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Chapter 1

Introduction

This thesis has advanced nonlinear time series knowledge within a Bayesian statistical

discipline. We seek to answer important questions with an intensive use of Markov

Chain Monte Carlo (MCMC) and Bayesian econometric techniques, regarding the

puzzles in economics of identifying a deterministic time trend, detecting nonlinearity

in univariate time series, modelling complicated in�ation dynamics, and quantifying

forecasting uncertainties. On one hand, this thesis makes contributions to Bayesian

econometric computation literature. On the other hand, by analyzing three macroeco-

nomic time series, this thesis makes contributions to the literature of modelling stock

price, real exchange rate series and in�ation.

This thesis focuses on investigating two novel nonlinear models, a Generalised

Stochastic Unit Root (GSTUR) and a Stationary Bilinear (SB) model, and providing

Bayesian inference in these models using methods on the frontier of numerical analysis.

A completed toolbox to calculate substantive quantities, such as model estimation,

model marginal likelihood calculation and model-based point and density forecast

is made available for empirical practice. The applied methodologies and procedure

(programmed with Matlab R2007a) are extensively tested and validated on simulated

arti�cial data, and then applied to real life macroeconomic data.

In section 1.1, we �rstly motivate the nonlinear time series modelling approach

with an application of Bayesian techniques. Section 1.2 summarizes the contributions

of this piece of research and where it �ts in the literature. Section 1.3 provides an

abstract and an outline of each chapter.
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1.1 Motivation

The main purpose of this thesis is to model the univariate macroeconomic time series

dynamics using two novel nonlinear statistical models, which are the Generalised Sto-

chastic Unit Root (GSTUR) model and the Stationary Bilinear (SB) model. In this

section, to motivate our research, we seek answers for 3 questions.

(1). Why should we rely on numbers and statistical models to understand economic

time series?

In Clive Granger�s Noble Lecture (2003, Stockholm), he used metaphorical terms

to describe a time series as �a loosely strung string of pearls�. In his explanation, if

the string is throw down onto a hard table top, a time series then can be represented

by the string of pearls in a such way that �...the pearls give the points in the series�,

while �time is represented by the distance down the table�. Therefore, �the placement

of the pearl will impact where the next one lies because they are linked together�.

Based on the ideas of �linked pearls�, econometricians dedicate themselves to �nd-

ing out the characteristics of the string that associate the places of the pearls, and

predicting where the next pearl will be if the string extends. We may call the string

an �underlying process�of the time series from a univariate time series perspective.

Therefore, modelling underlying processes and forecasting based on historical data

have an analogy to analyzing the movement of a string based on the placements of the

pearls. Since it is commonly accepted that economic analysis should assist decision

makers in making better decisions, a comprehensive understanding of the underlying

processes and forecasting knowledge become essential in the univariate time series

modelling. Given the facts that univariate time series modelling plays important roles

in testing economic theories and providing forecasting, this thesis focuses on inves-

tigating 2 purely statistical models, the GSTUR and the SB models, for modelling

univariate time series.

As well as investigating the �string�, we look into the �pearls�as well. According

to the frequency of collected data and sources from which we collect, di¤erent types

of data have distinct characteristics. For example, the plots of high frequency data,

such as stock prices collected every few seconds, are very di¤erent from those of low

frequency macroeconomic data collected monthly. Analysis and modelling procedures

of disaggregated data di¤er from those of aggregated data. For instance, the aggre-

gated in�ation rate is obtained via a weight aggregating approach to various price data

from di¤erent sectors, where the weights can be time varying. In this thesis, we focus

on low frequency macroeconomic data, which includes annual S&P 500 stock market

2



indices, quarterly UK in�ation rates, and monthly UK/US real exchange rates.

(2). Why are nonlinear models appealing?

�The 1970s and 1980s saw economists adopt many of the time series techniques

introduced by Box and Jenkins� (Potter, 1999). In recent years, there has been an

increasing interest in the study of the nonlinear properties of macroeconomic and �nan-

cial time series. In macroeconomics, the study of nonlinearity is based on an intuitive

assumption that both the nature of the structural shocks hitting the economy and the

dynamic properties of the economy might have changed. In �nancial applications, the

introduction of nonlinearity is motivated by �theoretical models incorporating trans-

action costs�(Rapach and Wohar, 2006). Therefore, linear statistical models might be

incapable of capturing the complicated dynamics in the underlying process. Davis and

Resnick (1996) point out that �failure to account for nonlinearity can have dramatic

consequences in the analysis and can be quite misleading�.

In this section, we aim to provide a brief review of the expanding nonlinear time se-

ries modelling literature and some empirical �ndings regarding evaluations of nonlinear

and linear models�forecasting capabilities.

The properties of many nonlinear statistical models have been investigated in the

recent two decades since J. Hamilton�s seminal paper on nonlinear modelling, in which

a Markov Switching model was applied to US output, published in Econometrica 1989.

