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Abstract 

 
Embedded control systems play an increasing role 

in many safety critical system designs. The correct and 
dependable implementation of such systems depends 
on many factors, including the design of system 
hardware, software and fault tolerance mechanisms, 
the choice of programming language, and also the 
testing, verification and validation techniques 
employed. In this paper, a set of guidelines for the 
development of dependable embedded systems is 
presented. Although the paper is primarily concerned 
with single-processor applications, extensions to multi-
processor systems are discussed where appropriate. 
Although the creation of dependable embedded 
systems cannot simply rely on the enforcement of 
several such rules or guidelines, experience gained 
from several years’ experience of teaching, research 
and development in these areas indicates that 
adherence to a small, but workable, set of rules and 
guidelines can avoid many of the traps and pitfalls 
commonly encountered in the creation of dependable 
embedded systems.  
 
1. Introduction 
 

Modern control systems are almost invariably 
implemented using some form of embedded digital 
computer system. When such embedded systems are 
used in situations where their correct functioning is 
vital, special care must be taken to ensure that the 
system is dependable, in that it is both reliable, timely 
and functionally safe [1-7]. Special measures must 
therefore be taken at all stages of the design process to 
ensure that the required Safety Integrity Level (SIL) 
has been achieved. The SIL of a system depends on the 
consequences of system failures, which can be 
determined using risk assessment; a required 
dangerous failure rate λd is then assigned for a system 

based on this risk. Demonstrating that the dangerous 
failure rate for a system is at a specific level requires 
many factors to be taken into consideration; a major 
element in this process is the determination of 
reliability, safety, security and availability measures 
for each sub-system and component as part of a safety 
case. 

Prospective designers of embedded systems have 
many factors to consider – for example the choice of 
hardware / software architecture, programming 
language and communications network - and many of 
these decisions are known (or thought) to influence 
both the performance and dependability of the 
resulting system (e.g. [3][4][5][6]). Some of the main 
factors to be considered are illustrated in Figure 1. This 
paper is specifically concerned with general design 
guidelines and programming / testing techniques for 
use in creating dependable real-time embedded 
systems, programmed using a sub-set of the ANSI C 
language; embedded C has become the choice of many 
developers in these areas in recent years [4][6][9]. 

 

 
Figure 1. Dependable system design factors 

 



Most serous system developers use some form of 
design and coding guidelines, which define a set of 
ground rules for the overall system design and the 
software to be written. In this paper, a small – but 
highly workable – set of rules and guidelines is 
presented. Although the creation of such systems 
cannot simply rely on the enforcement of several such 
rules or guidelines, experience gained from several 
years’ experience of teaching, research and 
development in these areas indicates that adherence to 
a small, but workable, set of rules can avoid many of 
the traps and pitfalls commonly encountered in the 
creation of dependable embedded systems. 

The rules and guidelines presented are divided in 
four broad categories, and cover hardware design, 
software design, programming guidelines and testing 
techniques. In all cases the rules have been formulated 
to be consistent with much previous work in this area. 
For example, the rules are consistent with the MISRA 
coding guidelines [3][4] and IEC 61508 [11], and also 
many previous works in this area – for example 
[1][2][5][6][8]. However, the discussion presented 
here is intended to compliment these existing works, 
identify the common best practice within them, and 
focus their content from a real-time embedded 
perspective. 

The remainder of the paper is organized as follows. 
In Section II, general hardware considerations for real-
time embedded systems are discussed. In Section III, 
recommendations are made for the software 
architecture of the system. Section IV presents a 
summary of what is considered to be the main 
recommendations and rules applicable to the software 
design process. In Section V, recommendations 
regarding testing, verification and validation are 
presented. Finally in Section VI, the paper is 
concluded. 
 
2. Hardware considerations 
 

From the hardware perspective, designers have the 
choice of a number of different key system elements: 

 
• Microprocessor; 
• Memory; 
• Oscillator circuit; 
• Watchdog timer; 
• Off-chip peripherals; 
• Communication devices. 
 
