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Abstract 

In this thesis we investigate the relaxation mechanisms that occur in quantum 
dots (QDs). First we consider energy relaxation in single particle self-assembled 
QDs by means of an Auger process. For the first time, relaxation rates are 
compared for dots of a realistic truncated pyramid shape and for the more 
elementary dot models considered previously. We find that the fast (pico-second) 

relaxation necessary for quantum dot based optoelectronics applications is made 
possible by dot electrons scattering with electrons located in the surrounding bulk 
material. We show that this relaxation mechanism is dominant by two orders of 
magnitude over the two-dimensional wetting layer scattering mechanism that has 
been considered in previous calculations. 

Exact numerical diagonalisation is used to calculate the two-particle self- 
assembled QD wave functions. The small size of the QD means that the two 
electrons in the dot are found to be only weakly interacting. We find the 
relaxation rate for states of total spin 0 to be larger than the spin I rate by 
a factor of approximately 2. This is due to the double occupancy of the spin 0 
spatial states. 

We also consider the much slower spin flip relaxation in electrostatic QDs. We 
include the spin-orbit mixing that results from the bulk inversion asymmetry of 
the crystal lattice in calculating the exact two-particle states. We find that the 
spin orbit mixing causes anti-crossings to appear in the energy spectrum and 
deduce a new conservation rule related to this. We find an oscillation capable 
of slowing the relaxation time from microseconds to tenths of a second. This 
oscillation results from the vertical finite well confinement of the QD. It is found 
to depend on both magnetic field and the QD thickness and is of particular 
interest for quantum information applications where long-lived excited states are 
desirable. 
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Chapter I 

Introduction 

In recent years, there has been a lot of activity devoted to understanding 

the properties of the zero- dimensional systems known as quantum dots. This 

attention is motivated partly by a fundamental interest in the physics of low 

dimensional systems but also by the possibility of applications in areas such as 

optoelectronics and quantum computing [1]. In this thesis, we will investigate 

the relaxation mechanisms that occur in two distinct quantum dot systems. 

We will first consider fast energy relaxation in self-assembled quantum dots by 

means of an Auger process [2]. We compare the relaxation rates calculated 

for several different self-assembled quantum dot models and for the first time 

present results for dots of a realistic truncated pyramid shape. We find that 

the fast relaxation necessary for quantum dot based laser applications results 

from the dot electrons scattering with electrons located in the surrounding bulk 

material. We believe that this mechanism is discussed here for the first time 

and show that it is dominant over the two-dimensional wetting layer scattering 

that has been considered previously. Secondly, we will consider the much slower 

spin-flip relaxation processes in electrostatic quantum dots. We find a magnetic 

field dependent oscillation in the relaxation rate that results from the vertical 

1 
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confinement of the quantum dot. These oscillations are of particular interest for 

quantum information applications where long-lived excited states are desirable. 

We do not consider relaxation through photon emission since it is blocked by 

conservation of momentum. 

Self-assembled quantum dots are small semiconductor islands formed during 

Stranski-Krastanow growth [3]. They are able to confine both electrons and 

holes, which mean they are of particular interest in optoelectronics applications, 

especially since it has been predicted that the temperature dependence of the laser 

threshold current will be virtually eliminated in zero- dimensional systems [4]. In 

order to achieve the population inversion needed for laser applications, carriers 

are usually either injected electrically or pumped optically into an excited energy 

state in the quantum dot. They must then relax down to the conduction band 

edge before the radiative recombination necessary for laser emission can take 

place. A fast relaxation process is therefore crucial if self-assembled quantum 

dots are to be a suitable candidate for efficient laser applications. 

However, the allowed relaxation processes in self-assembled quantum dots have 

been the source of much controversy due to the so-called phonon bottleneck 

which was first proposed by U. Bockelmann and G. Bastard [5] and later by 

H. Benisty et al. [6]. These authors suggested that if there is a mismatch 

between the longitudinal optic phonon energy and the discrete energy spectrum 

of the quantum dot, phonon emission might be blocked. Therefore, phonon 

relaxation might not be able to provide the fast relaxation necessary for the 

proposed applications. However, experimental results [7,8] have not indicated 

any such slowing of the relaxation rate even when the energy levels of the dot 

were separated by a few tens of meV. 
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It has been shown by D. Morris et al. [8] that an alternative mechanism capable 

of providing fast carrier relaxation at suitably high injected carrier densities is 

an Auger process. In this process, the dot electron is able to transfer some 

of its energy to an electron outside the dot via the Coulomb interaction. Auger 

relaxation rates have been calculated in the dipole approximation by A. V. Uskov 

et al. [9] for single particle systems where the dot electron scatters with an 

electron located in a two-dimensional wetting layer. However, we find that the 

dipole approximation is unlikely to be valid for quantum dots of any realistic size. 

Many of the previous calculations relating to carrier relaxation in self-assembled 

dots [9,10] have been restricted to simple models that do not reflect the geometry 

of the real system. This is due to complexity of the calculation and the difficulty 

of determining the exact size and shape of a self-assembled quantum dot. Recent 

scanning-tunnelling microscopy experiments have allowed the size, shape and 

composition to be more clearly determined [11,12, ?, 14]. These experiments 

have indicated that self-assembled dots are likely to be of truncated pyramid 

shape and contain a composition gradient. In the past, the electronic states 

for pyramid shaped dots of uniform composition have been calculated using 

methods such as numerical solutions to the Schr6dinger equation [151 and the 

diagonalisation of the Hamiltonian matrix with a basis set of plane waves [16]. 

In this work we will calculate the Auger relaxation rates with wave functions for 

a truncated pyramid shaped dot based on recent experiments by D. M. Bruls et 

al. [14]. These results will be compared with the relaxation rate calculated with 

a more elementary dot model of cylindrical symmetry and harmonic oscillator 

confinement. The truncated pyramid dot wave functions used in this work are 

calculated with a basis set of harmonic oscillator functions by M. Roy and P. A. 
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Maksym [17]. To the best of the authors knowledge, this is the first time these 

realistic quantum states have been used to calculate Auger relaxation rates in 

self-assembled quantum dots. We also find that the simple harmonic oscillator 

model that has been considered in previous calculations [9,10] does not lead to 

accurate relaxation rates. 

The Auger relaxation mechanism, since it relies on the Coulomb interaction 

between charged carriers, will be susceptible to influence by other carriers in the 

system. Screening by carriers in the surrounding bulk material for example, will 

affect the strength of the Coulomb interaction and therefore the relaxation rate. 

Another source of influence on the Auger relaxation rate would be the inclusion of 

a second electron confined within the dot, an effect that has not been considered 

previously. We calculate the two-particle wave functions exactly and find that 

the small size of the self-assembled dots considered here means that the Coulomb 

interaction between the dot electrons is relatively small compared to the energy 

of the individual particles. The electrons in the dot can therefore be considered 

only weakly interacting, having only a marginal effect on the relaxation rate. 

The second type of quantum dot considered in this work is the electrostatic 

quantum dot. A thin InGaAs layer, which contains the dot, is sandwiched 

between two asymmetric AlGaAs barrier layers. Drain and source contacts of 

n-doped GaAs are provided above and below the barrier layers. A pillar is etched 

out of the heterostructure and a side gate is formed around the InGaAs layer in 

the pillar to provide the lateral confinement of the quantum dot. The side gate 

can also be used to change the number of electrons confined in the dot by varying 

the bias voltage. This type of dot has been reviewed by L. P. Kouwenhoven et 

al. [18]. Similar dots have been used in recent experiments to measure the single 
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particle relaxation rates without a spin-flip and the two particle relaxation rates 

with a spin-flip by T. Fujisawa et al. [19,20,21]. Quantum dots have received 

a great deal of attention recently due to their potential applications in quantum 

computing [22,23,24]. Each quantum bit (qubit) is allowed to be in any state 

of a quantum two-level system. lf practical quantum computing is to be realised, 

any useful qubit operations must be completed much faster than the decoherence 

time of the quantum state. As a prerequisite to a long decoherence time, those 

states must also be relatively long lived. 

For transitions in a two-electron dot between states of total spin I and states 

of total spin 0, a spin-flip must occur before relaxation can take place. This could 

provide a long-lived excited state since spin-flip relaxation is usually slow. The 

slow spin-flip relaxation of an excited state will be an unlikely process in single 

electron dots since there would be nothing to stop the electron taking the faster 

route of relaxation without a spin-flip. When the work on spin-flip processes 

contained in this thesis was started, spin-flip relaxation in two-electron quantum 

dots had not been previously discussed theoretically. 

In an ideal system, spin-flip relaxation is blocked by conservation of spin. 

However, real quantum dots are not ideal systems and a spin-orbit mixing term 

in the Hamiltonian makes spin-flip relaxation possible. A. V. Khaetskii and 

Y. V. Nazarov [25,26,27] considered several mechanisms that would allow a 

spin-flip in their treatment of single particle relaxation rates. Khaetskii et al. 

found that the dominant mechanism responsible for allowing spin-flip relaxation 

is spin-mixing. This causes the spin-up state to contain a small admixture of 

spin-down states and vice versa. The bulk inversion asymmetry of the crystal 

lattice gives rise to one such spin mixing mechanism which is sometimes known 
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as the Dresselhaus mechanism. We include the Dresselhaus mechanism in our 

calculation of the exact two-particle quantum states. The Dresselhaus spin-orbit 

mixing mechanism is found to have an interesting effect on the two-particle energy 

spectrum. Where the singlet and triplet energy states previously crossed as the 

magnetic field is increased, the inclusion of the Dresselhaus term in the system 

Hamiltonian causes some of the crossings to become anti-crossings. 

In the work on spin-flip relaxation presented in this thesis, we find an 

oscillation in the relaxation rate that is dependent on both magnetic field and 

the thickness of the electrostatic dot. The oscillation is found to be caused by 

the perpendicular finite well confinement of the heterostructure and can reduce 

the slow (microsecond) relaxation time by several orders of magnitude. This is of 

particular interest for applications where a long lived excited state is necessary. 

1.1 Synopsis of the Thesis 

In chapter 2 we present a review of the background information relevant to the 

material presented later in this thesis. We describe the quantum dot structures 

considered in this work and discuss the models that are used in later chapters. A 

review of the methods used to devise some of those models is also given. Finally, 

we discuss the method used to calculate the many body states employed later in 

this work. 

In chapter 3, we investigate the relaxation of an excited electron in a single 

particle self-assembled quantum dot by means of an Auger process. The electron 

confined in the dot is able to relax by transferring some of its energy to an 

external electron via the Coulomb interaction. We consider two mechanisms 

where the external electron is located in either a two dimensional layer called 
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the wetting layer located directly beneath the dot or in the surrounding three- 

dimensional bulk material. The relative density of the electrons located in the 

wetting layer and the three dimensional bulk material will play a crucial role in 

determining whether wetting layer or bulk scattering is the dominant relaxation 

mechanism. We use the experimental results of B. Liu et al. [28] to relate these 

densities, which allows the relaxation rates for both mechanisms to be compared. 

It is found that the bulk scattering mechanism is consistently dominant for the 

parameters used in this work. We also compare relaxation rates calculated in 

the dipole approximation and exactly for both mechanisms and find that the 

dipole approximation is unlikely to be valid for any realistic dot confinement. 

To illustrate the physics involved in the Auger relaxation process, we consider a 

relatively simple model of cylindrical shape and a soft-walled harmonic oscillator 

confinement potential. Our main results concern two truncated pyramid shaped 

dot models inspired by the experimental observations of Bruls et al. [14]. One of 

the truncated pyramid models is of pure InAs and the other is InGaAs and has a 

composition gradient that varies linearly from 60% Indium at the bottom to 100% 

Indium at the top. The effect of dot shape and composition on the relaxation 

rate is examined and parameter fitting methods for the more elementary harmonic 

oscillator model are considered. 

In chapter 4 we consider Auger relaxation in a two-particle quantum dot and 

explore the new physics that arises from the Coulomb interaction between the 

confined electrons. The inclusion of a "spectator" electron is expected to modify 

the Auger mechanism and may therefore have an impact on the relaxation rates. 

This follows the discussion on single particle Auger relaxation given in chapter 

3. We again consider the two relaxation mechanisms where the dot electron 
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scatters with electrons located in either the wetting layer or the surrounding bulk 

material. We also use the same dot models as in chapter 3 allowing a direct 

comparison to be made. In addition to the screening of the Auger mechanism 

between the dot electrons and the external electrons, the screening of the Coulomb 

interaction between the two dot electrons when calculating the two-particle states 

is also considered. However, it is found that the two dot electrons are only 

weakly interacting in the self-assembled dots considered here. Since including the 

screening between the two dot electrons is extremely computationally expensive 

and only mildly affects the relaxation rate, this screening mechanism is neglected 

in the majority of our results. 

We change direction slightly in chapter 5 and consider phonon-assisted spin- 

flip relaxation processes in two electron electrostatic quantum dots. We discuss 

several different mechanisms that are capable of providing the spin-orbit mixing 

necessary for spin-flip relaxation in quantum dots and draw on previous work 

in this field to identify the Dresselhaus mechanism as being dominant. A novel 

method for calculating the Dresselhaus spin-orbit interaction matrix elements is 

presented. We include the Coulomb interaction between the two dot electrons and 

calculate the energy spectrum as a function of magnetic field. The inclusion of the 

Dresselhaus spin-orbit mixing mechanism, is found to produce anti-crossings in 

the energy spectrum that are not present when spin-orbit mixing is neglected. We 

discuss the origin of these anti-crossings by considering a single particle system 

and find a new commutator relation and conservation rule, which is extended to 

include the two-particle system. 

We then calculate the relaxation rate for two different phonon-coupling 

mechanisms. These are the deformation potential mechanism, which is a result of 
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the band bending caused by the emitted phonon and the piezoelectric potential 

caused by the electric polarisation resulting from the strain produced by the 

emitted phonon. We also include the effects of screening on the piezoelectric 

relaxation rate later in chapter 5. We consider the non-interacting two particle 

system in order to explain the emergence of oscillations in the relaxation rate 

which are found to be dependent on both the magnetic field and the thickness 

of the quantum dot. These oscillations are caused by the vertical finite well 

confinement of the quantum dot and are capable of reducing the spin-flip 

relaxation rate by several orders of magnitude. We calculate the spin-flip 

relaxation rate for triplet-singlet transitions and Zeeman sub-level transitions. 

Of the two relaxation mechanisms considered here, we find that the deformation 

potential mechanism is dominant for all transitions except those with a sufficiently 

small energy gap. The spin-orbit mixing also produces some abrupt changes in the 

magnitude of the relaxation rates at the various magnetic fields that correspond 

to the anti-crossings in the energy spectrum. We explain this behaviour by 

introducing the concept of quasi-quantum numbers based on the expectation 

values for spin and angular momentum. We also compare the method and results 

presented here with previous theoretical and experimental work. 

Finally, in chapter 6 we surnmarise and conclude the work of this thesis. 

Additionally, some suggestions for future work are made. 



Chapter 2 

Background 

2.1 Quantum Dot Structures 

In 1981, A. 1. Ekimov and A. A. Onuschenko [29] published the first experimental 

observation of quantum confinement effects in CuCl crystals embedded in 

Silicate glass. Shortly after this ground breaking work, R. Rossetti and L. 

Bruls [30] presented the first studies of the luminescence properties of CdS 

colloids. This work provided the first experimental confirmation that the physical 

properties of zero- dimensional systems were strikingly different from their bulk 

counterparts. Since that time, zero-dimensional systems have become a significant 

and highly active area of research. Recent advances in experimental technique 

and improvements in the quality of samples available for study have provided 

many exciting opportunities for the study of these novel systems. 

One of the first methods used to fabricate artificial quantum dots was a 

combination of electron beam lithography and reactive ion etching applied to 

a quantum well. M. A. Reed et al. [31] applied a polymer mask to a two- 

dimensional quantum well and used electron beam lithography to mark out the 

pattern of the dot. A gold mask was then applied to the pattern before a reactive 

10 
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ion etch was used to remove the unscreened material. This exposed a pillar that 

contained the quantum dot. Reed et al. reported fabrication of a cuboid shaped 

dot approximately 250nm square and 2- 5nm high, containing several hundred 

electrons. This was the first observation of the photoluminescence spectra for 

total quantisation by a fabrication-imposed potential. Similar experiments were 

carried out by J. Cibert et al. [32] who manufactured a cuboid shaped quantum 

dot and measured its luminescence properties. T. P. Smith III et al. [33] were 

successful in reducing the number of confined electrons to around 27. Smith et 

al. used capacitance spectroscopy to measure the energy levels of a quantum dot 

manufactured in a similar way to that of Reed et al. 

A modulated electric field can also be used to localise electrons in a quantum 

well. T. J. Thornton et al. [34] used a split gate 15/-tm long and 0.6yrn wide 

deposited onto a two-dimensional quantum well to confine electrons to a narrow 

channel. U. Meirav, et al. [35] also used the split gate method to form a narrow 

channel but were able to interrupt the channel by two barriers to confine electrons 

in all three spatial dimensions. Meriav et al. succeeded in measuring oscillations 

in the conductance corresponding to the addition of single electrons to the dot 

system. 

A different method was used by Ch. Sikorski and U. Merkt [36] who produced 

an etched array of InSb islands by using a photoresist and a holographic periodic 

intensity pattern from an Ar laser. They capped the array with a NiCr film 

followed by a layer Of Si02 and another NiCr film to act as a gate contact. An 

applied voltage between the gate and the InSb substrate produced a modulated 

electric field that could be used to confine fewer than 5 electrons in all three spatial 

dimensions. A similar technique was used by T. Demel et al. [37] to produce 
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quantum dots containing 25 electrons from an AlGaAs/GaAs heterostructure. 

However, the goal of single electron confinement was finally achieved when B. 

Meurer, D. Heitmann, and K. Ploog [38] were able to produce a quantum dot 

containing one electron using a holographic fabrication technique similar to that 

of Sikorski and Merkt [36]. 

Rather than the arrays of electrostatic dots produced previously, R. C. Ashoori 

et al. [39] fabricated a single electrostatic dot from an AlGaAs/ GaAs/ Al GaAs 

heterostructure. The heterostructure was capped with 30nm of GaAs, on to this 

they applied a 1/-tm diameter CrAu disk and used a 30nm dry etch to leave a 

small GaAs island that had been masked by the disk. This island would then 

be used to provide the modulation of the electric field in a similar way to Refs. 

[36,37,38] mentioned in the previous paragraph. Onto the island was placed a 

2[Lm diameter CrAu cap. The quantum dot was formed in the GaAs region of the 

heterostructure directly under the island by an electric field applied to the CrAu 

cap. The electric field could then be manipulated to confine anywhere between 

one and several thousand electrons. Ashoori et al. succeeded in fabricating this 

device onto a chip, which also contained a standard capacitor and a high electron- 

mobility transistor that was used to detect the capacitance signal from the dot. 

In a vertical quantum dot device, the quantum dot itself is located in the centre 

of a pillar, sandwiched between two barrier layers. This type of dot provides a 

system where the number of confined electrons can be widely varied and their 

dynamics observed by manipulating the gate and contact voltages. The first 

transport measurements performed on this system were reported by S. Tarucha et 

al. [40] who measured the Coulomb oscillations produced by filling the electronic 

states. A comprehensive review of the properties of this type of dot is given by 
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L. P. Kouwenhoven et al. [18]. One of the pillar type quantum dots reviewed by 

Kouwenhoven is considered in chapter 5 (see figure 5.1). This type of pillar dot 

is actually a three-terminal field-effect transistor. Týransient current spectroscopy 

experiments based on this type of vertical quantum dot device were performed 

by T. Fujisawa et al. [19,20,21] who were able to measure both direct energy 

relaxation rates and spin flip relaxation rates. Fujisawa's experiment provides 

the inspiration for the calculations presented in chapter 5. 

The late 1980's and early 1990's, saw the appearance of self-assembled quantum 

dots (SAQD) as they have now became known. SAQDs are formed by molecular 

beam epitaxy in the Stranski-Krastanow growth mode [3] that occurs in systems 

with a high interface energy and a large lattice mismatch. The high interface 

energy promotes layer-by-layer growth so that the first few monolayers (typically 

1.6-2.0) form an even two-dimensional film known as the wetting layer (WL). 

After this critical thickness has been deposited, the high strain energy is lowered 

by the onset of interfacial misfit dislocations that nucleate the formation of small 

islands. These islands are referred to as self-assembled quantum dots. 

Initial studies of these structures were performed by several groups, for example 

D. J. Eaglesham and M. Cerullo [41] reported the growth of Ge islands on a Si 

(100) surface. Later, C. W. Snyder et al. [42], D. Leonard et al. [11] and J. 

Oshinowo et al. [43] all made similar structures by depositing In_-Gal-., As on a 

GaAs (100) substrate. 

The exact size, shape and composition of self-assembled quantum dots has 

proven to be extremely difficult to determine. D. Leonard et al. [11] used 

transmission electron microscopy (TEM) and cross-sectional TEM (X-TEM) to 

examine uncapped InO. 5GaO. 5As dots grown on a GaAs substrate. These authors 
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found the islands to be approximately 30nm in diameter but indicated that the 

actual size may be smaller since it was the strain field and not the dot itself that 

was being measured. S. Ruvimov et al. [12] and M. Grundmann et al. [44] used 

TEM and X-TEM to study InGaAs and InAs quantum dots which they reported 

to be of pyramid shape with a 12nm square base. N. Liu et al. [? ] used cross- 

sectional scanning tunnelling microscopy (X-STM) to image stacked InO. 
5GaO. 5As 

SAQDs embedded in a GaAs matrix. They suggested that these dots have a 

truncated pyramidal shape with a trapezoidal base and an Indium rich central 

core of inverted pyramid or cone shape. More recently, D. M. Bruls et al [141 again 

used X-STM techniques to study InAs dots in a GaAs matrix. They reported 

a square based truncated pyramid shape with a graded Indium composition 

increasing linearly in the growth direction. The SAQD model proposed by D. 

M. Bruls et al. [14] provides the basis for some of the work presented in chapters 

3 and 4. 

2.2 Quantum Dot Models 

We will now introduce the models used to represent the two different types of 

quantum dot discussed in this work. They are the self-assembled quantum dot 

and the electrostatic quantum dot. 

The electrostatic quantum dot has been found to have cylindrical symmetry 

and has a lateral confinement potential that is very nearly parabolic [40]. One 

theoretical approach, originally devised to explore Landau diamagnetism [45] in 

free electrons was first formulated by V. Fock [46] and C. G. Darwin [47], and 

is widely used to describe this type of quantum dot. The parabolic confining 

potential accurately describes the electrostatic dot and takes into account the 
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possibility of a perpendicular external magnetic field. The Fock-Darwin states 

for electron motion confined to a plane are given by the complete set: 

nr2 r2 
R(r)4b(0) =- 11 

Llll -) exp 
(-- 

- ilo , ýA2( 
)n 

A2 2A2 
ý+ 

n)! 

(A 

where L111 (x) are the associated Laguerre polynomials and the wave functions are n 

characterised by the quantum numbers n=0,1,2 ... and I=0, ±1, ±2 ... and 

the length parameter: 

(2.2) 
MQDQ 

The length parameter is related to the characteristic oscillator frequencies 

W2 + 
wc 2 

(2-3) (2) 

where hw is the confinement energy, w, = '*B is the cyclotron frequency, m*QD 
MQD 

is the effective mass of the quantum dot carrier, e is the electronic charge and B 

is the external magnetic field applied in the z direction. 

The electrostatic quantum dot considered in chapter 5 is fabricated from a 

quantum well. We therefore include a perpendicular confinement given by a 

finite well, but will reserve our discussion of the exact form of the z dependent 

factor of the wave functions until the relevant point of chapter 5. 

For modelling the wave functions of a self-assembled quantum dot however, we 

will use an harmonic oscillator confinement potential in the z direction. In this 

case the wave functions have the form: 

n! (r 2) Z2 
_ý2 L111 Hm exp n A2 Az) 2A2 2A2 2 A22mm! (111 + n)! z 72Az A 

(2.4) 
F-h 

QDW_ Q where AZ wz is the oscillator frequency in the z direction and Hm 

axe the Hermite polynomials. We will refer to the states with this form of z 

dependent wave function as the harmonic oscillator (HO) states. 
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The energy spectrum relating to the HO states of expression 2.4 is given by: 

E, im - (2n + Ill + 1) hQ + 
(rn 

+2) hw, -2 hw,. (2.5) 

One method of fitting the parameters of the HO model to a real SAQD, is 

to choose Q so that hQ = AE, where AE is the energy difference between any 

two SAQD levels. All other levels will be incorrectly predicted due to the equal 

spacing of the HO energy levels, a feature not found in real SAQDs. Once the 

energy gap has been matched, the vertical confinement energy (hw, ) can be used 

to match the lower energy level of the transition being considered (see Eq. 2.5). 

Although we can match any two energy levels in this way, the length scales (Eq. 

2.2) produced by this procedure do not always accurately reflect the size of a 

real SAQD. However, if it is the lowest lying energy levels that are matched, the 

length scales are usually quite close. Despite these apparent problems, the HO 

model has the significant benefit of its relative simplicity and can be used to 

qualitatively predict at least some of the physics of the SAQD. 

Real self-assembled quantum dots however, do not generally have the 

cylindrical symmetry or the parabolic confinement potential of the HO model. 

In section 2.1, we saw that initial studies suggested that SAQDs were of a 

pyramid shape. The electronic structure of pyramidal InAs quantum dots has 

been calculated by several groups including that of M. Grundmann et al. [15] 

who used a numerical finite difference solution to the Schr6dinger equation. M. A. 

