
Paper Preprint – To Appear In:
Proceedings of the 6th IEEE AICSSA Conf. 2008

Development Guidelines for Dependable Real-Time Embedded Systems

Michael Short
Embedded Systems Laboratory, University of Leicester, Leicester, UK.

mjs61@leicester.ac.uk

Abstract

Embedded control systems play an increasing role

in many safety critical system designs. The correct and
dependable implementation of such systems depends
on many factors, including the design of system
hardware, software and fault tolerance mechanisms,
the choice of programming language, and also the
testing, verification and validation techniques
employed. In this paper, a set of guidelines for the
development of dependable embedded systems is
presented. Although the paper is primarily concerned
with single-processor applications, extensions to multi-
processor systems are discussed where appropriate.
Although the creation of dependable embedded
systems cannot simply rely on the enforcement of
several such rules or guidelines, experience gained
from several years’ experience of teaching, research
and development in these areas indicates that
adherence to a small, but workable, set of rules and
guidelines can avoid many of the traps and pitfalls
commonly encountered in the creation of dependable
embedded systems.

1. Introduction

Modern control systems are almost invariably
implemented using some form of embedded digital
computer system. When such embedded systems are
used in situations where their correct functioning is
vital, special care must be taken to ensure that the
system is dependable, in that it is both reliable, timely
and functionally safe [1-7]. Special measures must
therefore be taken at all stages of the design process to
ensure that the required Safety Integrity Level (SIL)
has been achieved. The SIL of a system depends on the
consequences of system failures, which can be
determined using risk assessment; a required
dangerous failure rate λd is then assigned for a system

based on this risk. Demonstrating that the dangerous
failure rate for a system is at a specific level requires
many factors to be taken into consideration; a major
element in this process is the determination of
reliability, safety, security and availability measures
for each sub-system and component as part of a safety
case.

Prospective designers of embedded systems have
many factors to consider – for example the choice of
hardware / software architecture, programming
language and communications network - and many of
these decisions are known (or thought) to influence
both the performance and dependability of the
resulting system (e.g. [3][4][5][6]). Some of the main
factors to be considered are illustrated in Figure 1. This
paper is specifically concerned with general design
guidelines and programming / testing techniques for
use in creating dependable real-time embedded
systems, programmed using a sub-set of the ANSI C
language; embedded C has become the choice of many
developers in these areas in recent years [4][6][9].

Figure 1. Dependable system design factors

Most serous system developers use some form of
design and coding guidelines, which define a set of
ground rules for the overall system design and the
software to be written. In this paper, a small – but
highly workable – set of rules and guidelines is
presented. Although the creation of such systems
cannot simply rely on the enforcement of several such
rules or guidelines, experience gained from several
years’ experience of teaching, research and
development in these areas indicates that adherence to
a small, but workable, set of rules can avoid many of
the traps and pitfalls commonly encountered in the
creation of dependable embedded systems.

The rules and guidelines presented are divided in
four broad categories, and cover hardware design,
software design, programming guidelines and testing
techniques. In all cases the rules have been formulated
to be consistent with much previous work in this area.
For example, the rules are consistent with the MISRA
coding guidelines [3][4] and IEC 61508 [11], and also
many previous works in this area – for example
[1][2][5][6][8]. However, the discussion presented
here is intended to compliment these existing works,
identify the common best practice within them, and
focus their content from a real-time embedded
perspective.

The remainder of the paper is organized as follows.
In Section II, general hardware considerations for real-
time embedded systems are discussed. In Section III,
recommendations are made for the software
architecture of the system. Section IV presents a
summary of what is considered to be the main
recommendations and rules applicable to the software
design process. In Section V, recommendations
regarding testing, verification and validation are
presented. Finally in Section VI, the paper is
concluded.

2. Hardware considerations

From the hardware perspective, designers have the
choice of a number of different key system elements:

• Microprocessor;
• Memory;
• Oscillator circuit;
• Watchdog timer;
• Off-chip peripherals;
• Communication devices.