A wealth of useful information regarding these 

choices is discussed by [9]. In summary, the choice 
hardware elements is dictated by several factors, 

including the complexity and timing constraints of the 
software functionality, required number of I/O lines, 
costs, and target environment. A sensible choice of 
processor would be to select a device with several 
years’ proven deployment, which is not likely to 
become discontinued in the immediate future. For 
systems with a high SIL, then the use of specialized 
processor architectures is recommended. When using 
general purpose processors, designers must be aware 
that special measures must be implemented to protect 
against transient effects such as EMI and particle 
strikes. Additionally, the processor may have 
undocumented test modes that may be inadvertently 
triggered during normal operation. At the present time, 
the 8-bit 8051 architecture, 16-bit (X)C167 
architecture and the 32-bit ARM-7 architectures (and 
close variants) are good choices of general-purpose 
processors in a range of different performance levels. 

Choice of RAM memory will typically be dictated 
by the nature of software, with data-intensive systems 
obviously requiring larger memory requirements. 
However it should be remembered that when coding a 
system, the smaller the memory footprint, the less 
likely the system is to suffer a data error. However, 
there is a trade-off; in many cases sacrificing RAM 
usage will be at the expense of code execution time 
and ROM usage, which may affect the timeliness of 
the system, to be discussed in the next section. 

For a real-time system, the performance – and 
hence timeliness - of the system is highly dependant on 
the availability of an accurate clock (hardware timer). 
Since such timers are almost totally reliant upon the 
oscillator, then care must be taken in this aspect. The 
use of a crystal oscillator over alternates (e.g. ceramic 
resonator) is recommended for stability reasons. For 
systems that are to be subjected to high temperature 
fluctuations or excessive vibration, then a temperature 
and/or vibration compensated oscillator circuit should 
be considered. An oscillator watchdog circuit, in 
conjunction with a brownout/reset circuit, should be 
considered mandatory [1][2][3][7][9]. 

The use of a watchdog timer as a primary guard 
against transient faults should also be considered 
mandatory. When a general-purpose processor is to be 
employed, then an external watchdog should be 
considered; as mentioned, such devices may have 
undocumented test modes that may be inadvertently 
triggered during normal operation, in which the 
watchdog timer is also disabled. If an external device 
is used, this condition is prevented by design. 

Where possible, the use of on-chip peripherals for 
performing functionality such as ADC conversion is 
recommended, mainly to reduce the complexity of the 
system; and also to reduce the number of components 



and IC’s in the design, which in general will decrease 
the overall hardware failure rate. However, when cost 
or performance constraints dictate that additional 
components must be employed, then the use of field-
proven, high-reliability devices is recommended. 

In multiprocessor systems, some form of shared 
communications network is employed to allow the 
devices to communicate. In these systems, care must 
be taken to provide fault tolerance in this medium, as it 
provides a single point of failure. In many safety-
related protocols this fault-tolerance is pre-designed 
into the network in the form of bus-guardians, 
redundant cabling media, and fault-tolerant clock 
synchronization. However, if a more general purpose 
network is to be employed – such as the CAN protocol 
[10] or the RS-485 standard – then special 
considerations need to be taken to ensure fault-
tolerance. Further details may be found in [9][11][12]. 

In all cases, determination of the overall reliability 
of the components in the system should be performed - 
using suitable analysis techniques [1][13] - to ensure 
that the failure rate is commensurate with the SIL of 
the system. 
 
3. Software considerations 
 
3.1 Design paradigm 

 
From the software perspective, designers may choose 

to implement a system based around four (highly inter-
related) categories [14]: 

 
• Time-triggered; 
• Event-triggered; 
• Preemptive; 
• Non-preemptive (co-operative). 