Cussack et al. [16] modelled similar pyramidal dots by diagonalising the system 

Hamiltonian with a plane wave basis set. However, recent experiments [14] have 

shown that a SAQD is of truncated pyramid shape. In this work we will use the 

truncated pyramid SAQD single particle wave functions calculated by M. Roy and 

P. A. Maksym [171. They found that the bound electronic states in a SAQD may 
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be calculated more efficiently using a HO basis set than with the more commonly 

used plane wave basis set. Roy and Maksym [17] calculated the bound states 

of physically realistic SAQD models within the effective-mass approximation. 

Their calculation includes the position dependence of the effective-mass and 

most importantly the effect of the strain field within the system. The strain 

can drastically modify both the shape and the depth of the potential well. The 

single-particle states are calculated by expanding the exact wave function T in 

terms of a HO (Eq. 2-4) basis set ýbj and the complex amplitudes bi: 

bioi, (2.6) 

where i labels the individual states in the HO basis set. The eigenvectors and 

eigenvalues are found by exact numerical diagonalisation of the Hamiltonian (see 

Roy et al. [17]), which is given by: 

I (-ihV + eA) M-1 (-ihV + eA) + V(r), (2.7) 
2 

where M is the effective mass tensor and A is the vector potential of the magnetic 

field (B =Vx A). The confinement potential, V(r) = Vo(r) + V, (r), is the sum 

of the band offset Vo(r) and a second contribution V, (r) which results from the 

material strain. 

An extra parameter z, f f is used to offset the wave function from the origin of 

the coordinate system (defined as the centre of the dot) such that z --ý z-z, f f 

in Eq. 2.4. The length scales A and A, (see Eq. 2.2 etc. ) are initially chosen to 

give the ground HO basis function a similar spatial extent to the actual localised 

state of the dot. The rate of convergence can then be improved by minimising 

the energy of the HO ground state confined in the dot potential with respect to 

z, f f and the two length parameters. 
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Material In,, Gal-., As InAs InAs 

Base (nm) 18 x 18 18 x 18 21 x 14 

Top (nm) 10.6 x 10.6 10.6 x 10.6 11.5 x7 

Height (nm) 5 5 5 

hwo (meV) 170 170 190 

hw, (meV) 570 640 620 

zof f (nm) -0.25 -0.40 -0.56 

Eo (meV) -225 -259 -246 

E, (meV) -155 -186 -185 

Table 2-1: Parameters for the truncated pyramid self-assembled quantum dot models used in 

this work, from M. Roy et al. [48]. State energies are measured relative the conduction band 

edge of GaAs. 

We will now introduce the specific self-assembled quantum dot models we will 

use in this work. In chapters 3 and 4 we consider two square based dots of 

truncated pyramid shape inspired by observations made by Bruls et al. [14]. The 

first is a graded material dot that has a composition of In,, Gal-,, As where x varies 

linearly from 0.6 at the base to I at the top. The second is a truncated pyramid 

model of pure 1nAs. In chapter 3 we also consider a rectangular based dot of pure 

InAs. Details of the parameters used to calculate the self-assembled dot models 

are given in table 2.1 where hwo and hw, are the radial and vertical confinement 

energies respectively. These confinement energies relate to the length parameters 

A and A, (see Eq. 2.2), z, ff is the offset parameter described above. Eo is the 

energy of the ground state and El is the energy of the first excited state given 

relative to the GaAs conduction band edge. 
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In many systems of interest, analytical solutions to the many particle Schr6dinger 

equation are not possible unless approximations can be made. It may be possible 

to obtain reasonable results by neglecting the interaction of the electrons in the 

system or by treating it as a perturbation. However, approximations should be 

avoided in systems where the error introduced would be unacceptable or where 

the consequences of the interaction are not well understood. 

In chapters 4 and 5, we consider quantum dots where we include a second 

"spectator" electron and wish to know what effect this has on the relaxation 

process. To do this we must take the interaction between the electrons into 

account when we calculate the two particle states of the system. The Hamiltonian 

of the many particle system is of the form: 

IN 
h(ri) +-1: E v(ri, rj), (2.8) 

2 i=l j=l j: ý6i 

where the first term describes the individual electrons in the system and the 

second term describes the Coulomb interaction between them. In chapter 5, we 

also include the Dresselhaus spin-orbit mixing term (see section 5.2.1)_ 

We expand the two particle wave functions in terms of non-interacting two 

particle states such that the eigenfunctions of the system are given by: 

T=E 
an [(%l (ri) 41)n2 (r2) I 41)nl (r2) 4%2 (ri)] (2.9) 

n NF2 

where (Di(r) are the single particle orthonormal basis states, usually the single 

particle states of the system being considered. This expansion leads to a 

matrix representation of the Hamiltonian. Calculation of the matrix elements 

for this Hamiltonian poses a significant challenge that requires the development 
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Details of the individual matrix 

elements will be given in the relevant chapters. The complex amplitudes of the 

eigenvector components (an) are found by the exact diagonalisation of the system 

Hamiltonian. This is performed numerically by a "black box" routine supplied by 

the Numerical Algorithms Group [49]. We use a restricted basis set, the extent 

of which is determined by a convergence test, details of which will be given in 

subsequent chapters. 



Chapter 3 

Auger Relaxation in Self-Assembled Quantum 

Dots 

In this chapter, we investigate relaxation of excited electrons in a self-assembled 

quantum dot (QD) by means of an Auger-like process. The Auger process in 

an atom starts when an inner shell electron is removed and the vacancy is then 

filled by a second electron relaxing from a higher shell. The energy released 

causes a third electron, the Auger electron, to be ejected from the atom. In 

the system considered here, we assume that an electron has been captured into 

an excited state in the dot and is able to relax by transferring its energy to an 

external electron via the Coulomb interaction. We consider mechanisms where 

the external electron is either located in the two-dimensional (2D) wetting layer 

(WL) or in the surrounding three-dimensional (3D) bulk material. The relative 

electron densities of the wetting layer and bulk, are expected to play a crucial role 

in determining which mechanism is dominant. We use experimental results [28] 

to relate these two densities, which will allow the rates of these two mechanisms 

to be compared. 

The chapter is organised as follows. First in section 3.1 we provide a review 

21 
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of some of the previous work in this field before going on to calculate relaxation 

rates for both the wetting layer and bulk scattering mechanisms for a general 

QD in sections 3.2 and 3.3. Relaxation rates are calculated both exactly and 

in the dipole approximation for both mechanisms. In section 3.5, we illustrate 

the physics involved in the relaxation process by considering a dot model with 

a harmonic oscillator (HO) confinement (expression 2.4). We will compare the 

dipole and exact results for both relaxation mechanisms. It has been suggested 

that the dipole approximation may be valid for the self-assembled QD system 

however we find this to be inaccurate. This inaccuracy is attributed to the 

increasing separation of the dot energy levels as the confinement is increased. 

In section 3.5-4, we turn our attention to the various more realistic self- 

assembled quantum dot models introduced in chapter 2. These models are 

inspired by the experimental observations of D. M. Bruls et al. [14] and E. 

E. Vdovin et al. [50] and the quantum states are calculated by M. Roy et al. 

We compare the effect of dot shape and composition on relaxation rate and 

attempt to find parameter fitting methods that allow the more elementary HO 

model to be used to predict these rates. Finally in section 3.5.5, we provide a 

discussion of the results and the conclusions drawn. 

3.1 Previous Work 

It has long been known that one of the dominant carrier relaxation mechanisms 

in bulk semi-conductors is phonon emission. However, it was first proposed by 

U. Bockelmann and G. Bastard [5] and later by H. Benisty et al. [61 that the 

discrete energy levels in a QD might impose constraints on allowed relaxation 

mechanisms. The discrete QD energy levels and the weak energy dispersion of 
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longitudinal optic phonons prompted suggestions that by energy conservation, 

unless the energy levels in the quantum dot were separated by the phonon energy 

(hw), or multiples thereof, phonon relaxation will be strongly suppressed. This 

effect is known in the literature as the phonon bottleneck and has been somewhat 

controversial since experimental results [7] have not indicated any slowing of the 

relaxation rates. 

A theoretical treatment of electron relaxation in quantum dots was presented 

by U. Bockelmann [51] who considered acoustic phonons coupling to electrons 

via the deformation potential. Bockelmann used a parabolic confinement in the 

radial plane with a finite well confinement in the axial direction consistent with 

electrostatic dots. Bockelmann calculated the relaxation rate as a function of 

radial confinement energy and found a peak rate of approximately 7.8 x 109s-1 

at a confinement energy of approximately 2. OmeV. 

The phonon relaxation rates are still low compared to experimentally measured 

rates, which are consistently of the order of 10" - 10"s-' [8,52]. This 

discrepancy has inspired much work dedicated to finding mechanisms that are 

capable of explaining this apparent shortfall. Multi-phonon mechanisms have 

been investigated by T. Inoshita and H. Sakaki [53] and later by X. Li et al. [54] 

who similarly considered coupling longitudinal optic phonons from the dot with 

bulk acoustic phonons. This treatment predicts a relaxation rate of approximately 

1010s-' centred on the LO phonon energy. However, this still does not account 

for relaxation from the complete spectrum of energies found in quantum dots and 

is too slow to account for the picosecond relaxation times found in experiments 

[8]. 

Due to the difficulty of detecting phonon emission from quantum dots, few 
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experiments to do this have ever been attempted. One such experiment to observe 

phonon emission from a quantum dot sample was performed by P. Hawker et al. 

[55]. These authors used a bolometric detector to observe strong acoustic phonon 

emission from stacked QD samples. However, the authors comment that it is 

not possible to definitively state the mechanism that gives rise to the observed 

phonon signal. Since phonon emission is known to be the dominant mechanism 

for electron relaxation in bulk semi-conductors, it is conceivable that the dot 

electrons might relax via some other mechanism and the resulting hot external 

electron quickly decays via phonon emission. The authors speculate that it may 

be an Auger process in the dot indirectly giving rise to the observed acoustic 

phonon signal. 

If phonon relaxation is unable to account for relaxation over the full range of 

energies encountered in quantum dots, other mechanisms must be considered. It 

has been suggested that relaxation via an Auger mechanism might be a possible 

candidate for efficient carrier relaxation in QDs. Electrons in an excited state 

in the QD scatter with electrons located in the continuum states in either the 

bulk or the WL via a Coulomb interaction resulting in an energy transfer from 

the electron in the dot to an external electron. As the density of the bulk or 

WL electrons is increased it might be expected that the Auger mechanism will 

become dominant over other mechanisms. 

U. Bockelmann and T. Egeler [56] discussed Auger relaxation in cuboid shaped 

quantum dots. Their dot model used infinite barriers in the lateral directions 

and a finite well in the axial direction. They considered scattering with a two 

dimensional electron-hole plasma and calculated picosecond relaxation rates for 

a plasma density of 2x 1011CM-2. 
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Figure 3.1: Left: schematic of a cylindrical model QD on top of the wetting layer. Both are 

embedded in bulk material. Right: corresponding energy diagram for an unstrained InAs dot 

embedded in a GaAs matrix. 

Auger rate calculations have also been performed by A. V. Uskov ct al. [9] for 

a cuboid dot with infinite barriers. Uskov et al. used the dipole approximation 

to derive analytical expressions in the unscreened, low temperature limit. They 

assumed that the Coulomb potential between dot and external carriers is slowly 

varying over the size of the QD and therefore the interaction potential can be 

expanded as U(r - ro) ý-ý U(r) - ro - 17U(r). The calculation was also limited 

to scattering with carriers confined in the 2D WL on which the self-asseinbled 

quantum dot is placed (see figure 3.1). For a two-dimensional carrier density of 

toll - iol2cm-2, Uskov et al. reported electron relaxation rates of loll _ 1012S-1. 

Despite the recent work carried out on Auger relaxation processes, the author 

is unaware of any previous calculations regarding the validity of the dipole 

approximation. In addition, Auger relaxation calculations have been performed 

for scattering with electrons confined in the 2D WL [9,56] but the author is 
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unaware of any prior calculations for scattering with 3D bulk electrons. Similarly, 

the effect of QD geometry on Auger relaxation rate has also been unexplored. 

Existing Auger rate calculations are restricted to simplified QD models that, as 

discussed in chapter 2, do not have the precise geometry or energy characteristics 

of real self-assembled quantum dots. The validity of the dipole approximation, 

the 3D scattering mechanism and the effect of QD geometry are all discussed in 

this work. 

3.2 Two Dimensional Auger Relaxation 

In this section, we consider scattering of electrons confined in a QD by electrons 

located in the 2D WL. It is assumed that electrons have been inserted into the 

bulk material, where some will be captured into the wetting layer. A single 

electron is assumed to be confined in the first excited state in the quantum dot. 

We wish to keep the discussion completely general in this section and will provide 

a discussion of various QD models in section 3.5. 

We assume that the Coulomb interaction will be screened predominantly by the 

electron density in the surrounding bulk. The presence of holes is neglected and 

this assumption is expected to have the effect of underestimating the magnitude 

of the screening. However, we do not expect this underestimation to affect the 

fundamental physics of the system. In the models used in this work, the QD is 

placed on top of the WL in the manner typical of self-assembled quantum dots, 

a schematic of this is shown in figure I I. We neglect any effect the presence of 

the WL may have on screening due to its small thickness and assume that the 

surrounding bulk material is of uniform composition throughout. 

We anticipate that the 2D relaxation rate will be proportional to the density 
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of electrons confined in the WL and that screening will increase with the bulk 

electron density. Therefore, the relative magnitudes of these densities will be 

important. Electron densities are calculated from the rate equations described 

by B. Liu et al. [28]. Liu et al. considered carriers injected into an excited state 

in the bulk conduction band (CB) at a rate G(t), they then relax to the bulk 

CB edge in a timeT,,,. From there, they can either recombine with a hole in the 

bulk valence band (VB) in a timeTj or be captured into the WL in a time 7,,,, p. 
Carriers recombine in the WL in a timeTr 2. Densities in the bulk and the WL 

are calculated via a3 level rate equation where np, nCB and nWL are defined to 

be the number of electrons at the pump energy, the bulk conduction band edge 

and in the wetting layer respectively. From Liu et al. [28] we have: 

dnp (t) 
= G(t) - dt 

dnCB (t) np (t) 

dt T", 
dnWL (t) 

dt 

where trel = 2ps, tcap= 7ps, trl 

np 

Tre, 

nCB nCB 

Trl Tcap 

nCB M 
nWL(t) 

Tcap Tr 2 
(3.1) 

Ins) tr2= 0.25ns and G(t) can be chosen to 

provide the required number of injected electrons (np). 

We calculate the transition rates between states of equal energy by the 

application of Fermi's Golden Rule: 

27 1: 1< Tf(r, ro)jW(r, ro)jTj(r, rc)) > 12 f (ki) 6 (E(kf) - E(ki) + AE), 
h 

kikf 
(3.2) 

where E(ki) and E(kf) are the initial and final two-dimensional WL electron 

energies respectively. We must take into consideration the distribution of the 

energy of the states kf and ki. The distribution function will take the form 

(ki) (1 -f (kf )) +f (kf ) (I -f (ki)) where f (k) is a Boltzmann distribution. We 
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assume that f (ki) >f (ki) so that the distribution function reduces to f (ki). AE 

is the change in energy of the dot electron and r and ro are the QD electron and 

WL electron coordinates respectively. Since the QD states are highly localised 

and the WL states are extended by comparison, is assumed that although the 

exchange term should be included in the formalism, it will be negligible and can 

safely be ignored. For this reason the wave functions, IF(r, ro) are taken to be the 

product of the QD and WL states. 

Strictly, screening should be dealt with quantum mechanically but we will 

consider the coulomb interaction semi- classically and will therefore consider 

screening in the same way. To this end we choose the Yukawa potential [57] 

as the perturbation operator in the Golden rule: 

W(r 
- ro) =e2 

exP(-rjr - rol) 
4veco Ir - rol 

(3.3) 

where r, = ý/47TC2n3/(cEokBT) is the 3D Debye screening wave number resulting 

from the use of a Boltzmann distribution, 7'13 is the bulk electron density and T 

is the temperature of the bulk electrons. 

3.2.1 The Exact Relaxation Rate 

In this section, we calculate the exact Auger relaxation rate for scattering of dot 

electrons by electrons confined in the 2D wetting layer. Because of the need to 

use a mixture of 2D and 3D vectors, we will take the convention that vectors 

denoted by upper case letters are three-dimensional whereas vectors denoted by 

lower case letters are two-dimensional. We define a coordinate system such that 

the origin is placed in the centre of the dot. We ignore the finite thickness of the 

wetting layer which is parallel to the x-y plane, a distance zo below the origin. 

We begin by writing the Yukawa potential (Eq. 3.3) that appears in the matrix 
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element of Fermi's Golden Rule (expression 3.2) as a Fourier transform: 

e2 eiQ. (R-Ro) 
W (R - Ro) -- - dQ, (3.4) 873 6EO K2 +Q2 

where RO = (ro, zo) - We assume that the 2D WL wave functions are plane waves 
I that have the form A-2 

exp(ik - ro), where A is the area of the wetting layer, so 

that the matrix element appearing in the Golden Rule (Eq. 3.2) is then: 

-c2e 
i(kf -ki). R'0* (R) eiQ. (R-Ro) 

dQ Oi (R) dRodR. (3-5) 87r3eeo. A 
1 

K2+Q2 

The Ro integral is: 

i 
exp [i (kf - ki) - ro - iQ - Ro] dRo = 

47 2 
exp [-iQ_j_zo] 6 [kf 

- ki - Q11 I- (3-6) 

Substituting the result of Eq. 3.6 into expression 3.5, we perform the integral 

over Q11 to remove the delta function which gives the matrix element as: 

e2 exp 
(- zQ 

-L 
ZO) 

(R) ýe[-i(kf-kj+Qj -R] 

27660A K2 +(kf - ki)2 + Q2 
Oi (R)) dQ_L. (3-7) 

-d 
We substitute this result into the Golden rule (expression 3.2) where f (ki) is the 

2D Boltzmann distribution. We convert the sum over ki and kf given in the 

Golden rule to an integral in the usual way to give the relaxation rate as: 
4 e- n2MQD 

8422 7r c cokBT"MW*L 
2 

1 ýof (R) je i[(kf -ki)+Qj_I-R ý Oi (R) exp [ZQ-Lzo] 
-dQ -L >< 

K2 +(kf - ki)2 + Q2 

222_ 02 exp (_ aki) 6 (kf 
- ki ) dkidkf, (3-8) 

where 
ii2 

ce = 2m* k WL BT' 

= 
ýMýQ D- Ef), (3.9) 13 n2 

(Ei 
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M* is the effective mass of the QD electron, m* is the effective mass of the QD WL 

WL electron, Ej is the initial energy of the dot, Ef is the final energy of the dot 

which for energy relaxation has the relationship Ej > Ef. 

In expression 3.8 the substitution kf =q+ ki is now made, which allows the 

delta function to be rewritten as 6(k' -k2_ 
02) =: J(q 2_ 02 + 21ql Ikil cos Oj) with fi 

the rest of the expression independent of Oi. We now split the Oi integral into two 

parts where the limits range from 0 to 7 and from 7 to 2-F and make the change 

of variable cos 0= ±x to give the integral over 0 as: 

q2_ 02 26 ( q2-o2 
- 

1) 

X1 
dx 21qllkil 

11 (3-10) 
qllkil 21qllkil ýX2 [4q2k? 

- (q2 - 
02)2 

zI 

where E) is the Heaviside step function which will modify the lower limit on the 

ki integral. The result of substituting Eq. 3.10 into expression 3.8 then gives the 

ki integral as: 

Oo ki exp (-ak? ) 

77(q) 222 .1 
dki exp f -a [7) (q) 12ý 

[4q ki' - (q -02)2 
2 4q 

where we have made use of the change of variable u' =k2[, q (q) ] -2 _1 and we 

have defined: 

Tj (q) 
- 

Iq 2_ 021 

2 Iql (3.12) 

Using the results of Eqs. 3.10 and 3.11 we return to expression 3.8 and find the 

exact relaxation rate for scattering dot electrons with electrons located in the 

wetting later is: 

e4 n2Tn =7mnýVL QD 
exp ý 

-a [7ý (q)]21 X 
42 2rl2Tn* k Iql 167 6 co WL BT 

(r) ýe(iq+Q_jrý 
oi(r)) exp Q 

_L zo) dQ _i_ 

2 

dq. 
K2+ q2 + Q2 

I 

At this point the result is general for any quantum dot state. Later in this 
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chapter, we will discuss the effect of using various different quantum dot models 

and shall use this expression as the starting point for our discussion. 

3.2.2 The Dipole Relaxation Rate 

Starting with Eq. 3.4, we make the dipole approximation by making the 

assumption that Irol > IRI and expand the R part of the exponential to give: 

.e2 
exp (-iQ - ro 

3 in 
(Q - 

R)n dQ. 87r3EEO K2 + Q2 
I: 

-,, 

ln=o 

n. 

I 

Strictly, the dipole approximation requires expansion to only linear (n = 1) order 

but to aid our comparison to the exact result of section 3.2.1, we include terms 

up to and including cubic order. 

Using this form of the Yukawa potential, the matrix element in Eq. 3.2 

'becomes: 

e2 
exp [i (kf - ki) - ro] 0* (R) exp (-iQ - ro) 

x 
87F6E0A 

1f 
K2 + Q2 

3 in 
)n Z- (Q -R Oi (R) dQdrodR. (3-15) 

n=O n! 

1 

We notice that the ro integral is identical to that of Eq. 3.6 where the result 

is given by 47T 2 exp [- ZQ-Lzo]J[kf - ki - Q11]. We remove this delta function by 

integrating over Q11 as described in section 3.2.1 and substitute a 2D Boltzmann 

distribution for f (ki) which gives the dipole equivalent of expression 3.8 as: 

4 C- n2MQD 
exp 422 87 c 6okBThTn* WL 

ozk 
2)6 (k 2-k2_ 02 
ifi 

3 in 
[(kf - ki +Q R]n exp (- iQ -L zo) Of 

-L) 
Oi 

K2 2+ Q2 dQ-L 
n=o nl +qI 

2 

dkf dki - 
(3-16) 

We now recognise that the first term of the dipole expansion in expression 3.16 

is unity which when integrated between orthogonal QD states will simply vanish. 
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Terms of even order also vanish since the integrand will be an odd function. Hence 

only terms of odd order contribute to the relaxation rate in this extended dipole 

approximation. We use Eqs- 3.10,3.11 and 3.12 to remove the delta function in 

expression 3.16. The integral over ki is performed in the same way we described 

in section 3.2.1 and we find the 2D dipole relaxation rate to be: 

41f 
[77 (Qjj)]2ý X 

e n2MQD 27FrnWL 
exp 

-F46262 16 01ý2 rn *W L kBT ýQlll 61 

Z [Q. R]3 exp (-zQ_Lzo) 2 
(of (R) iQ -R- Oi (R) 

2+ Q2 dQ-L dQjj 
. 
(3-17) 

3! K 

This expression, like Eq. 3.13 is completely general for any quantum dot state 

and we shall return to this point when we compare the two results in section 

3.5.1. 

3.3 Three Dimensional Auger Rate 

In this section we consider an electron in the QD scattering with electrons 

located in the surrounding bulk. We consider both the exact calculation and 

the dipole approximation. The presence of the WL is neglected and we assume 

that screening will be provided by the electron density in the surrounding material 

as we did in section 3.2. In similar fashion to the 2D case, we assume that the 

bulk electron will be well described by plane waves of the form V-'exp(Zk-ro). In 

this section we define a lower case bold font to denote three-dimensional vectors 

throughout. In order to compare our results to the 2D relaxation rates, we will 

use the same injected carrier rate G(t) as in section 3.2. 
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3.3.1 The Exact Relaxation Rate 
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Using the Yukawa potential of Eq. 3.3 in the matrix element that appears in the 

Golden Rule (expression 3.2) we have: 

e2 
-- exp [i (kf - ki) - ro] 0* (r) Oi (r) exp (-r, Ir - rol) drdro. 

47recoV 
1f 

Ir - rol 

Making the substitution, exp[i(kf - ki) - ro] - exp[i(kf - ki) - r] exp[-Z(kf - 

ki) - (r - ro)] in the above expression, the ro integral then becomes the Fourier 

transform of the Yukawa potential: 

exp (-n Ir - rol) 
exp [-i (kf - ki) - (r - ro)] dro - 

47r 
(3-19) Ir 

- rol K2 +(kf - ki )2* 

Substituting this result into the matrix element we have: 

66 

IK 
+ (kf - ki )2] -1 (Of (r) I exp [i (kf - ki) - r] I Oi (r)) . 

(3.20) 

Substituting this matrix element in the Golden rule, where f (ki) is a three 

dimensional Boltzmann distribution, gives: 
3 

4 e4 2 2) n3MQD I 
exp (-aki 

7F26262 2m* kBT K2 +(kf - ki 0B 
I ýof (r) lexp [i (kf - ki) - rl I Oi (r)) ý2 6k2-k2_ 02 dkf dki. (3.21) (fi 

Proceeding in similar fashion to that of section 3.2.1 we make the change of 

variable kf =q+ ki. The delta function then becomes J(kf - ki' - 0') = 

6(q 2_ 02 +21qII ki I cos Oj) where the rest of the integrand is independent of Oi. 

Making the change of variable cos Oi =x so that -sin Ojd0j = dx, our choice of 

spherical polar coordinates allows us to simplify the Oi integral to: 

16q 2_02 
ýXj dx =10 

(q 2_ 02 
(3.22) 

21qllkil 
J-1 

21qllkil 21qllkil 21qllkil 
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where E) is the Heaviside step function, which affects the lower limit on the ki 

integral in the same way as Eq. 3.11. The ki integral then has the form: 

J 00 
k exp [-aki2] dk = [2a] -1 exp ý 

-oz [, q (q) 121 (3.23) 
77(q) 

Substituting the results of Eq. 3.23 into expression 3.21 we have the relaxation 

rate as: 

e n3 rn QD 
2 exp 24i -0, [, q (q) ]21 

iq. r I 0i (r)) ý2 
dq. (3.24) 

h262IE2 2m* kIf 0B BT [K 2+ q2]2 jqj 

Again, this expression is applicable to general QD states and will be used in 

the discussion of the various QD models considered subsequently. 