A wealth of useful information regarding these

choices is discussed by [9]. In summary, the choice
hardware elements is dictated by several factors,

including the complexity and timing constraints of the
software functionality, required number of I/O lines,
costs, and target environment. A sensible choice of
processor would be to select a device with several
years’ proven deployment, which is not likely to
become discontinued in the immediate future. For
systems with a high SIL, then the use of specialized
processor architectures is recommended. When using
general purpose processors, designers must be aware
that special measures must be implemented to protect
against transient effects such as EMI and particle
strikes. Additionally, the processor may have
undocumented test modes that may be inadvertently
triggered during normal operation. At the present time,
the 8-bit 8051 architecture, 16-bit (X)C167
architecture and the 32-bit ARM-7 architectures (and
close variants) are good choices of general-purpose
processors in a range of different performance levels.

Choice of RAM memory will typically be dictated
by the nature of software, with data-intensive systems
obviously requiring larger memory requirements.
However it should be remembered that when coding a
system, the smaller the memory footprint, the less
likely the system is to suffer a data error. However,
there is a trade-off; in many cases sacrificing RAM
usage will be at the expense of code execution time
and ROM usage, which may affect the timeliness of
the system, to be discussed in the next section.

For a real-time system, the performance – and
hence timeliness - of the system is highly dependant on
the availability of an accurate clock (hardware timer).
Since such timers are almost totally reliant upon the
oscillator, then care must be taken in this aspect. The
use of a crystal oscillator over alternates (e.g. ceramic
resonator) is recommended for stability reasons. For
systems that are to be subjected to high temperature
fluctuations or excessive vibration, then a temperature
and/or vibration compensated oscillator circuit should
be considered. An oscillator watchdog circuit, in
conjunction with a brownout/reset circuit, should be
considered mandatory [1][2][3][7][9].

The use of a watchdog timer as a primary guard
against transient faults should also be considered
mandatory. When a general-purpose processor is to be
employed, then an external watchdog should be
considered; as mentioned, such devices may have
undocumented test modes that may be inadvertently
triggered during normal operation, in which the
watchdog timer is also disabled. If an external device
is used, this condition is prevented by design.

Where possible, the use of on-chip peripherals for
performing functionality such as ADC conversion is
recommended, mainly to reduce the complexity of the
system; and also to reduce the number of components

and IC’s in the design, which in general will decrease
the overall hardware failure rate. However, when cost
or performance constraints dictate that additional
components must be employed, then the use of field-
proven, high-reliability devices is recommended.

In multiprocessor systems, some form of shared
communications network is employed to allow the
devices to communicate. In these systems, care must
be taken to provide fault tolerance in this medium, as it
provides a single point of failure. In many safety-
related protocols this fault-tolerance is pre-designed
into the network in the form of bus-guardians,
redundant cabling media, and fault-tolerant clock
synchronization. However, if a more general purpose
network is to be employed – such as the CAN protocol
[10] or the RS-485 standard – then special
considerations need to be taken to ensure fault-
tolerance. Further details may be found in [9][11][12].

In all cases, determination of the overall reliability
of the components in the system should be performed -
using suitable analysis techniques [1][13] - to ensure
that the failure rate is commensurate with the SIL of
the system.

3. Software considerations

3.1 Design paradigm

From the software perspective, designers may choose

to implement a system based around four (highly inter-
related) categories [14]:

• Time-triggered;
• Event-triggered;
• Preemptive;
• Non-preemptive (co-operative).

From the perspective of the dependable systems

designer, a wealth of previous research has argued that
the use of event-triggered systems should, in the main,
be avoided where possible. Instead, the use of time-
triggered techniques for both communications and task
scheduling should be considered, as this is known to
improve the system predictability considerably
[9][15][16][17][18].