Nonlinear models, such as Markov Switching and Markov Trend models (Koop and

Potter, 1999), Random Coe¢ cient Autoregressive model (Leybourne et al., 1996),

Stochastic Unit Root (STUR) models (Granger and Swanson, 1997), Structural break

model (Koop and Potter, 2004), Threshold autoregressive (TAR) model, Smooth Tran-

sition autoregressive (STAR) model, exponential smooth transition autoregressive (ES-

TAR) process, logistic smooth transition autoregressive (LSTAR) and their evolutive

forms have been successfully applied in empirical macroeconomics and �nance.

Regarding the forecast capacities of the statistical models proposed in the litera-

ture, it is not clear whether nonlinear models outperform linear ones, or vice versa.

In Potter (1999), with a focus on modelling business cycles, he said that �successful

nonlinear time series modelling would improve forecasts and produce richer notion of

business cycle dynamics than linear time series allow�. However, Potter caveats the

statement with a reminder that the success of nonlinear forecasting models are based

on two essential conditions: �First, economic time series must contain nonlinearity.

Second, we need reliable statistical methods to summarize and understand these non-

linearities suitable for time series of the typical macroeconomic length�. Hence, testing

nonlinearity in a time series and identifying more precisely the type of nonlinearities

3



in the data is an important area for research.

Some researchers found that nonlinear models outperform linear models in appli-

cations to macroeconomics and �nance. Clement and Smith (2000) compare nonlinear

models (self-exciting threshold autoregressive models) and linear models by evaluating

forecast densities with an application to output growth and unemployment. In their

example, nonlinear models outperform the linear models, such that nonlinear models

are �better able to predict higher order moments�(Clement and Smith, 2000). With

applications to a panel of spot exchange rates and spot interest rates, Canova (1993)

found a multivariate Bayesian time-varying coe¢ cient (TVC) approach to forecasting

improves over a Random Walk model. With applications to postwar U.S. quarterly

in�ation forecasting, Watson and Stock (2007) compared the forecasting model capa-

bilities amongst multivariate models and univariate models. Models they considered

are AR models with lag lengths selected by the AIC (AR-AIC), Random Walk (RW)

model, rolling MA(1), backwards-looking Phillips curve (PC), a trend-cycle model and

an unobserved component model with stochastic volatility (UC-SV). They propose a

UC-SV model to forecast in�ation rates because of its good overall out-of-sample

forecast performance. Compared amongst linear and nonlinear models, an AR-AIC

does not forecast as well as the UC-SV model. Compared amongst linear models, a

rolling MA(1) improves upon other univariate linear forecasting models. Interestingly,

they conclude that multivariate forecasts do not improve on forecasts made using

time-varying univariate models, such as unobserved trend-cycle model with stochastic

volatility or integrated moving average process with time-varying parameters.

With applications to di¤erent data sets and di¤erent nonlinear model speci�cations,

Stock and Watson, however, did propose linear against some nonlinear models in

their early research. Stock and Watson (1998) performed a comparison of linear and

nonlinear univariate models for forecasting 215 US monthly macroeconomic time series

at three forecasting horizons over the period 1959-1996. Models they considered are

AR, ESTAR, arti�cial neural networks (ANN) and LSTAR. They found that AR have

lower average cost than LSTAR and ANN. Simple forecasting AR models with lag

lengths selected by the AIC are also supported by Meese and Geweke (1984), who

compared various linear models using 150 macroeconomic time series.

Some researchers choose not to be biased between nonlinear and linear models.

With an application of monthly real exchange rates from the post-Bretton Woods

period, Rapach and Wohar (2006) found point forecasts generated from Band-TAR

and ESTAR models are very similar to forecasts generated by linear AR models at

short horizons. Their overall conclusion is that �nonlinearities (in the data period) are
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too slight or subtle for the band-TAR and ESTAR model speci�cations�.

Given the voluminous literature and ambiguous conclusions, we address 5 ques-

tions in the context of investigating nonlinearities in univariate time series. First, do

nonlinearities exist in univariate time series and if so, what is the type of the nonlin-

earities? Second, do nonlinear time series models produce out of sample forecasts that

improve upon linear models? In particular, do nonlinear models outperform Random

Walk models in the context of forecasting the in�ation rate? Third, can the unob-

servable changing persistence be detected in a univariate time series with applications

of �exible nonlinear models? Fourth, to what extent are we sure that a deterministic

trend exists in the series? Fifth, if the underlying process is a quasi-Random Walk1

process, can we trust the nonstationarity test results from conventional Augmented

Dickey-Fuller (ADF) test and/or Phillips-Perron test? To avoid raising topics that

are too broad to cover, we restrict ourselves to 3 speci�c univariate time series: S&P

500 annual data from an extended Nelson and Plosser�s data set (from 1877 to 1988),

UK/US long run monthly real exchange rates from January 1885 to February 1995

with a sample size of 1; 322 over 111-year period, and the UK quarterly in�ation rates

from 1957 Q1-2007Q1. Also, we consider nonlinearities in two speci�c forms: the

GSTUR process and SB process.