3.3.2 The Dipole Relaxation Rate 

We start with the dipole approximation to the Yukawa potential (expression 3.14) 

and take the matrix element of initial and final states to give: 

c2 
exp [z (kf - ki) - ro] 0* (r) exp (-iql - ro) 

x 87r660v 
1f 

K2 + q12 
3 in 

]n Z-[q r Oi (r) dq'drodr. (3.25) 
n=O n! 

Since kf, ki and q' are all three dimensional, the integral over external electron 

coordinates is f exp[Z(kf - ki - q') - rojdro = 87'6(kf - ki - q). This allows the 

q' integral to be performed easily to give: 

e 

660V 
[K2 

+(kf 

3 in 
1: - [(kf 

ki )2 f 
n=o n! 

ki) - rj" Oi (r) (3.26) 

We substitute expression 3.26 into the Golden Rule, where f (ki) is a three 

dimensional Boltzmann distribution. This gives the relaxation rate as: 
3 

4e4n3M*QD 

76262 2m* kBT 0B 

exp (-ak 2) 
i jý ý 1- 2 7-2 

[K2 
+(kf ki )2 

2U ýhj 

I') 3 in 

0* (r) l' - [(kf - ki) - r]n 
(f 

n=o n! 
Oi (r) dkidkf. 

02 ) 

(3.27) 
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We again change variable to kf -q+ ki and perform the manipulations on 

the delta function as described in section 3.3.1. The lower limit on the ki integral 

is similarly affected as in Eq. 3.11. Our choice of spherical polar coordinates 

means that the0ki integral results in a factor of 27. This leaves the ki radial part 

of the integral which has the same form as Eq. 3.23. Even terms in the dipole 

expansion vanish which leaves the relaxation rate as: 
1 

24 e n3MQD 

h2E262 2m* kBT 01B 

Of (r) iq -r- (q - r)3 
3-! 

3.4 Computational Considerations 

Oi (r) dq. (3.28) 

The calculations described in this chapter require multi- dimensional integrals to 

be performed numerically and in this section we review some of the computational 

methods used to perform this task. The primary method of integration used in 

this work is Simpson's rule. This is used for all numerical integrations except in 

some circumstances where a discrete Fourier transform is employed. All numerical 

methods will be briefly reviewed and the accuracy of the integrals computed in 

this work will be discussed. 

Simpson's rule is one of the most widely used techniques for numerical 

integration and is exact for polynomials of up to second order. The method 

presented here is given in the form found in NumeTtcal Recipes in C [58]: 

X2 

f (x) dx ý- h1f (X0) +4f (x, ) +1f (X2) + O(h 5f (4» 
3 (3.29) ix 

0[3331 

where x, is a point equidistant from xO and X2, and f (') denotes the fourth 

derivative of the function f, evaluated at an unknown place in the interval h. 

exp ý-a [TI (q)]2f 

[K2 + q2]2 Iql 
,2 

x 

The unknown nature of the error associated with this method of integration 
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means that the integrals cannot be calculated to arbitrary accuracy. However, 

systematically increasing the number of sampling points and comparing the 

results for convergence is a method often used to gain an indication of the accuracy 

of the numerical integral. This is a method we employ repeatedly during the 

course this work. 

If the integral can be split into equally spaced sections, Simpson's rule can be 

repeated as many times as is necessary. The integral is then approximated by: 

f (x) dx -, 
h 

[f (xo) + 4f (x, ) + 2f (X2) + 4f (X3) + 
--- 

la 

... 
2f(Xn-2)+ 4f(Xn-1) +f (Xn)1 (3.30) 

where there are n+I points equally spaced by the distance h. This form of 

Simpson's rule is employed repeatedly in this work. 

The second computational method used here is the discrete Fourier transform 

(DFT) which is used to approximate the Fourier integral: 

M-1 

H(k) = 
l'exp (ikx) h (x) dx, -�-i AZ hj exp (ikxj) (3-31) 

j=O 

where the sampling interval A= (b - a)M-', M is the number of subintervals, 

X3-=a+ jA and 3' = 0) 11 ... ) M. However, this approximation to the Fourier 

integral does not match the definition of the standard numerical discrete Fourier 

transform routine (as supplied by NAG Ltd. [49]) we wish to use. The problem 

arises because the DFT introduces a phase factor when the lower limit on the 

integral is non-zero. We must therefore correct this phase factor to eliminate the 

problem. 

If we define k, = 27rm(b -a)-' where m=0,1..., such that k, A = 27mM-1 

we can allow for the phase correction by substituting for xj in the exponential 

on the right hand side of Eq. 3.31 and the approximation to the Fourier integral 
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M-1 i27rmj 

, 

fa 

exp (ikx) h (x) dx r-ý A exp (ik, a) Z hj exp 
(m) 

j=O 
A exp (ik, a) [DFT (ho.... hm-, )]. (3.32) 

This approximation to the Fourier integral can suffer from a problem called 

aliasing. If the function H(k) :ý0 for k>k, where k, = (2A)-' (known as 

the Nyquist critical frequency) then all of the data that lies outside of the range 

-k, <k<k, is spuriously translated or aliased onto that range. Technically, we 

should include corrections to this aliasing since it is possible for the accuracy of 

the integral to be compromised. 

Numerical methods always have an error term associated with the 

approximation and is usually a function of some small parameter. This small 

parameter for DFT's is not A(b - a)-' = M-' as it would be if the integrand 

was not oscillating but is actually kA which leads to a systematic decrease in 

the accuracy of the integral as the sampling frequency k, is increased. Clearly 

there is a need to reduce the aliasing errors, which we can do by increasing the 

sampling rate, without introducing unacceptable systematic errors. 

We must include the phase corrections, but to also include anti-aliasing terms 

when evaluating a three-dimensional Fourier transform would lead to some 

lengthy and somewhat intractable calculations. Fortunately, the wave functions 

used in this work are all slowly varying and decay well before the sampling range 

is truncated. Therefore the usual aliasing errors associated with DFTs do not 

cause any difficulty and the low sampling rates needed for convergence (typically 

100 points), do not give rise to any significant systematic errors. Anti-aliasing 

corrections can therefore be neglected without any significant loss of accuracy 

provided the appropriate sampling range is carefully identified. 
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The real space range over which the DFT is to be performed is x, =b-a. 

From the definition of k, we have the frequency range of k, = 27rM(b - a)-' 

which leads to the relation k, = 21rM(x, )-. This relation can be used to locate 

the optimum range for the transform. Obviously, we wish to avoid truncation 

which can lead to aliasing errors both before and after the transform and we wish 

to simultaneously minimise the systematic errors due to the choice of sampling 

rate. 

In general, we wish to transform quantum dot wave functions of the form 

described by the HO wave functions in expression 2.4 or in the case of the self- 

assembled models, a sum thereof. In any case the function we wish to transform 

will always be the product of a polynomial and a Gaussian with a characteristic 

length parameter A. By inspecting the quantum numbers needed to generate 

any given wave function we can deduce the order of the polynomial and use 

the relation above to optimise the sample range accordingly. We do this by 

examining the decay of the function and its Fourier transform and find that the 

ad hoc relation 21rAA-1 10 provides a range sufficient that truncation errors 

are avoided and systematic errors are minimised. 

Fourier transforms when used in this work, are always the result of calculating a 

matrix element between two dot states and invariably precede further integration 

which is performed by Simpson's rule. For example in expression 3.24, the integral 

in the Dirac brackets would be performed by DFT before being integrated over q 

by Simpson's rule. Therefore the points at which an integrand is known will be 

defined by our initial choice of sampling points and data range in the DFT. In 

cases where the integrand is to be evaluated at a position that does not coincide 

with a data point, a conversion to polar coordinates for example, we employ a 
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three-dimensional linear interpolation scheme. 
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In some special cases, it is possible to calculate analytical expressions for the 

relaxation rate. We can then use these results to check the accuracy of the 

numerical methods in addition to the convergence test already mentioned. The 

results given in this chapter are found to be accurate to better than 0.1% using 

no more than 200 points. 

3.5 Results and Discussion 

Auger relaxation calculations have been performed in both the dipole 

approximation and exactly. In this section the two methods of calculating the 

relaxation rates are compared for the HO model as defined by expression 2.4 with 

B-0. We also present the exact relaxation rates for more realistic QD models 

and discuss the effects of QD size and shape. 

In the case of the HO model considered in the following section and square 

based truncated pyramid models discussed in section 3.5.4, the first excited state 

is degenerate. In general, any linear combination (E aijoj) of the degenerate 

states is a valid eigenfunction of the Hamiltonian. We must take this into account 

when calculating the relaxation rates and write the matrix element of the operator 

V as: 
(0o 

aij Oj aij ý00 ý, (l 0i) (3-33) 

If we sum over all possible rates, the square magnitude of the matrix element 

becomes: 

Imil 2Ea 
i*j aik 

(00 ýý71 Oj) ýOk 1'ýj 00) 

ijk 

Jjk ý00 ýVj 
J) 

ýOk Jýrý 00) 1ý00 Ifrl oj)12, (3.34) 
ik 
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where we have used the fact that E aijoj is an orthogonal set so that Ej ai*jai k ::::::::: 

bjk- It is easy to then calculate the relaxation rate for each of the degenerate 

states. In this work we will take the average of these two relaxation rates since a 

single electron captured into the dot may occupy either of the degenerate excited 

states with equal probability. 

3.5.1 The Breakdown of the Dipole Approximation 

We recall that in making the dipole approximation, extra terms were retained in 

the expansion of the Yukawa potential (Eq. 3.14). We return to the 2D exact 

and dipole relaxation rates given in expressions 3.13 and 3.17, and the 3D exact 

and dipole rates given by expressions 3.24 and 3.28 to gain an insight into the 

validity of this approximation. 

We first consider relaxation from the first radial excited state to the ground 

state of a harmonic oscillator dot (expression 2.4). We find that the matrix 

elements for both the exact wetting layer and bulk relaxation mechanisms 

(expressions 3.13 and 3.24) contain a factor like: 

iAqjj A2 q2A 
ý2, 

q2L iq. r 1 11 
- of Oi - exp (3-35) 

244]1 

whereas our extended dipole approximations (expressions 3.17 and 3.28) contain 

the factor: 

3 qll A, 2 q2L 
of (r) iq -r-- (q - r) Oi (r)) =: 

ýA-qll (3-36) 
3! 2[44- 

Upon examination of the two expressions above it is obvious that making this 

approximation simply results in the expansion of the exponential factor appearing 

in the exact result: 
A2 22 

qj, A2, q2L Aqj, 
exp 4444 

(3-37) 
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The formal dipole approximation would be to truncate the expansion at unity. 

Obviously, truncating this expansion at unity is only valid provided that the 

product Aq < 1. However, we will demonstrate that this condition is unlikely to 

be satisfied for any realistic confinement energy (hw). 

In order to illustrate this result, we focus on the low temperature limit. 

We expect that prior to the relaxation process, the external electron will have 

negligible energy compared to the same electron after the relaxation process has 

taken place. Similarly, the initial and final wave vectors of the external electron 

are expected to have the relationship; Jkf I> Iki I. We can then write the change 

in wave vector for the external electron as q= kf - ki r-lý kf. Since the loss of 

energy by the QD must be equal to the gain in energy of the external electron 

we find that: 
h2 

22 
h2 kf2 h2 q2 AE -- 

(kf 
-ki -2m* 2m* 

(3-38) 
2m* 

From this result and the definition of A in Eq. 2.2, we find that Aq ý- 

2AElhw. However, recalling the definition of the energy levels for the HO 

model given by Eq. 2.5, we see that hw = AE. This gives the product Aq -, vý'2- 

and so the criterion for application of the dipole approximation is not met. 

This important result demonstrates that the dipole approximation is not valid 

for the HO model of any realistic size at least in the low temperature limit, 

but do other models suffer from the same difficulty? For the cylindrical HO 

model, the length parameter A given by Eq. 2.2 is a convenient measure of 

the confinement of the dot wave function. However, for other QD models this 

length parameter is not so readily available. In order to make any meaningful 

comparison, a reasonable substitute must be found. The ground state of the HO 

Model (see expression 2-4) yields the expectation values < r2 >= A2. We Might 
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then anticipate that -v/< -r2 > for other models will be a reasonable substitute for 

the length parameter A in the HO model. Comparison of qvý-< -r2> should then 

give at least an indication of the validity of the dipole approximation for various 

dot models. This comparison is given in table 3.1. 

Dot model AE (eV) <r2> (X 10-16M2) 

Cylindrical HO hwle A2 1.414 

Square based pyramid 0.118 0.1235 0.937 

Rectangular based truncated 0.061 0.2048 0.868 

Square based truncated 0.073 0.2205 0.705 

Table 3.1: Quantum dot models, a comparison of Aq values. 

Clearly, the validity of the dipole approximation is model dependent and the 

results given in table 3.1 would suggest that the HO model is the least applicable. 

However, the necessity that Aq <I for the dipole approximation to be valid is 

unlikely to be satisfied for any of the models considered here. It is usual for the 

dipole approximation to be applied in order to help simplify a calculation to a 

point where analytical relaxation rates can be found. Since analytic rates can be 

found for only the most simplified and frequently unrealistic models, it does not 

seem beneficial to apply the dipole approximation in any subsequent calculations. 

The effect of the dipole approximation is evident in figures 3.2 and 3.3 and 

appears as an overestimation of the relaxation rate by a factor of approximately 

3. The discrepancy is roughly constant over the temperature ranges discussed 

here since the product Aq is constant. However, as the temperature is increased, 

the hypothesis given above will no longer be accurate. In this case the inequality 
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Jkf I> Ikil will no longer be valid and instead we find: 

Aq= 
3 Ei - Ef -2 V7ýýEi 

Tf - 1/2 

(3.39) 
Ei - Ef 

where Ej and Ef are the initial and final QD energies respectively. As the energy 

levels of the dot move closer together (hw --> 0), the product Aq --> 0 and the 

dipole approximation will become applicable. Unfortunately, this does not occur 

sufficiently rapidly for the dipole approximation to be applicable to self-assembled 

quantum dots. 
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Figure 3.2: Relaxation rate against temperature for 2D and 3D Auger relaxation mechanisms 

in the dipole approximation and the exact calculation. For an injected carrier density of 

1011CM-3 and length parameters of A :: -- 4.5nm and A, = 2.2nm. 

It has been previously stated that the dipole approximation can be used to 

simplify the calculation to the point where analytical results can be found. 
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Using the methods explained in this chapter, we find that it is even possible 

to calculate exact analytic results for bulk scattering in certain special cases. 

For completeness, we illustrate this by considering the ground and first radially 

excited HO wave functions from expression 2.4. For one particular special case 

we can simplify expression 3.11 by assuming A = A, and r, = zo = 0. The 2D 

exact relaxation rate is then given by: 

: )4 A2 * 00 
2 

e n2 MQD IF 1, * 
exp [-a [71 (q) 121 

erfc 
qA) dq (3.40) 2 2h2 327c co kBTWL 2 

'M 

MWL 0 

where erfc(x) is the complementary error function. In the strict dipole 

approximation, using the same simplifications, the 2D relaxation rate (Eq. 3.17) 

becomes: 
42 

e n2MQDA 7m L 
2 21j2, M* k 

IFMýVL 
327rE 60 WL BT 

The 3D exact rate Eq. 3.21 is: 

470 n3M A27 a/3 
2) 

- 
QD 

--- Ko 02 +A2)1 exp (3.42) 
r12 E2 62 

: ý* 7- 30ýmBk B-, 'T 2 
(2 

2 

and the 3D dipole rate is: 

44* A2 - OZ02 OZ02 7e 'n3MQD 7T 

M26262 kB TKo 21 exp 2 
(3.43) 

0 

where KO(x) is a modified Bessel function. 

3.5.2 Temperature Dependence 

HO relaxation rates for both wetting layer and bulk scattering mechanisms, both 

exactly and in the dipole approximations are plotted against temperature in 

figures 3.2 and 3.3. We have neglected thermal excitations which are expected to 

be negligible in undoped samples but may be important at higher temperatures 

if doping is significant. The rates given in figure 3.2 correspond to an injected 
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Figure 3.3: Relaxation rate against temperature for 2D and 3D Auger relaxation mechanisms 

in the dipole approximation and the exact calculation with an injected carrier density of 

1016CM-3, length parameters of A=4.5nm and A, = 2.2nm. 

carrier density Of 1011CM3 for which screening is small. The 2D relaxation rate Is 

found to be approximately independent of temperature in agreement with Uskov 

et al. [9]. This temperature independence arises from the Boltzmann distribution 

used in calculating the 2D rate which is of the form T-1 exp(-E(ki)IkBT). Upon 

integration over q, the exponential gives a factor of T. This effectively cancels the 

inverse temperature dependence of the pre-factor leaving only the temperature 

dependence of the exponential. At extremely low temperatures (< IK not shown), 

the screening length K also becomes large and leads to a strong suppression of 

the relaxation rate. 

The Boltzmann distribution used in calculating the 3D rate lias the forin 
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T -3/2 exp(-E(ki)IkBT). The factor of T resulting from integration leaves the 

relaxation rate with a remaining T-'1' dependence accounting for the behaviour 

at T> 5K shown in figure 3.2. At lower temperatures, the screening lengthK 

I diverges as 
T-2 

and the integrand in Eq. 3.24 suppresses the relaxation rate. 

As the carrier density is increased, screening becomes important. Figure 

3.3 shows the relaxation rate for 2D and 3D mechanisms in both the dipole 

= 1016CM3 1 
approximation and exact calculations for np . The T-I dependence of 

the screening parameter K accounts for the sharp reduction in relaxation rate at 

very low temperatures shown in figure 3.3. The dipole and exact rates converge 

at extremely low temperatures. With a high electron density, K is large and at 
I low temperatures is further increased by its T-2 dependence. When the screening 

becomes large enough, the [K 2+q 2] -2 factor in the integrand of expression 3.24 

can be approximated as K-4 which introduces a T' dependence in addition to the 

1i T-I from the pre-factor. The rate then goes like T2 and the constant difference 

between the dipole and the exact rate vanishes as T --ý 

3.5.3 The Effect of Size 

Figure 3.4 shows the HO relaxation rate against lateral confinement energy for 

both 2D and 3D scattering mechanisms. This allows us to explore the effect of 

varying QD size on the relaxation rate since the length parameter A is dependent 

on the confinement energy hwo. We assume a temperature of IK and an injected 

electron density (n,, ) ranging between loll and 10"cm-' which corresponds to 

small and large screening respectively. 

For np :: - 1016CM-3 
, screening is large and we find the relaxation rate for lateral 

excitations approaches a constant value for both 2D and 3D scattering when 
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Figure 3.4: Relaxation rate against confinement energy for 2D and 3D Auger relaxation 

in the exact calculation for the HO model. Injected carrier densities np = 1011cm-1 and 

np = 1016CM-3 are used at a temperature of IK. The small kinks in the plots at low confinement 

energies are due to a low point densitY. 

vertical confinement is held constant and lateral confinement energy (hýo) is 

increased. The form of the 2D rate can be understood by considering the HO 

matrix element with zo =0 found from expression 3.13 and Eq. 3.35 to be: 

_A2 Aq 
exp zK2+q 2) 

ýI; KT2 -+a 2 q4 

A2 q2 Az - 
- 

ý62 
+ C12 erfc, 

(q) 
(3.44) 

In the large screening limit where K> V/K- 2 -+q 2, >q so that ý K, the matrix 

element is approximately AqK-1 exp(_A2K2 /4 - A2 2 
zq 

/4)erfc(A, /-z/2). In section 

3.5.1 we found that for lateral excitations, the product Aq \, /2. The inatrix 

element therefore becolnes constant and the relaxation rate is independent of 

latera-I QD size. At low confinement energies this approximation breaks down 
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and the product Aq ---ý 0 as AE --ý 0 as shown in Eq. 3.39, consequently the 

p relaxation rate decreases. At low screening (n 10"cm-') where K can be 

ignored, the matrix element is approximately A exp[-(A' + A')q'/4]erfc(A, q/2). z 
For high lateral confinement energies, erfc(A, q/2) -* 0 and the relaxation rate 

tends to zero whereas at low lateral confinement energies, erfc(A, q/2) ---> I and 

the matrix element goes as A. 

In the 3D case, the matrix element becomes: 

K2 

Aqjj 
2 exp +q 

A22 A2 2 qjý 
ý, q 

44 
(3.45) 

For low temperatures and high confinement energies the relationship Aq -, Vý-2- 

again holds. In the large screening limit, the matrix element is approximately 

vý-2 K-2 cos ý exp [- 1 COS2 ý 
_A2 

(2A2)-I 
sin 

2 ý] where ý is the angle between the WL 2z 

plane and the wave vector q. The cos ý factor favours a change of wave vector 

(q) parallel to the WL plane and the matrix element is nearly independent of 

confinement energy when ý is small. Therefore the relaxation rate is almost 

independent of confinement energy similar to the 2D case. However, there is a 

slight energy dependence caused by the non-zero perpendicular component of q. 

In the low screening limit, the matrix element goes like q-1 where q is proportional 

to V-AE and we find a rapid increase in relaxation rate as confinement energy 

tends to zero. 

3.5.4 More Realistic Quantum Dot Models 

Up to this point, we have considered only the HO model dot with wave functions 

given by expression 2.4. We now turn our attention to the effect shape and 

composition has on the relaxation rates by considering the more realistic dot 

models discussed in chapter 2. We consider the two square based dot models of 



f--l 11 
Chapter 3 49 

truncated pyramid shape inspired by observations made by Bruls it et al. [14] and 

the rectangular based truncated pyramid model inspired by the observations of 

E. E. Vdovin et al. [50]. The asymmetry of the wave function in the rectangular 

based dot means that the excited states are not degenerate and the averaging 

procedure described in section 3.5 does not apply. The parameters for these 

models are given in table 2.1. 

In addition to these three self assembled quantum dot models, we include two 

calculations for the HO model in order to explore the possibility of this simple 

model being used to accurately predict the relaxation rates in self-assembled 

quantum dots. The HO length parameters are fitted using two different methods. 

First, we use the method described in chapter 2 to fit the HO energy gap (hw) to 

the truncated pyramid energy gap for the specific transition we wish to examine. 

This method leads to A=6.66nm and A, = 4.68nm for transitions between the 

first excited state and the ground state in a square based truncated pyramid 

quantum dot. The fitting of HO length parameter to the energy levels in this 

way must be specifically calculated for each transition. It should be noted that 

parameter fitting to the higher energy transitions can sometimes result in a highly 

unrealistic dot shape. For example, using this method for transitions between the 

second excited state and the ground state leads to A=4.8nm and A,, = 7.5nm. 

This is unrealistic for self-assembled dots which invariably have a larger lateral 

than vertical size. 

The second method is to match the HO length parameter to the truncated 

pyramid RMS displacement to give A = 
V< r2 >-<r >2 = 4.47nm and 

,\, =V <-- z2> 
--< 

z>2= 2.41nm. In both HO models we maintain the 

WL coordinate zo = 2.5nm in line with the truncated pyramid model and our 
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The electron densities used to calculate the data in figures 3.5 through to 3.8 

are calculated from the rate equations [28] given in equation 3.1 for an injected 

carrier density of between 1012 and 10"cm-'. The use of the same injected carrier 

density (np) for both 2D and 3D calculations allows us to directly compare these 

figures. At high carrier densities, the screening length K will become short enough 

for the Yukawa potential to become inapplicable, although we do not expect the 

general physics to be affected. 

Inspecting figures 3.5 and 3.6, we see that the HO rates do not match the 

self-assembled dot rates. The accuracy of the HO model to predict relaxation 

rates in self-assembled dots depends on a suitable choice of length parameter. 

The HO model does give a comparable 2D rate to the truncated pyramid when 

the energy levels are matched. Nevertheless, a comparison of the 2D HO rate 

with the corresponding truncated pyramid rate shows that the HO rate is smaller 

at low electron densities and hence low screening by a factor of approximately 

1.3. This discrepancy changes slightly to a factor of approximately 2 at higher 

electron densities. The RMS deviation method of fitting HO parameters does 

not appear to be quite so accurate. At low electron densities the rate calculated 

for the HO model is smaller than the rate for the truncated pyramid model by 

a factor of over 3.5. This inaccuracy changes slightly to approximately 2.4 at 

higher electron densities but remains roughly constant throughout the range of 

electron densities considered here. 

The 3D relaxation rate for the HO model suffers from similar underestimations. 

For the energy level fit the rate is underestimated by a factor of more than 2 which 

persists throughout the entire range of electron densities considered here. The 
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Figure 3-5: 2D Auger relaxation rate against WL electron density for a square based 

truncated pyramid (solid line), square based graded material truncated pyramid (coarse dotted 

line), HO model with the energy levels fitted to the square based truncated pyramid model 

(medium dotted line) and HO model with RMS deviation fitted to the square based truncated 

pyramid model (fine dotted line). With a temperature of 1K and an injected carrier density 

np = 1012 _ 1018CM-3. 

RMS deviation fit is too low by a factor of 6 at low electron densities which 

reduces to a factor of 1.2 at high electron densities. 

The effect of confinement energy on the HO model is shown in figure 3.4 and 

in the low electron density, low screening limit, a decrease in confinement enero)-y 

(increase in size, see Eq. 2.2) seems to strongly increase the rate. ý, Vhen the 

electron density is high, the increase in size has a mild effect in reducing the rate. e-) 

Square 
Square graded ---------- 

SHO energy fit ------------ 
SHO RMS fit ... ................ 

........... 