From the time-triggered perspective, it is common
to represent a real-time system as a number of
communicating tasks, where each task t in the task set
τ is represented by a four-tuple:

()iiiii rdcpt ,,,=

(1)

In which pi is the task period, ci is the worst case

computation time of the task, di is the task deadline
and ri is the task release time, represented as whole
integers in suitable processor time units, for example
microseconds. With such a representation, it is normal
to assume the following:

iiiii pcrdp <<≥>= 0,0
(2)

i.e. with the task deadline equal to its period and

release time and computation time less than the period.
Determination of the worst case computation time c of
each task has been well covered in the literature, and
can be obtained by a variety of methods loosely termed
‘code profiling’. When the task computation times
have been determined, appropriate scheduling analysis
can be performed. This analysis is essentially a
decision procedure giving a yes/no answer as to
whether the schedule is feasible or not. In the case of
the co-operative system, tasks must run to completion
once dispatched. When the release times in the task set
τ are all equal, schedulability is decided by the
following equation [14]:

),,gcd(1
1

n

ni

i
i ppc K≤∑

=

=

(3)

Where gcd is the greatest common divisor of the task
set periods, i.e. the ‘tick’ interval of the scheduler. In
the pre-emptive case, tasks may interrupt each other’s
execution based on their assigned priorities. When the
priorities are assigned inversely proportional to the
task periods (which is known to be an optimal priority
assignment), schedulability is decided as follows [14]:

)12(
1

−≤∑
=

=

n
ni

i i

i n
p
c

(4)

Again, with all release times assumed equal. At first

glance it would seem then that a greater CPU
utilization may be achieved when implementing a
system pre-emptively. However, these analyses do not
include scheduler overhead – which are vastly
increased in the latter scheduler – and do not include
blocking terms introduced by resource conflicts and

deadlock avoidance mechanisms associated with the
latter. A fuller analysis that includes the influence of
these mechanisms is given by Katcher et al. [19].

In both cases, when the release times of the tasks are
free to be chosen by the designer (a so-called ‘offset-
free’ task set), then the achievable CPU utilization may
be increased (or decreased) by a large factor,
depending on the choice of release times. However, the
complexity problems of deciding schedulability and
assigning effective release times to tasks increases
dramatically with such systems, and is known to be an
NP-Complete problem [14][20]. Details of recent
advances in this area, producing (in most cases)
tractable solutions, may be found in [21].

In addition, it has also been argued that co-
operative systems are both easier to inspect and verify
[22] and exhibit greater tolerance to transient
disturbances [23] than equivalent preemptive systems.
Based on these discussions, it is therefore
recommended to use co-operative scheduling when
developing safety-related systems. A suitable design
for a portable, efficient scheduler coded in embedded
C is given in [9]. Although this paper is primarily
concerned with single-processor designs, this basic
scheduler methodology can be extended to
multiprocessor designs (a ‘shared-clock’ scheduler),
and can be implemented over multiple, redundant
communication networks to great effect [12].

3.2 Runtime behavior

In addition to the avocation of time-triggered, co-

operative scheduling, it is recommended that the
system possesses a minimum number of run-time
mechanisms to mitigate the effects of transient errors.
These mechanisms should include the use of a
watchdog timer, duplex duplication of critical data
with comparison, sanity checks of control signals,
mechanisms to detect task overrun, and the enabling of
all on-chip exception traps in the target processor.
Such traps will normally consist of most of the
following elements:

• Stack overflow;
• Stack underflow;
• Illegal operand;
• Illegal word access;
• Protected instruction fault;
• Divide by zero;
• Illegal bus access.

In addition, all unused areas of ROM and RAM
memory should be filled with (or initialized to) illegal
operands to provide added control flow error detection.
On activation of any of these traps, a full system reset
of the microcontroller should be forced. On system
boot-up/reset, the microcontroller should perform – at
minimum - the following software-based self-tests
[24]:

• Internal RAM/register/stack validation;
• External RAM validation;
• ROM checksum;
• Peripheral test (e.g. ports, timer).

