity vp and it’s derived values ηp, Dp that have to be used.

Considering figure 4.3 we see that the total amount of light reflected at normal incidence from a

vacuum-HPO element boundary depends strongly the correlation between wavelength of the inci-

dent light and the critical frequency of the HPO element. It can be seen from figure 4.3 that the

reflectivity RI is generally small (at the sub-percent level) far from the critical wavelength while it

rises rapidly as λ → λcrit. The critical wavelength λcrit depends linearly on the London penetra-

tion depth λL and consequently on the temperature, magnetic field and material parameters of the

superconductor. The reflectivity RI rises steeply near λcrit, and approaches unity as λ→ λcrit. Con-

sequently, some kinds of HPO devices may encounter problems when it comes to actually injecting

light into the device. Especially a prism which is to be operated at wavelengths λ very near λcrit

may suffer from the high reflectivity. For many thin film devices this problem can be eliminated by

exploiting thin film interference effects. The thin film transmittance of HPO devices is discussed in

section 4.1.3 and the reflectivity problem of a prism is addressed in section 4.3.1. The dependencies

of λcrit (and consequently of the refractive index ng and reflectivityRI ) are discussed in section 4.2.2.
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Figure 4.3: Variation of the normal incidence reflectivity of a HPO element with incident wavelength

given as a fraction of the critical wavelength.
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Figure 4.4: Reflectance from thin films: Light transmitted into the film at angle δ has a chance of

leaving the film at the angle of reflection δ after multiple internal reflections.

One crucial aspect of the reflection behavior has so far been left unconsidered: The good candidate

materials available for the creation of practical HPO elements require the HPO elements to be de-

posited as thin films rather than bulk devices. Reflection from thin films is of a different degree of

complexity, even at normal incidence, and interference effects have to be considered.

In the thin film case light is reflected not only from the top surface of the film, but a fraction of RI

of the light transmitted through the top boundary will also be reflected from the bottom boundary,

as illustrated in figure 4.4. By multiple internal reflections, and still assuming R + T = 1 (i.e. no

absorbtion), the total fraction of reflected energy can be calculated by the converging series:

r = RI + T 2
I RI + T 2

I R
3
I + T 2

I R
5
I + T 2

I R
7
I + ... (4.7)

where RI and TI are the coefficients of reflection and transmission respectively. The parameter r is

called the ”reflectance” of the film. From now on the term ”reflectivity” will be used to refer to the

fraction of light reflected from a single boundary only whereas ”reflectance” will refer to the fraction

of energy reflected from a thin film system.

The physics of thin film reflection is yet more complicated then indicated by the previous paragraph

and equation (4.7). The first order reflected beam interferes with higher order reflected beams, caus-

ing the reflectance of the system to oscillate strongly with incident wavelength and physical film
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parameters.

The reflectance interference pattern and its applications will be discussed in more detail in section

4.2. While the reflectance behavior at non-normal incidence is important to practical devices it is

merely a question of using the full Fresnel treatment as outlined in Grant and Phillips [83] in place of

equation (4.6). As such this problem is mostly an algebraic one and separate from the physics under

consideration. Therefor non-normal incidence will not be considered in the following discussion,

since it does not add to the scientific content discussed.

4.2 Optical Properties of a Thin Film Heavy Photon Optics Ele-

ment

In the previous section the basic optical parameters of bulk HPO elements and their boundaries have

been established. However, material constraints currently seem to limit HPO elements to thin film

devices (see section 4.2.3). The aim of this section is to find quantitative expressions that will allow

determination of the optical parameters of the system from information about the superconducting

state of the system, taking into account thin film effects. As such, by the end of this section we will

understand the theory of HPO devices well enough to draft some example applications and make

quantitative estimates of their working parameters.

4.2.1 Thin Film Reflectance and Interference

Interference itself is not a HPO specific feature. However, it is of great importance when considering

the transmission and reflection characteristics of any thin film device, and as such a working knowl-

edge of thin film interference is important for a true understanding of the working mechanisms

behind practical HPO devices.

In thin film optical devices interference is important, since, as illustrated in fig.4.4, any light entering

the film will be reflected a number of times before being transmitted and the transmitted beam may

interfere with itself [76]. The light may then be focused onto a screen, producing an interference

pattern.

Such an interferometer is called a Fabry-Perot interferometer, or an etalon. Technically an etalon

is a thin transparent film with partially reflective surfaces, while a cavity with reflecting walls is a

Fabry-Perot interferometer, but the terms are often used interchangeably.
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Figure 4.5: Examples of thin film interference on a soap bubble (left, image by Aberdeen University)

and an oil slick (right, image by Georgia State University)

When observing an oil film or a soap bubble it is often possible to see a multitude of shimmering

colours. These are produced by the interference of light that is reflected of the top and bottom bound-

ary of the film, and the changing colours result from variations in film thickness (see figure 4.5). The

basic working mechanism behind these colourful effects is thin film interference, identical to the in-

terference occurring in an etalon: The reflected beam interferes with itself, and only those colours

which have an interference maximum under the current viewing angle are seen by the observer.

Consider a thin film of reflectivity RI and transmissivity TI . The transmitted amplitude AT of the

electric field in the wave with incident amplitudeAinc can be calculated from the sum of the complex

amplitudes of all transmitted rays (see figure 4.4). This can be written as a sum:

AT = AincΣ∞m=0R
m
I e

imδ (4.8)

where the series considers all the rays which have been reflected 2, 4, ..,m times, i.e. m ∈ even (since

rays with m ∈ odd are reflected by the film rather than transmitted) and δ is the phase change any

ray undergoes as it traverses the etalon once.

Thus, by evaluating expression (4.8) an interference pattern can be constructed. It turns out that (4.8)

is a geometric series and standard methods of series analysis show that it converges to [76]:

AT = Ainc
TI

1−RI expuδ
(4.9)

We can evaluate the intensity transmitted IT in terms of the incident intensity Iinc as [76]:
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IT = A∗TAT = Iinc
T 2
I

1 +R2
I − 2RI cos(δ)

(4.10)

where the phase shift δ when the beam traverses the etalon is calculated from its wave number k

as δ = 2kl cos(θ). Here, l is the width of the etalon, θ the angle the incident light makes with the

etalon and the wave number k can be calculated from the wave length of the incident light λ and the

material refractive index n as k = 2πn/λ.

Thus the transmission function for light of wavelength λ incident on a HPO etalon of boundary

separation l can be calculated as:

IT = Iinc
TI(λ, θ)2

1 +RI(λ, θ)2 − 2RI(λ, θ)2 cos
(

4πn(λ)l cos(θ)
λ

) (4.11)

where the refractive index n, coefficient of reflected intensity RI and coefficient of transmitted inten-

sity TI are calculated according to sections 4.1.1 and 4.1.3 respectively. Assuming zero absorption,

the reflected intensity IR of the film can be calculated as 1 − IT . Equation (4.11) is actually valid

for any etalon, whether HPO or conventional, but conventional material dispersion is small enough

that n can be considered constant with λ for the purpose of calculating etalon transmission. The

high reflectivity RI of a HPO film near the critical wavelength λcrit is not detrimental to thin film

interferometer operation, as will be discussed in section 4.3.2.

A conventional etalon interference pattern and a HPO etalon interference pattern are plotted in figure

4.9 in section 4.3.2. It can be seen that near the active frequency the HPO based etalon produces peaks

of superior full-width half-maximum resolution. This is a result of the extremely high refractive

index of the HPO element near the critical wavelength as discussed in sections 4.1.1 and 4.1.2. The

advantages and potential applications of HPO etalons will be discussed in more detail in section

4.3.2.

4.2.2 Superconducting Parameters and the Critical Wavelength

Two principal features make heavy photon optics such a desirable technology. These are

1. The diverging refractive index near a critical wavelength λcrit.

2. The possibility to vary the refractive index, and by association the reflectivity and transmissiv-

ity, of an element by varying ambient temperature and magnetic fields.
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In order to be able to exploit these features two questions have to be answered:

1. Is the stability of λcrit against temperature and field variations good enough that the high

refractive index for wavelengths very close to λcrit can be exploited?

2. Is it possible to manufacture a HPO device that is sensitive enough to temperature and field

variations that real-time control of the refractive index can be exploited?

For these questions to be answered an understanding of the microscopic parameters controlling λcrit

is required.

From eq.(4.2b) the parameter controlling the refractive index of a HPO element at any given wave-

length is the critical wavelength λcrit which is calculated from the London penetration depth λL as

λcrit = 2πλL. The microscopic dependence of λL on the superconducting carrier concentration has

already been briefly discussed in section 3.5.6.2. It is possible to derive the expression for λL in terms

of microscopic parameters from Maxwell’s equations by considering a steady (∂/∂t = 0) current with

homogeneous distribution of superconducting electrons (∇Ψe = 0) [60]. The resulting expression is:

λL =
√

me

2e2µ0ns
(4.12)

where me is the electronic mass, ns the density of superconducting electrons, and all other symbols

have their usual meaning. Consequently the critical wavelength λcrit can be found as:

λcrit = 2π
√

me

2e2µ0ns
(4.13)

Thus the variation of the refractive index n at any given wavelength λ with temperature T and

applied magnetic fieldH ultimately depends on the variation of the superconducting carrier concen-

tration ns with T and H .