This effect is seen in the two HO rates in figures 3.5 and 3.6 where the RMS ýD 
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Figure 3.6: 3D Auger relaxation rate against bulk electron density for a square based graded 

material truncated pyramid (solid line), square based truncated pyramid (coarse dotted line), 

HO model with the energy levels fitted to the truncated pyramid model (medium dotted line) 

and HO model with RMS deviation fitted to the truncated pyramid model (fine dotted line). 

With a temperature of IK for an injected carrier density np = 1012 _ 1018CM-3 

deviation fit has length parameters that are smaller than those calculated for 

the energy level fit. At low electron densities, the energy level fit has the higher 

relaxation rate whereas at higher electron densities the rates converge and in the 

case of bulk relaxation, they even cross over. In essence, for a smaller dot we see 

the peak value of the relaxation rate shift toward a higher electron densitV. 

The 2D rates given in figure 3.5 are dependent on the parameter ý-o and 

the vertical length parameter A, The overlap between the quantum dot, wave 

1.2e+l I 
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function, which decays with the characteristic length A, and the wetting laver 
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wave function located at the point zo below the centre of the dot is clearly relevant. 

For the HO models considered here zo = 2.5nm and for parameters fitted to the 

RMS deviation where A, = 2.41nm we should expect a faster decay of the dot wave 

function compared to parameters fitted to the energy levels where A, = 4.681im. 
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Figure 3.7: 2D Auger relaxation rate against bulk electron density for a rectangular based 

truncated pyramid dot. The solid line denotes transition between Ist excited and ground 

state and the dotted line denotes transitions between 2nd excited state and the ground state. 

Calculated at a temperature of IK for an injected carrier density np = 1012 _ 1018CM-3. 

Comparing the self-assembled quantum dot models, we see that the 

composition of the dot has a, small effect on the relaxation rate. In the case of 2D 

relaxation, the rate is suppressed slightly (by a factor of ý 0.89) in the graded 

in, -aterial dot. This suppression can be attributed to the composition gradient CD 
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confining the electrons higher in the dot thus reducing the overlap betvveen the 
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quantum dot and the wetting layer wave functions. For the square based models, 

we find the <z> expectation value for the graded material dot is 2.25nm from 

the wetting layer, whereas for the pure InAs dot the same expectation value is only 

2.06nm from the wetting layer. This is in general agreement with observations of 

Bruls et al. [14] and Fry et al. [59]. 
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Figure 3-8: 3D Auger relaxation rate against bulk electron density for a rectangular based 

truncated pyramid dot. The solid line denotes transition between Ist excited and ground 

state and the dotted line denotes transitions between 2nd excited state and the ground state. 

Calculated at a temperature of IK for an injected carrier density np = 1012 _ 1018C, 1-1-3. 

The overlap between dot and wetting layer wave functions does not affect the 

3D mechanism and so the effect of the composition gradient is much smaller. The 

composition gradient can only influence the relaxation rate by the effect it has 

on the dot wave function. The effective ina, ss in Iiio. sGao. 2As is approximately 1.4 
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times greater that the effective mass in pure InAs. This change in the effective 

mass causes the graded material dot to have a slightly smaller confinement 

energy and thus a slightly larger rate, especially at lower electron densities where 

screening is less important. 

In figures 3.7 and 3.8, we compare the 2D and 3D relaxation mechanisms 

against electron density for two different transitions in a rectangular based 

truncated pyramid dot. The first transition considered is from an excitation in 

the long axis of the dot to the ground state with an energy difference of -'ý 60meV. 

The second is for transitions from an excitation in the short axis to the ground 

state with an energy difference of r-, 110meV. The departure from the four fold 

rotational symmetry of the square based quantum dot to the two fold rotational 

symmetry of the rectangular based dot breaks the degeneracy of the first excited 

state and consequently splits the relaxation rate for the two transitions. The 

difference in the two rates can be considered analogous to the size dependence 

shown in figure 3.4 where the two relaxation rates correspond to excitations in 

either the long or short axis of the dot. 

3.5.5 Conclusions 

We have demonstrated that the dipole approximation is unlikely to be applicable 

to Auger relaxation rates in QD systems. For 2D and 3D HO relaxation 

rates, the dipole approximation overestimates the relaxation rates by a factor 

of approximately 3. This is attributed to the spreading of the energy levels as 

confinement energy is increased. We have shown that the size and shape of self- 

assembled quantum dots have a large effect on Auger relaxation rates. The HO 

wave functions can give qualitative indications of the physical behaviour of QD 
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systems but are only able to give an estimate of the relaxation rate in real QDs 

if the parameters are chosen carefully. The relaxation times found in this work 

(less than 10ps) are comparable with experimental results of between 20 and 

300ps observed by Morris et al. [8] but it is unknown if the electron densities 

used in this work are consistent with their experiment. 

In comparing the 2D and 3D rates we notice that for all injected electron 

densities np, the 3D rate dominates by over 2 orders of magnitude. The relative 

magnitudes of the WL and bulk electron densities determined by the parameters 

used to calculate these densities [28] play a crucial role in selecting which 

mechanism dominates. That is not to say that there are no circumstances where 

WL scattering can become dominant, it is possible to conceive of a system where 

this may become the prevailing mechanism. However, it is unlikely that minor 

changes in the parameter values used to calculate the relative carrier densities 

would have any great effect on this result. The inclusion of a composition gradient 

in the QD model is expected to confine the charge density higher in the QD [14,59] 

which does appear to have the effect of further reducing the 2D relaxation rate 

as shown in figure 3.5. 



Chapter 4 

Auger Relaxation in Two Particle 

Self-Assembled Quantum Dots 

In this chapter we consider Auger relaxation in a two-particle quantum dot and 

explore the physics that arises from the Coulomb interaction between the confined 

electrons. The inclusion of a" spectator" electron might be expected to modify 

the Auger mechanism and we investigate what impact this may have on the 

relaxation rates. This chapter follows on from the discussion of Auger relaxation 

in single particle quantum dots given in chapter 3 and we consider the same dot 

models in order for a direct comparison to be made. We again consider the two 

scattering mechanisms where the dot electron scatters with electrons located in 

the wetting layer and the surrounding bulk material. 

The screening mechanism we must also examine, is considered in two parts. 

The first is the screening of the Auger mechanism between the dot electron and 

the external scattering electron due to the electron density in the surrounding 

bulk material. This is identical to the screening mechanism considered in chapter 

3. The second is screening of the Coulomb interaction between the two dot 

electrons again due to the electrons located in the surrounding bulk material. 

57 
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Unfortunately, including this mechanism in the calculation turns out to be 

extremely computationally expensive. To calculate the relaxation rate as a 

function of electron density requires the dot wave functions to be determined 

explicitly for each point on the curve. Since the majority of the computing time 

is required to calculate the dot wave functions, the screening of the two dot 

electrons from each other is neglected in the majority of results. Full details of 

this screening mechanism are given in section 4.2.2. The effect of including this 

mechanism is given in section 4.4.2. 

The chapter is organized as follows. First we provide a brief discussion of 

the previous work in this field (section 4.1) before providing a description of the 

method used to calculate the two particle quantum states (section 4.2). Section 

4.2 also includes a discussion of non-interacting two particle Slater determinants 

and how they are used as a basis set for the system Hamiltonian, which is 

described in section 4.2.1. The Coulomb matrix elements needed to calculate 

the interaction between the two dot electrons are discussed in section 4.2.2. 

With the quantum states calculated, we turn our attention to the Auger 

relaxation rate in section 4.3. We first calculate the bulk relaxation rate in section 

4.3.1 and then the wetting layer relaxation rate in section 4.3.2. In section 4.4 

we present the results for the two scattering mechanisms and compare them to 

the single particle rates calculated in chapter 3 before giving the conclusions in 

section 4.5. 

4.1 Previous Work 

The single particle Auger relaxation mechanisms that have attracted attention 

recently (see section 3.1) have been primarily concerned with dot electrons 
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scattering with electrons located in the wetting layer. Scattering of dot electrons 

with electrons located in the surrounding bulk however, does not appear to 

have attracted the same consideration. Similarly, the extension of the single 

particle calculations to include a second particle confined in the dot has also been 

overlooked. To date, the author is unaware of any calculations concerning two 

particle Auger relaxation rates in self-assembled quantum dots. 

Auger relaxation in two particle self-assembled quantum dots may not have 

attracted significant attention, but there has been some interest in two particle 

relaxation processes in other types of quantum dot system, specifically the 

chemically produced colloidal nanoparticle. Auger relaxation rates in single and 

many particle spherical nanoparticles have been calculated using the Golden rule 

by J. L. Pan [60]. The energy spectrum of two particle colloidal nanoparticles 

was calculated by A. Franceschetti et al. [61] using a pseudopotential method. 

The same group then went on to make pseudopotential calculations of Auger 

relaxation rates in CdSe colloids where dot electrons scattered with holes also 

confined in the dot. Their results are presented in the paper by L. W. Wang et 

al. [621. 

4.2 The Two Particle Dot States 

In this section, we discuss the method of calculating the eigenstates for the 

interacting two-particle system. This is done by the exact diagonalisation of 

the two particle Hamiltonian matrix, constructed with a suitable basis set. For 

non-interacting two particle systems, the quantum states can be expressed as a 

Slater determinant of the form: 
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X(1)JX(2 - 41ý1 (r2) 4)2 (rl) X(2)1 
(rl, r2) [4), (ri) (D2 (r2) 

M. M), 2 M, 
X 

m(l), 2 
vlý2- 

I 

IE (- 1)p P(Di (ri) X(l) (D 
(2) (4.1) 

v12- p 
ms, 1 

(r2) 
XM, 

2, 

where Oi(r) are the spatial states, X,,, are the spin states for spin quantum number 

m, and P is the permutation operator. We can write this Slater determinant in 

terms of symmetric and antisymmetric functions: 

(ri, r2) [4D, (ri) 41)2 (r2) + (Di (r2) 41)2 (ri)] (1) (2) (2) (1) [XM, 

IXM. 2 - XMIXM, 
2] 2 V2- 

+I [(Di (rl) (D2 (r2) 
- cD, (r2) 4)2 (ri)] (1) (2) +X (2) (1) 

2 V'-2 

[XM, 

l 
XM. 

2 MslXMs2] 

I [ýb'x' + O'x'] (4.2) 
vl-2- 

The antisymmetric spin function corresponds to total spin 0 and the symmetric 

spin function corresponds to total spin I. Using this notation, we can choose our 

basis set to be the eigenstates of total spin 0 or I depending on our needs. In 

this work, we choose the basis set such that the eigenstates can be written in the 

form: 
an (r2) ± 4%j (r2) (Dn2 (ri)] (4-3) IF (ri, r2) r- 

[4Dni (ri) 41)n2 

n 'V2 

where the + sign corresponds to states of total spin 0, the - sign determines 

states of total spin 1, a,, is the complex amplitude of each term in the eigenvector 

found by the diagonalisation of the two particle Hamiltonian matrix. 

The use of an infinite basis set would theoretically lead to the exact energy 

eigenvalues and eigenstates. However, in practice this process would be 

unworkable and we take the usual method of truncating the basis set at a suitable 

point. This point is chosen by increasing the number of basis states and testing 

the convergence of the calculated energy eigenvalues. The basis set is truncated 

when the energy eigenvalues converge to within 0.1%. 
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In order to minimise the number of basis states we must include to achieve 

converged results, we choose to expand the two particle states in terms of the 

single particle states of the system under investigation. In this work we will use 

both the HO states given by expression 2.4 and the single particle states of M. 

Roy [17,48] introduced in chapter 2. These states have all been used to calculate 

the single particle relaxation rates in chapter 3. This will enable us to make a 

direct comparison with the two particle rates calculated in this chapter. 

4.2.1 The Hamiltonian 

The Hamiltonian used to describe the N particle quantum dot system is given 

by: 
NINN 

e' exp (- r, I ri - rj (4.4) 
i=l 2 i=l j=l 47cEo Iri - rjl 

j: Ai 
L)- 
Pur the self-assembled dots modelled by M. Roy et al. [17,48], hi is given by Eq. 

2.7 which allows for the possibility of a position dependent effective mass. The 

confinement potential V(r) in Eq. 2.7 is a sum of terms describing the potential 

due to the band offset and the modification to this potential by the material 

strain. For the HO model (Eq. 2.4), a position dependent effective mass is not 

required and we have hi -_ (h2 /2m*)Vi2+ V(ri). In this case, the confinement 

V(ri) is a harmonic oscillator potential characterised by the frequencies relating 

to the length parameters given by Eq. 2.2. The second term in Eq. 4.4 describes 

the Coulomb interaction between the N non-interacting particles. 

The Schr6dinger equation of the system is then simply HT - ExF where T is 

a function of the spatial and spin coordinates of all the electrons in the system. 

In our two-particle case this is either a sum of Slater determinants (spin 1) or 

the difference of two Slater determinants (spin 0) as defined by Eq. 4.3. Once 
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the matrix elements have been calculated, diagonalisation of the Hamiltonian is 

performed by a "black box" routine supplied by the Numerical Algorithms Group 

[49]. Typically, fast convergence of the two particle states means that the largest 

matrices used in this work are of the order 200 x 200. 

4.2.2 The Coulomb Matrix Elements 

In order to construct the matrix needed to find the two particle eigenstates we 

must calculate the Coulomb matrix elements. To do this, we take the matrix 

element of the Coulomb operator given by the second term in Eq. 4.4 between 

two particle basis states. The Coulomb matrix element between the nth and rnth 

basis state will have the form: 

IIe2 exp (-K jr, - r2j) 
[']ý 

ni 
(rj) 4CPn2 

(r2) I 4)nj (r2) (Dn2 
(rj] 

II r2ý 
147e6o 

ri - r2l 

- 71) [4),, (rj) 4, D .2 
(r2) ý 4). 

1 
(r2) (Drrt2 (ri)] drdr2, (4.5) 

2 

where the + sign corresponds to states of total spin 0 and the - sign, states 

of total spin I as previously stated. In order to evaluate the Coulomb matrix 

element given by Eq. 4.5 we write the Yukawa potential (Eq. 3.3) as a Fourier 

transform: 

e2 exp (-r, jr, - r2 1) e21 
exp [iq - (r, - r2)] dq. (4-6) 

3 K2 2 47riEeo jr, - r2l 87T 660 +q 

Substituting this result into expression 4.5, the Coulomb matrix elements are 

found to be a sum of integrals, each of which has the form: 

2 
4)i* (irl) (Dj* (r2) iq. (r, -r2) (D* (ri) 4D, * (r2) drdr2dq k T6 ý7T3 

66 no K2+q2 

V (rl) exp (iq - ri) (D* (ri) dr, x IZk T67366() 
K2+q2 

f 
(Dj* (r2) exp (-iq - r2) (Dl* (r2) dr2dq. (4-7) 
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The single particle wave functions considered here are either HO wave functions 

or, in the case of the more realistic SAQD models, comprised of a sum of HO 

wave functions ((D =Eb,, O, ) so the r integrals in Eq. 4.7 have the general form: 

1 [Z b* 0* (r)] exp (±iq - r) 
[Z b' 0� (r)] dr. (4.8) nnm 

The SAQD wave functions can contain of a large number of HO basis states. For 

this reason we proceed by calculating the Coulomb matrix elements numerically. 

First, we compute E b* 0* (r) and E b' 0, (r) and then perform the integral in nnM 

expression 4.8 via a standard discrete Fourier transform routine supplied by 

the Numerical Algorithms Group [49], applied using the methods discussed in 

section 3.4. To reduce the number of DFT operations required for the numerical 

evaluation of Eq. 4.7 we employ the relation: 

(Ob (r) 1 exp (iq - r) 10� (r) ý : -- [ (Oa (r) 1 exp (- iq - r) 1 Ob (r»]*. (4.9) 

The Fourier transforms in Eq. 4.7 are calculated in Cartesian coordinates 

but the q integral is done in spherical polar coordinates to avoid divergence 

problems that arise when screening is neglected (K = 0). A three-dimensional 

linear interpolation scheme is employed to evaluate the integrand at the unknown 

points as mentioned in section 3.4. 

4.3 The Relaxation Rate 

In this section, we will outline the methods used to calculate the Auger relaxation 

rates for two electron quantum dots. We assume that the dot is prepared in 

an excited state. One of the electrons is then able to relax by scattering with 

electrons located in either the surrounding bulk material or the wetting layer via 

the mechanisms described in chapter 3. The calculations presented here can be 
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thought of as an expansion of the work discussed in chapter 3 to include the 

effects of the Coulomb interaction due to an extra " spectator" electron confined 

inside the quantum dot. 

4.3.1 Three Dimensional Auger rate 

The two particle wave functions have been calculated using the method described 

in section 4.2 and are expressed in the form given in Eq. 4.3. The expansion 

coefficients (an) are found by the exact diagonalisation of the Hamiltonian matrix 

as described in section 4.2.1. The symmetric and antisymmetric wave functions 

correspond to spin 0 and spin I states respectively. In this section, all vectors are 

three-dimensional and are denoted in a lowercase bold font. 

The potential used for calculating the Auger rate is a two-particle extension of 

the Yukawa potential given in Eq. 3.3: 

u (ro, rl, r2) 
e2 e-Klrl-rol 

47c6o jr, - rol 

rjr2-rol 

jr2 
- ro I (4.10) 

The quantum dot wave functions are highly localised but by comparison the 

bulk wave functions are highly extended. Although technically the exchange term 

between these functions should be included, we expect it to be negligible and by 

ignoring it we should not compromise accuracy significantly. For this reason we 

take the wave functions to be the product of the dot and bulk states. We assume 

V-1 that the bulk carriers are described by plane waves of the form 2 exp(Zk - r). 

We use dot wave functions of the form given by Eq. 4.3 and a potential of the 

form given by Eq. 4.10. The matrix element that appears in the Golden Rule 

(expression 3-2) is then given by: 



r'll, 
Chapter 

e 

exp [i (kf - ki) . ro] Z a* [0* 
, 

(r1) (r2) ±9 (r2) 
n 

0*2 

87r660v nnn 

0n2 
n 

e- rIrl -ro 1 
-r, 1r2-1r01 

jr, 
- rol 

+ 
jr2 

- rol 

1x 

Z 
a' [0, (r1) (r2) ± 

m 
Orn2 0, 

n, 
(r2) 0.2 (rl)] drodridr2- 

m 

We rewrite expression 4.11, to give: 

2 
-rol 

exp (i (kf - ki) - ro) 
e 

Irl-rol 

+ 
-nIr2 

87recoV 
1 

jr, - rol jr2 
- rol 

Z 
a* a' [0* 

, 
(r1) (r2) Om, (r1) (r2) ýI 

nmn 
0n2 0M2 

nm 

65 

(4.11) 

(r2) Om, (r2) 07n2 
n 

(r1) 0, 
n, 

(r1) (r2) 
n 

(r1) 0*1 (r2) 0n2 0M2 

On, (r2) (r1) 

n 
(r1) 0� (r2) 0M2 1 

drodr, dr2- (4.12) 

Rom expression 4.12 we see that the ro integral is similar to that of Eq. 3.19 and 

written explicitly is: 

rlrl -ro 
I 

-Klr2-rol 

+ exp (i (kf - ki) . ro) dro jr, 
- rol jr2 

- rol 

I 

47r 

12 
[exp (i (kf - ki) - ri) + exp (i (kf - ki) - r2)] - (4.13) 

K2 + Jkf - ki 

We substitute this result into expression 4.12. It is clear that for each of the 

four terms in the sum over n and m, the first term in the exp[i(kf - ki) - ri)] 

exp [i (kf - ki) - r2)] factor from Eq. 4.13 will give a Fourier transform over the r, 

coordinate and an orthogonality integral over the r2 coordinate. The second term 

will give the reverse. The orthogonality integral for normalised wave functions is 

just a delta function. This gives the matrix element as: 

-e 

660V I K2 + Jkf - ki 7F± (kf - ki) (4.14) 
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where 

66 

F± (kf - ki) 1: an*am 
fjn2, 

M2 

(Oni 
i(kf -ki). r ý Om, (r) + 

nm 
6ni, 

mi 
ýOn2 

ei(kf -ki). r O'M2 J711, 
M2 

ýOn2 
ei (kf -ki) OMJ (r)) 

Jn2, 
Tnl 

ýOn2 
ei(kf -ki) r oml (4.15) 

The ± signs denote states of total spin 0 and I respectively. 

Substituting expression 4.14 into the Golden Rule (expression 3.2) gives the 

relaxation rate as: 

exp (-ak 2) 

(kf - ki) 126 (k 2-k2 02 ) dkf dki, [K2 
+ 12 

fi 
Ikf - ki ,12 

IF 

where F± (kf - ki) is given by Eq. 4.15 and 
43 

A 
4e m n3 T2 

7F26262 0 2m*kBT) 
h2 

OZ 
2m*kBT 

ýjjý (E -Eý-f) 
13 (4.17) 

We make the substitution kf = q+ki and write the delta function in expression 

4.16 as 6 (q 2_ 02 +21 qj Iki I cos 0) following the same method given in sections 3.2 

and 3.3. We make the change of variable cos 0=x as in section 3.2.1. This allows 

us to rearrange the delta function so that the x integral is given by Eq. 3.22. This 

change of variable affects the lower limit on the ki integral in the same way as it 

did in Eq. 3.10. The ki integral is then given by Eq. 3.23 and the two particle 

Auger relaxation rate for scattering by electrons located in the bulk material is: 

2e4M*n3 
-- 

ýF -K2+q 
2] -2 1 F± (q) 12 

exp 
-- 

aq2- 
ý32 

2- 

dq. (4.18) 
h26262 kBT 

I 

Iql 2 Iql 0)- 

We can compare this to the equivalent single particle rate given by expression 

3.24. The only difference between the two is the factor F(q) which is given by 
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Of (r) I exp (iq - r) I Oi (r) > in expression 3.24 and given by Eq. 4.15 in the present 

case. 

4.3.2 Two Dimensional Auger Relaxation 

In this section, we consider scattering of an electron in a two-particle quantum 

dot with electrons located in the wetting layer. We define vectors denoted by 

upper case letters to be three-dimensional whereas vectors denoted by lower case 

letters are two-dimensional, consistent with the convention used in section 3.2. 

We begin with the Yukawa potential given in Eq 4.10 and take its Fourier 

transform to give: 

e2 exp (-iQ'. (RI - Ro)) 
87r3660 

I 

K2 + Q/2 
exp (-tQ '. (R2- Ro)) dQ 

K2 + Q12 
(4.19) 

I 
We assume that the WL wave functions are plane waves of the form A-2 

exp(-zk- 

r), where A is the area of the wetting layer, and that the dot wave functions are 

of the form given by Eq. 4.3. Neglecting the exchange term, the matrix element 

appearing in the Golden rule (expression 3.2) is given by: 

2* (R1)1 x exp [z (kf - ki) - Ro] 1: a, *, (R2) ± On*, (R2)on2 
n 

[Onl (1: 11) 0n2 

nn 

e-Q'-(R2-Ro) 

K2 + Q/2- 
+ 

r2 + Q12 dQ' 

a, [0,1 (RJOM2 (R2) ± Omi (PL2)0M2 (R1) ] dRo dR, dR2 (4.20) 

rn 

where the + sign refers to total spin 0 and the - sign refers to spin 1. The two 

dimensional variables ki and kf are the initial and final wave vectors of the WL 

electron whereas Q is merely a three dimensional dummy variable used in the 

Fourier transform of the Yukawa potential. This distinction is important since 

the wetting layer is located a distance zo below the origin and we must take this 
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into account when performing the RO integral which has the general form: 

exp (iQ'' Rn) i exp (i (kf 

= 47r 2 
exp (iQ/ - R, ) exp (-iQLzo) 6 [(kf 

- ki) - Q/111 

ki). ro - iQ'. Ro) dRo 

(4.21) 

The subscript n takes the value I or 2 corresponding to one of the two integrals 

over R, or R2 in Eq. 4.20. Substituting the result of Eq. 4.21 into expression 

4.20 we immediately perform the integral over Q1, to remove the delta function. 

This gives the matrix element as: 

e2 exp (-iQJ-zo) ýexp [i (kf - ki + Q_L) - Rl] + 47r, EeoA 

1 
K2 + (kf ki)2 + Q2 

-L 
exp [Z (kf - ki +Q )'Pt2]1 Z a*b, [9 (R1) 9 (R2) Om, 0ýt1) 0M2 (P4-2) : i: nnn 

nm 

C2) 
(R2) OTal (R2) OM2 (11'1) ý Oni (PU2) On Oni (Rl)On2 2 

(Rl) OMI (Rl) OM2 (P 

* (Ri) 0,,, (R2) OM2 (Ri)] dQ-LdR, dR2- 0,,,, (R2) On2 (4.22) 

The integrals over R, and R2 result in the expression F± (kf - ki + QL) as defined 

by Eq. 4.15. Substituting expression 4.22 into the Golden Rule (Eq. 3.2) we have 

the relaxation rate as: 
2 

4 
e n2 exp i 

_LZO) F± (kf - ki + Q'D dQ'L x 4222+ )2 + Q/2 8 7r e eDkBThf 

J 

IK (kf - ki 
-LI 

222_ 02 
exp (- aki) 6 (kf 

- ki ) dkidkf (4.23) 

where a and 0 are defined in Eq. 4.17 

We now make the coordinate transform kf =q+ ki. This allows the integral 

over Oki to be performed in the same way as Eq. 3.10 which will affect the lower 

limit on the ki integral in the same way as Eq. 3.22. The ki integral is then given 

by Eq. 3.11 which gives the two particle, Auger relaxation rate for electrons in 

the quantum dot scattering with electrons located in the wetting layer as: 
4q 2-o2 2 

e n2MQD T77r: m! L: q1 exp ax 
642 2h2M* 

7r e co WL kBT 2 jqj 
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22+ Q/2 
2 

K+q IF exp Z'Q1 zo) F± (q + Q'L) dQ'L ý dq, (4.24) 

where a and 0 are given by Eq. 4.17, m* and m* are the effective masses of QD WL 

the dot electron and the wetting layer electron respectively and F±(q + Q'I ) is 

given by Eq. 4.15. The equivalent single particle rate is given by expression 3.13 

which is identical to expression 4.24 except that the factor F(q + QL) is given 

by < of (r) 1 exp [i (q + QL] - r) 1 Oi (r) >. 