 
From the perspective of the dependable systems 

designer, a wealth of previous research has argued that 
the use of event-triggered systems should, in the main, 
be avoided where possible. Instead, the use of time-
triggered techniques for both communications and task 
scheduling should be considered, as this is known to 
improve the system predictability considerably 
[9][15][16][17][18].  

From the time-triggered perspective, it is common 
to represent a real-time system as a number of 
communicating tasks, where each task t in the task set 
τ is represented by a four-tuple: 

 
( )iiiii rdcpt ,,,=  

(1) 

 
In which pi is the task period, ci is the worst case 

computation time of the task, di is the task deadline 
and ri is the task release time, represented as whole 
integers in suitable processor time units, for example 
microseconds. With such a representation, it is normal 
to assume the following: 

 

iiiii pcrdp <<≥>= 0,0  
(2) 

 
i.e. with the task deadline equal to its period and 

release time and computation time less than the period. 
Determination of the worst case computation time c of 
each task has been well covered in the literature, and 
can be obtained by a variety of methods loosely termed 
‘code profiling’. When the task computation times 
have been determined, appropriate scheduling analysis 
can be performed. This analysis is essentially a 
decision procedure giving a yes/no answer as to 
whether the schedule is feasible or not. In the case of 
the co-operative system, tasks must run to completion 
once dispatched. When the release times in the task set 
τ are all equal, schedulability is decided by the 
following equation [14]: 
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Where gcd is the greatest common divisor of the task 
set periods, i.e. the ‘tick’ interval of the scheduler. In 
the pre-emptive case, tasks may interrupt each other’s 
execution based on their assigned priorities. When the 
priorities are assigned inversely proportional to the 
task periods (which is known to be an optimal priority 
assignment), schedulability is decided as follows [14]: 
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Again, with all release times assumed equal. At first 

glance it would seem then that a greater CPU 
utilization may be achieved when implementing a 
system pre-emptively. However, these analyses do not 
include scheduler overhead – which are vastly 
increased in the latter scheduler – and do not include 
blocking terms introduced by resource conflicts and 



deadlock avoidance mechanisms associated with the 
latter. A fuller analysis that includes the influence of 
these mechanisms is given by Katcher et al. [19].  

In both cases, when the release times of the tasks are 
free to be chosen by the designer (a so-called ‘offset-
free’ task set), then the achievable CPU utilization may 
be increased (or decreased) by a large factor, 
depending on the choice of release times. However, the 
complexity problems of deciding schedulability and 
assigning effective release times to tasks increases 
dramatically with such systems, and is known to be an 
NP-Complete problem [14][20]. Details of recent 
advances in this area, producing (in most cases) 
tractable solutions, may be found in [21].  

In addition, it has also been argued that co-
operative systems are both easier to inspect and verify 
[22] and exhibit greater tolerance to transient 
disturbances [23] than equivalent preemptive systems. 
Based on these discussions, it is therefore 
recommended to use co-operative scheduling when 
developing safety-related systems. A suitable design 
for a portable, efficient scheduler coded in embedded 
C is given in [9]. Although this paper is primarily 
concerned with single-processor designs, this basic 
scheduler methodology can be extended to 
multiprocessor designs (a ‘shared-clock’ scheduler), 
and can be implemented over multiple, redundant 
communication networks to great effect [12]. 

 
3.2 Runtime behavior 

 
In addition to the avocation of time-triggered, co-

operative scheduling, it is recommended that the 
system possesses a minimum number of run-time 
mechanisms to mitigate the effects of transient errors. 
These mechanisms should include the use of a 
watchdog timer, duplex duplication of critical data 
with comparison, sanity checks of control signals, 
mechanisms to detect task overrun, and the enabling of 
all on-chip exception traps in the target processor. 
Such traps will normally consist of most of the 
following elements: 

 
• Stack overflow; 
• Stack underflow; 
• Illegal operand; 
• Illegal word access; 
• Protected instruction fault; 
• Divide by zero; 
• Illegal bus access. 