Equation (4.12) goes a long way towards answering our question about the variation of λL (and

consequently λcrit) with T and H , since the only free parameter in eq.(4.12) is the concentration of

superconducting electrons ns. The variation of ns with T and H has been discussed in section 1.1.2.

Remembering Ψ2
e = ns we use eqs. (1.1)(1.3) to find an expression for the variation of λL with T,H :

ns = n0
s

(
1− T

T 0
c (1−H/Hc)1/2

)4

(4.14)
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Figure 4.6: Variation of carrier density with temperature T and external magnetic field H for a su-

perconductor of critical temperature Tc = 1.5K and critical field Hc = 101G and electron number

density ne = 3× 1021cm−3

where a superscript zero indicates the relevant quantity at zero T,H . The carrier density variation

for a hypothetical HPO element (based on superconducting indium tin oxide as reported by Mori

[84]) is plotted in figure 4.6.

Substituting eqs. (4.12)(4.14) into (4.2b) a full and closed expression for the T,H-variation of the

phase refractive index np at wavelength λ of any HPO element can be determined:

np =

1−
λ2e2µ0n

0
s

(
1− T

T 0
c (1−H/Hc)1/2

)4

4π2me


1/2

(4.15)

The analytical way to find the stability of the refractive index at a given wavelength would be to

compute the relevant derivatives. Using the chain rule the derivative of the whole function may

be found by the product of a number of rather simpler derivatives of the form dnp
dT = dnp

dλL
dλL
dns

dns
dT

(analogue for dnp/dH).
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When performing such an analysis it becomes clear that the temperature stability of np depends

strongly on the temperature and magnetic field at which the superconductor operates, as can be seen

from the varying slope of the np(T,H) graph in figure 4.7. The following discussion assumes that

operation is intended to be at λ ≈ λcrit, since this is where any HPO specific effects are strongest.

Since λcrit = 2πλL it may be varied by using variations in T,H to achieve the carrier density ns

that will yield the desired λcrit (eqs.(4.12)(4.14)). The temperature and field stability will increase the

further away from the critical field and temperature the device can be operated in order to achieve

the desired critical wavelength.

As an example, consider a HPO element made from a hypothetical transparent superconductor

of critical temperature Tc = 1.5K and zero temperature superconducting electron concentration

n0
s = 2 × 1027m−3 (based on superconducting indium tin oxide, discussed in section 4.2.3). If the

HPO element is operated at T = 0.1K the critical wavelength λcrit ≈ 527nm. At this tempera-

ture, the phase refractive index np(525nm) (2nm from λcrit) will vary by less than 5 parts in 103

for a temperature change of T (0.1K → 0.2K), and by less than 7 parts in 106 for an external field

change of B(0G → 1G). By contrast, operating the same HPO element at λcrit ≈ 798nm (T = 1.3K)

the variation of np(796nm) (again 2nm from λcrit) is about 785% for the a temperature variation

T (1.3K → 1.4K) and a field change of H(0G → 1G) is going to yield a change in np of ≈ 136%.

Thus, depending on the operating temperature, the relative sensitivity of the HPO device to varia-

tions in temperature varies by more than factor 105. The variation of London penetration depth and

phase refractive index np(500nm) with T,H have been plotted in 4.7 for a hypothetical HPO element

with λcrit = 500nm@T = 0K.

Thus it is now possible to answer the questions posed at the beginning of this section: Can we create

HPO elements of high stability against thermal and magnetic variation? And can we create elements

whose stability is low enough that there optical characteristics can be varied in real time?

The answer is ”yes” to both of these questions. As can be seen from figure 4.7, far from the Tc and Hc

the slope of λcrit and np with changes in temperature T and magnetic field H is small. Thus a high

degree of stability can be achieved by designing HPO elements that are operated far from Tc. It can

also be seen from figure 4.7 that the slope of both λcrit and np with variations in T,H diverges near

Tc, Hc, implying that the sensitivity to temperature and field variations can be increased arbitrarily

by designing for combinations of superconducting materials and operating wavelengths close to Tc.

Thus, HPO elements operated near their critical temperature Tc act as non-linear optically active

materials, with high non-linearity.
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Figure 4.7: Left: Variation of the London penetration depth λL (= λcrit/2π) with temperature T and

external field H . Right: Variation of phase refractive index np with Temperature T and external field

H . Both graphs are plotted for a superconductor with superconducting electron number density

n0
s = 3× 1021cm−3 at T = 0K.

4.2.3 Transparent Superconducting Materials: Towards Practical Heavy Photon

Optics

In order to create any kind of practical HPO transmission optics or etalon/Fabry-Perot interferometer

a superconducting compound is required which has good transparency at the wavelength of interest.

Furthermore, the concentration of superconducting electrons must be of the correct magnitude that

the critical wavelength can be made to fall into the transparent waveband of the superconductor. If

the carrier concentration is too low the maximum critical wavelength attainable (λcrit at T = 0K) will

be so low as to be outside the transparent band. If, on the other hand, the carrier concentration is too

high (a very unlikely case) the material will have to be operated so close to its critical temperature

that thermal instabilities will make consistent operation impossible.

Essentially two different types of transparent conductors exist [81]: Either a succession of very thin

metal layers, such as Ag, Au or Cu is separated by transparent films anti-reflecting the metal or a

wide-bandgap oxide semiconductor is employed. In this section we will be concentrating on the

latter type of material, since it yields better transmissivities coupled to comparatively high conduc-

tivities.

Of particular interest is Indium Tin Oxide (ITO) which combines good transparency in the optical

and near-IR (300nm - ≈ 2µm) with a comparatively high carrier concentration (≈ 1027m−3) [81].
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It has been shown that thin (≈ 20nm) ITO films deposited onto glass or polyester substrates will

go superconducting at temperatures of ≈ 1 − 3.5K [84], depending on substrate, deposition and

annealing regime. Since the mechanisms for conduction and transparency are similar throughout

the entire field of wide bandgap conducting oxide films, the superconductivity of ITO turns the

entire range of wide bandgap conducting oxides into a set of likely candidates. An overview can be

found in [85].

Using equation (4.12) it is possible to calculate the London penetration depth λL, and by extension the

critical wavelength λcrit (eq. (4.13)) from the carrier density of ITO. Assuming an ITO film with high

but reasonable ns ≈ 2×1021cm−3 [81] the zero-temperature λcrit of ITO is found to be≈ 550nm. This

is well within the transparent bandpass for an ITO film with carrier concentration ns < 3×1021cm−3

[81].

From the superconductivity of ITO reported by Mori [84], at least one transparent compound exists

which can be made to go superconducting, along with a whole field of potential candidates. How-

ever, Mori [84] has not verified whether ITO retains its transparency in the superconducting state.

While Cooper pair breaking was not an issue for our considerations when evaluating the massive-

em Casimir effect since it is impossible to extract energy from a vacuum mode (section3.5.6), it seems

reasonable to expect that real photons with energy Eph > 2∆g will break Cooper pairs. Hence, HPO

devices would be opaque to frequencies above the far infrared. This issue will be addressed in sec-

tion 4.2.3.1, where we will find that some materials exist for which we may expect transparency to

continue well into the optical spectrum.

4.2.3.1 Transparency of Superconducting Oxides to Optical Photons

It seems from the preceeding discussion that wide bandgap superconducting oxides are a good can-

didate for a HPO element. This section attempts to establish whether such superconducting oxides

can be expected to retain their transparency, focussing on ITO.

For light interacting with bulk matter two chief mechanisms for dissipative absorbtion exist [76]:

1. The electromagnetic radiation may excite the free electron plasma, which dissipates energy by

oscillation.

2. A photon may exite an atom into a higher quantum state. The excited atom can be expected

to transfer it’s excitation energy via collisions or lattice vibrations (i.e. phonons) to the bulk

matter before a photon can be re-radiated.
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We will first examine case 1. A cloud of free charge carriers with plasma frequency ωp excited by

radiation of frequency ω behaves as a forced harmonic oscillator, yielding a group refractive index

ηg as discussed in section 3.5.4.1 and given by [76]:

n2(ω) = 1 +
ωp

−ω + iγω
(4.16)

Dissipation by the gas is governed by the imaginary component of (4.16) proportional to the inverse

scattering time 1/γ.

