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ABSTRACT: A message coming out of the recent Bayesian literature on cointegration is that it is important

to elicit a prior on the space spanned by the cointegrating vectors (as opposed to a particular identi�ed choice

for these vectors). In this note, we discuss a sensible way of eliciting such a prior. Furthermore, we develop

a collapsed Gibbs sampling algorithm to carry out e¢ cient posterior simulation in cointegration models. The

computational advantages of our algorithm are most pronounced with our model, since the form of our prior

precludes simple posterior simulation using conventional methods (e.g. a Gibbs sampler involves non-standard

posterior conditionals). However, the theory we draw upon implies our algorithm will be more e¢ cient even

than the posterior simulation methods which are used with identi�ed versions of cointegration models.
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1 Introduction

Early Bayesian work on cointegration used Vector Autoregressive (VAR) representations (e.g. DeJong (1992),

Dorfman (1994), Koop (1994)), for which simple and standard methods of posterior simulation were available.

This early work was criticized by subsequent authors for ignoring the reduced rank structure implied by the

cointegrating restrictions. Accordingly, the Vector Error Correction Model (VECM), was increasingly adopted

for Bayesian work (see, e.g., Bauwens and Lubrano (1996) and Geweke (1996)). For an n�vector of unit root

variables, yt; we write the VECM for t = 1; ::; T as:

�yt = �yt�1 +
lX

h=1

	h�yt�h +�dt + "t (1)

where the n� n matrix � = ��0, � and � are n� r full rank matrices and dt denotes deterministic terms (see,

e.g., Johansen (1995) pages 81-84 for a commonly-used set of choices). The value of r determines the number

of cointegrating relationships. "t is i.i.d. N (0;�). Since the crucial issues of identi�cation, prior elicitation and

posterior simulation all relate to �, we will focus on the restricted version of (1):

�yt = ��
0xt + "t, (2)

where xt = yt�1. Although this paper discusses a cointegrated model, (2) makes clear that the ideas are of

relevance for any model with such a reduced rank structure.

Relative to the VAR, Bayesian inference in the ECM is complicated by the fact that � = ��0 involves

a product of parameters. This precludes direct use of analytical or Monte Carlo integration results for the

multivariate linear model. However, once we condition on the cointegrating vectors, �, the otherwise nonlinear

ECM becomes a linear one. This means that, under suitable informative priors (e.g. Normal priors of the form

used in Geweke (1996)), standard Bayesian analysis of the multivariate linear model applies (conditional on �).

This suggests posterior simulation can be done in a straightforward fashion if the posterior distribution of �

(either a marginal distribution or a distribution conditional on � or on �,	, � and � where 	 = (	1; ::;	l))

can be drawn from.

However, the VECM su¤ers from both a global and local identi�cation problem. A global identi�cation issue

can be seen by noting that � = ��0 and � = �CC�1�0 are identical for any nonsingular C. This indeterminacy

is commonly surmounted by imposing the so-called linear normalization where � =

0BB@ Ir

�0

1CCA. Even if global
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identi�cation is imposed, a local identi�cation issue occurs at the point � = 0 (i.e. at this point � does not

enter the model). A large literature (e.g. Kleibergen and van Dijk (1994, 1998), Kleibergen and Paap (2002))

discusses problems arising from local non-identi�cation (e.g. lack of existence of posterior moments and lack

of convergence of Gibbs samplers using common noninformative priors) and develops other approaches to prior

elicitation which surmount these problems. However, the posterior simulation methods used in these papers

become more complicated. Furthermore, they all impose global identi�cation through restrictions analogous to

the linear normalization.

A literature has recently emerged which argues that it is only the cointegrating space which is identi�ed

(see Strachan (2003), Strachan and Inder (2004), Strachan and van Dijk (2004) and Villani (2005a,b)) and this

should be the focus of interest (rather than a particular identi�ed parameter such as �0). For instance, Strachan

and Inder (2004) show how the use of linear identifying restrictions places a restriction on the estimable region

of the cointegrating space. Strachan and van Dijk (2004) show that a �at and apparently �noninformative�prior

on �0 in the linear normalization favors regions of the cointegration space near where the linear normalization

is invalid. Hence, the linear normalization is used under the assumption that it is valid while at the same time

the prior says that the normalization is likely to be invalid.