 

In addition, all unused areas of ROM and RAM 
memory should be filled with (or initialized to) illegal 
operands to provide added control flow error detection.  
On activation of any of these traps, a full system reset 
of the microcontroller should be forced. On system 
boot-up/reset, the microcontroller should perform – at 
minimum - the following software-based self-tests 
[24]: 
 

• Internal RAM/register/stack validation; 
• External RAM validation; 
• ROM checksum; 
• Peripheral test (e.g. ports, timer). 

 
If any of these tests are failed, the microcontroller 

must activate any appropriate warning signals and then 
enter a safe state. The overall recommended approach 
to software fault-tolerance is illustrated in Figure 2. 
The simple techniques presented here, although 
somewhat dependant on the implementation hardware, 
typically allow for transient error coverage in excess of 
95% [9][23][25]. Although some researchers have 
advocated the use of specialized (software-based) 
transient error detection mechanisms, in general it is 
recommended that such techniques are avoided. This is 
because such techniques increase the system 
complexity considerably and oftentimes require the use 
of automatic code generators for their implementation, 
which may sometimes be problematic from a safety 
perspective and may cause problems with certification. 
Although the use of such code generators has many 
potential benefits, to date few such generators have 
been certified to the appropriate levels, and – at the 
present time - their use should proceed with caution 
[1][3][4]. 

 



 
Figure 2. Software fault-tolerance 

 
4. Code development considerations 
 

In this section, attention is now focused on 
guidelines and recommendations for the use of the C 
language in such systems, and a basic set of guidelines 
for software development in embedded C is presented. 
Although defining an exhaustive list of such guidelines 
is beyond the scope of this paper, the interested reader 
is referred to [1-8]. In essence, the list that is presented 
aims to employ only the well defined features of the C 
language in order to create bounded, predicable, 
readable and maintainable code. 
 
4.1 Development Tools and Processes 

 
The choice of compiler may have a great influence 

on the quality of the resulting code. Typically a well-
supported compiler with a favorable, documented 
performance level should be chosen. A development 
team should have an ‘in-house’ coding style guide 
which is strictly adhered to, and when appropriate, 
version control software should be employed in 
addition to (and integrated with) the in-house 
documentation and release control procedures.  

Code must always be compiled with all warnings set 
to the maximum levels, and production code must 
compile without a single such warning. The use of the 
preprocessor should primarily be limited to simple 
#include statements, #define constants, syntactically 
meaningful macro definitions, and header guards – 
which - aside from the closing #endif of a header guard 
- are to be placed at the top of a file only. Conditional 
compilation use must be limited and never span 

multiple files. Language extensions – e.g. inline 
assembly – must be fully encapsulated and isolated. 

The use of ‘lightweight’ static checking and source 
code metrics tools should be a regular part of the 
development process; the use of ‘heavyweight’ formal 
methods tools should be considered mandatory for 
systems with a high SIL. This will be discussed further 
in Section V. 
 
4.2 Program Flow and Looping 

 
The call graph of an embedded control system 

program should ideally be acyclic, and the potential 
number of loops and iterations performed by any 
single execution of any given system task should 
always be bounded. This is required to prevent 
runaway code and task overruns. In practice this means 
that several main points should be adhered to in terms 
of control flow and looping. 

Only the simple, compound control flow statements 
provided by the C language should be used – the use of 
goto, setjmp or longjmp constructs is prohibited. The 
use of either direct or indirect recursion (functions or 
chains of functions which can call themselves) should 
be avoided - use iterative functions instead.  

Inside each task, all loops that rely directly on non-
deterministic input - or the results of complex data 
manipulation - for termination must have a fixed upper 
bound (loop timeout). The three expressions in a for 
loop must only be used for loop control, and numeric 
variables used within a for loop for iteration control 
must not be modified in the body of the loop. At most 
a single break statement may be used in any single 
loop. Finally, the controlling expressions used in for or 
while loops should not, either directly or indirectly, use 
any floating point types. 
 