If any of these tests are failed, the microcontroller

must activate any appropriate warning signals and then
enter a safe state. The overall recommended approach
to software fault-tolerance is illustrated in Figure 2.
The simple techniques presented here, although
somewhat dependant on the implementation hardware,
typically allow for transient error coverage in excess of
95% [9][23][25]. Although some researchers have
advocated the use of specialized (software-based)
transient error detection mechanisms, in general it is
recommended that such techniques are avoided. This is
because such techniques increase the system
complexity considerably and oftentimes require the use
of automatic code generators for their implementation,
which may sometimes be problematic from a safety
perspective and may cause problems with certification.
Although the use of such code generators has many
potential benefits, to date few such generators have
been certified to the appropriate levels, and – at the
present time - their use should proceed with caution
[1][3][4].

Figure 2. Software fault-tolerance

4. Code development considerations

In this section, attention is now focused on
guidelines and recommendations for the use of the C
language in such systems, and a basic set of guidelines
for software development in embedded C is presented.
Although defining an exhaustive list of such guidelines
is beyond the scope of this paper, the interested reader
is referred to [1-8]. In essence, the list that is presented
aims to employ only the well defined features of the C
language in order to create bounded, predicable,
readable and maintainable code.

4.1 Development Tools and Processes

The choice of compiler may have a great influence

on the quality of the resulting code. Typically a well-
supported compiler with a favorable, documented
performance level should be chosen. A development
team should have an ‘in-house’ coding style guide
which is strictly adhered to, and when appropriate,
version control software should be employed in
addition to (and integrated with) the in-house
documentation and release control procedures.

Code must always be compiled with all warnings set
to the maximum levels, and production code must
compile without a single such warning. The use of the
preprocessor should primarily be limited to simple
#include statements, #define constants, syntactically
meaningful macro definitions, and header guards –
which - aside from the closing #endif of a header guard
- are to be placed at the top of a file only. Conditional
compilation use must be limited and never span

multiple files. Language extensions – e.g. inline
assembly – must be fully encapsulated and isolated.

The use of ‘lightweight’ static checking and source
code metrics tools should be a regular part of the
development process; the use of ‘heavyweight’ formal
methods tools should be considered mandatory for
systems with a high SIL. This will be discussed further
in Section V.

4.2 Program Flow and Looping

The call graph of an embedded control system

program should ideally be acyclic, and the potential
number of loops and iterations performed by any
single execution of any given system task should
always be bounded. This is required to prevent
runaway code and task overruns. In practice this means
that several main points should be adhered to in terms
of control flow and looping.

Only the simple, compound control flow statements
provided by the C language should be used – the use of
goto, setjmp or longjmp constructs is prohibited. The
use of either direct or indirect recursion (functions or
chains of functions which can call themselves) should
be avoided - use iterative functions instead.

Inside each task, all loops that rely directly on non-
deterministic input - or the results of complex data
manipulation - for termination must have a fixed upper
bound (loop timeout). The three expressions in a for
loop must only be used for loop control, and numeric
variables used within a for loop for iteration control
must not be modified in the body of the loop. At most
a single break statement may be used in any single
loop. Finally, the controlling expressions used in for or
while loops should not, either directly or indirectly, use
any floating point types.

4.3 Functions

Obviously, functions are an integral part of all

embedded C programs, and their correct and consistent
use is required to produce reliable code. Correct use of
functions will typically include the following elements.

All functions should have a prototype. Ideally the
identifier names as well as types of any arguments
should be provided in this prototype. Functions should
automatically be declared at file scope (static), unless
they require external linkage. Functions shall not use
variable (variadic) argument lists.

Where possible, parameters passed to a function
should be tested for validity, and if a function returns
error information, this information should be tested.
The use of the standard C errno facility should be

avoided. Where the return type of a function is non-
void, all possible return paths should include an
explicit non-void return statement. Where possible,
there should only be a single point of return at the end
of the function.