For normal materials, as ω approaches ωp the imaginary part of equation (4.16) becomes dominant

and the material is opaque. However, inside a superconductor two separate electron populations

have to be considered. According to eq. (1.1) the fraction of electrons in the normal state is non-zero

for a superconductor at non-zero temperature and according to the Gorter-Casimir two fluid model

discussed in section 1.1 the normal state and superconducting electron populations interpenetrate

each other freely. Consequently, inside a superconductor it is necessary to separately consider the two

plasma frequencies ωnp and ωsp of the normal state electron cloud and the superconducting condensate

respectively. Since superconducting electrons do not scatter, the superconducting scattering time

γs →∞, and no dissipation occurs for ω → ωsp. Provided that the number density of superconducting

electrons is larger than the number density of normal electrons the relevant plasma frequencies are

related by ωsp > ωnp , and dissipation by the normal state electron gas is small.

For conventional superconducting materials the transmissivity drops steeply as the photon energy

Eph approaches and exceeds the excitation energy of a Cooper pair 2∆g . This is because the incident

photons will expend a fraction of their energy to break Cooper pairs. Since the superconducting

energy gap ∆g is small compared to the energy of an optical photon [5], the majority of the photon

energy is given to the electron as kinetic energy. However, for the case of wide band gap oxides, a

large band gap of orderEg = 3.8eV prevents photons from directly exciting Cooper pairs (or, indeed,

electrons). There are simply no allowed states at the accessible energies. A through introduction to

the band structure of ITO can be found in [86]. The wide band gap is also the reason for the optical

transparency, and the maximum transmitted photon energy is given by Eph,max = Eg .

In summary, we believe that the same mechanism which provides optical transperency for ITO in

the normal state also provides optical transparency for the superconducting medium. While the

small amount of dissipation provided by excitation of the normal state electron plasma may serve to

increase the temperature of an ITO element (and thereby reduce the superconducting carrier density),

any such problems may be counter acted by thermally anchoring the ITO element and ensuring that

the resulting equilibrium temperature provides the supercondcuting carrier concentration ns which

yields the required critical wavelength λcrit according to eq.(4.13).
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Figure 4.8: A prism with apex angle σ, with light incident at minimum deviation δ. a) The minimum

deviation angle is the angle of incidence which causes light to travel parallel to the prism base. b)

illustration of the working principle of a dispersion prism. Note: In order to achieve the best energy

resolution the entire prism has to be illuminated. Image courtesy of Georgia State University [14]

4.3 Potential Applications for HPO Technology

4.3.1 Ultrahigh Resolving Power Dispersion Prisms

The most obvious application of heavy photon optics is for the creation of ultrahigh resolution disper-

sion prisms. In the course of this section we will outline how the divergence of the phase dispersion

Dp can be exploited in order to create prism spectrometers with resolving powers exceeding those of

conventional prisms of comparable size by three orders of magnitude.

The phase dispersion Dp of a prism is the controlling parameter for its spectral resolution. The

simplest expression for the resolving power R of a prism, the Raleigh limit, is given by [87]:

R = BDp = B
∂np
∂λ

(4.17)

where B is the base width of the prism, and the entire prism is illuminated by a collimated beam.

This expression is valid for the case where the angle of incidence of the light to be dispersed is that

of minimum deviation δ (figure 4.8). For light incident at angle δ, the angle between incident and

transmitted beam is at the absolute minimum.

Considering eq.(4.17) it can be seen that the resolution ratio r = R1
R2

of two prisms of identical geom-

etry and respective resolving powers R1 and R2 only depends on the ratio of their respective phase

dispersions.

The phase dispersion of a conventional dispersion prism based on F2 Schott Glass is quoted by CVI
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Laser to be approximately Dp,prism = −8.54 × 104m−1 [13]. Using eq.(4.2c) we find the magnitude

of the phase dispersion of a HPO element Dp,HPO with critical wavelength λcrit ≈ 780nm to be

> 8× 107m−1 within a 0.1nm band around λcrit. This seems to imply that the resolving power of the

HPO element described would exceed that of a typical conventional dispersion prism of identical

size and geometry by a factor of Dp.HPO/Dp.prism ≈ 103.

A problem with ultrahigh resolving power HPO dispersion prisms is the high reflectivity of the

device. For the prism described in the previous paragraph the heavy photon phase refractive index

at the wavelength of interest (λ = 789.9nm) is approximately np ≈ 0.016 yielding a reflectivity RI

of ≈ 94%. However, for smaller resolutions the situation is improved significantly. A dispersion of

8 × 106 still yields a spectral resolution superior to that of a conventional prism by two orders of

magnitude, while only requiring the relevant light to be within ∆λ = 1nm of the critical wavelength,

yielding np ≈ 0.16 and a reflection coefficient RI ≈ 52%. As such there appears to be a trade-

off between the resolving power and the efficiency and bandwidth of a HPO prism, and it may be

possible to optimize a prism depending on the application. Also, if low dispersion-high refractive

index antireflection coatings are introduced the problem may be mediated somewhat [76].

Still, it seems frustrating that the usefulness of such an elegant effect should be restricted by the re-

flectivity of the films surface. For this reason we will investigate thin film interference based devices

next. These exploit the high reflectivity of the films surface rather than be limited by it.

4.3.2 Interferometers and Etalons

An interesting potential application for HPO technology is Interferometry. HPO based etalons and

Fabry-Perot interferometers as outlined in section 4.2.1 exploit the diverging refractive index and

diverging dispersion near λcrit. A high gradient of the phase refractive index np results in a large

change of phase shift δ with incident wavelength λ for a beam traversing the film. This can be seen

by taking the derivative of the phase shift δ = 4πn(λ)l cos(θ)/λ from equation (4.11) w.r.t. λ and

applying the chain rule to obtain ∂δ
∂λ = ∂δ

∂n
∂n
∂λ . The combination of a high refractive index n and

ultrahigh dispersion D means that HPO etalons yield higher, narrower transmission peaks over a

small waveband, compared to conventional etalons.

The equations outlined in sections 4.1.1,4.2.1 and 4.2.2 have been used to create a simple analyti-

cal model for normal incidence etalon transmission of both conventional and HPO etalons. Equa-

tion (4.15) for the phase refractive index np as a function of experimental and material parameters

T, Tc, H,Hc, n
0
s has been substituted into equation (4.11) where the transmission coefficient TI and

reflection coefficientRI have been calculated according to equation (4.6) using TI = 1−RI , assuming
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Figure 4.9: Comparing the interference pattern of a conventional etalon (dashed line) and a HPO

etalon (solid line) with critical wavelength λcrit = 431nm. An external reflector of reflectivity RI =

30% is applied to both etalons which have a thickness of 0.5µm. The wide band and narrow band

responses are plotted in figures a) and b) respectively. It can be seen from a) that far from λcrit the

peak fwhm resolution of the HPO etalon approaches that of the conventional etalon.

the HPO etalon to be in vacuum and using equation (4.15) for the HPO refractive index. This yields:

IT (λ, T, Tc, H,Hc, l, n
0
s) = Iinc(1−RI(λ))21 +RI(λ)2 − 2RI(λ)2 cos


4π

1−
λ2e2µ0n

0
s

(
1− T

T0
c (1−H/Hc)1/2

)4

4π2me


1/2

l cos(0)

λ





−1

(4.18)

where we have assumed normal incidence, i.e. θ = 0. This equation then yields the response of a

HPO etalon at normal incidence as a function of experimental and material parameters.

The responses for a conventional etalon and a HPO etalon have been plotted in figure 4.9. In both

cases we assumed the surfaces of the cavity have been silvered with a material of reflection coefficient

RI = 0.9 across the entire waveband of interest. In order to illustrate how the etalon response varies

away from the critical wavelength, the wide band transmission function of the HPO etalon has been

plotted in figure 4.9.

As can be seen from figure 4.9, the high reflectivity of a HPO element near λcrit has no detrimental

effect on the etalon transmission pattern. This result may seem counter intuitive at first, since one

would assume that, if R → 1 no light enters the device and therefor no interference can occur. This



4.3. POTENTIAL APPLICATIONS FOR HPO TECHNOLOGY 143

is, however, not correct. For any R arbitrarily close to unity there exists a wavelength at which all

the incident light is transmitted. A lucid derivation of this fact and the etalon transmission function

is given by Hecht [76]. As R→ 1 the spectral width w of the transmission peaks w → 0.

4.3.2.1 Etalon Absorbtion

So far we considered hypothetical perfect devices where the coefficient of absorption AI = 0 so that

RI + TI = 1. For AI > 0 we then have RI + TI + AI = 1. For the case of ultrahigh resolving power

dispersion prisms as outlined in section 4.3.1 absorbtion does not constitute a major problem. For

λ < λcrit any non-zero AI is introduced by the normal material parameters rather than any HPO

specific effects. If the optical absorbtion of the material in the normal state is small than so is the

superconducting state absorbtion for λ < λcrit.