This recent literature has begun to develop ways of eliciting priors over spaces (as opposed to parameters)

and deriving corresponding posterior simulation methods. However, this literature is in its infancy and a good

understanding of prior elicitation and e¢ cient posterior simulation have been elusive. A recent survey paper,

Koop, Strachan, van Dijk and Villani (2005) describes the development of the Bayesian cointegration literature

in detail. The purpose of our paper is to shed further insight on prior elicitation and new methods for posterior

computation. In particular, we develop e¢ cient posterior simulation algorithms using a collapsed Gibbs sampler

which adapts the algorithm of Liu (1994) to the present context. An empirical illustration demonstrates the

large computational gains achieved by this algorithm.

2 Prior Elicitation

Let p = sp (�) denote the cointegration space which is an r-dimensional hyperplane in a n-dimensional space.

We wish to carry out Bayesian inference relating to this space without imposing identi�cation in such a way as

to restrict this space. Furthermore, we wish to develop sensible informative and noninformative priors on this

space. To illustrate a key basic idea in a simple case, suppose n = 2 and a single cointegrating vector exists.

We can parameterize the latter in polar coordinates � = (cos � sin �)
0
;where � 2 [��=2; �=2). It is only �
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which determines the cointegration space and, thus, we can restrict the length of � to be unity for identi�cation

without restricting the cointegration space. A candidate for a noninformative distribution on p is the Uniform

distribution on � and this indeed has sensible properties. These points (and many more) are made in Strachan

and Inder (2004) and extended to the case where n and r are of higher dimensions. In this general case, the

cointegrating space is an element of the Grassman manifold and, thus, a Uniform prior for the cointegration

space is given by the Uniform distribution on the Grassman manifold. An identi�cation restriction which does

not restrict the possible cointegration space is:

�0� = Ir. (3)

Formally, this restricts the matrix of cointegrating vectors to the Stiefel manifold. These spaces are compact

and, hence, a Uniform distribution over them is proper (the integrating constant which ensures propriety is given

in Strachan and Inder (2004)). Thus, a noninformative prior for � which does not restrict the cointegrating

space is simply proportional to an integrating constant with (3) imposed.

To develop an informative prior, we introduce the following transformation:

��0 = (��)
�
���1

�0
=
h
� (�0�)

1
2

i h
� (�0�)

� 1
2

i0
� BA0; (4)

where � is positive de�nite matrix and A = ���1 is semi-orthogonal. The matrix square root is de�ned, e.g., in

Abadir and Magnus (2005), pages 220-221. This reference also describes a method for its practical calculation.

For future reference, we write various relations between the parameters in (4):

� = (�0�)
1
2 (5)

� = B (B0B)
� 1
2

B0B = �0�: (1)

Crucially, in the �rst of these parameterizations (i.e. involving � and �), � is semi-orthogonal while �

is unrestricted, whereas in the second (i.e. involving A and B) it is B which is unrestricted whereas A is

semi-orthogonal. Our collapsed Gibbs sampler proceeds by switching between these two parameterizations and,

hence, it proves useful to consider prior elicitation in both of them.
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We begin by setting out the complete prior written in terms of B;� and �, following which we will motivate

why they are attractive choices. We will use the standard noninformative prior for �:

p (�) _ j�j�(n+1)=2 , (6)

although an inverted-Wishart prior can easily be accommodated. The priors for B and � depend on parameters

� and � (to be explained shortly) and take the forms:

Bj� ; � �MN (0; Ir 
 �P� ) ; (7)

and

�j�; � ; � �MN
�
0; �

�
�0P1=��

��1 
 In� ; (8)

where P� is a function of � (to be de�ned shortly) and MN denotes the matricvariate-Normal distribution (see,

e.g., Bauwens, Lubrano and Richard (1999), Appendix A).

To motivate the prior for � note that, given (7) and the fact that � = A (B0B)
1
2 , it follows that (8) arises

if we choose a Uniform prior for A (a sensible noninformative choice for similar reasons to those discussed near

equation 3). It is proper and, thus, marginal likelihoods (e.g. for calculating posterior probabilities of various

cointegrating ranks) can be calculated. In terms of �, (8) has a shrinkage prior interpretation similar to the

prior used in Strachan and Inder (2004). � is a scalar which controls the degrees of informativeness of the prior.

� can either be selected by the researcher subjectively or (8) can be treated as a hierarchical prior with � being

an unknown parameter.