4.4 Results and Discussion 

Figure 4.1: Schematic showing the configuration of spin 0 and spin I two particle states. 

Dotted lines denote degenerate levels. A) Spin 0 ground state, B) spin 0 first excited state, 

spin I ground state, D) spin I first excited state. State D is allowed since the two electrons 

occupy two distinct spatial quantum states. 

For all of the models used in this chapter, the first excited energy level for single 

particles is two-fold degenerate. For the HO model this degeneracy arises due to 0 In 

the angular inoinelituin symmetry of the first excited enero-v level. In 
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the case of the truncated pyramid models the degeneracy comes from the four- 

fold rotational symmetry of the dot. In both cases, we can construct the ground 

state of the two-electron system by placing both electrons in the lowest energy 

level. This picture is not strictly valid since the Coulomb interaction mixes the 

non-interacting states, but if the interaction is weak the schematic given in figure 

4.1 will be acceptable. In this system, both electrons must have opposite spin, 

giving the total spin as zero. This state is shown in figure 4. IA. 

The first excited state for the two electron system of total spin zero will 

occur when one of the electrons is placed in either of the two degenerate first 

excited energy levels and the other electron is placed in the lowest energy level. 

Relaxation between this excited state and the ground state described above is 

allowed since both states have a total spin of zero as shown in figures 4.1A-B. If 

we consider the situation where the two-electron system has total spin 1, then 

without the possibility of a spin flip (which we discuss in chapter 5) relaxation 

from this state to the spin 0 ground state will be blocked. This configuration 

must then be the ground state of total spin I and is shown in figure 4.1C. 

If both electrons have the same spin and are each placed in one of the two 

degenerate energy levels described above, then we have the spin I excited state 

shown in figure 4.1D. Relaxation from this state can occur by an electron in either 

of the degenerate levels making the transition to the lowest energy level. In this 

way, the electronic states of the two-particle quantum dot can be thought of as 

somewhat analogous to para and ortho-helium. 

We choose these particular states because in a non-interacting dot, the energy 

difference between the initial and final states is identical and for each value of total 

spin, the relaxing electron makes the same transition. The only difference is the 
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location of the " spectator" electron, which will begin to influence the relaxation 

process and the energy levels once the Coulomb interaction is turned on. 

InAs (I) InAs (N) InGaAs (1) InGaAs (N) 

S=0 GS -497.55 -515-84 -428.97 -447.22 

S=0 ES -421.28 -441.26 -357-66 -377-34 

S=0 AE 76-27 74.58 71-31 69-88 

S =I GS -429.62 -441.26 -365-71 -377-35 

S= 1 ES -354.48 -366-68 -295-37 -307.46 

S=I AE 75-14 74.58 70-34 69-88 

Table 4.1: Energy levels in meV for the InAs truncated pyramid dot and the InGaAs graded 

truncated pyramid dot for interacting J) and non-interacting (N) spin 0 and spin I two particle 

states. Energies are relative to the GaAs conduction band edge where applicable. 

When the Coulomb interaction between the two dot electrons is included, the 

energy difference of the levels becomes spin dependent. In Table 4.1 we present 

the energy of the ground state (GS), excited state (ES) and the energy difference 

(AE) for the states given schematically in figure 4.1. The interacting and non- 

interacting energy levels are compared for the pure InAs truncated pyramid and 

the graded ln,, Gal-,, As truncated pyramid models introduced in chapter 2. 

From table 4.1, we find that the inclusion of the Coulomb interaction makes 

only a small difference to the energy gap (AE). For the pure InAs pyramid 

dot, the spin I energy gap increases by only 0.75% due to the inclusion of 

the unscreened Coulomb interaction whereas the spin 0 energy gap increases by 
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2.22%. For the InGaAs graded dot, the spin I energy gap increases by 0.65% and 

the spin 0 energy gap increases by 2.01%. The Coulomb interaction raises the 

energy of the ground and excited states by similar amounts so that the energy 

gap is only marginally affected. 

4.4.1 The Effect of Screening on the Dot Wave Functions. 

In calculating the two particle states described in section 4.2.2, the use of 

a Yukawa potential (Eq. 4.6) allows for the possibility of screening of the 

Coulomb interaction between the two electrons confined in the dot. The screening 

parameter K that appears in the Coulomb matrix elements of Eq. 4.7 is dependent 

on the electron density of the surrounding material. Therefore, in order to 

calculate the relaxation rate as a function of injected electron density (see Eq. 

3.1), the two particle states must be calculated individually for each point on the 

curve. However, each time we calculate the relaxation rate, approximately 98% 

of the computer time is taken to calculate the two particle states. This fact alone 

makes the calculation prohibitively time consuming. 

Since calculating the two particle states is so computationally expensive, it 

would be ideal if we were able to calculate the states once and then use those 

states to calculate the relaxation rate over the entire range of carrier densities. To 

do this we would have to either neglect screening between the two dot electrons 

or fix it at some arbitrary value. If the surrounding electron density is high and 

screening is strong, the two-particle dot will be approximately non-interacting. 

U_ 
rur non-interacting systems, the spectator electron can be expected to play no 

part in the relaxation mechanism other than to block transitions to the occupied 

state. In this case, the process will be similar to the single particle case discussed 
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in chapter 3. At the other end of the scale where electron density is low, screening 

can be safely neglected. We might expect that the relaxation rate will vary 

smoothly between the highly screened and unscreened limits and we may simplify 

the calculations by considering only the unscreened limit in the majority of results. 

To explore this possibility, we present a comparison between the relaxation rates 

calculated using screened and unscreened InAs truncated pyramid quantum dot 

wave functions. 

2e+l I 

1.8e+1 I 

1.6e+l I 

1.4e+ II 
CIO 

1.2e+1 I 

le+l I 

8e+10 
03 
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4e+10 

2e+10 
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Screened 

le+10 Ie+l I le+12 le+13 le+14 le+15 le+16 le+17 le+18 le+19 

Electron density (CM-3 ) 

Figure 4.2: Relaxation rate against bulk electron density. The points denote calculations 

where the interaction between the two dot electrons is screened by the surrounding bulk electron 

density. The line denotes unscreened wave functions. See section 4.2.2. 

Figure 4.2 shows the relaxation rate against bulk carrier density calculated with 

unscreened (line) and screened (dots) wave functions. At low electron densities 

the relaxation rate ca, lcula, ted with screened wave functions is sina, ller than the 
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relaxation rate with unscreened wave functions by approximately 0.6%, a value 

which saturates below electron densities of -, - 
1013CM-3 

- At electron densities 

greater than --- 
1016CM-1, the difference saturates again with the relaxation rate 

calculated using unscreened wave functions being smaller by approximately 3.3%. 

Figure 4.3 shows the percentage difference between relaxation rates using screened 

and unscreened wave functions (denoted by dots) and the screening length (K-1 

(line), see Eq. 3-3) as a function of bulk electron density. 
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Figure 4.3: Points denote the percentage difference between the relaxation rate calculated 

using screened and unscreened wave function as a function of bulk electron density for dot 

electrons scattering with electrons in the bulk. The line denotes screening length as a function 

of bulk electron density. Calculated for the InAs truncated pyramid dot at T =: IK. 

When the screening leno-th is much larger than the size of the quantum (lot ýD 

(18nin in this case), the interaction between the dot electrons can 'be neglected. CD 
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As the screening length becomes comparable to the size of the quantum dot, the 

interaction becomes more important. However, for this system the difference 

between the relaxation rates calculated with screened and unscreened wave 

functions still saturates at only 3.3%. The relatively small effect screening has on 

the relaxation rate suggests that the dot electrons can be considered to be only 

weakly interacting and that the effect of screening the two dot electrons from 

each other can be neglected with only a small loss of accuracy. 

4.4.2 Two Dimensional Auger Relaxation 

We first consider relaxation between the total spin 0 states as shown schematically 

in figures 4. IA-B. The excited electron (figure 4.1B) relaxes by scattering with 

carriers confined in the wetting layer. The method used to calculate this 

relaxation rate is given in section 4.3.2 and is similar to that of section 3.2 for 

Auger relaxation in single particle dots. 

Figure 4.4 shows the relaxation rate against wetting layer electron density for 

several different dot models. We consider the two self-assembled quantum dot 

models of truncated pyramid shape introduced in chapter 2. The first is pure InAs 

and the second is ln,, Gal-,, As where x varies linearly from 0.6 at the bottom and 

I at the top. In addition to the truncated pyramid models, we include two HO 

models (expression 2.4) where parameters have been fitted to the InAs truncated 

pyramid models by the energy gap and the root mean square (RMS) deviation 

( r2 >-<r >2)methods described in section 3.5.4. 

The graded material model gives rise to a slightly lower relaxation rate than 

the pure InAs model. This is due to the material gradient confining the electrons 

slightly higher in the dot and further away from the wetting layer as discussed in 
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Figure 4.4: Total spin 0 relaxation, QD electrons scatter with WL electrons at a temperature 

of IK. Solid line denotes the InAs truncated pyramid model, the coarse dotted line is the 

In., Gal-xAs graded truncated pyramid, the fine dotted line is the HO model with parameters 

fitted to the energy gap and ground state energy, and the chained line is the HO model with 

parameters fitted to the RMS deviation. 

section 3.5.4. 

Figure 4.5 shows total spin I relaxation between the two states shown 

scheinatically in figures 4. IC-D. The suppression of the relaxation rate in the 

case of the graded truncated pyramid model is again present. Once more this can 

be attributed to the composition gradient confining the electrons slightly further 

away from the wetting layer than in the pure InAs dot. 

Comparing the results presented in figures 4.4 and 4.5, we find that the spin 0 

mid spin I relaxation rates for the GaAs truncated pyramid dot differ bv a factor 
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Figure 4.5: Total spin I relaxation, QD electrons scatter with WL electrons at a temperature 

of IK for an injected carrier density of np = 1012 _ 1018CM-3. Solid line denotes the InAs 

truncated pyramid model, the coarse dotted line is the In,, Gal-xAs graded truncated pyramid, 

the fine dotted line is the HO model with parameters fitted to the energy gap and ground state 

energy, and the chained line is the HO model with parameters fitted to the RMS deviation. 

of 2.07. The spin 0 and spin I rates for the InGaAs graded truncated pyramid 

model differs by a factor of 1.97. A similar comparison for the RMS and energy 

fit HO models shows a difference of 1.94 and 1.92 respectively. This factor of 

approximately 2 can be explained by considering the matrix element for a non- 

interacting two particle quantum dot. The factor F± (q) given by Eq. 4.15 for 

lion- interacting particles reduces to: 
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iq. r ý 01, (r)ý, (4.25) 



r'l 11 
Ghapter 4 78 

where the + sign corresponds to the spin 0 and the - sign corresponds to the 

spin I matrix elements. For the spin 0 case, the + sign applies and we consider 

relaxation between the ground and first excited states shown schematically in 

figures 4.1A-B. Relaxation between states of total spin 0 in a non-interacting 

dot gives 0,,, = 0,,, = 0,, = 00 and 0,, = 01. The double occupancy of 

the On2 
== OM2 

= Oo state requires an additional normalisation factor of I/vý2-. 

When these states are substituted into 4.25, we find the expression simplifies to 

72 _1 >+< Ooleiq. rlol Ooleiq. rlol =[< 
Ooleiq*rlol >] 

If we consider the spin 1 case we have 0,,, == 
OM2 

=-- 02) Onj 
= Oo and 

Om, 01, and expression 4.25 simplifies to the single term: < OOjriq-rjOI >. 

Comparing these two results, we find that the double occupancy of the spin 0 

ground state gives two terms in the matrix element that do not vanish due to the 

Kronecker delta selection rules instead of one. The extra normalisation constant 

that also arises because of the double occupancy results in the factor of v*f2- in 

the matrix element. This can be thought of as a consequence of the two possible 

spin orientations and the Pauli exclusion principle. The Coulomb interaction 

introduces a small mixing of other states that subsequently appear in the matrix 

element. The slight deviation from the factor of 2 in the non-interacting case is 

a result of this mixing. 

We now wish to compare the single particle rates calculated in chapter 3 with 

the two particle interacting rate. We consider the spin I system so that double 

occupancy of spatial states does not obscure the comparison. Figure 4.6 shows 

relaxation rates for the HO model with parameters fitted to the energy gap of 

the truncated pyramid model for both the two-particle rate (solid line) and the 

single particle rate (points). At the peak, the single particle rate is found to be 
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Figure 4.6: Relaxation rate against wetting layer electron density for the HO model with 

parameters fitted to the energy levels of the truncated pyramid dot. The solid line is the 

two-electron rate and the points correspond to the single electron rate from figure 3.5. The 

difference at the peak between these two plots is -- 0.5%. 

- 0.5% lower than the two particle rate. Comparing the single and two particle 

rates for parameters fitted to the RMS deviation, we find that the peak single 

particle rates is ý- 0.39% lower than the two particle rate. 

The difference between the single and two particle relaxation rates inight be 

explained by considering the contribution to the total energy by the Coulomb 

matrix elements. For the HO model, the energy of the two independent particles 

(Eo) goes like A-' (see Eqs. 2.2 and 2.5) whereas the Coulomb energy (E, ) can 

be shown to go like A-'. So a, larger dot inight be expected to show a inore t) ýD 

pronounced effect from the Coulomb interaction. A comparison of the Coulomb 
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RMS fit Energy fit 

A (nm) 4.47 6.67 

Eo (meV) 509.56 231-55 

E, (meV) 12.04 7.81 

E, / Eo 2.36 3.38 

AE, 
=,, 

(meV) 165.84 74-58 

AEK=o (meV) 165.96 74-67 
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Table 4.2: Ground state energies (Eo), Coulomb energies (E, ) and their ratio for various HO 

quantum dot models. The AE's are the differences between first excited state and ground state 

for the non-interacting and interacting states. 

energies for ground state interactions for the two HO models considered here 

is given in table 4.2. A small decrease in the size of the quantum dot length 

parameter (A) is seen to produce a large increase in the non-interacting ground 

state energy EO but by comparison only a relatively small increase in the Coulomb 

energy 

The small size of the self-assembled dot means that the two-electron system 

is relatively weakly interacting. Because of this, the energy difference between 

ground and first excited state does not change significantly with the inclusion 

of the Coulomb interaction. In the energy fit HO model for example, the non- 

interacting energy difference is 74.58meV increasing by only 0.12% to 74.67meV 

in the interacting dot. In the SAQD models the Coulomb interaction has only 

a slightly more noticeable effect. Table 4.1 shows the energy levels for the two 
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SAQD models considered here. For the pure InAs model the energy crap increases ýD eD 
by 0.74% from 74-58meV to 75.14meV. For the graded model, the increase is 

"by 0.65% from 69-88meV to 70.34meV. Since the relaxation rate only has an 

energy difference dependence in 0 (Eq. 4.17) and the mixing of the basis states 

is relatively small, the inclusion of the Coulomb interaction has only a marginal 

effect on the relaxation rate. 
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Figure 4.7: 2D Relaxation rate for heavy holes in the HO model with parameters fitted to 

the energy levels of the graded truncated pyramid model. The top (solid) line denotes spin 0, 

and the bottom (dotted) line denotes spin 1. Calculations are performed at a temperature of 

IK 

For completeness sake we include relaxation rates calculated for heavy holes in 

the dot scattering with holes in the wetting layer. Figure 4.7 shows the spin 0 

-- 

" 

s 

(solid line) and spin I (dotted line) relaxation rates for the HO model, calculated 
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using parameters fitted to the heavy hole energy gap in the graded truncated 

pyramid model. The heavy hole well depth in the graded truncated pyramid 

model varies approximately linearly from r-, 100 to 400meV relative to the valence 

band edge. In order to calculate the length parameters we have taken an average 

depth of 250meV with a ground state energy of 174meV and a first excited state 

energy of 134meV again relative to the valence band edge. This gives length 

parameters for heavy holes as A=2.16nm and A, = 0.83nm. 

The A, length parameter corresponds to an extremely tight confinement in the 

z direction. The vertical component of the dot wave function is a Gaussian that 

decays rapidly with such a small length parameter. As a result of this fast decay, 

the overlap between dot and wetting layer wave functions at zo is negligible and 

the relaxation rate for heavy holes scattering with holes in the wetting layer is 

strongly suppressed. The two relaxation rates differ by a factor of approximately 

2 c- 
. 14. 

However, it must be stressed that the results for hole scattering presented here 

depend strongly on the parameters of the dot system. In order to fit the A, length 

parameter used in the HO model, we have matched the energy difference between 

the bottom of the potential well and the ground state; to the vertical confinement 

energy (hw, ) for the truncated pyramid model calculated by Roy et al. [48]. Since 

the WL scattering rate depends critically on the overlap between the vertical part 

of the dot wave function and the two dimensional WL states at the point zo, the 

correct choice of length parameter A, is crucial and will depend on the type of 

dot under investigation. This work is not intended to form a complete discussion 

of the hole relaxation processes in quantum dots and we include these limited 

results for comparison only. 
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4.4.3 Three Dimensional Auger Relaxation 

In this section we consider dot electrons scattering with electrons in the 

surrounding bulk material and neglect the presence of the wetting layer as we did 

in section 3.3. First, we consider scattering between states of total spin 0 shown 

schematically in figure 4-IA-B. We then consider scattering between states of 

total spin I shown in figure 4.1C-D. In order to make the calculations tractable, 

we must again neglect the screening of dot wave functions by the surrounding 

electron density. 

Figure 4.8 shows the relaxation rate for the two-electron system with total spin 

0 calculated using the method given in section 4.3.1. We have considered the same 

dot models used in section 4.4.2. These are the two self-assembled quantum dot 

models of truncated pyramid shape, one of which is pure InAs and the other is 

In. Gal-,, As where x varies between 0.6 and I from bottom to top; and the two 

HO models with parameters fitted to the energy gap and the RMS deviation of 

the truncated pyramid dot. 

The material gradient of the truncated pyramid dot in figure 4.8 affects the 

bulk relaxation rate only slightly. This effect may be caused by the small change 

in the effective mass due to the inclusion of Gallium into the dot composition. 

This effect is discussed in section 3.5.4. 

Figure 4.9 shows relaxation between states of total spin 1 shown schematically 

in figure 4.1C-D. We consider the same self-assembled and HO models as used 

in section 4.4.2. Comparing the relaxation rates given in figures 4.8 and 4.9 we 

find that the spin 0 and spin I relaxation rates for the GaAs truncated pyramid 

dot differ by a factor of 1.92. We also find that the spin 0 and spin 1 relaxation 

rates for the InGaAs graded truncated pyramid model differs by a factor of 1.93, 
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Figure 4.8: Total spin 0 relaxation, QD electrons scatter with electrons located in the 

surrounding bulk material. Calculated at a temperature of IK with an injected carrier density 

of nP =: 1012-1018CM-3 . The solid line denotes the truncated pyramid model, the coarse dotted 

line is the graded truncated pyramid, the fine dotted gives line HO model with parameters fitted 

to the ground and first excited state energy, and chained line is the HO model with parameters 

fitted to the RMS deviation. 

and the RMS and energy fit HO models differ by 1.91 and 1.88 respectively. This 

factor of approximatelY 2 is discussed in section 4.4.2. 

Figure 4.10 shows the two electron rate (solid line) compared to the single 

electron rate (points) originally presented in figure 3.6. The inclusion of the 

Coulomb interaction reduces the two-particle relaxation rate from the single 

particle rate by only 1.3% at the peak. This again can be contributed to 

the Coulomb interaction having only a marginal effect on the energy difference 
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Figure 4.9: Total spin 1 relaxation, QD electrons scatter with electrons located in the 

surrounding bulk material. Calculated at a temperature of IK with an injected carrier density 

of np :: - 1012 _ 1018CM-3 
. The solid line denotes the truncated pyramid model, the coarse dotted 

line is the graded truncated pyramid, the fine dotted gives line HO model with parameters fitted 

to the ground and first excited state energy, and chained line is the HO model with parameters 

fitted to the RMS deviation. 

between initial and final quantum states. 

Figure 4.11 shows relaxation for heavy holes confined in the dot scattering with 

holes located in the surrounding bulk. The solid line denotes relaxation between 

states of total spin 0 (figure 4. IA-B) and the dotted line denotes relaxation 

between states of total spin 1. The two rates differ by a factor of 1.95 at the 

peak. The large effective mass of the heavy holes leads to a high confinement 
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6e+10 

4e+10 

2e+10 

energy. This high confineinent has the effect of reducing the rate at low electron 
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Figure 4.10: Bulk relaxation mechanism for HO energy fit model against electron density. 

The solid line denotes the two-electron rate and the points denote the single electron rate from 

figure 3.6. The difference between these two plots at the peak is ;: ý- 1.3% 

densities, shifting the peak towards the higher electron density. The effect of 

confinement energy has been discussed in section 3.5.4. 

4.5 Conclusions 

In this chapter we have considered Auger relaxation processes in quantum dots 

containing two electrons. The two particle interacting states have been calculated 

by the exact diagonalisation of the Hamiltonian matrix with a basis set truncated 

by means of a convergence test. In the HO model, the Coulomb interaction energy 

is generally proportional to A-' which is a ineasure of the size of the cluantuin 

dot whereas the individual particle energy is proportional to A-2. 0 Hence, the 
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Figure 4.11: 3D Relaxation rate for heavy holes in the HO model with parameters fitted to 

the energy levels of the graded truncated pyramid model. Calculated at a temperature of IK 

with an injected hole density of np = 1010 - 1018CM-3. Top (solid) line denotes spin 0 relaxation 

whereas the bottom (dotted) line denotes spin 1. 

relative effect of the Coulomb interaction between dot electrons is size dependent 

and to a reasonable approximation, sufficiently small self-assembled dots can be 

considered only weakly interacting. The length parameters used in the HO states 

have no real counterpart in the other SAQD models so the argument presented 

above is not completely general. However, we expect that the main conclusions 

will remain valid. 

The electron relaxation rate is only slightly influenced by the Coulomb 

iliteraction due to the effect it has on the matrix element and the cliange in 

8e+08 
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the energy difference between initial and final states. The absolute energy of the 
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states themselves does not affect the relaxation rate. Since the ground and excited 

state energy levels are affected similarly by the coulomb interaction for sufficiently 

small dots, the energy difference remains almost constant and the relaxation rate 

is virtually unaffected. The small mixing of the basis states introduced by the 

inclusion of the Coulomb interaction is the cause of this minor change in the 

energy of the levels. The state mixing also affects the relaxation rate directly 

through the dot wave functions used in the matrix element. The relaxation rate 

for the interacting system is dependent on both the effect the modified dot wave 

functions have on the matrix element and the change in the energy gap although 

both effects would seem to be weak in the systems considered in this work. 

The Pauli exclusion principle has a strong effect on the relaxation rate in two 

particle dots. Double occupancy of the total spin zero spatial states causes a 

factor of 2 to be included in the non-interacting relaxation rate. This factor is 

modified slightly by the Coulomb interaction that causes a mixing of the quantum 

states. 

This chapter has been mainly concerned with transitions between low-lying 

energy levels in specific self-assembled quantum dot systems. In these systems 

the energy gaps are generally much larger than the typical Coulomb energy 

between the dot electrons. As such, many of the conclusions drawn cannot 

be considered generally applicable since the relative magnitude of the Coulomb 

energy is dependent on factors such as dot size, effective mass and the energy gap 

between electronic states. In the case of relaxation of heavy holes given in figures 

4.7 and 4.11, the spacing between energy levels is smaller than for electrons and 

the Coulomb interaction might be expected to be stronger. This will have an 

effect on the two-particle interaction, although the limited work presented here 
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does not provide enough information to make any general conclusions. However, 

relaxation of heavy holes in the dot by scattering with holes in the wetting layer 

is found to be strongly suppressed in the model we have considered. The 2D 

relaxation rate is governed by the wave function overlap between WL and SAQD 

and is parameter dependent. The large effective mass of heavy holes gives rise 

to strong spatial confinement of the wave function, reducing the overlap, causing 

a strong reduction the rate. Fast relaxation is found for scattering with holes 

located in the surrounding bulk although the peak value of the relaxation rate is 

shifted towards the higher hole density. Clearly, there is a need for further work 

to be performed in this area to fully understand this subtle effect. 



Chapter 5 

Spin Relaxation in Electrostatic Quantum Dots 

In this chapter we consider phonon-assisted relaxation processes in two electron 

electrostatic quantum dots. This work is inspired by the potential applications 

of quantum dots in quantum computing technology [22,23,241 and particularly 

by the recent experimental work of T. Fujisawa et al. [19,20,21]. Fujisawa et al. 

measured energy relaxation processes with and without a spin flip in electrostatic 

quantum dots. For this type of dot (see also the review by L. P. Kouwenhoven 

et al. [18]) we will calculate the wave functions and the energy spectrum, 

exploring the effects of the Coulomb interaction between dot electrons and the 

effect of the spin-orbit interaction. 1n addition, we will calculate relaxation 

rates for two different electron-phonon coupling mechanisms. The first is due 

to the deformation potential arising from the band bending produced by the 

emitted phonon. The second is due to the piezoelectric potential caused by the 

polarisation effect due to the strain produced by an emitted phonon. 