(3).Why Bayesian?

This section introduces our motivation of Bayesian approaches to time series mod-

elling.

Bayesian techniques has been widely applied in time series modelling, such the

revisits of Nelson and Plosser�s data and �nding the evidence in support of determin-

istic time trends in DeJong and Whiteman (1991a, 1991b)2 and also in Kwiatkowski

et al. (1992), analysis of unit root in 8 real exchange rate series and �nding empirical

evidence of PPP in French franc/German mark in Schotman and van Dijk (1991), and

�nding evidence of nonlinearities in US GNP in Koop and Potter (1999).

The advances in simulation-based technology has absolutely revolutionized Bayesian

approaches to time series modelling (Geweke, 1989). One of the current research

strands in applied Bayesian statistics is to developMarkov chain Monte Carlo (MCMC)

methods for complicated time series models. Examples can be found in Chib et al.

(2002) and Chib et al. (2006), where sampling algorithms are developed to estimate

Stochastic Volatility (SV) model and multivariate SV. Also, Bauwens and Lubrano

(1998) applied Gibbs sampler to estimate GARCH model in Bayesian framework.

1Also, we can call a quasi-Random Walk process as a Random Walk like process.
2Or �trend-stationarity�is the terminology they used.
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In Koop et al. (1997), the advantages of the Bayesian approach to time series

modelling over classical techniques are summarized as the following: (1) It provides

exact �nite sample distributions for any feature of interest. (2) Instead of presenting

just a point estimate associated with a standard error, the whole density of the quantity

of interest can be plotted. (3) Comparisons amongst models speci�ed in any form can

be achieved. (4) Forecast uncertainties can be quanti�ed where model uncertainty can

be accounted for. Using MCMC, density forecast can be achieved without extra cost.

Feature (1) is very appealing, especially when estimations of latent variables are

involved. Classical frequentist confront estimation problems when the entertained

models are high dimension. However, with the use of the MCMC method, any model

is tractable with Bayesian approaches. Interpreting the summarized posterior statis-

tics, such as Bayesian credible intervals, is straight forward and intuitive. Feature (2),

presenting the whole density is important since sometimes the parameter of interest

could be multi-modal, skewed and fat-tailed. Appropriate presentations of these prop-

erties are crucial in forecasting, in particular controlling forecast risks when parameter

uncertainties are accounted for. Feature (3) is related to model selections. Unlike

the classical method, the Bayesian approach to testing does not rely on asymptotic or

approximations. Finally, feature (4) relates to the Bayesian forecasting and Bayesian

model averaging (BMA) provides straight forward solutions to combining forecasts

and reducing forecast uncertainties.

In time series modelling, Bayesian and classical methods gives di¤erent answers to

unit root tests. However, even amongst Bayesian econometricians, agreement is not

reached with respect to prior selections and testing procedures. In the 1990s, Nelson

and Plosser�s macroeconomic data is tested in a Bayesian framework by Sims and

Uhlig (1991), Phillips (1991), DeJong and Whiteman (1991a, 1991b), Schotman and

van Dijk (1991), Koop and Steel (1991). Some researchers, such as Kim and Maddala

(1991), try to tackle the disagreements focusing on the prior selections in AR(1) model

with Monte Carlo simulations. Bauwens et al. (1999) summarize this series of unit

root debate and address the following caveats when we apply Bayesian approaches to

modelling time series:

1. Construction of priors is important, because di¤erent priors not only represent

di¤erent prior belief, but also bring about di¤erent properties into the posteriors

via the likelihood function. For illustrations, see Bauwens et al. (1999, pp.174-

192), where the Je¤reys�prior, Phillips�prior, Berger and Yang�s (1994) prior

and Lubrano�s prior are evaluated in the context of a simple AR(1) model.
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2. Speci�cations of deterministic terms matters. Excluding a deterministic time

trend may result in di¤erent inference in the unit roots. See the results in

DeJong and Whiteman (1991a).

3. The initial conditions do not matter in a large sample for a stationary processes,

but do matter in the case of a nonstationary process (Bauwens et al., 1999,

pp.164).

4. When we do testing, or more precisely, model comparison, how the models are

de�ned matters. See examples in Schotman and van Dijk (1991).

In chapter 2, we provide a review in details with respect to comparisons between

the classical approach and Bayesian approach to model estimation, model selection

and forecasting.

Bauwens et al. (1999, Chapter 6) provides intensive illustrations on how to ap-

ply Bayesian techniques with various dynamic econometric models, such as an AR(p)

model in chapter 6, Autoregressive Conditional Heteroscedasticity (ARCH) model in

chapter 7. In particular, chapter 8 provides comprehensive Bayesian inference with

respect to nonlinear time series statistical models, which are the Threshold autore-

gressive (TAR) model and its extensions. For empirical illustrations, they applied a

logistic smooth transition autoregressive (LSTAR) model to analyze the asymmetries

in the US business cycles. Interested readers can also refer to Koop (2007, chap. 17

and 18), which provides details of making Bayesian inference in statistical time series

models, such as stationary AR(p) model, basic TAR and TAR with switches in the

Error Variance, and ARCH model.