4.3 Functions 

 
Obviously, functions are an integral part of all 

embedded C programs, and their correct and consistent 
use is required to produce reliable code. Correct use of 
functions will typically include the following elements. 

All functions should have a prototype. Ideally the 
identifier names as well as types of any arguments 
should be provided in this prototype. Functions should 
automatically be declared at file scope (static), unless 
they require external linkage. Functions shall not use 
variable (variadic) argument lists.  

Where possible, parameters passed to a function 
should be tested for validity, and if a function returns 
error information, this information should be tested. 
The use of the standard C errno facility should be 



avoided. Where the return type of a function is non-
void, all possible return paths should include an 
explicit non-void return statement. Where possible, 
there should only be a single point of return at the end 
of the function. 
 
4.4 Memory and Variables 

 
As with functions, variables and data - and their 

management in memory - are all integral parts of an 
embedded C program. However, their correct and 
consistent usage is required to produce reliable, 
readable code, and to ensure that testing can proceed 
efficiently. In particular, the following elements should 
be observed. 

All data objects must be declared at the lowest 
possible level of scope, with appropriate linkage 
(where required). All variables must be initialized 
before usage. Variables must not be reused for 
multiple, incompatible purposes, and variables in a 
local scope shall not use the same identifier as 
variables with a global or file scope.  

Programs must avoid dynamic data allocation, and 
avoid the use of (built-in) library functions that make 
use of dynamic memory allocation (e.g. string.h). 

Additionally, the use of pointers is riddled with 
potential traps and pitfalls - even experienced 
programmers can become easily confused. Therefore, 
limit the use of pointer indirection to a maximum of 
two levels; ideally one in most circumstances. Pointer 
arithmetic must be limited to array indexing only. 
Uninitialised pointers must never be used, and where 
appropriate checked that they are not NULL before 
use. The address of an object should never be assigned 
to a pointer with a larger scope. And finally, restrict 
the use of function pointers to scheduler 
implementations only. 
 
4.5 Libraries 

 
The creation, use and re-use of code libraries are an 

essential part of most software engineering processes. 
It makes no sense to re-engineer solutions to problems 
that have been well tackled in the past. However, there 
are a number of key points to adhere to in this respect. 
These include the following main elements. 

All libraries - with available source - shall be coded 
in accordance with the ‘in-house’ coding style, and 
shall adhere (where applicable) to strict ANSI 
guidelines. For libraries without available source code 
(e.g., from third party vendors), they must have 
appropriately documented, tested and verified 
behavior. When libraries are reused from previous 

projects, appropriate testing and verification should be 
performed to confirm that the code performs as 
expected in the new context. 

Reserved macro’s, functions and identifiers 
contained in standard libraries must not be redefined, 
undefined or reused in any way. Arguments to, and 
return values from, library functions must be checked 
for validity. Care must be taken when using functions 
from the standard libraries: a list of unsuitable features 
is as follows: stdio.h, time.h, setjmp.h, errno.h: do not 
use these libraries at all. The following functions and 
macro’s in stdlib.h and stddef.h must not be used: 
offsetof, abort, exit, getenv, setenv, system, atof, atoi, 
atol, calloc, malloc, realloc and free. In the following 
section, attention is now turned to testing, verification 
and validation. 
 
5. Testing, verification and validation 
 

The role of testing, in any software development 
process, is to find and remove software defects 
(‘bugs’) through comparisons of the expected system 
behavior (specification) with its actual behavior. When 
developing dependable systems it is often 
inappropriate, unethical or even impossible to fully test 
the system within its natural operational environment 
[1][2][25]. In such cases, HIL simulation of the 
system’s environment can enable developers to make 
assessments of performance without compromising 
safety. The principle of HIL simulation of an 
embedded control system is illustrated in Figure 3.  