The chapter is organised as follows. In section 5.1 we provide a brief review of 

some of the previous work in this area before going on to describe the Hamiltonian 

of the system in section 5.2. We describe the formulation of the Dresselhaus spin- 

orbit interaction matrix elements in section 5.2.1. In section 5.2.2, we present the 

90 
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energy spectrum, including spin-orbit coupling effects, as a function of magnetic 

field. The effect the Dresselhaus spin-orbit mixing has on the energy spectrum is 

discussed in detail by considering a single particle system in section 5.2.3. The 

method used to calculate the spin relaxation rates is given in section 5.3 for 

both the deformation potential interaction (section 5.3.1) and the piezoelectric 

potential interaction (section 5.3.2). We consider the effect screening has on 

the piezoelectric relaxation rate in section 5.3.3. In section 5.4 we present our 

results for the deformation potential relaxation rates. We first consider the non- 

interacting two-particle system in section 5.4.1 in order to explain the emergence 

of oscillations in the relaxation rate due to the vertical finite well confinement. 

We then include the Dresselhaus spin-orbit term and consider transitions that 

involve a spin flip in section 5.4.2. In section 5.5 we consider the piezoelectric 

mechanism and compare the results to those given in the previous section and to 

experimental work. The total relaxation rate is given in section 5.6 and in section 

5.7 we reconsider the previous work in this field in light of our findings. Finally 

in section 5.8 we give our conclusions. 

5.1 Previous Work 

To date several authors have considered spin flip processes in quantum dots. A. V. 

Khaetskii and Y. V. Nazarov [25,26], have examined several different mechanisms 

that could be responsible for spin flip transitions. By comparing the relaxation 

rates for each of these mechanisms in turn, they concluded that the dominant spin- 

mixing mechanism is related to the inversion asymmetry of the crystal lattice. 

This results in an admixture of different spin states that removes spin as a good 

quantum number. We will discuss Khaetskii and Nazarov's calculations further 
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in section 5.2.1. 
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Several spin-orbit coupling effects in quantum dots have been considered by 

M. Valin-Rodriguez et al. [63,64,65,66]. These authors did not consider 

relaxation but did compare the two possible admixture mechanisms (known as 

the Dresselhaus and Rashba mechanisms) previously considered by Khaetskii 

et al. It was noted by Valin-Rodriguez et al. that the Rashba term can be 

unitarily transformed to have the same form as the Dresselhaus term and therefore 

only amounts to a redefinition of the coupling constant. They also report that 

the Rashba term provided negligible spin-orbit coupling for the systems they 

considered. 

During the course of this work, S. Dickman and P. Hawrylak [67] and M. 

Florescu et al. [681 (two papers from the same group) published relaxation rate 

studies concerning both Rashba and Dresselhaus admixture mechanisms, finding 

that the Dresselhaus term is usually dominant. These authors used a highly 

restricted basis set that does not appear to give converged energy eigenvalues 

when calculating the two-particle states. This also restricts the mixing of the 

electronic states, which may affect the relaxation rate if the basis set is truncated 

prematurely. We will discuss this work further in section 5.2.3. 

Spin flip relaxation processes in electrostatic quantum dots have been studied 

experimentally by T. Fujisawa et al. [19,20,211. These authors measured a single 

electron relaxation time without a spin flip of r-,, IOns and two electron relaxation 

with a spin flip of 200ps for a parabolic quantum dot with asymmetric 

confinement potentials of hw, = 2.5meV and hw., = 5.5meV. Due to experimental 

limitations, they were unable to resolve individual Zeeman energy levels [20]. The 

relaxation rates observed by Fujisawa et al. are found to be consistent with the 
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rates calculated in this work. We will return to consider the work of Fujisawa et 

al. in section 5.5. 

5.2 The Hamiltonian 

Drain IV 

. sd 

AlGaA *s 
InGaAs 

+ InGaAs 

AlGaAs 4 

GaAs Source 

Figure 5.1: Left: an electrostatic pillar type quantum dot located between two AlGaAs 

barriers. A negative bias applied to the side gate provides the lateral confinement. Reproduced 

from [18]. Right: The corresponding energy diagram. Electrons tunnel from occupied states in 

the source, to an empty state in the drain via the quantum dot, The source-drain voltage VSd 

determines the difference in the Fermi energies of the two electrodes. 

We will consider electrostatic quantum dots similar to those used in the 

experimental work of Fujisawa et al. [19,20,21] and reviewed by L. P. 

Kouwenhoven et al. [18]. This type of dot is shown in figure 5.1. The quantum 

dot is located in the centre of the pillar between the two AlGaAs barrier layers. 

The potential barriers that separate the dot from source and drain contacts are 

such that tunnelling is weak and the number of electrons confined by the dot 

is well defined. The side gate lias two functions. Firstly, it provides the lateral 
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confinement and can be used to strengthen the potential effectively reducing the 

diameter of the dot. Secondly, by varying the side gate voltage an individual 

energy level can be aligned with the source and drain potential so that single 

electrons can tunnel into and out of the system. The electron number N can 

be varied widely over a range of side gate voltages. For example, when the 

confinement energy hw ý-ý 5meV, N=1, but if the gate voltage is increased 

by 0.43V corresponding to a confinement energy of hw r-ý 4.25meV, the electron 

number increases to N=6 [18,70]. 

For the purposes of mathematically representing the dot, we assume the system 

to be constructed from bottom to top as 3nm of n+ doped GaAs, 0.5nm of GaAs, 

a 7nm AlGaAs tunnel barrier layer and the 12nm thick Ino. 05Gao. 95As layer that 

forms the quantum dot itself. This is then covered with a 9nm AlGaAs tunnel 

barrier layer and finally 3nm of n+ doped GaAs. 

The lateral confinement potential of an electrostatic dot is known to be well 

approximated by a parabolic well [69]. In this work the parabolic confinement 

potential is taken to be hw = 5meV which has been found [70] to be applicable 

to dots of the type used by Fujisawa et al. The wave functions for this type 

of parabolic dot are given by the Fock-Darwin states introduced in section 2.1 

(see Eq. 2.1). The vertical confinement is a finite rectangular well. The 

dielectric constant has a position dependence due to the different materials in 

the heterostructure and the interactions between the dot electrons are screened 

by the dot contacts. The effect of this is two fold. First, the interaction does not 

have the usual r-' dependence and second, the energy of each electron is shifted 

by the interaction with its own electrostatic image [70]. 

These effects are all taken into account when calculating the Coulomb integrals, 
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which are found numerically by a subroutine provided by P. A. Maksyrn [70]. The 

routine calculates the electrostatic Green's functions given the approximation 

that the dot is much narrower than the pillar. This is expected to be valid since 

the lateral length parameter of the dot is typically very much less than the pillar 

diameter. The effect of the electrostatic image charge is comparatively small and 

is included via perturbation theory. 

The Hamiltonian for the system is given by: 

Ho + HC + Hz + HD, (5.1) 

where HO describes the energies of the non-interacting particles (see the first term 

in Eq. 4.4), kc is the energy of the Coulomb interactions described above and 

Hz is the Zeeman term given by: 

ftz I 
-q*AB 

ai - 2 
(5.2) 

wherePb is the Bohr magneton, g* is the effective gyro-magnetic g-factor, a are 

the Pauli matrices and B is the applied external magnetic field assumed to be 

applied perpendicular to the plane of the dot. 

The Dresselhaus term (kD) has the effect of removing spin as a good quantum 

number by mixing the spin states. For example, the ground state at B=0 can 

no longer be considered as a pure spin 0 state and will actually contain a small 

admixture of spin I states. This lifts the selection rule prohibiting transitions 

between states of differing total spin. The Dresselhaus term also has the effect 

of lifting the degeneracy of the triplet states at zero magnetic field although this 

effect is typically very small in comparison to the other terms in the Hamiltonian. 

We examine the Dresselhaus term and our reasons for choosing it in more detail 

in section 5.2-1. 
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In order to calculate the two particle states of the quantum dot system we 

will construct the Hamiltonian matrix with a Slater determinant basis set of the 

form given in Eq. 4. L Instead of considering the symmetric and anti-symmetric 

spatial functions for spin 0 and spin I states separately as we did in chapter 4 we 

must now consider all possible spin states and construct the matrix accordingly. 

Once the Hamiltonian matrix is constructed, we diagonalise it using the method 

described in section 4.2.1. 

5.2.1 The Dresselhaus Spin-Mixing Matrix Elements 

Due to the selection rules imposed by spin conservation, transitions between 

states of differing spin will be blocked unless spin can be removed as a good 

quantum number. In order to include the possibility of spin flip relaxation in our 

calculations we need to consider the mechanisms capable of removing the spin 

selection rules. 

A. V. Khaetskii and A. Y. Nazarov [25,26,271 considered several physical 

processes that may be responsible for spin flip transitions in GaAs quantum dots. 

They did this by comparing the relaxation rates calculated with each of the spin- 

orbit mixing mechanisms in turn. The first mechanism they considered was the 

spin flip being caused by the admixture of different spin states. The second was 

the spin-orbit splitting of the electron spectrum due to the strain field produced 

by the emitted phonons and the third was the relativistic interaction with the 

electric field caused by the confinement potential. They concluded that it was 

the spin-orbit admixture term which was dominant. 

The admixture terms arise from two of the properties of certain semiconductor 

crystals, bulk inversion asymmetry (BIA) and structural inversion asymmetry 
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(SIA). Bulk inversion asymmetry appears in crystals that do not have a centre Of 

inversion symmetry and leads to ak dependent splitting of the conduction band. 

That is, electrons with the same k vector but different spins will have different 

energies. This spin splitting of the conduction band states can be thought of 

as equivalent to the splitting induced by an internal k dependent magnetic field. 

The spin then precesses around this internal magnetic field, which allows the spin 

states to mix. This mixing process is frequently referred to as the Dresselhaus 

mechanism. Structural inversion asymmetry is very similar to BIA except that 

it arises in the presence of either an external electric field or an internal electric 

field such as that formed in an asymmetric potential well. The spin mixing that 

results is frequently referred to as the Rashba mechanism. 

Several people have compared the Dresselhaus and Rashba mechanisms in 

quantum dot systems. M. Valin-Rodriguez et al. [63,64,65,661 noted that 

the Rashba term can be unitarily transformed to have the same form as the 

Dresselhaus term and therefore only amounts to a redefinition of the coupling 

constant. Valin-Rodriguez et al. also reported that the Rashba term provided 

negligible spin-orbit coupling for the systems they considered. During the course 

of this work, S. Dickman and P. Hawrylak [67] and M. Florescu et al. [68] also 

published studies of the Rashba and Dresselhaus mechanisms and reported that 

the Dresselhaus term is dominant. In addition to this, the Rashba term vanishes 

in systems with a symmetric confinement potential. For these reasons we will 

ignore the Rashba mechanism and consider only the Dresselhaus mechanism. 

Rom Optical Onentatton [71] we have: 

ÜD 
7D 0' *K 

2h377 
01 - K7 (5-3) 3mcv ý1- 23 
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where 
2ýkso 

- (5.4) 
Eg + Aso 

and 
2_ 2) 

Kx == Px (PY PZ (5-5) 

and cyclic permutations thereof where px I py and p, are momentum operators. 

In the presence of a perpendicular magnetic field, the momentum operator 

p eA, where it is convenient to take the vector potential in the circular 

gauge so that A- (-y, x, O)B/2 and B is the applied magnetic field. The spin 

orbit splitting of the valence band is Aso, the band gap is Eg, m, is a parameter 

of the Kane model [76] (which is found from the literature to range between 0.22 

and 0.27 for GaAs [65,72]) and o, are the Pauli spin matrices. On expanding the 

o, -n factor in Eq. 5.3 we have: 

22- 2) 
. Pz 07ypy - ý7xpx) + 07xpxpy (py - PA + UZPZ (PX Py (5-6) 

The first term is proportional to p2 and linear in the in-plane momentum. The 
z 

second term is independent of p, but cubic in the in-plane momentum. For the 

electrostatic quantum dot considered here, the z confinement is very much greater 

than the in-plane confinement. As a result the <p2> term will be expected to z 
dominate over the relatively low magnetic fields considered here and the cubic 

terms may be neglected. The third term vanishes since < Zojp, jZo >= 0, where 

Zo is the z dependent ground state wave function. 

We begin by considering a single particle system and take the matrix elements 

of Eq. 5.3 into which we substitute the first term on the right hand side of Eq. 

5.6. This gives: 
2 (07ypy 

_ orxpx) 7D ýObXb 
ýpz ý OaXa) (5.7) 
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where ýYD is defined in Eq. 5.3. The single particle states used in this work can 

be separated into radial, angular and perpendicular parts, O(r) = R(r)(D(O)Z(z). 

With this notation for the wave functions, the matrix element of expression 5.7 

has the form: 

1p21 Zaý >< a 
(7) 41)a (0) ý (Zb 

Z 
li (6b16aT 

- 
6a16b1) ýRb(7)(1'b(0) lpy + eAyl R 

(6bT6al + 6aT6bj (Rb(r)(%(O) jp, ý + eA,: l Ra(r)(%(O))j 
- (5.8) 

In order to evaluate the matrix element, the derivatives of the Fock-Darwin states 

(R(r)4b(o)) must be calculated. The Fock-Darwin states are functions of r and 

0, but we require x and y derivatives. It would therefore simplify the calculation 

if we were able to remove the need to evaluate these derivatives. We can achieve 

this by using the relationship: 

(a lp., + eAý, I 0ý M* 
xý 0) ýa Ix 

M* (Eo - E, ) (oz IxI 0). (5-9) 

This is a generalisation of the standard result found in many quantum mechanics 

text books (see for example Bransden and Jochain [731) which allows for the 

application of a magnetic field in the z direction. As mentioned previously this 

manipulation enables the matrix elements in expression 5.8 to be simplified but 

also has the significant benefit of allowing a magnetic field to be included in the 

calculation with no additional effort. 

Expression 5.8 then becomes: 

1P2ý Z (Z)ý M 
Zb (Z) 

Za 
(Eb - Ea) x 

ih 
IZ (6b16al 

- 
6a16b1) (Rb (r) 41)b (0) lyl Ra (r)'1)a (0) 

(Öbldal + Öaldbl) (Rb(r)eb(0) lxl Ra (r)'ýa (0) ý1- 
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The matrix elements of x and y are given by the integrals: 

1 jr2 
Rb* (r) R (Rb (1') 41) b (0) lxl Ra (r)'1)a (0) ý : --- 27r ba (r) exp (i (la 

- lb) 0)cos Odrdo 

1 älla CO 2* (r) dr, 
2 -1b0 

10 

r RO (r)Ra 

(Rb (r)'1)b (0) lyl Ra (r) 41)a (0) ý11r2 R* (r) Ra(r)exp(i(la - 
lb) 0) sin Odrdo 27r b 

Z 00 2 *(r)R r Rb 
-2 

(la 
- lb) 611a-Wil 

10 

b a(r) dr. (5.11) 

-u_ 
Fiom Eq. 5.11 we have the relationship < ObjYjOa >: -- i(lb - 1a) < ObjXj0a 

which allows us to simplify expression 5.10 to give: 

m* 

- (Eb- Ea)611a-lbl, 
1 l(la 

- lb) (dalÖbT - 6b16a1) - 
(öbläal + daTäbl» 

2A 
(Z 

b 
ýp2ý Za 

10 c)0, 
r2 R* (r) Ra(r)dr. (5.12) 

Z 

From the first Kronecker delta, it is apparent that there are two cases where 

expression 5.12 can be non-zero, namely I la II lb 1 +1 and 
11al :::::::: j1bj 

- I- Using 

these selection rules and the radial part of the Fock-Darwin states (Eq. 2.1), we 

can evaluate the integral in expression 5.12 to give: 

00 

r'R*(r)R,, (r)dr 
ob 

(na + Ilal)! 
Öllalillbl+I länanb 

na! 

(nb + Ilbl)! 
611a1J1b1-1 [dnanb 

nb! 

fla, flV1I + 

flb, Tha_11 
(5.13) 

The single particle Dresselhaus matrix element of expression 5.7 is then given by 

expression 5.12 and Eq. 5.13. 

We can use this theory to find the Dresselhaus matrix elements for the two- 

particle system. We do this by using the Slater determinant wave functions given 

in Eq. 4.1 and the two-particle analogue of Eq. 5.3: 

HD (a 
(1) *K (1) +U (2) 'K (2) (5-14) 
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where the subscripts refer to the first (1) or second (2) particle in the Slater 

determinant. The two-particle matrix element of Eq. 5.3 is then given by: 

'ýD [6b2a2 ýObjXbj 10' 
* ll, 

ý Oa, Xal) + 6b2a2 (OblXbl 147 
' KI Oajaj) - 

6b2a2 (Obl Xbl 1 d7 'K1 Oal Xal ý- 6b2a2 (Obl Xbl 147 
'K1 Oal Xal ý1- (5.15) 

The Kronecker deltas preceding each of the individual integrals in expression 5.15 

arise from the orthogonality condition of the single particle HO wave functions 

used in the Slater determinant. 

5.2.2 The Two Particle States 

61 

60 

59 

58 

57 

56 

55 

54 - 

53 - 

52 11-II 
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 

Magnetic field (T) 

Figure 5.2: The energy levels of a two particle non-interacting electrostatic quantum dot 

without spin-orbit coupling as a function of external magnetic field. Lateral confinement energy 

- ----- 71 

------------------------ 

is 5meV. 
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The energy spectrum for two non-interacting particles is shown in figure 5.2 as a 

function of magnetic field. The gyro-magnetic factor used in this and subsequent 

calculations is g= -0.46 found from experimental data [70]. This was the best 

available estimate at the time the work was completed but has since been revised 

to g= -0.3 [74]. The electronic effective mass is rn* == 0.065. We use lower 

case letters to denote the quantum numbers of the single particle wave functions. 

Quantum numbers for the two particle wave functions are denoted by upper case 

letters. The two triplet states separating at --ý 59meV correspond to angular 

momentum of L=-1 for the upper branch and L=I for the lower branch. 

Each branch has 4 distinct levels, with spins of S, = -1,0,1 from top to bottom. 

The centre (S, = 0) line of each triplet state is two-fold degenerate corresponding 

to total spin states of S=0 and S=I. 

The inclusion of the Coulomb interaction has a pronounced effect on the energy 

levels. Figure 5.3 shows the energy spectrum as a function of externally applied 

magnetic field for the states given in table 5.1. The quantum numbers used to 

label the states in table 5.1 correspond to a magnetic field of B=0.5T. This field 

strength is used only to allow quantum numbers to be unambiguously associated 

with distinct energy levels since at B =- OT, the L= ±1 states are degenerate. 

States will subsequently be referred to by the state number given in this table. 

All parameters are the same as used in figure 5.2. 

In the energy spectrum for the non-interacting states as shown in figure 5.2, the 

L= ±1, S, =0 states (states 2 and 7) are degenerate. This degeneracy is lifted in 

the presence of a magnetic field by the inclusion of the Coulomb interaction. The 

Pauli exclusion principle requires that for spin-polarised electrons, the exact wave 

function must vanish when the two electrons are in the same spatial state, thus 
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Figure 5.3: The energy levels against external magnetic field for a two particle electrostatic 

quantum dot interacting via the Coulomb potential. Lateral confinement energy is 5meV. 

reducing the Coulomb energy. The triplet states branching out from ý- 60.8meV 

(states 1-6) correspond to total spin S=I with S, = 0, ±1 whereas the singlet 

states splitting at ý- 63. OmeV (states 7 and 8) correspond to total spin S-0 

with S, - 0. 

We now include the spin-mixing term (Eq. 5.3). This lifts the zero magnetic 

field degeneracy of the singlet and triplet states. The mixing of different spin 

and angular momentum states means that individual states will no longer have 

a definite spin orientation or angular momentum quantum number. However, 

we can find the quasi-spin of the state by calculating the < S, > expectation 

value. Since spin mixing is a very small effect, the resulting expectatiol-I values 

are all close to the values gained for the non-spin mixed states. Even though the 



f-, l 11 
Chapter 

State Energy at B= 0-5T (meV) L S S, 

0 57-99 0 0 0 

1 60-35 1 1 1 

2 60-39 1 1 0 

3 60.44 1 1 -1 

4 61.24 -1 1 1 

5 61.28 -1 1 0 

6 61-32 -1 1 -1 

7 62.58 1 0 0 

8 63.47 -1 0 0 

104 

Table 5.1: Quantum numbers for the states in figure 5.3 at B=0.5T. This magnetic field is 

used only to allow quantum numbers to be unambiguously associated with energy levels. 

quasi-spin and quasi-angular momentum have no value with regard to selection 

rules, they can still be a useful way of labeling the quantum states. The < S, 

expectation value is given by: 

a an 
T 

07zXln +XT (5-16) n ln 
ýszý Z* [X 

2nO'zX2n 
1- 

The angular momentum expectation values can be calculated in a similar way. 

The quasi-quantum numbers typically differ from the integer quantum numbers 

in table 5.1 by less than 0.1%. The exception to this is at B, 4-7T where the 

quasi-quantum numbers for states 0 and 3 change places with each other due to 

the emergence of an anti-crossing in the energy spectrum. This anti-crossing will 
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be discussed further in section 5.2.3. 
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Figure 5.4: The Dresselhaus spin-orbit contribution to energy of singlet and triplet states in 

table 5.1. The solid line denotes state 0, the coarse dotted line denotes state 1, the medium 

dotted line state 2 and the fine dotted line state 3. 

Figure 5.4 shows the Dresselhaus contribution to the total energy. The spin- 

orbit coupling parameters used in this calculation (see Eq. 5.3) are M, = 0.27 

[72], Aso = 0.34eV and E. = 1.52eV. The spin-orbit energies in figure 5.4 are 

found to be in agreement with energies calculated by M. Valin-Rodriguez et al. 

[65,64]. 

After the bulk of this work had been completed, S. Dickman, P. Hawrylak 

[67] and M. Florescu ct at. [681 (members of the same group), published 

studies concerning both Rashba and Dresselhaus admixture mechanisms in an 

approximate treatment of the spin Hip relaxation in a two electron interacting 
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Figure 5.5: The spin-orbit energy against magnetic field for the singlet and triplet states of 

S. Dickman et al [67] compared with the corrections calculated for the equivalent states (states 

0 and 1) from figure 5.4. 

system. In both papers, Dickman et al. [671 and Florescu et al. [68] used a 

basis set of 4 states. This basis set does not appear to give converged energy 

eigenvalues. To illustrate this, figure 5.5 shows a comparison between the spin- 

orbit corrections for the singlet and triplet states of Dickman et al. and the 

equivalent energies for state 0 (singlet) and state I (triplet) calculated in this 

work. We find that we need to include basis states with quantum numbers of 

at least n = 01 11 1= 01 ±11 s = 01 ±1 before even the sign of the triplet state 

spin-orbit energy correction is correct. We also find that we need to increase n 

and III to 3 before convergence to better than 0.1'/0 is achieved. 

Since the Dresselhaus spin-orbit contribution to the total eiierg-, y is so sinall, 
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the energy spectrum including spin-orbit contribution does not look significantly 

different from that of Figure 5.3. However there are differences, the most 

significant being the emergence of the anti-crossing in the energy spectrum, which 

is shown in detail in figure 5.6. The anti-crossing appears for the ground state 

and state 3 at B-4.7T, when the linear Dresselhaus spin-orbit mechanism is 

included. The other crossings involving the ground state remain as crossings. At 

the energy anti-crossing, the quasi-quantum numbers behave as though the states 

crossed. Since we choose to label the states by tracking continuous energy levels, 

the quasi-quantum numbers of states 3 and 0 effectively swap quite abruptly. 

Explicitly, at B>4.72T, state 0 has quasi-quantum numbers of L r-_ý S r-ý 1 and 

0 whereas state 3 has quasi-quantum numbers of L r-, d S r-ý S, r-ý 0 instead of 

the values given in table 5.1. All other crossings in the L r--d I triplet state remain 

as crossings. 

Interestingly, C. F. Destefani et al. [75] report that in InSb dots where spin 

mixing is much stronger than in the system considered here, the inclusion of 

the cubic Dresselhaus terms (which has been neglected in this work) causes the 

emergence of additional, but almost imperceptible, anti-crossings in the Fock- 

Darwin energy spectrum. 

5.2.3 The Anti-Crossings 

In the previous section, we saw that the Dresselhaus spin mixing term given in 

Eq. 5.3 and discussed in section 5.2.1 leads to the emergence of anti-crossings in 

the energy spectrum. To explain this effect, we will consider a single particle HO 

system with a basis set restricted to include only the L= ±1 excited states of 

Eq. 2.1. This gives a6x6 matrix which we are able to diagonalise analytically. 
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Figure 5.6: The anti-crossing that appears in the energy levels of state 0 and state 3 (defined 

in table 5.1) as a result of the Dresselhaus spin mixing mechanism. 

The Hamiltonian of the single particle system is Iý = H- 0+ HD+ Hz where 

the terms are defined as for Eq. 5.1. The matrix is then given by table 5.2 

where the (Io matrix elements take three values given by H± = 2hQ ± Lu, /2 

and Ho - hQ, and Hz g*ABB12. The Dresselhaus matrix elements can be 

calculated from expression 5.12 and Eq. 5.13 and are H(l) -< P2 Dz> rn*A(Q-wc/2) 

and H (3) 
=< p2 > m, *A(-Q - Lj, /2) where Q is given by Eq. 2.3 and LL), is the Dz 

cyclotron frequency. 

The inatrix in table 5.2 has a block diagonal structure, which is due to 

the selection rule 
61a-Ib, 

16Ot6bj + 61,, 
-Ib, -16oj6bj : /: 0 froin expression 5.12. The 

eigeilva. lues of this inatrix are found to be p- H- + Hz, it = H+ - Hz and the 
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10 10 

I-IT> H-+Hz 

H_ - Hz ZHD(l) 

10 
-iHj(ý') Ho + Hz 

10 Ho -H7, IHD(3) 

-iHD(3) H+ + Hz 

H+ - Hz 

Table 5.2: Single particle 6x6 matrix including Dresselhaus spin mixing and Zeeman terms. 