4.4 Memory and Variables

As with functions, variables and data - and their

management in memory - are all integral parts of an
embedded C program. However, their correct and
consistent usage is required to produce reliable,
readable code, and to ensure that testing can proceed
efficiently. In particular, the following elements should
be observed.

All data objects must be declared at the lowest
possible level of scope, with appropriate linkage
(where required). All variables must be initialized
before usage. Variables must not be reused for
multiple, incompatible purposes, and variables in a
local scope shall not use the same identifier as
variables with a global or file scope.

Programs must avoid dynamic data allocation, and
avoid the use of (built-in) library functions that make
use of dynamic memory allocation (e.g. string.h).

Additionally, the use of pointers is riddled with
potential traps and pitfalls - even experienced
programmers can become easily confused. Therefore,
limit the use of pointer indirection to a maximum of
two levels; ideally one in most circumstances. Pointer
arithmetic must be limited to array indexing only.
Uninitialised pointers must never be used, and where
appropriate checked that they are not NULL before
use. The address of an object should never be assigned
to a pointer with a larger scope. And finally, restrict
the use of function pointers to scheduler
implementations only.

4.5 Libraries

The creation, use and re-use of code libraries are an

essential part of most software engineering processes.
It makes no sense to re-engineer solutions to problems
that have been well tackled in the past. However, there
are a number of key points to adhere to in this respect.
These include the following main elements.

All libraries - with available source - shall be coded
in accordance with the ‘in-house’ coding style, and
shall adhere (where applicable) to strict ANSI
guidelines. For libraries without available source code
(e.g., from third party vendors), they must have
appropriately documented, tested and verified
behavior. When libraries are reused from previous

projects, appropriate testing and verification should be
performed to confirm that the code performs as
expected in the new context.

Reserved macro’s, functions and identifiers
contained in standard libraries must not be redefined,
undefined or reused in any way. Arguments to, and
return values from, library functions must be checked
for validity. Care must be taken when using functions
from the standard libraries: a list of unsuitable features
is as follows: stdio.h, time.h, setjmp.h, errno.h: do not
use these libraries at all. The following functions and
macro’s in stdlib.h and stddef.h must not be used:
offsetof, abort, exit, getenv, setenv, system, atof, atoi,
atol, calloc, malloc, realloc and free. In the following
section, attention is now turned to testing, verification
and validation.

5. Testing, verification and validation

The role of testing, in any software development
process, is to find and remove software defects
(‘bugs’) through comparisons of the expected system
behavior (specification) with its actual behavior. When
developing dependable systems it is often
inappropriate, unethical or even impossible to fully test
the system within its natural operational environment
[1][2][25]. In such cases, HIL simulation of the
system’s environment can enable developers to make
assessments of performance without compromising
safety. The principle of HIL simulation of an
embedded control system is illustrated in Figure 3.

Figure 3. HIL simulation principle

The embedded system outputs are fed directly to the

simulation, where they are sampled and used as input
variables. Previous papers have discussed applications
of HIL simulation to dependable system testing (e.g.
[23][25]); its use is therefore highly recommended.
Typically, software verification conditions – in the
form of pre and post conditions implemented as sanity
checks - should be the primary means to detect
anomalous conditions during testing. The form of a
typical C sanity check is shown in Figure 4, where
__FILE__ and __LINE__ are macro’s inserted by the

preprocessor at compile time. The sanity check density
should be a minimum of two per function [1][2][4][6].

#define sanity_check(c) ((c) ? (true) : \
debug(“%s, %d: sanity check ‘%s’ failed”, \
__FILE__, __LINE__, #c), false)

Figure 4. Sanity check C macro

However in software-based systems designed to have

a failure rate less than 10-4, such as those considered in
this paper, testing alone is impractical (on any
reasonable timescale) and alternate means for complete
verification must be considered [26]. This generally
implies that the use of formal methods should be
introduced. Such techniques employ mathematical
methods to determine whether software meets its
specifications, and provide documentary evidence that
it is free from defects. Of the available formal methods
that may be employed in a specific situation, formal
model checking has proven to be a highly popular and
successful technique which is well suited to many
critical embedded applications, and integrates well to
existing development and testing processes [27].