In the case of an etalon one might wonder whether the absorbtion introduced by the etalon material

introduces an intrinsic limit for the fwhm resolution of the etalon. A derivation of the effect of ab-

sorbtion on etalon transmission is provided by Hecht [76] where it is shown that the peak separation

is unaltered and the transmission peak height is reduced according to:

It
Iinc

=
[
1− AI

1−RI

]2

(4.19)

Thus, while absorbtion in the etalon reduces the fwhm resolution it does not create an absolute limit.

The effects of absorbtion are identical for conventional etalons and HPO etalons operated at λ < λcrit.

As an example, for an etalon with reflectivity RI = 95% and absorbtivity AI = 1% equation (4.19)

yields It/Iinc = 64%.

4.3.3 Optical Routers and Quantum Non-Demolition Routing

So far the applications described in sections 4.3.1 and 4.3.2 have exploited the diverging refractive

index and dispersion which are the central features of HPO technology. This section will describe

how also the ability to vary the refractive index at run time can be exploited and made into the central

feature of a novel optical routing technology.

It is possible to alter the reflectivity of a thin film by altering its refractive index. In section 4.2.2

it has been shown that the refractive index of any HPO device can be manipulated by methods that

manipulate the superconducting carrier density, such as changes in temperature or applied magnetic

fields. By varying these parameters it is possible in principle to change the critical wavelength λcrit
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to any value between its minimum value and infinity. A thin HPO film that is transparent to optical

light but reflective at the critical wavelength can then be used to either redirect light or let it pass

unhindered.

The basic routing principle is illustrated in figure 4.10. A route from the client to the host is negotiated

electronically, where upon all routers along the determined path set the reflectivity of their HPO

elements as to direct the signal along the negotiated route. In this way, an uninterrupted optical path

is created from the client to the host allowing for direct optical communication. Care must be taken in

the routing of the signals, so that all HPO elements that are not meant to influence an incoming signal

of wavelength λsignal are set to critical wavelengths λcrit > λsignal in order to prevent absorbtion in

the inactive HPO elements.

This routing architecture essentially requires two separate physical network layers: The electronic

network layer which negotiates the route and the optical layer on which the actual communication

occurs. The current day internet could be employed as the electronic layer. Its facilities for the

determination of possible routings, such as the Internet Control Message Protocol (ICMP) would

make it ideally suitable for the task.

The most obvious advantage of such Direct Optical Link (DOL) routing is the increase in commu-

nication speeds. In conventional networks, routing of optical signals is achieved by converting the

optical signal to an electronic signal, decoding its routing data, and re-emitting the signal onto the

correct route. This conversion is slow, and the major bottleneck of modern optical communication

networks. Thus HPO-DOL routing can potentially lead to significant increases in optical communi-

cation speeds.

Maybe the most significant advantage of this kind of routing technology is that it provides quantum

non-demolition routing, i.e. it has the ability to route photons without altering their quantum me-

chanical wave functions. The exchange of photons in quantum mechanically entangled polarization

states is one of the key ingredients of Quantum Key Distribution(QKD), a system that allows for the

save exchange of one time pad keys. As such HPO-DOL routing can provide QKD in switched net-

works. It is the authors opinion that the ability to deploy QKD in switched networks would increase

the economic significance of QKD systems dramatically, moving them from niche military markets

into the mainstream banking sector.

4.3.4 Universal Optical Logic Gates and Optical Logic Chips

All-optical computing components and logic gates are attractive for a number of reasons. In theory

optical logic components may be faster and consume less power than electronic systems, while also
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Figure 4.10: Illustration of the optical routing principle: Only the elements set to λcrit = λsignal are

reflective. All other elements allow the signal to pass unhindered.
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allowing direct interfacing with quantum computing components.

In this section we outline how a hypothetical optical AND gate may be constructed using HPO

technology.The design outlined here requires high thermal stability, of order ±1µK. As such it is

intended as a demonstration of principle rather than detailed technical description of a practical

device. It is presented here since it demonstrates a possible application for the extremely high non-

linearity provided by HPO elements.

Consider a HPO etalon made from ITO with carrier density 3 × 1021cm−3. The etalon has a critical

temperature Tc = 1.5K, critical field Bc = 101G and is driven at T = 1.4K,B = 0G. The surfaces of

the etalon are silvered to a reflectivity ofRI = 0.9. We set the signal wavelength to be λs ≈ 877.021nm

to coincide with the transmission peak in figure 4.11. Given the settings outlined in this paragraph

the etalon transmission function has a maximum at the signal wavelength (figure 4.11). If a signal

of power density 6mW/m2 is applied this increases the root mean square(rms) magnetic field in the

etalon by≈ 72µG and consequently reduces the carrier density. This is sufficient to reduce the etalon

transmission at λs to below 1% (figure 4.11b). If a signal of power density 2×p = 12mW/m2 is applied

the resulting total field shift of≈ 144µG is sufficient to move a different transmission maximum onto

the signal wavelength (figure 4.11c). Thus we have constructed an AND gate: A single signal beam

of wavelength λs and power density p will be reflected while two signal beams of individual power

density p (i.e. combined power density 2p) and wavelength λs will be transmitted.



4.3. POTENTIAL APPLICATIONS FOR HPO TECHNOLOGY 147

Figure 4.11: Transmission coefficient of a HPO etalon as a function of wavelength. This etalon is used

as a logic gate. The transmission coefficient varies with applied signal strength and transmission

functions are plotted for signal strengths of 6mW/m2(grey dashed line), 12mW/m2(blue dashed line)

and ”no signal” (black solid line).
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Chapter 5

Massive Gauge Bosons in Quantum

Coherent Matter

Up to this point a large proportion of this thesis has been concerned with the properties of massive

photons as described by the Proca equations (3.12). The fact of this symmetry breaking has been

accepted, without any attempt to truly understand its source.

The extend to which the physics developed in Chapters 3 and 4 relies on massive photons should be

sufficient reason by itself to motivate an investigation of the exact mechanism which causes non-zero

photonic mass. Furthermore, in order to be able to evaluate other mechanisms than low-Tc super-

conductivity (e.g. high-Tc superconductivity) as potential candidates for the creation of massive

photons, a good understanding of the relevant processes is required.

Finally, an intriguing question is whether other traditionally massless gauge bosons can be assigned

a mass by symmetry breaking mechanisms. It is well known [60] that the Z-boson acquires its mass

by symmetry breaking, and we have made heavy use of the fact that it can be shown [60] that the γ-

boson (i.e. photon) does so as well. In front of this background an obvious and extremely intriguing

candidate is what, for consistency, might be referred to as the g-boson: The graviton.

This chapter will begin with a section discussing the U(1) symmetry, which is the symmetry giving

rise to what is generally known as electromagnetic gauge invariance. The same section will then

proceed to explain why U(1) symmetry is lost when a material undergoes sn-transition. This is gen-

erally, and incorrectly, known as gauge symmetry breaking. If one were to be mathematically precise

it would be necessary to realize that a gauge symmetry is a degeneracy inherent to the description

of a system and can never be broken. The correct mathematical statement is: U(1) phase rotations are

149
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removed from the group of electromagnetic gauge symmetries. However, since the finer points of topology

and gauge theories are of no interest to us for the purpose of the derivations that are to follow we

shall refer to the process as gauge invariance breaking, which is consistent with most of the literature

available on the topic.

This chapter will proceed to outline the Gravitoelectromagnetic (GEM) equations which govern grav-

ity in nearly flat space times and outline the process by which the gauge boson of GEM gravity will

acquire non-zero rest mass. This method is almost identical to the derivation of the photonic mass.

While the differences of the two derivations will be pointed out at the end of the section, it is believed

that they are sufficiently similar so as to not require repetition. A full derivation of the photonic mass

for the relativistic and non-relativistic case can be found in [60]. At the end of this subsection a

full and closed derivation of the rest mass of a spin-1 graviton will have been achieved from first

principles.

To conclude, the consequences of a massive graviton for astrophysics and for some known experi-

mental anomalies will be discussed, and topics for future research will be highlighted.

5.1 U(1) Phase Rotational Symmetry and Local Electromagnetic Gauge

Invariance

This section will introduce the concept of local gauge invariances and the U(1) symmetry group.

These concepts will than be used as a basis for approaching the problem of electromagnetic gauge

symmetry breaking and its consequences.

A fundamental feature of Maxwellian electromagnetism is the arbitrariness of electromagnetic po-

tentials. Adding the same constant voltage offset ∆ to every point in an arbitrary physical setup does

not change any observables. Only potential differences, not absolute potentials, are observable. This

symmetry is the global gauge symmetry of electromagnetism.