 

 
Figure 3. HIL simulation principle 

 
The embedded system outputs are fed directly to the 

simulation, where they are sampled and used as input 
variables. Previous papers have discussed applications 
of HIL simulation to dependable system testing (e.g. 
[23][25]); its use is therefore highly recommended. 
Typically, software verification conditions – in the 
form of pre and post conditions implemented as sanity 
checks - should be the primary means to detect 
anomalous conditions during testing. The form of a 
typical C sanity check is shown in Figure 4, where 
__FILE__ and __LINE__ are macro’s inserted by the 



preprocessor at compile time. The sanity check density 
should be a minimum of two per function [1][2][4][6]. 

 
#define sanity_check(c) ((c) ? (true) : \ 
debug(“%s, %d: sanity check ‘%s’ failed”, \ 
__FILE__, __LINE__, #c), false) 

 
Figure 4. Sanity check C macro 

 
However in software-based systems designed to have 

a failure rate less than 10-4, such as those considered in 
this paper, testing alone is impractical (on any 
reasonable timescale) and alternate means for complete 
verification must be considered [26]. This generally 
implies that the use of formal methods should be 
introduced. Such techniques employ mathematical 
methods to determine whether software meets its 
specifications, and provide documentary evidence that 
it is free from defects. Of the available formal methods 
that may be employed in a specific situation, formal 
model checking has proven to be a highly popular and 
successful technique which is well suited to many 
critical embedded applications, and integrates well to 
existing development and testing processes [27]. 

 
5.1 Formal Model Checking 

 
The majority of model checking algorithms use 

Kripke structures to formally represent the 
computations of a finite-state system. Kripke structures 
are essentially graphs in which nodes represent system 
states and edges represent possible transitions between 
states. A model checking algorithm is an automated 
algorithm that decides whether a given Kripke 
structure P is a model of (satisfies) the specification ψ. 
In practice a number of extremely efficient bounded 
model checkers for the C programming language have 
been developed (for example [28]); for this reason, 
formal verification – in conjunction to exhaustive 
testing – is recommended.  

If these techniques are correctly employed, then – in 
conjunction with exhaustive testing - it is possible to 
prove that all sanity checks will always be passed 
under normal operating conditions. In this case, the 
sanity check macro given in Figure 4 may then be 
easily modified to reset the processor (as opposed to 
outputting a debug message) upon detection of an 
anomaly, as shown in Figure 5. Reset is simply a 
function (or macro) to reset the processor, either by 
issuing a software reset signal or, for example, by 
disabling interrupts and entering an infinite loop to 
trigger the watchdog. This provides an additional, low 
cost and highly effective method to detect and recover 
from transient failures in production code. 

 
#define sanity_check(c) ((c) ? (true) : \ 

Reset(), false) 
 

Figure 5. Run-time sanity check 
 
5.2 Fault Injection Testing 

 
In most cases, dependable systems will be 

implemented using some form of fault tolerance 
[9][11]. In such cases, fault injection is the preferred 
means for extracting dependability information as part 
of system validation exercises [29]. Additionally, one 
extremely promising area of research in this area has 
concentrated on the use of fault-injection, in 
combination with rare events techniques and 
automated performance monitoring, to extract fault 
coverage information for the calibration of 
dependability models [25]. This technique, although 
experimental, is also recommended. 
 
6. Conclusions 

 
In this paper, a set of development guidelines has 

been proposed for prospective designers of dependable 
embedded systems, covering basic hardware and 
software foundations, programming guidelines and 
recommendations for software testing and verification. 
Embedded systems developed around such principles 
are typically capable of achieving an extremely high 
level of safety integrity. In conclusion, although the 
guidelines are not meant to be strictly enforced, it is 
hoped that they provide a sensible set of working rules 
to assist in future development of safety-related 
embedded systems. 
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