5.1 Formal Model Checking

The majority of model checking algorithms use

Kripke structures to formally represent the
computations of a finite-state system. Kripke structures
are essentially graphs in which nodes represent system
states and edges represent possible transitions between
states. A model checking algorithm is an automated
algorithm that decides whether a given Kripke
structure P is a model of (satisfies) the specification ψ.
In practice a number of extremely efficient bounded
model checkers for the C programming language have
been developed (for example [28]); for this reason,
formal verification – in conjunction to exhaustive
testing – is recommended.

If these techniques are correctly employed, then – in
conjunction with exhaustive testing - it is possible to
prove that all sanity checks will always be passed
under normal operating conditions. In this case, the
sanity check macro given in Figure 4 may then be
easily modified to reset the processor (as opposed to
outputting a debug message) upon detection of an
anomaly, as shown in Figure 5. Reset is simply a
function (or macro) to reset the processor, either by
issuing a software reset signal or, for example, by
disabling interrupts and entering an infinite loop to
trigger the watchdog. This provides an additional, low
cost and highly effective method to detect and recover
from transient failures in production code.

#define sanity_check(c) ((c) ? (true) : \

Reset(), false)

Figure 5. Run-time sanity check

5.2 Fault Injection Testing

In most cases, dependable systems will be

implemented using some form of fault tolerance
[9][11]. In such cases, fault injection is the preferred
means for extracting dependability information as part
of system validation exercises [29]. Additionally, one
extremely promising area of research in this area has
concentrated on the use of fault-injection, in
combination with rare events techniques and
automated performance monitoring, to extract fault
coverage information for the calibration of
dependability models [25]. This technique, although
experimental, is also recommended.

6. Conclusions

In this paper, a set of development guidelines has

been proposed for prospective designers of dependable
embedded systems, covering basic hardware and
software foundations, programming guidelines and
recommendations for software testing and verification.
Embedded systems developed around such principles
are typically capable of achieving an extremely high
level of safety integrity. In conclusion, although the
guidelines are not meant to be strictly enforced, it is
hoped that they provide a sensible set of working rules
to assist in future development of safety-related
embedded systems.

7. References

[1] N. Storey, Safety Critical Computer Systems, Addison
Wesley Publishing, 1996.

[2] N.G. Levenson, Safeware: System Safety and Computers,
Reading, M.A., Addison-Wesley, 1995.

[3] MISRA, “Development guidelines for vehicle-based
software,” Motor Industry Software Reliability Report,
November 1994.

[4] MISRA. (2004). Guidelines for the use of the C language
in vehicle based software. Motor Industry Software
Reliability Report, Released October 2004.

[5] SAE, "Class C Application Requirement Considerations,"
SAE Recommended Practice J2056/1, SAE, June 1993.

[6] Holzmann, G.J. (2006). The Power of Ten: Rules for
Developing Safety Critical Code. IEEE Computer, Vol. 39,
No. 6, pp. 93-95, June 2006.

[7] IEC 61508 - Functional safety of electrical/electronic/
programmable electronic safety-related systems, Part 3.
(2000).

[8] Maguire, S. Writing solid code. Microsoft Press, 1993.

[9] M.J. Pont, Patterns for time-triggered embedded systems:
Building reliable applications with the 8051 family of
microcontrollers, ACM Press / Addison-Wesley Publishing,
2001.

[10] Bosch, CAN Specification Version 2.0, Robert Bosch
GmbH, 1991.

[11] Iserman, R., Schwarz, R. and Stoltz, S. (2002). Fault-
tolerant drive-By-Wire Systems, IEEE Control Systems
Magazine, Vol. 22, No. 5, pp. 64-81, 2002.