However, relativity dictates that we also require a local symmetry. Since two arbitrary points A and

B in the physical setup separated by any non-zero distance cannot communicate instantaneously it

appears that any change in potential ∆A at A would have to be independent of potential changes

∆B at B. Thus, in order to make gauge invariance consistent with relativity we require the change in

gauge to be an arbitrary function of time and space ∆(~r, t). Let us repeat the definition of the electric

field E and magnetic field B in terms of the scalar potential φ and vector potential ~A from section

3.5.
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~E = −1
c

∂ ~A

∂t
−∇φ (5.1)

~B = ∇× ~A (5.2)

Considering Maxwell’s equations and replacing ~E and ~B with the expressions from (5.1) and (5.2) it

is indeed possible to find such a local gauge symmetry which can reconcile the arbitrariness of elec-

tromagnetic potentials with relativity, allowing any ∆(~r, t) which can be expressed as the derivative

of an arbitrary well behaved function χ. Consider the transformations:

~A→ ~A′ +∇χ(~r, t) (5.3)

φ→ φ′ +
∂χ(~r, t)
∂t

(5.4)

Using the above transformations and substituting them into Maxwell’s equations we find that all

physical observables remain unchanged. This is known as the electromagneticU(1) symmetry, some-

times referred to as electromagnetic phase rotation symmetry.

Mathematically, U(n) denotes the unitary group of degree n, i.e. the group of n × n unitary matrices.

Geometrically, multiplication with a U(n) matrix rotates a point around the origin in a coordinate

system of n complex dimensions, without changing the distance to the origin. Without going into

the details of group or matrix theory, U(1) is the group of all complex numbers of magnitude unity.

Consider any point on the complex plain. This point can be described by its distance from the origin

(the magnitude r of the number) and the direction from the origin in which it can be found (the

phase φ). The effect of the above transformations (5.3)(5.4) is to multiply the complex wave function

of a quantum mechanical particle by a member of the U(1) group, rotating the number around the

origin of the complex plane without changing its magnitude. This effectively amounts to changing

the phase of a point in complex 1-dimensional space, which is why electromagnetic gauge invariance

is referred to as phase rotational symmetry. Such diagrams visualizing complex numbers as points

on a two dimensional plane are called Argand diagrams. Argand diagrams and U(1) phase rotations

are illustrated in figure 5.1, below.

Considering a quantum mechanical particle, the effect of the transformations (5.3) (5.4) have on the

Schroedinger equation is that of introducing an exponential phase factor:
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Figure 5.1: a) Argand diagram and b) Point on the complex plain undergoing U(1) rotation

Ψ(~r, t)→ Ψ0(~r, t)exp[iS(~r, t)] (5.5)

The Hamiltonian of the system is unchanged under the transformation (5.5) since it depends on

< Ψ|Ψ >=< Ψ0|Ψ0 >. Since the Maxwell equations are also invariant under transformations

(5.3)(5.4) no observable differences occur if a particle’s wave function undergoes U(1) phase rota-

tion.

The breaking of U(1) symmetry in superconductors occurs due to the observability of the phase S.

In a general quantum mechanical system the phase S and number of quanta N cannot be observed

simultaneously. According to [4] the S and N can be fixed simultaneously inside a superconductor

provided that N is large. Now the transformations (5.3) to (5.5) lead to observable changes in the

physical system (for example in Ginzburg-Landau theory, which introduces an energy cost for gradi-

ents in ~A [4]), removing U(1) phase rotations from the group of electromagnetic gauge symmetries.

It is in fact possible to observe the electromagnetic U(1) symmetry breaking independently of su-

perconductivity. All that is required are particles with correlated wave functions and a method to

observe those wave functions. It is, for example, well known that the self-interference pattern of elec-

trons projected through a double slit depends on the electromagnetic vector potential in the region

in between the two slits, despite the fact that the electron never interacts with the resulting mag-

netic field [88]. This is known as the Aharanov-Bohm Effect according to Yakir Aharonov and David

Joseph Bohm who demonstrated it in 1959.
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5.1.1 The Relativistic Photon Field

At this point one central question seems to remain unanswered: What is the nature of the gauge po-

tentials φ, ~A? Are they merely a mathematical convenience or do they have actual physical meaning,

and how can manipulating their symmetries help us to deduce the properties of a photon?

The gauge transformations (5.3)(5.4) outlined above can be combined into a single four-vector trans-

formation:

Aµ → A′µ = Aµ − ∂µχ (5.6)

where Aµ = (φ, ~A). Using the identities (5.1)(5.2) to substitute Aµ into the vacuum (J = 0) Ampere-

Maxwell law it is possible to arrive at the equation [89]:

∇2Aµ =
1
c

d2Aµ

dt2
(5.7)

This is the wave equation for a massless quantum mechanical particle. The particle must also be

non-self-interacting in order for the phase rotations to remain unobservable in normal matter. And

this non-self-interacting gauge boson of zero rest mass is indeed well known: It is the photon. Thus

the gauge invariant 4-vector potentialAµ is the quantum mechanical photon field and changes to the

allowed gauge transformations will lead directly to changes in the mathematical form of the photon

field.

5.2 Massive Gauge Bosons From Broken U(1) Symmetry

In this section we present a derivation of the mass of the graviton inside a superconductor. However,

no part of this derivation is restricted in validity to a superconductor. Rather, the key ingredient

is the presence of particles with coherent wave functions (”quantum coherent matter”) so that the

number of particles and their phase are both observable. As such the same derivation is valid for

superconductors, superfluids and any other kind of quantum coherent matter. We start from the

gravitomagnetic equations and use the breaking of U(1) phase rotational symmetry of particles with a

macroscopic wave function. We arrive at a simple and complete analytical expression for the graviton

mass in terms of fundamental constants, with the mass density of the superconductor the only free

parameter entering the ratio of photon- to graviton mass. We conclude by comparing predictions of

our graviton mass with existing experimental data concerning the Tate Cooper pair mass anomaly

[30][90].
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The mechanism employed here to allow photons to acquire a rest mass inside a superconductor is

the Higgs mechanism and the broken symmetry required to drive the Higgs mechanism is that of

electromagnetic gauge invariance. It has recently been conjectured [30] that inside a superconductor

gravitons might acquire mass by a mechanism similar to photons and that this might aid the expla-

nation of the Cooper pair mass anomaly reported by Tate et al.[90], who found by experiment that

the ratio of two electron masses to the cooper pair mass 2me/mc in their rotating superconductor

disagreed with the available theory by about 9 parts in 105. According to [30], the massive gravity

frame-dragging field generated by a rotating superconductor would influence the magnetic field gen-

erated by the London moment. All calculations made to this effect are within the framework of the

gravitoelectromagnetic (GEM) equations, which are an approximation to general relativity in nearly

flat space times. They also closely resemble Maxwell’s equations, and for this reason the conjecture

of the massive graviton has been created, giving rise to the GEM-Proca equations [30]. However, no

derivation of the graviton mass from first principles has been given to date.

In section 5.2.1, below, we introduce the standard GEM equations and vector potentials and use the

gauge invariant derivative operator to derive the quantum mechanical mass current density inside a

superconductor.

In section 5.2.2, we show from first principles that this leads to a graviton mass of magnitude≈ 10−54

kg, giving rise to a gravitational Meissner effect, essentially shielding gravitomagnetic fields with a

characteristic penetration length of λg ≈ 1011m. The result from our theoretical calculation agrees

exactly with the conjectures used by Tajmar et al. [30]. At the time of writing the author is not aware

of any other complete derivation of the graviton mass inside a superconductor.

Following the conjecture by [30] we use the derived graviton mass and resulting gravitomagnetic

London moment to attempt an explanation of the Tate Cooper pair mass anomaly in section 5.2.4.

Our result is too small by one order of magnitude; we present a short list of possible causes and

shortcomings in the current theory.

5.2.1 The Gravitoelectromagnetic Equations and Gravitoelectromagnetic Gauge

Invariance

We begin by finding a framework for gravitational effects which can be used without recourse to

tensors and the full general relativistic treatment. Considering test masses with non-relativistic ve-

locities in a nearly flat spacetime we find that, to first order, gravity can be approximated by the

gravitoelectromagnetic (GEM) 3-vector equations. In Heaviside- Lorentz units these equations are

[91]:
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∇ · ~g = −4πGρ (5.8)

∇ · ~Bg = 0 (5.9)

∇× ~g = − 1
2c
∂ ~Bg
∂t

(5.10)

∇× 1
2
~Bg =

1
c

(
−4πG ~jm +

∂~g

∂t

)
(5.11)

where ~g is the gravitoelectric field, ~Bg is the gravitomagnetic or frame dragging field, ~jm is the mass

current density and all the other symbols have their usual meanings. The factors of 1
2 are remnants

of the conversion from rank-2 tensors to vectors. On inspection these equations are of a form largely

identical to that of the Maxwell’s equations, and they transform in the same way.

The ~g and ~Bg fields can be defined by introducing the 4-vector potential Aµ = (V, ~A) such that:

~Bg = ∇× ~A (5.12)

~g = −∇V − ∂ ~A

∂t
(5.13)

For a massless gauge field all observables must be unchanged under the gauge transformation [60]:

Aµ → A′µ = Aµ − ∂µχ (5.14)

where χ is an arbitrary well behaved function of time t and position ~r.