We now turn to the prior in (7). We introduce a semi-orthogonal matrix matrixH for the purposes of eliciting

a prior and adopt the standard notation where H? is the orthogonal complement of H: Prior information about

the cointegration space can be expressed by eliciting a value for H which spans the space felt, a priori, to be

most plausible. To obtain H, the researcher will typically �rst specify a matrix Hg containing desired coe¢ cient

values and then use the transformation H = Hg (Hg0Hg)
�1=2

: The matrix H constructed in this way will span

the same space as Hg but is semi-orthogonal.

For instance, if yt contains three interest rates of di¤erent maturities, then theories of the term structure

suggest pairs of them should be cointegrated and, thus:
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Hg =

0BBBBBB@
1 1

�1 0

0 �1

1CCCCCCA :

Hg is not semi-orthogonal but H = Hg (Hg0Hg)
�1=2 will be (and will span the same space).

Following Strachan and Inder (2004), we can construct a prior for p = sp (�) which is a weighted averaged

of pH = sp (H) and pH? = sp (H?) where the weights are dependent on the scalar, � . Details are provided in

Strachan and Inder (2004), here we note that, if we de�ne P� = HH 0 + �H?H
0
?, then the resulting prior for �

(conditional upon �) has a matrix angular central Gaussian distribution of Chikuse (1990). More importantly

for our purposes, our MCMC algorithm is greatly simpli�ed by the fact that this prior for p implies the Normal

prior for B given in (7). Prior elicitation is facilitated by noting that if � = 1, then P� = In and we have a �at

non-informative prior on �. Hence, it is usually sensible to have 0 � � � 1, with � = 0 implying a dogmatic

belief that the cointegrating space is pH and � = 1 being noninformative (formally, the prior for p is Uniform in

the Stiefel manifold when � = 1). Should the researcher not wish to subjectively elicit a value for � , she could

instead treat � as an unknown parameter and specify a prior density for it. In practice, such a prior density

would typically allocate most weight to values of � near zero and be restricted to [0; 1].

Thus, the prior speci�ed by (6) through (8) has many sensible properties. As we shall see in the next section,

it also simpli�es computation. Another advantage of this formulation is that the standard noninformative prior

is found by simply setting 1
� = 0 and, thus, the posterior simulator described in the next section also works

with this prior.

3 Posterior Inference

A big advantage of the prior given in (6) and (7) is that it allows for e¢ cient and simple posterior computation

through use of a collapsed Gibbs sampler (see Liu (1994) and Liu, Wong and Kong (1994)). Note that standard

results imply that MCMC draws for � can always be taken from:

�j�; �;Data � IW
�
[�y �X��0]0 [�y �X��0] ; T

�
; (10)

where �y and X are T � n matrices with tth row given by �y0t and x0t, respectively. IW denotes the inverted-

Wishart distribution (see, e.g., Bauwens, Lubrano and Richard (1999), Appendix A). Alternatively, � can be
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integrated out (with minor alterations to the algorithm described below). If � or � are treated as unknown

parameters (as opposed to having values selected for them), then a prior must be selected and an MCMC step

which draws � and � has to be added. For simplicity, we omit the conditioning arguments �, � and � in this

section and focus on the key issues relating to drawing from � and �.

The basic idea underlying our MCMC algorithm is computational ine¢ ciencies arise from trying to im-

pose the semi-orthogonality restriction on �. Accordingly, our algorithm alternates between the (one-to-one)

transformation between (�; �) and (A;B) which only involves drawing from simple distributions.

After choosing an initial value, �(0), our MCMC algorithm repeats the following steps for s = 1; ::; S:

1. Draw �(�) from p (�j�;Data) and transform this to obtain a draw A(�) = �(�)
�
�(�)0�(�)

�� 1
2 .

2. Draw B(s) from p
�
BjA(�); Data

�
and then transform this to obtain �(s) = B(s)

�
B(s)0B(s)

�� 1
2 and �(s) =

A(�)
�
B(s)0B(s)

� 1
2 .

To see why these conditionals de�ne a collapsed Gibbs sampler, note that (A; k) is the unique polar decom-

position of � (e.g. Cadet (1996)), and therefore the draw of �(�) in step (1) is a draw of (A(�); �(�)) from the joint

density p (A; �j�;Data). Similarly, the draw of B(s) in step (2) is a draw of
�
�(s); �(s)

�
from p

�
�; �jA(�); Data

�
.