[12] Short, M. and Pont, M.J. (2007). Fault-tolerant, time-
triggered communication using CAN. IEEE Transactions on
Industrial Informatics, Vol. 3, No. 2, pp. 131-142.

[13] MIL-HDBK-217F. Military Handbook - Reliability
Prediction of Electronic Equipment. Department of Defence,
Washington DC, 1990.

[14] Buttazo, G. (1997). Hard real-time computing systems:
predictable scheduling algorithms and applications. Kluwer
Publishers, Norwell, MA., 1997.

[15] A. Albert, “Comparison of event-triggered and time-
triggered concepts with regard to distributed control
systems,” in Proceedings of Embedded World, Nurnberg,
Germany, 17-19 Feb, pp. 235-252, 2004.

[16] I.J. Bate, “Scheduling and timing analysis for safety
critical real-time systems,” PhD. dissertation, Department of
Computer Science, University of York, November 1998.

[17] Kopetz, H. (1991). Event-Triggered Versus Time-
Triggered Real-Time Systems. Lecture Notes in Computer
Science, Vol 563, pp 87-101. Springer-Verlag, Berlin/New
York, 1991.

[18] Lonn, H., and Axelsson, J. (1999). A comparison of
fixed-priority and static cyclic scheduling for distributed
automotive control applications. In: Proc. 11th Euromicro
Conf. on Real-Time Systems, York, UK, 9–11 June 1999,
pp. 142–149.

[19] Katcher, D. I., Arakawa, H., and Strosnider, J. K.
Engineering and analysis of fixed-priority schedulers. IEEE
Trans. on Software Engineering, Vol. 19, No. 9, pp. 920-934,
1993.

[20] Jeffay, K., Stanat, D.F. and Martel, C.U. On non-
preemptive scheduling of periodic and sporadic tasks. In
Proceedings of the 12th IEEE Symposium on Real-Time
Systems, pp. 129-139, 1991.

[21] Gendy, A.K. and Pont, M.J. "Automatically configuring
time-triggered schedulers for use with resource-constrained,
single-processor embedded systems", IEEE Transactions on
Industrial Informatics, Article in press, 2007.

[22] Xu, J. and Parnas, D.L. (2000). Fixed Priority
Scheduling versus Pre-Run-Time Scheduling. Real-Time
Systems, Vol. 18, pp. 7-23, 2000.

[23] Short, M, Pont, M.J and Fang, J. Exploring the
Influence of Preemption on Dependability in Time-Triggered
Embedded Systems: a Preliminary Study. Paper to be
presented at the 20th Euromicro Conference on Real-time
Systems (ECRTS 2008).

[24] Sosnowski, J. (2006). Software-based self-testing of
microprocessors. Journal of Systems Architecture, Vol. 52,
pp. 257-271, 2006.

[25] Short, M and Pont, M.J. Assessment of high-integrity
embedded automotive control systems using hardware-in-
the-loop techniques. Journal of Systems and Software,
Article in press, 2007.

[26] Butler, R.W. and Finelli, G.B. (1993). The infeasibility
of Quantifying the Reliability of Life-Critical Real-Time
Software. IEEE Transactions on Software Engineering, Vol.
19, No. 1, pp. 3-12.

[27] Biere, A. Cimatti, A., Clarke, E., Strichman, O. and
Zhu. Y. Bounded Model Checking. In Advances in
Computers, Vol. 58, Academic press, 2003.

[28] Clarke, E., Kroening, D. and Lerda, F. A Tool for
Checking ANSI C Programs. In: Tools and Algorithms for
the Construction and Analysis of Systems (TACAS 2004),
pp. 168-176, 2004.

[29] Arlat, J., Costas, A., Crouzet, Y., Laprie, J-C and
Powell, D. (1993). Fault Injection and Dependability
Evaluation of Fault-Tolerant Systems. IEEE Trans.
Computers, Vol. 42, No. 8, pp. 913-923.