In order to evaluate equation (5.11) we require an expression for the mass current density. We assume

the mass current density consists of two parts, the Cooper pair mass current density and the ion

lattice current density. The quantum mechanical mass current density of Cooper pairs can be written

as:

~jm,c = − i~
2

[ψ∗c∇ψc − ψc∇ψ∗c ] (5.15)



156 CHAPTER 5. MASSIVE GAUGE BOSONS

Since in a superconductor the phase of the macroscopic wave function becomes observable the above

expression is not invariant under the transformation ψc → ψ′c = eimχ(~r,t)ψc [60]. In order to retain

gauge invariance of the current density we have to replace all derivatives with the gauge-covariant

derivative:

∂ → D = ∇± im

~
A (5.16)

In this way we obtain the following expression for the gauge-invariant Cooper pair mass current

density in a superconductor:

~jm,c = − i~
2

[ψ∗c∇ψc − ψc∇ψ∗c ]− mc

2
|Ψ|2A (5.17)

By contrast with the electromagnetic case where the current density is given by the velocity difference

between Cooper pairs and ion lattice, the GEM equations require the total mass current density. One

may be tempted to just add the classical quantum mechanical mass current density for the ion lattice

analogous to the electron current density in equation (5.15) since the ion lattice is not represented

by a macroscopic wave function and the ion phase should be unobservable. This is incorrect. Since

the substitution in equation (5.16) is essentially a local topological transformation it must apply to

all derivatives. Also, if we did not use the covariant derivative in the case of the ion mass current

density the Cooper pairs would be in a gravitational gauge different from the ions, violating the

principle of equivalence. Thus the total mass current has to be written in the form:

~jm = − i~
2

[ψ∗c∇ψc − ψc∇ψ∗c ]− i~
2

[ψ∗ion∇ψion − ψion∇ψ∗ion]− mc

2
|Ψ|2A− mion

2
|Ψ|2A (5.18)

Actually the above equations are only strictly true in the zero-temperature limit, where all electrons

are bound in Cooper pairs. Above zero temperature but below Tc some electrons will be in the

normal state while others are superconducting. The fraction of electrons in the normal state is given

by eq. (1.1). For the same reason that the ion lattice contributes to the graviton mass the normal

state electrons will contribute as well. This leads directly to the question of why the photon mass

in a superconductor as discussed in section 5.2.2 depends only on the density of superconducting

electrons and not on the density of superconducting and normal electrons. The reason for this lies in

the nature of the electromagnetic interactions: The normal state electrons have to be assumed to be

stationary with respect to the ion lattice. In the electromagnetic case, charge currents are caused by

electrons moving relative to the ion lattice, i.e. are caused only by superconducting electron pairs,

while mass currents are due to the absolute movement of the entire local mass: ion lattice, Cooper

pairs and normal state electrons.
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5.2.2 Massive Spin-1 Gravitons by GEM Gauge Invariance Breaking

We will now manipulate the mass current and GEM field terms discussed in the previous section

in order to show that the differential equation governing the vector potential ~AGEM takes the form

appropriate to a massive spin-1 boson field as discussed by [60]. From now on all calculations will be

kept in SI units in order to allow the use of intuitively accessible units and quantities when evaluating

them.

Consider the fourth GEM equation(eq (5.11)) for the static case ( ∂∂t = 0) in SI units:

∇× 1
2
~Bg =

1
c2

(
−4πG ~jm

)
(5.19)

Substituting from eqs.(5.12), (5.18) into eq.(5.19) we obtain in the Lorentz gauge (∇. ~A = 0):

∇2 ~A = −4πG
c2

i~ ([ψ∗c∇ψc − ψc∇ψ∗c ] + [ψ∗ion∇ψion − ψion∇ψ∗ion])− 4πG(mc |ψc|2 + |ψion|2mion)
c2

~A

(5.20)

Assuming a monovalent material (i.e. one conduction electron per atom) of atomic massm ≈ mion+

0.5mc with the density of superconducting electrons constant everywhere in the superconductor and

defining ψ2
ion = 2ψ2

c = n, equation (5.20) simplifies to:

∇2 ~A = −4πGmn
c2

~A (5.21)

which according to [60] has the form of a massive spin-1 vector field. Massive vector fields decay

exponentially with distance. The exponential decay length of the field described by (5.21) is λg =(
4πGmn
c2

)−1/2
. We call λg the graviton penetration length. The mass of the massive spin-1 graviton

can now be determined as:

mg =
~
λgc

(5.22)

Using mn = ρ where ρ is the local mass density, we can rewrite equation (5.22) as

mg =
2~
√
πGρ

c2
(5.23)
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Thus we have used the breaking of U(1) phase rotational symmetry in superconductors to show

that gravitons have non-zero rest mass inside a superconductor. The procedure is almost entirely

analogous to the derivation of the photon mass in superconductors [60]. A correct prediction of

the graviton mass hinges on the realization that the ion mass contributes to the graviton mass. For

the case of niobium (the material used in the original experiment by [90]) the predicted graviton

mass is mg ≈ 3.1 × 10−54kg and the characteristic penetration length λg = 1.1 × 1011m, assuming

ρNb = 8570kgm−3. There is no part about the above derivation specific to superconductivity. The

symmetry breaking mechanism described above will occur in any kind of quantum coherent matter

where the phase of the macroscopic wave function is observable, like for example superfluids.

We will now express the ratio of the graviton mass to the photon mass in terms of the parameters

of the quantum coherent medium in order to gain insight into the ratio of the gravitational to the

electromagnetic forces.

The photon rest mass mγ is inversely proportional to the London penetration length λL which is

given by [4] as λL =
(

me
eρeµ0

)1/2

where me is the mass of the electron, ρe is the charge density and all

other symbols have their usual meaning. Thus the ratio of graviton mass to photon mass is given by:

mg

mγ
=
λL
λg

=
(
µg
µ0

me

e

ρm
ρe

)1/2

(5.24)

The massive gravitons predicted by this derivation are spin-1 gravitons, sometimes called gravipho-

tons , allowing for the existence of gravitational dipole waves. General relativity only predicts spin-2

gravitons and quadrupole waves. This apparent problem is resolved since in the massless graviton

case the spin-1 part of the graviton is not propagating as the spin-1 components of massless gravity

satisfy elliptic constraint equations.

5.2.3 Derivation of the Photonic Mass

We shall outline briefly the working of the analogous derivation of the photonic mass. Similarly to

the GEM case, we begin by considering the quantum mechanical charge current density of cooper

pairs:

~jc = − i~e
m

[ψ∗c∇ψc − ψc∇ψ∗c ] (5.25)

We now employ the electromagnetic gauge invariant derivative ∂ → D = ∇ ± im
~
~A to obtain the

gauge invariant current density:
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~jc = − i~e
m

[ψ∗c∇ψc − ψc∇ψ∗c ]− e2

me
|ψ|2 ~A (5.26)

Using the steady state (∂/∂t = 0) of the Ampere-Maxwell law to obtain ∇2 ~Aem = µ0
~jc we can

rearrange eq.(5.26) to obtain:

∇2 ~Aem = −µ0ene,s
me

~Aem (5.27)

which, analogously to equations (5.21)(5.22)(5.23) is the equation of a massive vector field. The decay

constant in (5.27) turns out to be the inverse square of the London penetration depth µ0ene,s
me

= 1
λ2
L

(from eq.(4.12)). Only the superconducting electrons contribute to the photonic mass, since electric

currents result only from the motion of electrons relative to the ion lattice and not, as in the case of

mass currents, from the total motion of the system.

Thus we have shown that the breaking of electromagnetic gauge invariance indeed leads to a non-

zero photon mass which is governed directly by the materials London penetration depth. Evaluating

the mass directly, analogously to (5.22), yields mγ = ~
λLc

as was used throughout this thesis (and as

introduced in eq.(3.11)).

5.2.4 Experimental Evidence for Massive Gravitons

As discussed in section 1.1.2.2, the two defining magnetic properties of a superconductor are the

Meissner-Ochsenfeld effect (magnetic field exclusion) and the London moment. The London mo-

ment is the magnetic field generated by any superconductor set into rotation. Empirically, the field

generated is given by equation (1.6).

Using a rotating ring of superconducting Nb, Tate et al.[90] measured the London moment with

sufficient accuracy to determine the Cooper pair massmc. They found that their value of (mc/2me) =

1.000084 was larger than the theoretically predicted value of 0.999992.

It was shown in[30] that a sufficiently strong GEM field could solve the anomaly if a GEM term

analogous to the London moment is included in the full canonical momentum derivation of the

normal magnetic London moment.

In order to solve the mass anomaly ∆m = mexp −mtheory we require ~Bg = 2~ω(∆m/mc) [30].