1.2 Main Contributions

This thesis focuses on investigating two novel nonlinear models, and providing Bayesian

inference in these models using methods on the frontier of numerical analysis. With

respect to these nonlinear models, a completed toolbox to calculate substantive quan-

tities, such as model estimation, model marginal likelihood calculation and model-

based point and density forecasts, is made available for empirical practice. The ap-

plied methodologies and procedures (programmed with Matlab R2007a) are exten-

sively tested3 and validated on simulated arti�cial data, and then applied to real life

macroeconomic data.

3Sampling e¢ ciency is tested according to Carlin and Louis (2000, pp.182).
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There are a number of main contributions of this thesis that add knowledge to

univariate time series modelling from a Bayesian perspective. On one hand, this

thesis makes contributions to Bayesian econometric computation literature. On the

other hand, by re-visiting three univariate macroeconomic time series, which have

been tested for economic theories by many times, this thesis makes contributions to

the literature of nonlinearity, deterministic time trend and changing persistence in

empirical macroeconomic modelling.

Contributions to Bayesian Econometric Computation:
In chapter 3, in order to handle more complex dependence in time series, the �rst

contribution is that we extend a Stochastic Unit Root (STUR) model, which was

originally proposed by Granger and Swanson (1997), to a Generalised Stochastic Unit

Root (GSTUR) model. Within a Bayesian framework, we apply Markov chain Monte

Carlo (MCMC) methods and developed an e¢ cient4 posterior simulator for this high

dimensional GSTUR model. We solve the problem of estimating high dimensional

latent variables, which cannot be resolved satisfactorily in a classical framework.

On top of the contribution of providing an e¢ cient algorithm to estimate the

GSTUR model, we also provide an algorithm to evaluate the marginal likelihood with

a GSTUR speci�cation following the idea in Chib, Nardari and Shephard (2002).

Because analytical methods for marginal likelihood evaluations are not applicable in

the GSTUR model, the algorithm we developed overcomes the problem of integrating

high dimensional latent variables. This algorithm utilizes a method proposed by Chib

(J. Amer. Statist. Assoc. 90 (1995) 1313) and facilitates an Auxiliary Particle Filter

(APF) proposed by Pitt and Shephard (J. Amer. Statist. Assoc. 94 (1999) 590), where

the advance makes the GSTUR model available to be compared with any model of

interest.

The second contribution is made by providing a complete simulation-based sta-

tistical analyzing toolkit with a focus on a Stationary Bilinear (SB) model within a

Bayesian framework in chapter 4. With respect to the nonlinear time series modelling

discipline, this toolkit makes the SB model easily available for applications.

We propose that the SB model be estimated using the MCMC algorithms we

developed. Validated on simulated data, estimates obtained via Bayesian MCMC

with a loose prior are as equally e¢ cient as the estimates obtained via the Classical

maximum likelihood (ML). With a tight prior, the MCMC provides more accurate

4In this thesis, we used �e¢ ciency� and �e¢ cient� in many places. To clarify: e¢ ciency of an
estimator indicates small variance. Computational e¢ ciency of an algorithm means short execution
time, and e¢ ciency of a simulator means it approximates the target distribution well and yield
estimates of posterior quantities with high RNEs.
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estimates than the ML estimates. For MLE approach to estimate the SB model,

refer to Hristova (2005). Also, we developed an algorithm to evaluate the marginal

likelihood of SB, which utilizes a Gelfand-Dey method. This algorithm for marginal

likelihood calculation allows the SB to be compared with any model of interest, such

as the GSTUR model we proposed in chapter 3, and a linear Random Walk (RW)

model.

An attempt is also made to distinguish a RandomWalk like process, the SB process,

from a Random Walk process using Bayes Factors within a Bayesian framework. We

re-examined the testing power of the Augmented Dickey-Fuller (ADF) and Phillips-

Perron (PP) tests, using a data series simulated from the SB data generating mecha-

nism. We found that the conventional ADF and PP tests perform poorly against the

SB process, providing misleading results of a unit root.

The third contribution is that we add knowledge to the nonlinear model-based

forecast literature in chapter 5. Two strands in the literature, which are forecasting

with nonlinear models in a Bayesian framework and forecast combinations, are brought

together.

In chapter 5, the idea of calculating substantive quantities with the GSTUR and SB

models, such as model-based forecasting, is further developed. The forecast capacities5

of 24 statistical forecasting models are evaluated. The 24 models we considered include

the GSTUR class models, SB model, linear stationary AR models with lag length

selected according to AIC, and a linear RW model. Results show that the GSTUR

forecasting model performs the best with an application of the quarterly UK in�ation

rates.