Therefore, A(�) in step (1) is a draw from p (Aj�;Data) (i.e. obtained marginally on �), and �(s) in the second

step is a draw from p
�
�jA(�); Data

�
(i.e. obtained again marginally on �). Therefore, our sampling strategy is

equivalent to the collapsed Gibbs sampler proposed by Liu (1994) and Liu, Wong and Kong (1994, scheme 1),

who show that this algorithm is more e¢ cient than a standard Gibbs sampling algorithm (i.e. one which simply

draws sequentially from the conditional posteriors p (�j�;Data) and p (�j�;Data)). We stress that the latter

algorithm does not exist, so our algorithm is likely to be much faster than the existing choices (e.g. Strachan

and van Dijk (2004)).

An advantage of this algorithm is that it only involves drawing from the Normal distribution. In particular,

in Step 1 vec (��) is drawn from the Normal with mean � and variance 
� where


� =

��
�0X 0X�

�

 ��1 + 1

�

�
�0P�1� �

�

 In

��1
and

� = 
�
��
�0X 0�
 ��1� vec �[�y]0� :

In Step 2 vec
�
B(s)

�
is drawn from the Normal with mean B and variance 
B where
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B =

��
A0��1A

�

 [X 0X] + Ir 


1

�
P�1�

��1
and

B = 
Bvec
�
X 0�y��1A

�
:

Should the researcher wish to treat � and � as unknown parameters, then sensible priors for them would

be inverted Gamma-2 IG2(s� ; n� ) (see, e.g., Bauwens, Lubrano and Richard (1999), Appendix A) for � and

IG2 (s� ; n�) for �. These priors result in simple posterior conditionals: IG2(tr[��1B0H?H 0
?B]+s� ; (n�r)r+n� )

for � and IG2
�
s� + tr

�
B0P1=�B

�
; n� + nr

�
for �. For � , it will typically make sense to elicit s� and n� such

that the preponderance of prior probability is allocated between 0 and 1.

4 Empirical Evidence on E¢ ciency of Our Algorithm

In order to simulate data from model (2) we decompose yt into two components yt =
�
y01;t y

0
2;t

�0
with y1;t : r�1,

y2;t : (n� r)� 1 and use the cointegrating system y1;t = �
0
0y2;t + w1;t; �y2;t = w2;t, with the errors generated

according to wj;t = �jwj;t�1 + "j;t; j = 1; 2 where "j;t v iidN
�
0; (1:5)

2
�
, �1 = �Ir; � = 0:3, �2 = 0 and

�0 is a (n� r) � r matrix of ones. This speci�cation corresponds to (2) with � =
�
(�� 1) Ir 0r�(n�r)

�0
,

� =

�
Ir ��00

�0
, and "t =

�
"01;t + "

0
2;t�0; "02;t

�0
. We use the noninformative version of the prior.

We compare our algorithm with the following algorithm:

1. Generate �(s) from p (�jData) using a Metropolis-Hasting (MH) algorithm.

2. Draw �(s) from p (�j�;Data).

3. Draw �s from p (�j�; �;Data).

Following Strachan and van Dijk (2004), we specify a random walk proposal density to generate candidates

for �. In particular, they suggest a MACG(Pz2) (see Chikuse (1990)) proposal density with parameter Pz2 =

�(s�1)�(s�1)0 + z2�
(s�1)
? �

(s�1)0
? , where �(s�1) is the value of � obtained in the previous iteration. This proposal

density is therefore of the same type as the prior discussed above. For values of z smaller than 1 this density

gives more weight to the space spanned by �(s�1), and this weight is greater the closer z is to zero (Strachan

and Inder (2004)). The variable z is speci�ed to follow a N(0; �2) and we adjust �2 to obtain acceptance rates
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between 20% and 50% (Chib and Greenberg (1995)). Steps 2 and 3 imply drawing from standard distributions

(multivariate Student and inverted Wishart, respectively).