We will now evaluate ~Bg taking into account the graviton mass derived in section 5.2.2. Since we

have shown in section 5.2.2 that gravitons have non-zero rest mass in superconductors we can replace
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the GEM equations by a set of massive-GEM equations similar to the Proca equations for massive

electromagnetism [30]. Taking the curl of the fourth massive-GEM equation and solving the resulting

differential equation yields [92]:

~Bg = ~B0,ge
−x/λg − 2ωρµ0gλ

2
g (5.28)

where µ0g = 4πG
c2 is the gravitational permeability of free space.

The first term of equation (5.28) is the Meissner term, the second term is the GEM London moment.

We set the externally applied field ~B0,g = 0 and evaluate the GEM London moment explicitly. Us-

ing the graviton penetration length in Nb, we find the ratio of the predicted massive-GEM London

moment to the value required to solve the experimental anomaly to be:

ρµ0gλ
2
g

∆m
mc

≈ 0.06 (5.29)

The change in the London moment predicted by our theory is of the correct sign but approximately

an order of magnitude too small in order to account for the experimental anomaly. This may be due

to several reasons:

1. No thin film effects have been taken into account, despite the fact that the superconducting Nb

used experimentally by [90] was of cross sectional area of order tens of nm.

2. The theory used was local and isotropic. For anisotropic materials either a non-local theory

has to be used, or the scalar mass has to be replaced by a second rank tensor to account for

anisotropies in the local mass density [4].

3. The Lagrangian derivations used by [30] consider the electromagnetic and GEM Lagrangians

separately. In order to obtain a reliable prediction a systematic derivation of the Lagrangian of

the system in the simultaneous presence of both electromagnetic and GEM fields is required.

4. The Tate Cooper pair mas anomaly has a different source, or the theory applied is incorrect and

gravitational gauge invariance breaking does not occur inside superconductors.

5.2.5 Massive Gauge Bosons: Conlusions

It has been shown that the fact that the phase of the electronic or cooper pair wave functions ψ

becomes observable leads to the breaking of U(1) phase rotational symmetry upon transition to the
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superconducting state. This means that any gauge field interacting with the electrons loses U(1)

phase rotational invariance. If the gauge field in question can be modeled by a 4-vector potential

of the form Aµ = (At, ~A) it will acquire mass via the Higgs mechanism. Explicitly evaluating the

symmetry breaking yields a photonic mass mγ = ~
λLc

consistent with the work done in sections 3

and 4.

The same derivation that can be used to derive the photonic mass inside a superconductor can be

applied to the GEM 3-vector equations describing gravity in nearly flat space times. This approach

yields a way to derive the mass of a spin-1 graviton from first principles. The mass of the graviton is

estimated as mg = 2~
√
πGρ
c2 ≈ 3× 10−54kg. This is the value conjectured by Martin Tajmar et al. [30].

While this agreement between conjecture and derived value is a remarkable result it is too small by

about one order of magnitude to completely account for the cooper pair mass anomaly as outlined

in section 5.2.4.

5.3 Quantised Gravity and the Consequences

Given the shortcomings of massive-GEM theory in explaining the Tate anomaly, it seems desirable to

have alternative experimental verifications of massive-GEM theory. We will now show that the grav-

itomagnetic flux through a superconducting ring is quantised and that this results in gravitationally

induced currents measurable in the laboratory.

In this way we will not only demonstrate the foundation for an experimental regime that may verify

or disprove massive gravitational frame dragging, but also point to something far more fundamen-

tal. By writing the equations governing massive gravity in vector- rather than tensor-form we have

managed to demonstrate that, in the right circumstances, gravity and gravitational effects may be

quantised in a manner similar to electromagnetic effects. As such, we believe that gravitomagnetic

effects may have a role to play in the search for mathematical and physical mechanisms which may

eventually lead to a unified field theory.

5.3.1 Quantisation of Gravitational Flux

In a superconducting ring the amount of magnetic flux penetrating the inlying area is quantised to be

φ = nφ0 where φ0 is the magnetic flux quantum and n is an integer [4]. As the external field changes

a supercurrent is induced which keeps the magnetic flux through the centre constant. A similar effect

should occur for gravitomagnetic flux, inducing a mass current of electrons which in turn results in

a charge current large enough to be measurable in principle.
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Consider a superconducting ring with mass current jm small enough that the density of current

carriers ψ remains unaltered. It is possible to rewrite the current equation (5.18) in terms of the

gradient of the order parameter phase∇S:

~jm =
~
2
|ψ|2∇S − m

2
|ψ|2 ~AGEM (5.30)

Since the order parameter ψ(S) must be single valued the integral of ∇S along any closed curve C

enclosing the hole in the ring must be
∮
C
∇S.d~l = 2πn with n ∈integer. Thus, integrating equation

(5.30) we obtain:

∮
~jm.d~l = πn~|ψ|2 − m

2
|ψ|2

∫
Σ

~Bg.dΣ (5.31)

where we have used Stokes’ theorem to transform the integral of ~A along ~l into an integral of ~B =

∇× ~A over the surface Σ spanning the closed curve C. Assuming that ~B is constant over Σ and ~jm

is constant along C we obtain:

~jm =
πn~|ψ|2

C
− m

2
|ψ|2 ~Bg

Σ
C

(5.32)

Drawing the curve a long distance d > λg from the hole the screening current is zero and by rear-

ranging (5.32) with ~jm = 0 we obtain:

hn

m
= ~BgΣ (5.33)

This can be re-written in terms of the total flux Φg penetrating the ring to obtain:

ngφ0,g = Φg (5.34)

where φ0,g = h
m is the gravitomagnetic flux quantum and ng is the gravitomagnetic quantum num-

ber. This is analogous to the electromagnetic flux quantum φ0,em = 2e
~ which quantizes the magnetic

flux ΦM through the hole. Quantisation arises because the integrated phase change along C always

has to be ∆S = 2πn in order to maintain single-valuedness of the order parameter. Since S is just the

phase of the electronic wave function both the gravitomagnetic flux Φg and the magnetic flux ΦM

influence S at the same time causing flux quantisation according to:
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∮
C

∇S.d~l = 2πn =
2e
~

∮
C

~AM .d~l +
m

~

∮
C

~AGEM .d~l (5.35)

Again using Stokes’ theorem to solve the integrals:

2πn =
2e
~

ΦM +
m

~
Φg (5.36)

An applied external magnetic field BM induces a current in the ring which keeps the penetrating

flux constant. It is well known that these currents are measurable experimentally. In the next section

we show that the currents induced by earth’s gravitomagnetic field are also measurable by experi-

ment. Thus the phase of the order parameter provides a coupling between the electromagnetic and

gravitational fields, the magnitude of which appears accessible in the laboratory.

5.3.2 Gravity Induced Currents in Multiply Connected Superconductors

Consider a ring of open area Σ with surface normal ~Σ normal to the gravitomagnetic field ~Bg during

the transition from the superconducting to the normal state. The gravitomagnetic flux penetrating

Σ is zero, requiring ng = 0. If the ring is rotated in order to align ~Σ with ~Bg the gravitomagnetic

flux through the ring is kept constant at zero by an induced supercurrent. From equation (5.32) we

obtain:

~Jm = −mc

4
|ψc|2 ~Bgr (5.37)

where we have assumed Σ to be the surface spanning the circular closed curve C of radius r. The

subscripts ”c” arise since we have assumed that the ion lattice is fixed immovably to the lab frame

and the entire mass current is due to the movement of Cooper pairs.

The massless gravitomagnetic field of a point mass m moving with velocity ~v at position ~r relative to

the observer can be calculated from:

~Bg = −µ0m

r2
(~v × r̂) (5.38)

Thus we can calculate the gravitomagnetic field generated by the rotation of the Earth from the

integral:
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Bg,earth = µ0

∫
earth

ρ(~r)
~v × r̂
r2

d~r (5.39)

where ρ(~r) is the density of earth at position ~r. Using conformal transformations and numerical

integration this integral can be readily evaluated. Assuming the density of the Earth to be con-

stant ≈ 5515kg/m3 we find the frame dragging field at the equator to be approximately Bg,eq ≈

−1.89 × 10−7rad s−1 horizontal. Since any experiment would usually be co-rotating with earth this

effect is difficult to detect in a ground based laboratory. However, if the experiment is loaded onto

an aeroplane the effect can be observed. Any frame of reference circling the earth within 24h will

be subject to the frame dragging field discussed above. Loading the experiment onto an aeroplane

yields a number of additional advantages as well. Instead of having to mechanically rotate the ring

inside the cryostat, we can effectively tilt the entire laboratory by having the plane perform appro-

priate manouevers. Parabolic Flights, for example, would provide flying laboratories of sufficient

manoueverability.

According to equation (5.37) this yields a total gravity induced current in the ring of:

Igrav =
mc

4
|ψc|2Bg,eqAr (5.40)

where |ψc|2 is the density of Cooper pairs, A is the cross sectional area of the superconducting ring

and r is the ring radius. For a superconducting ring of radius 10 cm made from 0.2mm diameter

niobium wire we find Igrav ≈ −0.62nA, a current which should be easily detectable in the laboratory

and thus provide experimental evidence for the quantisation of gravitational flux.