Regarding the issue of combining forecasts, we revisit the puzzle in the forecast

combination literature and re-raise the question: Does a combined forecast from a

Simple Averaging (SA) approach improve upon those forecasts from individual fore-

casting models, and improve upon a combined forecast from a Bayesian Model Av-

eraging (BMA) approach? Our results is consistent with the argument in Meese and

Geweke (1984), in a sense that SA does not always improve upon the forecasts from in-

dividual forecasting models. A di¤erence between our research and the work in Meese

and Geweke (1984) is that constituent models they considered are linear models, with

a Random Walk as the benchmark model. In our case, the model space contains 21

nonlinear models.

One limitation in chapter 5 is that only 24 models are consider. In applications

with real settings, it is possible that some complex dynamics may not be fully cap-

5The forecast capacity is referred as both the point forecast and density forecast capacities.
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tured, by either any of the constituent forecasting models, or combined forecast, or

neither. Therefore, in future research we may enlarge the model space by taking other

models, such as TAR, Markov Switching, Stochastic Volatility models, into consider-

ation. Another limitation is that the one-step ahead out-of-sample forecast is carried

out for 10 periods only. Therefore, the density forecast evaluation results may be

distorted due to the low testing power against small forecast samples.

Contributions to Discrete Low Frequency Time Series Modelling:
With applications of the toolkits we developed for GSTUR and SBmodels, we made

4 main contributions by adding knowledge to discrete low frequency macroeconomic

time series modelling.

First, the theory of Purchasing Power Parity (PPP) is tested using the UK/US

monthly long run real exchange rates. We propose a GSTUR model for reconciling

the nonstationarity in macroeconomic time series with the PPP theory. We found

persistence has shifts within the sample, along with changes in the monetary events.

Using the same data series, Engel and Kim (1999) applied a Markov Switching model

and identi�ed a permanent component and a transitory component. What they found

is that �the transitory component appears to be driven by temporary monetary phe-

nomena, and the shifts of variance occur at times of historically important monetary

events�. Our research tries to model the real exchange rate data from another per-

spective by looking into the changing persistence, which appears to be correlated with

signi�cant monetary events.

One limitation is that we conclude the correlation between the changing persistence

and the signi�cant monetary events via visualizing a plot. We did not investigate to

what extent the changing persistence and monetary events are correlated.

Second, the existence of a deterministic time trend in an extended Nelson and

Plosser�s data is re-investigated. We address the following questions: how sure are we

that economic time series have deterministic trends if the underlying properties have

changed? With an application of S&P 500 annual data to the GSTUR class models, we

found strong evidence of a deterministic trend and changing persistence according to

the model probabilities of the GSTUR class of models speci�ed with deterministic time

trends. The result of supporting a deterministic trend is consistent with the �ndings in

DeJong and Whiteman (1991a, 1991b). However, given the fact that GSTUR process

cannot be di¤erenced to stationarity, we may conclude that the S&P 500 series we

analyzed is neither trend-stationary series nor a di¤erence stationary process.

One limitation in this empirical application with S&P 500 series is that we did not

evaluate the forecasting capacity of a model speci�ed as a GSTUR with a determin-
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istic trend. Further investigations are needed and the results can be �tted into the

forecasting literature. Hendry and Clements (2003) claim that di¤erence stationary

models produce better forecasts when compared with trend-stationary models. An

interesting question can be asked: if the underlying properties have changed, will the

models excluding a deterministic time trend still produce better forecasts?

A third contribution is made in chapter 4. With an application of the quarterly

UK in�ation data set, we found that the in�ation rate can be better represented by

the SB process compared with a RW process.

A �nal contribution is adding knowledge to the literature of forecasting UK in�a-

tion rates. By �tting a GSTUR model to the quarterly UK in�ation data, we found

the estimated stochastic roots follow entirely di¤erent patterns before and after the

1990s. The evidence of changing persistence in in�ation can also be found in a very

recent working paper by Cogley, Primiceri and Sargent (2008) using the US data6.

With respect to forecasting, our results show that the GSTUR model speci�ed with a

constant represent the best forecast performance in both full sample and small sample.

In previous research, Atkeson and Ohanian (2001) claim that Phillips-curve based

in�ation forecasting models cannot do better than a Random Walk. According to our

results that GSTUR provides better forecast than the RW, which agrees with Watson

and Stock (2007) on the point that in�ation dynamics should be modelled with time-

varying parameter models. A limitation in this regard is that the GSTUR model

we proposed considers changing persistence. However, trend-cyclical components and

stochastic volatility are omitted. More extensions are left for future research and

whether a GSTUR model encompasses other nonlinear models, such as Markov Switch

model or Structure break model, is open to research.

1.3 Abstract and Outline of Chapters

In order to provide a high level overview of Bayesian solutions to the questions we

would like to address in chapter 1.1, Chapter 2 provides a general background of

the Bayesian framework and some computational techniques carried through in this

thesis. The chapter consists of �ve main parts. Firstly, we compare the frequentist

and Bayesian theories in a high level of abstraction, by reviewing their di¤erent ap-

proaches to estimation and hypothesis testing. Secondly, since Bayesian methods are

criticized as being �subjective�with respect to the prior eliciting procedure, we provide

6More precisely, they evaluated the persistence of in�ation gap, which is de�ned as �the deviation
of in�ation from a pure random walk component of in�ation�.
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the Bayesian viewpoints in response to this criticism. Thirdly, we elaborate a com-

monly applied Bayesian estimation method, the Monte Carlo Markov Chain (MCMC)

strategy, and its advantages, included algorithms, as well as its diagnostic methods.