Basis states are labeled by angular momentum quantum number and electron spin orientation. 

solutions to: 

2_ (H_ + HO)t, + (H_ _ HZ)(Ho + HZ) _ 
HD(l) 2=0 

A7 (5-17) 

and 

A2_ 
(H 

0+H+ )p + (H ++H Z) (H 0_H Z) _ 
HD(3) 2=0. (5-18) 

The energy levels depend on magnetic field through the Zeeman term H, and the 

individual particle term HO. In this single particle case, the sign of the g* factor 

appearing in the Zeeman term (Hz) determines whether Eq. 5.17 gives rise to 

an anti-crossing. If the g* factor is positive, we get an anti-crossing from the two 

solutions to Eq. 5.17. If the g* factor is negative, the two energy levels from 

Eq. 5.17 move apart with increasing magnetic field and a crossing arises from 

one of the solutions to Eq. 5.18 and p= H- + Hz. For a negative g* factor, the 

energy spectrum of the single particle system does not display an anti-crossing. 

In the two particle system, the sign of the g* factor determines which branch of 
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the L ý- 1, S, ý- ±1 triplet state exhibits an anti-crossing. Both the crossing 

and anti-crossing energy levels from Eq. 5.17 are presented in figure 5.7 where 

we have used the unrealistic value of g* = ±10 in order to artificially enhance 

the anti-crossing to make it more visible. The anti-crossing is shifted upwards in 

energy by 5meV for clarity. If the Dresselhaus term is neglected, the matrix is 

diagonal and the anti-crossings vanish. 

20 

18 
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6 

0 0.5 1 1.5 2 2.5 3 
Magnetic field (T) 

3.5 4 4.5 5 

Figure 5.7: Anti-crossing in the single particle energy levels as a result of the Dresselhaus 

spin mixing mechanism. The energy levels displaying an anti-crossing arise from the solution 

to Eq. 5.17 with 9* = 10 and are shifted higher in energy by 5m, eV for clarity. The crossing is 

calculated with 9* = -10. 

Froin the selection rule 
61a-Ib, 

16oj6bj + 61,, 
-Ib, -16aj6bj :ý0 (expresslon 5.12) 

that leads to the block diagonal structure of the matrix, we find there are two 

possibilities that can give rise to a, non-zero Dresselhaus matrix element. First 
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when 1,, lb +1 and 6aT6bj---::: 1; and second when la ' lb -1 and 6aj6bT=1. In 

either case it is possible to show that la - Sa = lb - Sb. This suggests that 1, - sz 

might be conserved for the linear Dresselhaus spin-mixing term applied to single 

particles. Indeed, after some algebra we can show the commutator relation: 

[lz 
- 

ýzý (orypy 
- uxpx)p 

2] 
-0 (5-19) 

Z1 

and we have confirmed that this holds in the presence of a magnetic field when 

p --ý p+ eA. This relationship can be generalised to two electron systems where 

it is found that the SUM "I 
- SZ1 + 'Z2 

- SZ2 is conserved. Each block of the 

Hamiltonian is labelled by a different value of L, - S, levels with the same value 

cannot cross but levels from different blocks can. The commutator relation given 

in Eq. 5.19 has not been published previously to the best of our knowledge. 

This commutator relation does not hold when the cubic Dresselhaus spin-orbit 

coupling terms are included. 

5.3 Spin Relaxation Mechanisms 

In order to calculate the spin flip relaxation rate in electrostatic dots we must first 

consider the possible mechanisms. If spin is no longer a good quantum number, 

any relaxation mechanism could theoretically provide energy relaxation between 

different quasi-spin states. However, there would appear to be a distinct lack 

of external carriers surrounding the electrostatic dot considered here, effectively 

ruling out Auger relaxation. 

We may then consider phonon relaxation as a possible mechanism. Two main 

phonon-coupling mechanisms are deformation potential coupling and piezoelectric 

coupling. Since it is unclear which of these mechanisms is dominant, we shall 

consider both. 
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We begin by considering the deformation potential interaction Hamiltonian 

[76,77] given by: 

kD- 
iD 

h wvpqýcýs 
exp (iq - r) + c. c. (5.20) 

where D is the deformation potential, p is the mass density, c, is the speed of 

sound which we assume to be isotropic and V is the volume of the sample. 

Considering phonon emission, from Fermi's Golden Rule (expression 3.2) we 

have: 
27r ýfiDý , fiýý2 [N (q) + l] 6 [Ef - Ei + hcq], (5.21) 

where N(q) is the Bose-Einstein distribution that gives the number of phonons 

that occupy a mode of the wave vector q. The distribution function factor appears 

in the form N(q) +I to allow for the possibility of spontaneous and stimulated 

emission. On substituting the RHS of Eq. 5.20 into expression 5.21 we find the 

matrix element in the expression is given by: 

aýa'j (ri) 0*2f (r2 
2 

(r2) 02*f (ri)] x 

fi 22 

[exp (zq - rl) + exp (z'q - r2)] X 

[01i (ri) 02i (r2) 
- Oli (r2) 02i (ri)] dridr2, (5.22) 

where a'i and af are the complex amplitudes for the eigenvectors of the initial and 

final two particle states (Eq. 4.3) found by the diagonalisation of the Hamiltonian 

matrix. 

We can write the single particle states as O(r) = R(r)(D(O)Z(z). In this work 

Z(z) is always the ground state because we truncate the basis set and do not 

consider the relatively high-energy excitations in the finite well. The matrix 
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hq 
V iD Vpcs 

G (q-L) F (qll) (5.23) 

where 

F(qll) a*f ai 
ý 62f, 

2i 
ý Olf (r) ýe iqjj-rý 01, (r)) + 61f, 

li 
ý02f (r) le iqll rI 02i (T) 

fi 

62f, 
li 

(Olf (T) Ie iqll rI 02i (r)) 
- 

61f, 
2i 

(02f (T) Ie iqll rI Oli (5.24) 

and 

G (q-L) = 
ýZ (z) le iq_Lzl Z (Z)). (5.25) 

Substituting expression 5.23 into the Golden rule (expression 5.21) we find the 

relaxation rate is given by: 

27 V hD 2fqýG 
(q_L) F (qll) 12 [N (q) + 1] 6 [Ef - Ei + hqc, ] dq, (5.26) 

h 87F3 2pVc, 

where 

N (q) exp 
hc, q (5.27) 

(kBT) 

We can simplify the delta function in expression 5.26 by making the substitutions 

6 [Ef - Ej + hc, q] = (hc, ) -16 [qO + q], where qo = (Ef - Ej) lhc, 
- The delta function 

is then removed by integrating in spherical polar coordinates over q and 0 to give: 

D23 7r q6 [N (qo) + 1] G (qo cos 0) F (qo sin 0)12 sin OdO. (5.28) 2 47hpc, 0 

The rectangular well ground state Z(z) is: 

z (Z) =A Cos 
az) 1z, ,:: ý w 

Výw w A 
Z (Z) cos (a) exp 

[-b (z IZI >w (5-29) 
V"W- w 
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where 

aW 
ý-2m*Eý,, 

h 

b 7v 
Nr27ý (Vo* - E,, ), 

h 

A 1+ 
2a +b (5.30) 

w is the well half-width, VO* is the effective barrier height and Ez is the z ground 

state energy. The expression for G(q_L) is found by substituting these expressions 

into Eq. 5.25 to give: 

G 2A 2 
COS2 (a) 2b cos (qj-w) - q-Lw sin (qj-w) 

+ 4b2+ q2w2 11 

A2 sin (q-Lw + 2a) sin (q_Lw - 2a) 2 sin (q-Lw) 
++ (5.31) 

2 qj_w + 2a qIw- 2a qý_w 

5.3.2 Piezoelectric Scattering 

In order to derive the piezoelectric potential for phonon relaxation, we begin with 

Poisson's equation: 
V-P 

660 
(5.32) 

where ýp is the piezoelectric potential and P is the vector dipole moment per unit 

volume due to the deformation of the crystal lattice. From Eq. 5.32 we find the 

piezoelectric potential (ýP,, 
q) due to a single t-mode acoustic phonon with wave 

vector q as: 

.q- 
Pt, 

q (Pt, q v C6()q2 
(5.33) 

The Ah component of the electric polarisation is Pz F-jk h t, q ijkSjk(r, t) where 

hijk is the piezoelectric tensor and Sjk (r , t) =1 (-91! + is the strain tensor. 2 a-r k (9xj 

We substitute the strain tensor for a phonon to give: 

ýijk hk IE 

- r)] - c. c. 1 

2pc qqj) 
lexp [i (q (5-34) Pi�q Z 

jk 2 qV 
(dý, 

qqk + dt, 
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where d3, *, 
q 

is the polarisation vector of the t-mode phonon. Now q. P,, 
q - Ej qiptiq 

so we can substitute Eq. 5.34 into Eq. 5.33. We then write the piezoelectric 

potential as ftp 
= where eo is the electronic charge 

piezoelectric Hamiltonian for emission of a phonon to be: 

ftp 
- 

e0h, I 
exp (Zq - r) 2EE0 2Vpcq 

where 
qi qk kqj) ht, = 

Ehijk dý + dt 
ijk qqq 

The piezoelectric tensor hijk, transforms as [78]: 

hl ijk ailaj, aknhlmn) 
lmn 

(5.35) 

(5.36) 

(5.37) 

where ail, aj, and ak, are transformation matrices. Applying this transformation 

over various rotations leads to the standard result I hijk I : --- 
IhI41 

where t : ý- j :ýk. 

Piezoelectric tensors with repeated indices vanish for crystals of a zinc-blende 

structure. The piezoelectric phonon polarisation vector d, can have three different 

modes (one LA mode and two TA modes) depending on the polarisation of the 

emitted phonon. The vector d, has the same form as the standard spherical polar 

coordinate unit vectors ro, 00 and 00 (see G. Arfken [79] for example). 

We are now in a position to find an expression for the piezoelectric relaxation 

rate. With Eq. 5.35 as the perturbation operator in the Golden Rule (expression 

3.2), the matrix element for piezoelectric relaxation is: 

e0 
-h, (0,0) G (qo cos (0» F (qo sin (0» (5-38) t 

pc, Vq EEo 

where F(qll) is given by Eq. 5.24 and G(qj-) is given by Eq. 5.29. Following the 

procedure described in section 5.3.1 results in the general piezoelectric relaxation 

This gives the 
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rate given by: 

2 
eoqo [N (qo) + 1] x 2222 87r phcs E 60 

21r f 7r 
[h, (0ý 0)]2 1G (qo cos (0)) F (qo sin(O 

2 fo 
0 

)) I sin OdOdo. (5-39) 
n 

From Eq. 5.36 and the standard polar coordinate unit vectors [79] we find that 

h, is dependent on the phonon mode and is given by: 

hLA= 6hl4 Sill 20 COS 0 COS 0 Sill 01 

hTA1 
= 2hl4cos 0 sin 0 sin 0 (3 cos 

20_I)) 

hTA2= 2hl4sin 0 cos 0 
(COS 20_ 

sin 
20). (5.40) 

If the relaxation rates for the two transverse modes are added together to give 

the total TA phonon rate, we find that [h, (0,0)] 2 in expression 5.39 becomes 

h2=h2+h2- Eq. 5.40 can be substituted into this expression which is TA TAI TA2 

then integrated over 0 to give the relaxation rate for transverse acoustic phonons 

as 

9C2 2 
ý()qohM [N (qo) + 1] x 87phC26262 

S0 
7r 

o sin 
40 COS2 0 JG (qo cos (0)) F (qo sin 

(0))12 
sin OdO. 

Similarly, the relaxation rate for longitudinal acoustic phonons is given by: 

22 7r 2 eoqo"14 [N (qo) + 1] fo 
sin 

2o 1-1 (3 
COS2 0_1)+ COS2 0x 

2 2ý2 27phcs 6 60 4 

1G (qo cos (0)) F (qo sin 
(0))12 sin OdO. (5.42) 

5.3.3 Screening of the Piezoelectric Interaction 

Screening of the piezoelectric field might be expected to reduce the electron- 

phonon coupling and reduce the relaxation rate. We will consider screening of the 
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piezoelectric mechanism following the work of P. A. Maksym [80]. In the Thomas- 

Fermi approximation, the screening charge has the form -K 2 EEOýo where ýo is the 0 

piezoelectric potential, /-, 0 - 2-xll, is the Thomas-Fermi screening wave vector 

where 1, = 10nm is the screening length and 6 is the relative dielectric constant. 

The Thomas-Fermi screening wave vector and the relative dielectric constant 

are functions of z because layers of different materials are used to construct the 

pillar dot considered here. In order to take screening into account, we must solve 

Poisson's equation as we did in section 5.3 but with the screening term included: 

(Ecovýo) + r, 
2 
660ý0 - -V - P. (5.43) 0 

We expect this equation to have solutions of the form: 

(P =- r) + Oq*� (z) exp (-Zqll 
- r) . 

(5.44) y: Oqll (z) exp (zqll 
q 

qll 

The piezoelectric interaction Hamiltonian for the emission of a phonon can be 

found by solving the Poisson equation with the electrostatic Green's functiongq1I 

which satisfies: 

d 
660 

d 
gqll + 660 q2+r, 

2) 
gqll (Z 

- Z/) - (5.45) 
dz 

( 
dz 

( 
11 0 

Once the interaction Hamiltonian has been found, we use it to find the matrix 

element that appears in the Golden Rule in a similar way to that presented in 

section 5.3.2. The resulting expression for the transition rate is similar to that in 

expressions 5.39 and 5.42 except that the function G(qj-) is replaced by: 

660q2 
11 Z2 (Z) gq� (z - z') exp (zq-. Lz') dz'dz (5.46) 

where 6 is the dielectric constant of the quantum well layer and Z(z) is the ground 

state wave function of the finite well. The integrals are performed numerically by 

a subroutine provided by P. A. Maksym [70]. 
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5.4 The Deformation Potential Relaxation Rate 

In this section we present the phonon relaxation rates for transitions mediated 

by the deformation potential. Our results are obtained with the method detailed 

in section 5.3.1. The relaxation rate is dependent on the difference in energy 

between the initial and final states, so in order to understand some of the results 

in this section and section 5.5, we must refer to the energy spectrum of those 

states and especially the location of the (anti) crossing points. 

We find that the finite well confinement of the electrostatic model leads to 

oscillations in the relaxation rates as a function of magnetic field. We investigate 

this by using a quasi-two dimensional model, comparing the results to the full 

three dimensional system. We then present results for a system where dot 

electrons interact via the Coulomb potential but there is no spin-orbit coupling, 

before finally presenting the results for the spin flip relaxation rate. 

5.4.1 Non-Interacting System 

First we will present the relaxation rates for a non-interacting quantum dot where 

the Dresselhaus spin orbit mixing is neglected. 

In calculating the phonon relaxation rate for electrostatic quantum dots, 

we have considered the perpendicular confinement in two ways. First, the 

confinement is modelled as a rectangular finite well. The second is a quasi-2D 

model where we assume that the matrix element in Eq. 5.25 can be approximated 

as unity. In figure 5.8, the quasi-21) and 3D models are compared for deformation 

potential acoustic phonon relaxation from state 7 (L - 1, S- Sz = 0) to the 

ground state (L - 0, S= Sz = 0) corresponding to the energy spectrum shown 

in figure 5.2. The 3D model is found to give rise to an oscillation in the relaxation 
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Figure 5.8: The relaxation rate for transition without a spin flip from state 7 (L = 1, 

S=S, = 0) to the ground state (L = 0, S=S, = 0) as a function of perpendicular external 

magnetic field (B. ) for a two-particle non-interacting electrostatic quantum dot. Phonon 

coupling is via the deformation potential. Lateral confinement energy is 5meV. The dotted 

line shows the quasi-2D model where it is assumed that the matrix element in Eq. 5.25 can 

be approximated as unity. The solid line shows the oscillations attributed to the perpendicular 

finite well confinement. Rates are calculated for a temperature of IK. 
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rate. To explain these oscillations we consider G(q_L) (Eq. 5.31) in the limit where 

the potential well depth VO --+ co. G(q_L) is then given by: 

w 7ýz ) 
exp (Zqj z) dz sin(q w) I-q2w2 Cos 

2 
-L -1 (5.47) 

Ww 

(2w 

q_Lw q22- 72 
_Lw 

where w is the well half width. This is the same result as given by U. Bockelmarm 

[51]. This function vanishes when lq_Lwl = n7 where n=2,3,4,.... 

To explain the oscillation in the relaxation rate it will be useful to deduce 

the direction in which the phonon is emitted. We do this by considering the 

single particle matrix element for transitions from the 1= ±1 excited state to 

the 1=0 ground state of Eq. 2.1. By differentiating this matrix element with 

respect to q1I , we find that the peak value occurs when Aq1I =- Vý2- where A is the 

length parameter of the Fock-Darwin states given by Eq. 2.2. From conservation 

of energy, we also know that qhc, U and can therefore deduce that for a 

transition of sufficiently large energy, q h-I(A2 C-2 - 2m* 2 r, -, Es 
AE) 1 

r"" AE [rlCs] 

This suggests that the phonon is emitted close to the z direction in agreement 

with Khaetskii et al. [25]. 

The qll dependent factor of the integrand, F(qll) in expression 5.28, takes the 

form of a Gaussian multiplied by a polynomial because of the Fock-Darwin wave 

functions used in this calculation. The position and width of the peak in this 

Gaussian effectively picks out the small range where the integrand in expression 

5.28 is significant. If the peak position on the Gaussian in F(qO sin 0) coincides 

with a minimum in G(qo cos 0), the relaxation rate will be suppressed. Conversely, 

if the peak of the Gaussian in F(qO sin 0) coincides with a maximum in G(qO cos 0), 

then the relaxation rate will be large. 

From this simplified model we can see that the finite perpendicular confinement 

of the system is clearly responsible for the oscillations in the relaxation rate. We 
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Figure 5-9: The perpendicular component of the matrix element given by Eq. 5.31 against 

the dimensionless qj_ for the parameters used in figure 5.8. The solid line is the sum of both 

terms in Eq. 5.31, the fine dotted line is the first term and the coarse dotted line the second 

term in Eq. 5.31. 

now return to the real G(q-L) given by Eq. 5.31. If we were to set the RHS of 

Eq. 5.31 equal to zero we could locate the values of q__L for which this expression 

vanishes. Unfortunately it is impossible to solve the resulting equation in terms 

of elementary functions, but we can locate the zeros graphically. Figure 5.9 

shows the complete function (solid line), the first term (fine dotted line) and the 

second term (course dotted line) for the parameters used in fiýgure 5.2. To a first 

approximation, the assumption that the first term can be neglected would seem 

to be confirmed at least for the parameters discussed in this work. 
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Figure 5.10: Relaxation rates for 3D (solid line) and quasi-2D (dotted line) dots including 

the Coulomb interaction between dot electrons. Transitions involve spin flip scattering between 

state 3 and the ground state as given in table 5.1 with energy levels shown in figure 5.3. 

We now include the Coulomb interaction between the dot electrons and the 

Dresselhaus spin-orbit mixing term given by Eq. 5.3. This corresponds to the 

energy level diagram given in figure 5.3. We consider spin flip relaxation from 

state 3 to the ground state as defined using quasi-quantum numbers and table 

5.1. The relaxation rate for this transition is shown in figure 5.10 for the 3D 

electrostatic dot (solid line) and the quasi-2D dot (coarse dotted line). The 

suppression of the relaxation rate due to the finite well z confinement of the 

3D model is clearly visible at B< 0-5T (compare the 2D and 3D results). At 
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B -ý 4.7T the rate falls dramatically. This is due to the anti-crossing of the 

ground and excited state energy levels shown in figure 5.3. 
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Figure 5.11: Relaxation rate against magnetic field for transitions requiring a spin flip. The 

key denotes transitions from the higher numbered state to the lower numbered state for the 

3D model using quasi-quantum numbers as defined in table 5.1. The relaxation rate 2-1 is 

indistinguishable from the relaxation rate from 3-2 and has been omitted. 

The spin flip relaxation rates for several transitions are shown in figure 5.11 

where the labels given in the key refer to the state numbers given in table 5.1. The 

suppression of all the relaxation rates due to the finite well confinement is again 

visible at B< 0-5T although the exact magnetic field at which the minimum 

occurs varies for each transition because the energy difference depends on the 

states involved. At higher magnetic fields (B = 3.5 - 4.2T), the energy levels for 

states I and 0 given in figure 5.3 cross at B=3.75T and the relaxation rate goes 
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Figure 5.12: A close up of the spin flip relaxation rate presented in figure 5.11 for a magnetic 

field of between 4 and 5 T. The key denotes transitions from the higher numbered state to the 

lower numbered state for the 3D model. Quasi-quantum numbers are defined in table 5.1. 

The anti-crossing manifests itself at B ý- 4.7T and results in some complicated 

behaviour in the relaxation rates. A closer view of this behaviour is shown in 

figure 5.12. As we have seen, the energy levels of states 3 and 0 exhibit an anti- 

crossing at B-4.7T but the quasi-quantum numbers behave as though there 

was a, crossing. This means that the quasi-quantum numbers for states 3 and 

0 effectively swap over at the magnetic field corresponding to the anti-crossing ý-D ýD I 

The swapping of the quasi-quantum numbers does not affect the relaxation rate 

froin state 3 to state 0 which displays a strong reduction in the rate caused by ýD 

the reduction in the size of the energy gap. However, for transitions involvi 1110, ý-D 
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only one of those states, the abrupt change in the quasi-quantum numbers causes 

the relaxation rates to also change abruptly. For example at B=4.7T, state 3 

takes on the quasi-quantum numbers of state 0 and vice versa. The transition 

rate from state 3 to state 2 (fine dotted line in figure 5.12) falls dramatically and 

the transition rate from state 2 to state 0 (course dotted line) increases just as 

dramatically as the energy levels pass through the anti-crossing. 

We now consider the route by which an excited electron can relax. Relaxation 

from state 1 to the ground state must be direct since there are no intermediate 

states to occupy. Relaxation from state 3 to the ground state is found to be 

relatively fast suggesting that this may also be a direct transition. The relaxation 

rate from state 2 to state 0 becomes slower than the state 2 to state I relaxation 

rate at B ý-ý 3.2T. Below this field the transition may also be direct, but above this 

field a direct transition may no longer preferable. Instead, it may be favourable 

for a cascade transition via state I before relaxing to the ground state. However, 

above B=3.55T, relaxation from state 1 to state 0 is strongly suppressed. We 

are then in the situation where a transition to state I is faster than the direct 

transition to state 0, but transition from state I to state 0 is slow. This could 

feasibly cause the electron to become "lodged" in state 1, where further relaxation 

would be slow. 

We now return to further examine the oscillations due to the finite well 

confinement and especially the effect of increasing the width of the dot. In their 

abstract from the Quantum Dot 2004 Conference in Banff, Canada, A. Bertoni 

et al. [811 present results showing oscillations in the magnetic field dependent 

relaxation rate for two vertically coupled quantum dots. They also comment 

that this effect is not found in a single quantum dot and cite U. Bockelmann 
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Figure 5.13: Relaxation rate against magnetic field for transitions requiring a spin flip for a 

wide dot. Týransitions as given in the key from the higher numbered state to the lower numbered 

state for the 3D model. Quasi-quantum numbers are given in table 5.1. 

as the justification for this comment. This is a surprising statement considering 

that Bockelmann's relaxation rate contains the factor sin(x)/[x - x'17'] and we 

have already shown this causes oscillations in the relaxation rate (section 5.4.1) 

Eq. 5.47). Bertoni et al. suggest that the oscillations in the relaxation rate are an 

effect found only in coupled quantum dots. In fact we have shown that this effect 

is found in single dots and is caused by the perpendicular finite well confinement. 

We have also found that this effect can be manipulated by changing the applied 

magnetic field and the dot thickness. 

Figure 5.13 shows the spin flip relaxation rates given previously in figure 5.11 

except that instead of the 12nm thick dot used in figure 5.11, the thickness is 
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doubled to 24nm. The oscillations which arise from the finite well confinement 

(see expression 5.29) are clearly visible at B<2.5T. This shows that the 

oscillations found in the relaxation rate are a single dot effect that can be 

manipulated by altering both the applied magnetic field and the thickness of 

the heterostructure used to manufacture the quantum dot. This result will be 

of benefit in quantum computing applications where a slow relaxation rate is 

required. 

5.5 The Piezoelectric Potential Relaxation Rate 
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Figure 5.14: The total unscreened piezoelectric relaxation rate against magnetic field for 

transitions requiring a spin flip. Transitions as given in the key from the higher numbered state 

to the lower numbered state. Quasi-quantum numbers are given in table 5.1. 

We now turn our attention to the piezoelectric scattering mechanism discussed 
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in section 5.3.2. Figure 5.14 shows the unscreened piezoelectric relaxation rate 

for transitions requiring a spin flip from the sub-levels of the S r-, 1, L e--, 1 

triplet state. The relaxation rates for these transitions were previously presented 

for deformation potential phonon scattering in figure 5.11. In transitions from 

the triplet state to the singlet ground state, the piezoelectric relaxation rate 

dominates over the deformation rate only at points where the energy difference 

between initial and final states is close to a crossing point and therefore small (less 

than 0.75meV). For the transition from state I to state 0, this occurs between 

B ý-ý 3.5T and B r-, 4T, for transitions from state 3 to state 0, the range is 

B ý-d 4T to B t-ý 5T. The transitions between triplet sub-levels which require only 

1 electron to complete a spin flip (states 3 to 2 and states 2 to 1) are dominated 

by the piezoelectric mechanism, again the energy difference between the initial 

and final states is small. The relaxation rates for transitions between states 3 

and I (where both electrons make a spin flip, see table 5.1) are negligible for both 

mechanisms except close to the anti-crossing where the piezoelectric potential 

rate is dominant. The dominance of the deformation rate at larger energy gaps 
3 

can be explained by its qO dependence whereas the piezoelectric rate has only a 

linear qo dependence. 