We compare the e¢ ciency of these algorithms using the e¤ective sample size (e.g. Brooks (1999)) and the

average update distance between iterations (Holmes and Held (2005)). The e¤ective sample size measures the

number of independent draws from the posterior that is equivalent to n� draws from an MCMC algorithm. For

n� = 1 the e¤ective sample size is de�ned by:

ESS =
1

1 + 2
P1

t=1 �(t)

where �(t) is the autocorrelation function at lag t. A value near to one means that the algorithm is as e¢ cient

as independent sampling, whereas a value near to zero implies that the algorithm is very ine¢ cient (compared

to independent sampling). Since the estimated autocorrelations become imprecise as t gets large, we truncate

the sum in the denominator using the initial monotone sequence estimator proposed by Geyer (1992). ESS is

calculated for d(�; ��), where �� spans the true cointegrating space (speci�ed above) and d(�; ��) is the distance

measure between cointegrating spaces proposed by Larsson and Villani (2001).

We also calculate the average distance between subspaces sampled in consecutive iterations, de�ned as:

AD =
1

N � 1

N�1X
s=1

d(�s; �s�1)

where N is the number of iterations after the burn-in. Our choice for the burn-in is 300 iterations and we �x

N at 15000.

We measure the relative e¢ ciency of our algorithm with respect to the MH algorithm with the ratio of

their corresponding ESS and AD values. In particular, we de�ne this ratio as RESS = ESSG=ESSMH ,

where ESSG is the ESS value for our algorithm. Similarly, we de�ne the relative gains in update distance as

RAD = ADG=ADMH . We compare the algorithms for a range of values of n and r. For each pair (n; r) we

generate 100 �ctitious samples and run both algorithms for each of these samples. The average values of RESS,

RAD;ESSG; ESSMH and their standard deviations together with other summaries are reported in Table 1.

When n = 2 and r = 1, our algorithm is almost as e¢ cient as independent sampling (ESS = 0:95), whereas

the MH algorithm is about 8.4 times less e¢ cient (in terms of ESS). Moreover, the relative gains increase as n

gets larger. For n = 6 and r = 3 our algorithm is on average 666 times more e¢ cient, and for n = 9 and r = 5 it

is about 1270 times more e¢ cient. Substantial improvements are also observed in terms of the average update

distance. Furthermore, our algorithm computes 15000 iterations slightly more quickly than the MH algorithm
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(RT ), suggesting that the gains adjusted for computation time are even higher.
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RESS RAD RT ESSG ESSMH AR �

n = 2, r = 1 8.4 3.7 0.88 0.95 0.11 0.49 0.025
(2.00) (0.271) (0.100) (0.046) (0.016) (0.108)

n = 3,r = 2 19.6 6.4 0.97 0.95 0.050 0.37 0.020
(4.69) (0.966) (0.048) (0.054) (0.009) (0.097)

n = 3,r = 1 28.7 8.25 0.93 0.83 0.035 0.36 0.025
(15.2) (3.16) (0.025) (0.124) (0.014) (0.078)

n = 4,r = 3 37.0 10.1 0.98 0.928 0.0267 0.30 0.020
(11.2) (2.74) (0.007) (0.069) (0.006) (0.106)

n = 4,r = 2 125 21.2 0.97 0.763 0.00902 0.30 0.015
(116) (12.1) (0.011) (0.145) (0.005) (0.076)

n = 4,r = 1 65 14 0.95 0.647 0.0124 0.35 0.015
(37) (4.9) (0.02) (0.150) (0.006) (0.06)

n = 5,r = 3 303 40 0.98 0.71 0.0043 0.30 0.01
(278) (26) (0.054) (0.123) (0.003) (0.088)

n = 5,r = 2 343 39.4 0.971 0.592 0.0027 0.35 0.008
(308) (17.8) (0.023) (0.118) (0.0017) (0.07)

n = 6,r = 4 436 51.7 0.99 0.700 0.0031 0.37 0.006
(571) (39.2) (0.007) (0.124) (0.002) (0.10)

n = 6,r = 3 666 83.1 0.975 0.565 0.00142 0.275 0.008
(695) (48) (0.057) (0.128) (0.001) (0.068)

n = 9,r = 5 1270 207 0.995 0.50 0.00054 0.29 0.004
(1130) (130) (0.0041) (0.095) (0.0003) (0.083)

Table 1: Performance measures of our algorithm and theMH algorithm, averaged over 100 �ctitious samples for
each value of (n; r). The columns RESS;RAD;ESSG; ESSMH are de�ned in the text and standard deviations
are in parentheses. RT is the computation time needed for our algorithm to perform 15000 iterations divided
by the time needed by the MH algorithm. AR is the acceptance rate in the MH algorithm, which is controlled
by �.
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