Fourthly, we review the Bayesian literature of developed computational techniques in

terms of model assessment and selection. Finally, since the applicabilities of the mod-

els of interest are our main concerns, we focus on the reviews of Bayesian forecasting

and Bayesian Model Averaging (BMA) in the literature.

Chapter 3 makes use of the novel Generalised Stochastic Unit Root model to in-

vestigate the presence of a deterministic time trend in economic series. The model is

speci�ed to allow for changes in persistence over time, such as shifts from stationarity

( I(0) ) to nonstationarity ( I(1)) or vice versa. This paper proposes a Generalised

STUR model for reconciling the nonstationarity in macroeconomic time series with

the economic theory, such as the Purchasing Power Parity puzzles (see Taylor et al.

2001). The use of the Generalised STUR model is also motivated by the fact that

there is always uncertainty as to whether a macroeconomic series (see Newbold et al.

2001) is trend stationary (TS) or di¤erence stationary (DS) or neither. This uncer-

tainty raises the crucial question about how sure one can be that an economic time

series has a deterministic trend when there is a change in the underlying properties.

In this paper, Bayesian model estimation and Bayesian model comparison techniques

are utilized in an investigation of a deterministic time trend while the time series prop-

erties are relaxed from constant I(1) or constant I(0) to a stochastic unit root process.

An application to the series of Standard & Poor 500 indices (S&P 500) indicates that

in the S&P 500 series, it is plausible that a deterministic time trend exists together

with time-varying persistence (in the form of STUR). A further application to UK/US

long-run real exchange rate also indicates that the STUR model could provide new

insights in time series analysis.

The outline of chapter 3 is as follows: Section 1 provides some puzzles in time series

analysis and motivates the GSTUR model. Following the logic of Bayesian reasoning,

Section 2 develops a posterior simulator to estimate the high dimensional GSTUR

model, evaluates the marginal likelihood, compares amongst a class of GSTUR model

along with a Random Walk (RW) model, and all the developed tools are investigated

in controlled settings using an arti�cial data set. Armed with the tools developed

in Section 2, Section 3 carries out empirical analysis using the two well known time

series: S&P 500 indices from the extended Nelson and Plosser�s data set (Nelson and

Plosser, 1982), and the long run UK/US real exchange rates.

Chapter 4 takes on research of another nonlinear model. In recent years, there has
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been an increasing interest in the study of the nonlinear and non-stationary properties

of macroeconomic and �nancial time series. However, it is di¢ cult to make conclu-

sive decisions on the non-stationarity of a time series as most statistical tests have

low power in distinguishing random-walk-like processes from the Random Walk (RW)

processes. In this paper, Bayesian methods are applied to a stationary bilinear (SB)

model, in which autoregressive (AR) coe¢ cients are restricted within and close to

the boundaries of stationarity, meanwhile the AR coe¢ cients are correlated with the

random error terms. A posterior simulator for model estimation, alongside a toolkit

for model forecasting are developed. By adopting Bayesian approaches, non-nested

model comparisons, amongst the nonlinear SB model and a group of linear models

(RW model, AR (p) models), are easily achievable. With an application to quarterly

UK in�ation rates (1957Q1- 2007 Q1), we found that this stationary bilinear model

could well represent the underlying process of the time series, whilst a unit root cannot

be rejected using the conventional Augmented Dickey Fuller (ADF) test. According

to the Bayes Factors (BF) from the model comparisons results, the SB model receives

a higher model probability compared with a RW model.

Chapter 4 consists of two main parts. In the �rst part, Section 1, we motivate the

Stationary Bilinear (SB) model. Then we provide Bayesian inference with respect to

this statistical model in Section 2 and 3. In the second part, the developed tool pack

is evaluated in Section 4 and applied with the UK�s in�ation rates in Section 5.

Chapter 5 investigates the UK in�ation rates forecasting from a univariate time

series perspective based on 5 sources (Clements and Hendry, 1998) that normally

induce forecast uncertainties: (1) Forecast failure is often due to the inherent non-

stationarity of the data, and future abrupt changes in the underlying system, which

are unpredictable. With an application to the quarterly UK in�ation rates data, we

tried to tackle questions, such as whether nonlinear models are more resilient to struc-

tural breaks than linear models in terms of forecasting, via evaluating one-step-ahead

out-of-sample point forecast performance of a pool of nonlinear and linear statistical

forecasting models. Model spaces consists of the Generalised Stochastic Unit Root