5.4 Massive Gravity and Astrophysics - Neutron Star Cores and

Gravitational Collapse

Any massive vector field decays exponentially with distance [60]. In the case of gravity inside

a laboratory type superconductor the decay constant is too large for the effect to be observable

(λg ≈ 1011m). However, since the decay constant is inversely proportional to the root of the local

mass density the effect may become relevant in extremely high density systems. There is an ongoing

discussion about the state of matter at the centre of neutron stars but generally researchers agree

that some sort of quantum coherent condensate can be expected, whether it is a type-I superconduc-

tor, type-II superconductor, a neutron superfluid or a quark-matter colour superconductor [93] [94].

Using equation (5.23) and assuming a local mass density of ≈ 1014gcm−3 we find the gravitational
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penetration length to be of order ≈ 30km, indicating that massive gravity may be a significant factor

in neutron star physics, especially in the physics of gravitational collapse and in determining the

limiting masses of neutron stars (a typical Neutron star radius is 10 − 20 km). It may be possible

to put constraints on possible core sizes and constitutions by considering only those types of core

whose massive gravity is reconcilable with observation.
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Chapter 6

Summary and Conclusions

After an introduction to the thesis in general and to the basics of superconductivity in particular

in Chapter 1, Chapter 2 discusses the basic types of superconducting detectors. In the course of

this discussion the problem of TES excess noise is encountered and an explanation of the excess

noise phenomenon is sought. The existing models of Phase Slip Shot Noise (PSSN) and percola-

tion noise are discussed and both found to be in reasonable agreement with experiment. However,

when analysing the temperature region of validity it is found that the models of PSSN and perco-

lation noise only strictly apply over the low-temperature and mid- to high-temperature parts of the

sn-transition respectively. Neither of them can explain the persistence of white excess noise through-

out the entirety of the sn-transition. As part of the investigation into the predictions of PSSN and

percolation noise the existing model for the PSSN noise current is extended to include the magnetic

field dependence of the noise in the presence of strong magnetic fields. In the case of percolation

noise a new quantitative analytical model is created which describes the dependence of percolation

noise on the device temperature and external magnetic field and the material parameters (critical

temperature and field). At the time of writing and to the best of the author’s knowledge this is the

first quantitative analytical model of TES percolation noise. The resultant models are compared with

the empirical excess noise equation provided by Takei et al. [7], and PSSN is found to be in extemely

good agreement with the empirical expression. The Chapter concludes with speculating about the

possibility of a combined noise model in which excess noise is generated by PSSN in the low tem-

perature part of the sn-transition, followed by a smooth transition to percolation noise in the high

temperature part of the transition. It is reported by Voss [47] that the excess noise power spectrum

changes with bias current, indicating at least two different noise regimes and giving credibility to the

concept of a combined noise theory. An important step towards solving the excess noise problem

would be a dedicated experiment trying to detect the in ∝ A−1/2 dependence of the excess noise

167
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current density in on the macroscopic device area A predicted by PSSN.

The the work presented in Chapter 2 creates a strong sense of the sensitivity of the sn-transition

to even tiny electromagnetic disturbances, like the motion of an individual magnetic flux quantum

(section 2.3.2). It is this sensitivity to quantum scale effects that prompts the digression into quantum

electrodynamics from which the remaining Chapters are motivated.

In Chapter 3 the extreme sensitivity of the sn-transition to quantum mechanical effects leads to what

turns out to be a fruitful digression into the field of QED and the physics of the quantum vacuum.

The initial intention is to find a possible coupling between quantum mechanical vacuum fluctuations

and the TES excess noise phenomenon. From the literature it is apparent that a coupling between

the sn-transition and the QED vacuum indeed exists in modifications to the Casimir energy of a cav-

ity with superconducting boundaries [10]. The conventional form of the equations governing the

Casimir effect is found to be unsuitable and the corrections required for a system with supercon-

ducting boundaries are discussed. A complete mathematical model of the dielectric functions of the

evacuated cavity volume and the cavity boundaries is presented for the case of the parallel plane

geometry cavity with superconducting boundaries. The functions are of a form suitable for imple-

mentation with Lifshitz theory, and numerical evaluation of the effect shows that the corrections to

the Casimir force predicted are of an order of magnitude reconcilable with observations. It is be-

lieved that the model of the superconductivity induced massive-em Casimir effect is an important

contribution to the analysis of the data presented by Bimonte et al.[74].

An investigation of the type of electromagnetic equations suitable for tackling the problem of the

Casimir energy of systems with superconducting boundaries forces us to consider a scenario in

which Maxwellian electromagnetism is replaced by Proca electromagnetism. In Proca electromag-

netism the photon rest mass is non-zero. Discussion of this massive electromagnetism leads us in

Chapter 4 to investigate the properties of optical elements made from superconductors, giving rise

to the idea of Heavy Photon Optics (HPO). It is shown how optical elements and devices based on

the HPO technology can exploit the diverging refractive index and dispersion of photons near a

critical wavelength λcrit determined by the material parameters. It is found that λcrit depends cru-

cially on the density of superconducting electron pairs. The macroscopic optical parameters such

as refractive index and dispersion of HPO elements are derived, along with their dependence on

the superconducting material parameters. The type and availability of materials suitable for form-

ing transmission-HPO devices are discussed. Following this investigation into the basic concepts of

HPO devices the thin film reflectance/ etalon response characteristics are established. A number of

promising technological applications based on high refractive index, ultrahigh disperion, non-linear

optical elements is discussed. For these potential applications a patent application has been filed

(priority filing number GB0806470.1).
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A closer look at the mechanisms responsible for the photon mass which is pivotal to HPO technology

leads into the general field of gauge symmetries and vector bosons. It is found that the underlying

principle by which photons acquire a non-zero rest mass is the Higgs mechanism applied to the

breaking of U(1) phase rotational symmetry of the macroscopic electronic wave function in a super-

conductor. In Chapter 5 the same mechanism is applied to the gravitational field generated by the

superconducting electrons. The mathematical model of the gravitational field used is the 3-vector

based Gravitoelectromagnetism (GEM), which is valid in nearly flat space times and allows for a

mathematical treatment of the problem without recourse to tensors or the full relativistic treatment.

The gauge invariance breaking mechanism is used successfully to derive the mass of a hypothetical

massive spin-1 graviton (conventional gravitons are spin-2). The mass of this graviton is of order

10−55kg and in exact agreement with the graviton mass conjectured by Tajmar and de Matos [30]

in their discussion of superconducting frame dragging effects. In principle this mechanism can be

applied to create a non-zero vector boson rest mass for any gauge field generated by the particle for

which phase rotational symmetry is broken, in this case the electron. Also, the mechanism is not

restricted to superconductivity in any way but rather depends on the breaking of symmetry which

occurs, for example, in any kind of quantum coherent matter such as superfluids or indeed any Bose-

Einstein Condensate (BEC). The most significant consequences of massive spin-1 gravity are the ex-

istence of the gravitomagnetic flux quantum φ0,g and the prediction of the gravitomagnetic London

moment as discussed by Tajmar and de Matos [30]. The existence of φ0,g yields a quantised gravita-

tional effect which, significantly, depends on the sum of the gravitomagnetic flux quantum φ0,g and

the magnetic flux quantum φ0, thus yielding a direct dependence of an observable parameter (phase

slip ∆S around a ring) on a combination of quantum mechanical and gravitational constants (num-

ber of flux quanta φ0,g and φ0 penetrating the ring). The gravitomagnetic London moment predicted

might make the generation of gravitational frame dragging effects in the laboratory feasible [30] and

efforts are underway to detect those effects experimentally [28]. The Chapter concludes with specu-

lations about the implications of massive spin-1 gravity for neutron star astrophysics, based on the

hypothesis that neutron stars may have a superconducting/quantum coherent core.
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6.1 Closing Remarks

What becomes apparent from the work presented herein is that, while the phenomenon of super-

conductivity has been known for almost a century, a true understanding of the implications of a

quantum coherent matter state is still incomplete, despite the fact that a good model describing the

physics underlying the effect has been around for about 50 years in the form of BCS theory.

Particularly the interactions between the gravitomagnetic and electromagnetic flux quanta outlined

in Chapter 5 indicate superconductor physics may make substantial contributions to modern fun-

damental physics, while the HPO technology developed in Chapter 4 demonstrates that unexpected

but significant practical applications may be found along the way.

As such it is the author’s believe that superconductivity has got a significant role to play in theoretical

and experimental physics, not just as a means to an end in the field of superconducting detectors,

but primarily as a testbed for advanced concepts like gauge theory and the Higgs mechanism. As

a final conclusion, due to the diversity of the fields to which the results obtained are applicable,

superconductor research, both theoretical and experimental, has important contributions to make to

any comprehensive modern physics research programme.
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