Figure 5.15 shows the total screened piezoelectric relaxation rate (see section 

5.3.1). The addition of screening to the piezoelectric electron-phonon coupling 

mechanism has the effect of lowering all of the piezoelectric relaxation rates 

slightly. The transitions between triplet sub-levels which require only I electron to 

complete a spin flip (states 3 to 2 and states 2 to 1) are again the only transitions 

that are dominated by the piezoelectric mechanism. 
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Figure 5.15: The total screened piezoelectric relaxation rate against magnetic field for 

transitions requiring a spin flip. Transitions as given in the key from the higher numbered 

state to the lower numbered state. Quasi-quantum numbers are given in table 5.1. 

5.6 The Total Relaxation Rate 

Figure 5.16 shows the total relaxation rate for both deformation and screened 

piezoelectric potentials plotted against magnetic field. The matrix elements 

of the deformation potential (expression 5.23) and the piezoelectric potential 

(expression 5.38) are shifted in phase by 7/2. Therefore, the two scattering 

mechanisms do not "interfere" with each other and can be treated as independent 

mechanisms. The square magnitude of the matrix elements can be added together 

thus I AIT 12 =I _AID 
12 +I Alp 12 (where MT is the total, MD is the deformation 

potential and Mp is the piezoelectric potential). Comparing figure 5.16 with 
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Figure 5.16: The total relaxation rate for deformation and piezoelectric potentials against 

magnetic field for transitions requiring a spin flip. Transitions as given in the key from the 

higher numbered state to the lower numbered state. Quasi-quantum numbers are given in table 

5.1. 

figure 5.11, we see that the the piezoelectric relaxation rate only adds significantly 

to the total relaxation rate where the energy difference between initial and final 

states is less than about 0.75meV. 

5.7 Comparison with Previous work 

We will now consider some of the previous work in this area. In their calculation 

of piezo elect ric- p honon relaxation rates in quantum dots, A. V. Khaetskii and 

Y. V. Nazarov [25,26] make the approximation that q-L > qll so that q-qI. 

This enables the piezoelectric anisotropy factor for transverse acoustic phonons 
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141, Iq I. The anisotropy factor and the (see Eq. 5.40) to be approximated as 4h 222 

factor of q-1 arising from the piezoelectric Hamiltonian (expression 5.35) lead to 

a divergent integral over the phonon wave vector qjj. At this point Khaetskii et al. 

also appear to have neglected the possibility of the phonon being emitted in both 

positive and negative q1 directions so the relaxation rate is underestimated by a 

factor of 2. The divergence in the q1I integral is only lifted by approximating the 

q-' factor as q This second approximation also has an effect on the limits of 

the q1I integral such that the range is changed from 0< q1I < qO to 0< q1I < oc) or 

in other words, q1I is integrated over values that exceed the maximum allowed by 

energy conservation. This approximation will be acceptable provided the Fourier 

transform of the QD wave function decays sufficiently quickly. 

S. Dickman, P. Hawrylak [67] and M. Florescu et al. [68] (members of the 

same group) published spin flip relaxation rate studies in a two-electron quantum 

dot as this work was being completed. These authors chose to use a highly 

truncated basis set which does not appear to give converged energy eigenvalues 

or quantum states (see section 5.1) and as such, the relaxation rates are unlikely 

to be accurate. Comparing the relaxation times/rates given in [67] and [68] we 

find that the two papers are inconsistent. Florescu et al. [68] gives a maximum 

in the relaxation rate at the singlet-triplet transition whereas Dickman [67] gives 

a minimum. The matrix element goes as < F1 exp(iq - r) 11 > where q depends on 

the energy difference (AE) between initial (1) and final (F) states. As AE --4 0 

at the singlet triplet transition, the matrix element must vanish by orthogonality 

if F: ý I and we should observe a minimum as described by Dickman [67]. 

Spin flip relaxation processes in electrostatic quantum dots have been studied 

experimentally by T. Fujisawa et al. [19,20,21] (see figure 5.1). Fujisawa et al. 
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used asymmetric tunnelling barriers so that tunnelling into the dot (through the 

thin lower barrier with time constant IF, ) is much faster than the tunnelling out 

of the dot (through the thick upper barrier with time constant Ird). A series of 

pulses is applied to the side gate to allow the Fermi levels of the source (4, ) and 

drain (Ad) to align with the energy levels in the dot. If the low-voltage phase of 

the pulse is such that the S r-ý 0 ground state of the dot is aligned with the Fermi 

energy of the drain contact for a sufficiently long time, the dot will be emptied. 

A single electron is then allowed to tunnel into the ground state of the dot. The 

high-voltage phase of the pulse then aligns the S r-, I excited dot state with the 

transport window. The asymmetric barriers mean that an electron can tunnel 

into the dot quickly but out of the dot more slowly. The tunnelling current can be 

interrupted by the electron in the dot excited state making the transition to the 

ground state by performing a spin flip before it has time to tunnel out through 

the drain. The relaxation rate can then be deduced from the average number of 

electrons tunnelling per pulse. 

Whereas the dot considered in this work has circular symmetry and a 

confinement energy hwo = 5meV, Fujisawa's dot is asymmetric with confinement 

energies of hw,, = 2.5meV and hwy = 5.5meV. The energy spectrum of Fujisawa's 

dot has a single particle excitation energy as 2.5meV at B= OT compared 

with 5meV for the dot considered here. Fujisawa et al. report that the singlet- 

triplet energy crossover occurs at a magnetic field of B=2.5T, although they 

were unable to resolve individual Zeeman levels in the triplet states [20]. By 

comparison the energy crossover found in this work occurs at B 4T (see figure 

5.3). Fujisawa, et al. report a triplet-singlet relaxation time in two electron dots 

of 200ps at B=0 and states that the relaxation time shows only weak magnetic 
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field dependence at least over the range B= OT (Ei - Ef --ý 0.6meV) to B- 2T 

(Ei - Ef r%-l - 0.24meV) in that it is always longer than about loops. Fujisawa, et al. 

attribute the small energy spacing in the two electron quantum dot to be a result 

of the Coulomb interaction between the two electrons. In the dot considered 

in this work, the energy spacing between singlet and triplet states is 2.8meV at 

B= OT and 1.2meV at B= 2T. 

Since the dot considered by Fujisawa et al. does not closely match the 

dot considered above, we cannot make a direct comparison. However, we can 

compare the range of energy gaps considered by Fujisawa et al. (0.24 - 0.6meV) 

with a comparable range of energy gaps in the work above (corresponding to 

B=3.3 - 3.65T in figures 5.3 and 5.11), if we assume that the matrix elements 

are similar. In this case, we find a relaxation time of 50 - 100[ts which appears 

to be only weakly dependent on magnetic field and in tentative agreement with 

the work of Fujisawa et al. 

5.8 Conclusions 

We have studied the effects of the Coulomb interaction and the Dresselhaus spin- 

orbit coupling mechanism on the energy levels and phonon-assisted relaxation 

rates in electrostatic quantum dots. The inclusion of the Dresselhaus term 

removes spin as a good quantum number and therefore makes spin flip transitions 

possible. The spin-orbit mixing introduced by the Dresselhaus mechanism also 

results in the emergence of anti-crossings in the energy spectrum. These anti- 

crossings result from the coupling of the energy levels by the off diagonal spin- 

orbit mixing matrix elements. The block diagonal structure of the matrix can be 

linked to the commutator relation [iz - (aypy - axpx)p2] z=0. 
This commutator 
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relation is found to be valid for the linear Dresselhaus spin-orbit interaction but 

breaks down if the cubic Dresselhaus terms are included. 

Two mechanisms for electron-phonon coupling have been considered. The first 

is the deformation potential due to the band bending caused by the emitted 

phonon. The deformation potential is found to be dominant for transitions 

of larger energy due to the qO dependence of the relaxation rate. The second 

mechanism for electron-phonon coupling is the piezoelectric effect due to the 

strain produced by the emitted phonon. The piezoelectric rate has a linear 

dependence on qO and is dominant only for transitions between states of small 

energy difference. 

For transitions that require a spin flip, the Coulomb interaction increases the 

energy of the S r-ý I states less than it does for the S ---, 0 states. As a result, the 

energy difference between the initial S r-ý I and final S /--ý 0 states (AE - hc, qo) 

which affects the relaxation rate, is smaller than for transitions where spin is 

polarised. In addition to this, the mixing of spin states is a small effect that 

results in a small matrix element. The small mixing of spin states is the primary 

reason why transitions that require a spin flip are slow. 

The matrix element needed to calculate the relaxation rate oscillates with 

magnetic field. This is due to the finite well confinement of the heterostructure, 

from which the dot is fabricated. These oscillations lead to a strong reduction 

in the relaxation rates at certain magnetic fields. The minima in the relaxation 

rate can be located by adjusting the applied magnetic field and during the dot 

manufacturing process by altering the thickness of the heterostructure. 

In calculating the spin flip relaxation rates in an electrostatic quantum dot, 

we have highlighted the existence of minima in the relaxation rate. We have also 
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found that this does not require two coupled dots in contrast to the results of A. 

Bertoni et al. [81]. The well thickness and the applied magnetic field are found to 

affect the relaxation rate and this will be particularly useful for applications such 

as quantum computing, where a low relaxation rate is necessary. 

In this work we have considered only the Dresselhaus spin-orbit coupling 

mechanism and found the existence of oscillations in the relaxation rate. These 

oscillations do not depend on the spin of the dot states, the only requirement 

is that the matrix element in the Golden rule has the form of the Fourier 

transform of finite (or infinite) well wave functions. We therefore expect these 

oscillations to appear for any system where spin-orbit coupling is due to the 

admixture of different spin states and where phonon emission provides only energy 

conservation. Systems where the phonon couples directly to the electron spin are 

thought to display extremely low relaxation rates (10-1 - 10's-1) [25] but it is 

unknown if these systems will exhibit similar relaxation rate oscillations. 



Chapter 6 

Summary and Conclusions 

The analysis undertaken during the course of this work has led to the discovery 

of some new and interesting physics relating to relaxation processes in semi- 

conductor quantum dots. We have concentrated our discussion on two types 

of quantum dot in which the dominant relaxation mechanisms are markedly 

different. The first, considered in chapters 3 and 4, is the self-assembled 

quantum dot in which the dominant relaxation mechanism is thought to be Auger 

scattering. The second considered in chapter 5 is the electrostatic dot in which the 

dominant relaxation mechanism is thought to be phonon emission. In studying 

these two different systems, we have investigated the mechanisms responsible for 

the relaxation process and examined the parameters that may be used to influence 

the relaxation rate. We believe our work will serve as a basis for future work in 

this field. 

The work presented in chapter 3 is concerned with Auger relaxation in single 

particle self-assembled quantum dots and follows on from the work of A. V. 

Uskov et al. [9]. Uskov et al. considered only the scattering of dot electrons 

with electrons located in the two-dimensional wetting layer. In this work we 

have considered scattering of the dot electrons with electrons located in both 
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the wetting layer and the surrounding bulk material. We find that for the 

parameters considered here, the bulk scattering rate is dominant by over 2 orders 

of magnitude due to the relative electron densities of the wetting layer and the 

bulk material. However, it must be stated that the parameters used will have an 

effect on the magnitudes of these rates. Electron densities are calculated based on 

rate equations and parameters presented by B. Liu et al. [28]. While it is unlikely 

that any minor changes in the parameters proposed by Liu et al. will seriously 

affect the conclusions drawn here, it is not impossible to conceive of a system 

where wetting layer scattering may become the dominant relaxation mechanism. 

In Ref. [9], A. V. Uskov et al. assumed that the Auger relaxation matrix 

element could be calculated by using the dipole approximation to the Coulomb 

potential. In chapter 3 we consider the Auger relaxation rate calculated in the 

dipole approximation and compare this result with the relaxation rate calculated 

exactly. We find that the relaxation rate calculated in the dipole approximation 

consistently exceeds the exact relaxation rate by a factor of approximately 3. 

This is caused by the energy levels of the dot spreading apart as the dot size is 

reduced (or equivalently as confinement energy is increased) and we find that the 

dipole approximation is unlikely to be correct for quantum dots of any realistic 

size. The comparison between the dipole approximation and the exact result is 

given in section 3.5.1. 

In chapter 3 we perform relaxation rate calculations for the truncated pyramid 

self-assembled quantum dot states calculated by A Roy et al. [17]. We find that 

the composition gradient in the truncated pyramid dot has only a small affect on 

the relaxation rate. The composition variation alters the effective mass of the dot 

electron, affecting the relaxation rate slightly for the bulk scattering mechanism. 
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For the 2D scattering mechanism, the electrons are confined marginally higher in 

the graded material dot and further away from the wetting layer thus decreasing 

the wave function overlap and reducing the relaxation rate. We also calculate the 

relaxation rates for the harmonic oscillator wave functions given by expression 

2.4. Although this model does not accurately predict the relaxation rates of a self- 

assembled dot, it does provide a relatively simple model with which to examine 

the physics of the system. The accuracy with which the HO model can predict 

the relaxation rates for the SAQD models depends heavily on the choice of length 

parameters used. We have attempted to fit the HO model to the SAQD models 

by two methods. The first is to match the lateral confinement energy hw to the 

excitation energy and then use the vertical confinement energy hw, to match the 

ground state energy. The second method is to match the length parameters to 

the RMS displacement using the relation A ==V< r2 >-<r >2. Although the 

energy fit method provides the closest fit, both methods are found to consistently 

underestimate the exact relaxation rate for the pyramidal SAQD models. This 

is due to the geometry of the HO model not being consistent with real SAQDs. 

The relaxation rate for the SAQD models when compared to either of the HO 

models are found to be up to 6 times larger for 3D scattering and up to 3.5 times 

larger for 2D scattering. 

In chapter 4 we consider two electron self-assembled quantum dots. In this 

system the additional " spectator" electron might be expected to modify the 

Auger mechanism and therefore affect the relaxation rate. In order to solve the 

Schr6dinger equation for the two particle system we must take into account the 

Coulomb interaction between the dot electrons. This interaction will be screened 

by the electrons in the surrounding bulk material. 
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If the screening length is much smaller than the size of the quantum dot, 

the two electrons in the quantum dot are approximately non-interacting. As 

the screening length becomes comparable to the size of the quantum dot, the 

Coulomb interaction becomes more important. However, the relative strength of 

the Coulomb interaction is size dependent and to a reasonable approximation, 

sufficiently small self-assembled dots can be considered only weakly interacting 

even if the screening length is of the order of the size of the quantum dot. The 

maximum difference between the relaxation rates calculated with wave functions 

where the dot electrons are either screened or unscreened from each other is 

only 3.3% for the SAQDs considered here. The relatively small effect screening 

has on the relaxation rate suggests that the dot electrons are indeed only weakly 

interacting and that screening can be neglected with only a small loss of accuracy. 

This result is particularly useful since taking this screening mechanism into 

account for all the electron densities considered in this work is found to be 

extremely computationally expensive. 

Comparing the two particle relaxation rates for transitions between states of 

total spin 0 and those with total spin I we find that the spin 0 relaxation rate is 

larger by a factor of approximately 2. In the case of the spin 0 ground state, the 

two electrons reside in the lowest energy states and have opposite spins. In the 

spin 0 excited state, only one electron occupies the lowest energy state. For any 

of the four terms in the non-interacting two particle matrix element (expression 

4.25) to be non-zero, at least one of the electrons in the initial state must occupy 

the same quantum state as one of the electrons in the final state. In the case 

of spin 0 relaxation, the double occupancy of the ground state means that two 

terms are non-zero. In the case of relaxation between states of total spin 1, there 
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is no double occupancy of spatial states and only one term contributes to the 

matrix element. This is a consequence of the two possible spin orientations and 

the Pauli exclusion principle. The relatively weak Coulomb interaction between 

the two dot electrons introduces a small mixing of other states that subsequently 

appear in the two-particle matrix element. The slight deviation from the factor 

of 2 in the non-interacting case is a result of this mixing. 

In chapter 5 we have focused on a different type of system and investigated 

phonon-assisted spin-flip relaxation in electrostatic quantum dots. The selection 

rules on the allowed transitions imposed by conservation of spin will block spin- 

flip relaxation unless spin can be removed as a good quantum number. After 

reviewing previous work, we settled on Dresselhaus spin-orbit mixing as the 

dominant mechanism to achieve this. 

The Dresselhaus spin-orbit mixing Hamiltonian can be written as three terms 

2 (see Eq. 5.6), the first is linear in the in-plane momentum but proportional to p, 

the second term is independent of p, but cubic in the in-plane momentum and 

the third term vanishes since < p, >= 0. The confinement in the z direction is 

restricted over a very much smaller length scale than the in-plane confinement, so 
2 the term proportional to pz will be dominant at the low magnetic fields considered 

here. For this reason we have neglected the cubic Dresselhaus term. 

The Dresselhaus mechanism removes spin as a good quantum number by mixing 

different spin and angular momentum states and although the effect this has on 

the magnitude of the energy is relatively small, it does introduce certain anti- 

crossings in the energy spectrum. This mixing also means that individual states 

will no longer have a definite spin orientation or angular momentum quantum 

number. However, we can find the quasi-spin and quasi-angular momentum of 
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the state by calculating the < Sz > and <L> expectation values. Since spin 

mixing is a very subtle effect, the resulting expectation values are all close to 

the values gained for the non-spin mixed states, except at certain magnetic fields 

where an anti-crossing appears in some of the energy levels. 

These anti-crossings appear when two of the non-interacting energy levels are 

coupled by the off diagonal matrix elements of the Dresselhaus Hamiltonian. For 

the spin-orbit coupling mechanism considered here, L, - S, is conserved so that 

levels with different values of L, - S, cross whereas levels with the same value of 

L, - anti-cross. We find that the commutator relation (and the two-particle 

extension, see section 5.2.3) [1, - )p2] =0 holds for the linear, in- ypy - 07xpx z 

plane momentum term of the Dresselhaus mechanism but does not hold for the 

cubic term. This conservation law is relevant to any situation where spin-orbit 

coupling is considered at fields low enough for the cubic order Dresselhaus terms 

to be neglected. To the best of our knowledge, this particular result has not 

been published previously. Interestingly, C. F. Destefani et al. [75] report that 

in InSb dots where spin mixing is strong, the level crossings in the Fock-Darwin 

energy spectrum that we have found are unaffected by the linear Dresselhaus 

term, become anti-crossings when the cubic Dresselhaus term is included. These 

authors comment that the effect is almost imperceptible. 

The anti-crossings also result in some complicated behaviour in the relaxation 

rates (see figure 5.12). States with the same value of L, - S, display an anti- 

crossing in the energy levels but the quasi-quantum numbers behave as though 

there were a crossing. Since we identify our states by tracking continuous 

energy levels, the quasi-quantum numbers for states that exhibit an anti-crossing 

effectively swap over at the magnetic field where the anti-crossing appears. For 
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transitions involving only one of the states involved in the anti-crossing, the 

abrupt change in the quasi-quantum numbers causes the relaxation rates to also 

change abruptly. 

The perpendicular finite well confinement used in the electrostatic dot model 

is found to give rise to a magnetic field dependent oscillation in the relaxation 

rate. The z dependent factor of the matrix element (Eq. 5.31) contains a factor 

which behaves very approximately as a sinc function with the argument q_Lw, 

where qI is the perpendicular component of the phonon wave vector and w is the 

well half-width. The phonon is found to be emitted in a direction approximately 

perpendicular to the plane of the dot. The well thickness w and the applied 

magnetic field both affect the factor G(q-L) (Eq. 5.31) and may provide a method 

of manipulating the relaxation rate. In contrast to the result of A. Bertoni et 

al. [81] we find that these oscillations are a consequence of the perpendicular 

confinement potential and do not only appear in systems where two quantum 

dots are coupled together. 

We have considered two mechanisms for electron-phonon coupling in chapter 

5. The first is the deformation potential due to the band bending caused by the 

emitted phonon. The deformation potential is dominant for the higher energy 

transitions due to the qO (qO = AE/hc, ) dependence of the relaxation rate. The 

second mechanism for electron-phonon coupling is the piezoelectric field due to the 

phonon-induced strain. The piezoelectric relaxation rate has a linear dependence 

in qO and is dominant only for transitions where the energy difference between 

initial and final states is small. 

Screening the piezoelectric electron-phonon coupling mechanism lowers all of 

the piezoelectric relaxation rates slightly. The deformation potential is found 
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to be the dominant relaxation mechanism with the exception of transitions 

between triplet sub-levels that require only I electron complete a spin-flip. These 

transitions are dominated by the piezoelectric scattering mechanism over the 

magnetic field range considered here. This is due to the small energy gap between 

initial and final triplet sub-levels. 

6.1 Future Work 

There has been a significant amount of interest in the electron spin dynamics of 

quantum dots recently, due in part to proposals for manipulating the electron 

spin to form a quantum computer [22,23,24]. In chapter 5 of this thesis, we 

have addressed some of the physics relating to the spin dynamics of a quantum 

dot system but there remains a substantial amount of work to be done before 

this system can be said to be completely understood. In chapter 5 we considered 

the Dresselhaus spin-orbit mixing mechanism but neglected the terms that were 

cubic in the in-plane momentum. Whilst we believe that this approximation 

makes little difference to the magnitude of the relaxation rate at least in the 

magnetic field range considered here, the work of C. F. Destefani et al. [75] 

suggests that the including the neglected terms will lead the emergence of further 

anti crossings in the energy spectrum. This may lead to more of the complicated 

behaviour in the relaxation rates described in section 5.4.2. 

The electrostatic dot considered in chapter 5 is modeled with a finite well 

confinement in the perpendicular direction. This confinement potential leads to 

the emergence of magnetic field dependent oscillations in the spin-flip relaxation 

rate. We have found that the thickness of the heterostructure affects the 

oscillations in the relaxation rate. It would be beneficial to calculate the 
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relaxation rate as a function of well thickness since this parameter might be used 

to manipulate the relaxation rate. These oscillations are found to be unaffected 

by spin-mixing in systems where the phonon only provides energy conservation 

during relaxation. However, it is unknown if systems where the phonon couples 

directly to the electron to provide the spin-flip will also exhibit this feature. 

Electron spin resonance spectroscopy (ESR) is a technique similar to nuclear 

magnetic resonance spectroscopy (NMR) except that it is electron spin instead 

of nuclear spin that is investigated. The degeneracy of the spin states for an un- 

paired electron is lifted by the presence of a magnetic field. A resonant microwave 

signal can then be used to induce transitions between these two spin states. 

This particular technique can be used to manipulate the spin of an electron in 

a quantum dot. By applying a suitable microwave signal for a short time, an 

arbitrary superposition of spin-up and spin-down states can be created. The 

creation and decoherence time of this superposition is of particular interest due 

to the potential applications in quantum computing. The prediction of long-lived 

spin states in this work could be of use in developing such an ESR experiment 

where the manipulation of spin states is the objective. The L, - S,, conservation 

rule found in this work might be of benefit in calculating the decoherence times 

for a superposition of spin-up and spin-down states created during an ESR 

experiment. Indeed, the conservation law could be useful in all calculations where 

SO coupling is taken into account. 

Relaxation processes in self-assembled quantum dots has been considered in 

this and other work, but calculations have been limited to the low lying energy 

levels. Consequently, very little is known about the relaxation rates of other 

transitions. Certainly for the more realistic self-assembled dot models this 
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calculation would be difficult to perform due to the complicated form of the 

wave functions, which require the inclusion of many basis states to achieve 

converged results. Calculations of this type would be of interest in optoelectronics 

applications. 

To the author's knowledge, spin flip relaxation in self-assembled quantum 

dots has not been discussed. Since the dominant relaxation mechanisms in self- 

assembled dots differs from that found in electrostatic dots, we may expect that 

the relaxation rate will also differ. As far as the author is aware, the efficiency 

of the Auger relaxation mechanism for spin flip processes in self-assembled dots 

is unknown. It is also conceivable that longitudinal optic phonons may provide a 

mechanism capable of mediating spin flip relaxation in self-assembled dots with a 

suitable energy gap, especially in cases where Auger relaxation is small. However, 

the complicated form of the self-assembled dot wave functions would pose some 

significant challenges in calculating the two particle electronic states when spin- 

orbit mixing is included. The vertical confinement potential in a self-assembled 

dot is somewhat similar to that of an electrostatic dot in that it has a sharp 

interface between the dot and the external material. This might suggest that 

the magnetic field dependent oscillations due to the perpendicular finite well 

confinement of the electrostatic dot may also appear in self-assembled quantum 

dots. However, the In,, Gal-,, As self-assembled dot model considered in this work 

has a composition gradient, which may alter the confinement potential. What 

effect this may have on any magnetic field dependent oscillations is unknown. 

Performing spin flip calculations in self-assembled quantum dots would provide 

an exciting opportunity to further understand these remarkable structures. 



APPENDIX A 

Glossary of mathematical terms 

A glossary of the frequently used mathematical notation in this thesis. 

Applied magnetic field. 

En - Energy of the nth state. 

(k) - Boltzmann distribution function for states with wave vector k. 

k, - Wave vector of the nth state. 

K- Debye screening wave number (see Eq. 3.3). 

22 
KX - PX (P 

z- PY) and cyclic permutations (see Eq. 5.5). 

Angular momentum quantum number. 

A- Radial length parameter for the HO model (see Eq. 2.2). 

A, - Vertical length parameter for the HO model. 

m* - Effective mass. 

np - Injected carrier density. 
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Glossary 

q, Q- Change in wave vector of the external electron. 

qO - (Ef - Ei)lhc, where c, is the speed of sound (see section 5-3.1). 

r, R- Vector describing the position of the dot electron. 

ro, Ro - Vector describing the position of the external electron. 

s, S- Spin quantum number. 
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a- Pauli spin matrices. 
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