(GSTUR) class models, Stationary Bilinear (SB) model, Random Walk model and

Stationary AR(p) model. We found that, the GSTUR models are better at predict-

ing the point forecasts and providing smaller Mean Squared Forecast Errors (MSFE),

compared with other entertained models in the model space. (2) Model uncertainty is

another source of forecast uncertainty. Combining the forecasts from the constituent

models is a common way to reduce the uncertainty in forecasting practice. This

chapter applies a Simple Averaging (SA) and a Bayesian model averaging (BMA)
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approach to combining forecast densities of the constituent forecasting models. (3)

Mis-measurement of the data in the base period from which forecasting begins also

causes forecast uncertainties. To answer the question, such as whether we should sim-

ply abandon partial historical data when a structural break is detected in the series,

we forecast the same period from 2004Q4 to 2007Q1 based on the same forecasting

models using two di¤erent historical samples. One is the full sample of data (Q1 1957-

Q1 2007) with 201 observations and the other is a sub-sample of the data (Q4 1999-Q1

2007) with 30 observations after the independence of the Bank of England. Our �nding

is that although a structural break may induce bigger forecast errors, the lack of data

will induce larger forecast uncertainties according to the in�ated variance of simulated

forecast distribution when the small sample is applied. (4) Forecast uncertainties are

also due to the inaccuracies in the estimates of the model�s parameters, and (5) the

cumulation of future errors (or �shocks�) to the economy. We constructed density

forecasts of the proposed forecasting models via simulations to quantify the forecast

uncertainties induced by sources (4) and (5). The density forecasts are evaluated with

a Probability Integral Transform (PIT) approach. Finally, a tool kit, which includes

constructing point and density forecasts of GSTUR, SB, RW and AR(p) model, com-

bining forecasts via SA and BMA approaches, evaluating forecast results, graphic tools

to present forecasts, is prepared for forecast practitioners.

Chapter 5 is organised as follows: section 1 provides a brief review of current

forecasting puzzles we encountered in the economic discipline and a list of questions

we would like to investigate in the chapter. Section 2 introduces the methodologies

applied in chapter 5, which includes issues related to forecast constructions, combining

forecast and forecast evaluations. Section 3 presents the statistical forecasting models

in the model space and forecast algorithms. Section 4 applies the methodologies

reviewed in section 3 to the UK in�ation rate data. Section 5 concludes.

Finally, we summarize the main �ndings of the thesis in chapter 6. Also we make

suggestions for future research.
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Chapter 2

A Survey of Bayesian Techniques

This Chapter aims to provide a general background to the Bayesian framework, and to

motivate the application of to the Bayesian method for statistical analysis. In Section

1, some fundamental concepts of the Bayesian framework are introduced and the

di¤erences between using the classical frequentist approach and the Bayesian approach

to making statistical inference are brie�y reviewed. Section 2, addresses the criticisms

of Bayesian prior selections, and some solutions to the prior elicitations are surveyed.

Section 3 provides the Bayesian solution to model estimations: the Markov Chain

Monte Carlo (MCMC) method. The sampling techniques that we reviewed will be

intensively applied in later chapters. Section 4 focuses on Bayesian solutions to model

selections, and Section 5 reviews the perspectives of Bayesian forecasting and Bayesian

Model Averaging.

2.1 Preliminaries

This section aims to provide and compare some fundamental issues regarding the fre-

quentist inference approach and the Bayesian inference approach to statistical analysis.

After a short introduction to the nature of the Bayesian approach, hypothesis testing

and point estimations in both frameworks are reviewed.

The main di¤erence between the frequentist and the Bayesian statistical philoso-

phies is based on the understanding of probabilities. In the frequentist framework,

probabilities are handled within well de�ned random repeated experiments and the

probability of an event to occur depends on the limiting relative frequency in a large

number of future hypothetical experiments. One of the main criticisms of the frequen-

tist approach is based on non-repeatable experiments, in the sense that we may not

be able to prove or refute the propositions we are holding.
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In the Bayesian framework, probabilities are regarded as �degrees of belief �such

that we can �associate numerical probabilities with degrees of con�dence that we

have in propositions about empirical phenomena�(Zellner (1971, pp.9)). Therefore,

the uncertainties attached to an event can be quanti�ed with some form of numerical

standards and revised according to the available information. Also preferences between

options can be compared. This quanti�cation approach to uncertainties is described

as �quantitative coherent�, which is addressed by Bernardo and Smith (1994, pp.444)

in terms of �... an axiomatic foundation which guarantees quantitative coherence�.

For example, when we consider a claim about the validities of the outcome of the next

random experiment, while the frequentist conclude that the claim is �probably valid�

or �probably not valid�, the Bayesian may provide to what extent the �validity� is

conditional on un-neglectable priori knowledge and data information.

While the frequentist approach is criticized for associating the probabilities to the

data �too tight�based on the limiting relative frequency, the Bayesian associates the

probabilities to the data and prior belief in a consistent manner simply based on Bayes�

theorem and a few probability rules. If we have a belief in the model M , the initial

information is I0, and denote the new data information as y, the degree of our original

belief, �prior�p (M j I0), could be adapted to the �posterior�p (M j y; I0) via the Bayes�
theorem, which is expressed as the following:

p (M j I0; y) / p (M j I0) p (y jM)

where p (y jM) is the probability density function of the new data conditional on

model M . Because of the nature of the Bayesian approach, the posterior believes

are adaptive and are always revised, which makes the inference logically consistent.

Besides its adaptive characteristic, the Bayesian approach is operational and uni�ed,

unlike some non-Bayesian approaches that require special techniques and principles

for di¤erent problems. Zellner (1971, pp.11) makes the point that �analyzing time

series, regressions, simultaneous equation models in Bayesian framework all share the

same approach and principles�.

After clarifying some Bayesian fundamentals, it is important to compare the dif-

ferent ways that the frequentists and Bayesians solve problems such as estimating and

hypotheses testing.

With respect to estimation, the frequentist focuses on the con�dence interval esti-

mation, while the Bayesians focus on the credible interval estimation. The frequentist

believes that some �xed and unknown parameters exist objectively. For instance, we
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assume the life time of batteries generated from a machine are identical and indepen-

dent, following a normal distribution with a mean �0 and variance �
2
0. Given the fact

that we would not know the exact values of �0 and �
2
0, we can estimate b� and b�2 by

randomly selecting a sample of batteries with a �nite size. A 1�� con�dence interval
of b� can be evaluated and expressed in a form of �1 < � < �2. Therefore, this esti-

mated interval is a realization of a random interval from a distribution of con�dence

intervals. If we repeat the random sampling from the same population and calculate

all the other con�dence intervals in the same manner, the true mean �0 will lie in

these con�dence intervals a proportion 1 � � of the time. However, the statement
that the true mean �0 has a 1 � � probability of being in an estimated con�dence
interval �1 < � < �2 is not appropriate, since the population mean �0 is either in this

estimated con�dence interval or not. In other words, the probability that a particular

con�dence interval contains the true mean �0 is either 1 or 0. Accordingly, we can only

say the estimated interval �probably�covers the population mean �0 but we cannot

tell what the probability is.

The Bayesian also believes that a true �xed value of the parameters exists. Because

we do not know the true value of the parameters, �0 and �
2
0 are viewed as random

variables. A non-informative prior density, denoted as p (�0; �
2
0), can be assigned

to �0 and �
2
0 as our state of ignorance before the data is obtained, where the non-

informative indicates little �priori�knowledge. Given the data y, and a probability

model p (y j �0; �20), we can calculate a 1 � � credible interval, which is sometimes
referred as the highest posterior density interval (HPDI) according to the posterior

density p (�0; �
2
0 j y). Conditional on the �priori�statement and the data information,

we can make a statement that this credible interval contains a proportion 1�� of the
total posterior probability. Therefore, when the non-informative prior is used, though

the Bayesian credible interval and the frequentist con�dence interval provide the same

numerical answers, they have very di¤erent interpretations.

Similarly, for point estimations, when a non-informative prior is applied in the

Bayesian framework, the frequentist provides identical numerical point estimates for

most of the time. When the information is updated, the frequentist approach is

often criticized for being incapable of �taking advantage of the additional knowledge�

(Berger 1985, pp.139). On the contrary, the Bayesian approach �does re�ect the

bene�ts of the added knowledge�(Berger 1985, pp.139)1. For more details concerning

the estimation issues in the frequentist and Bayesian approaches, readers may refer to

1Berger (1985, pp138-139) uses Example 7 to illustrate the di¤erences of point estimation in
frequentist and Bayesian.
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Berger (1985, pp.140-145), Box and Tiao (1992, pp.84-86), Bernardo and Smith (1994,

pp.259) and Zellner (1971, pp.24-28).

Regarding the hypotheses testing, we focus on the testing of a point null hypoth-

esis. Hypothesis testing in the frequentist approach substantially di¤ers from that in

the Bayesian. In the frequentist method, hypothesis testings are involved with error

probabilities, normally referred as Type 1 error and Type 2 error. Consider a situation,

in which we want to test the unknown population mean � equals to 0, presumably

the population �2 is known as 1 and we choose a signi�cance level at � = 5%. The

following hypotheses are to be tested:

H0 : � = 0

H1 : � 6= 0

Following the frequentist testing procedure, we can randomly collect a sample and

calculate the P-value. The P-values are interpreted in a way that a small P-value

indicates an evidence against the null hypothesis. The null hypothesis is rejected if

P-value is smaller than a speci�ed Type 1 error rate, 5% in this case. The frequentist

will report that the hypothesis of � = 0 is rejected, that H0 hypothesis is �probably�

not true. However, we do not know how strong the evidence is against the H0 hy-

pothesis. Moreover, the classical approach encounters di¢ culties in testing non-nested

hypotheses, as normally H0 is required to be nested within H1. Last but not least,

frequentists are criticized in terms of philosophical reasoning. Given the nature of

P-values, unobserved extreme numbers play important roles upon the decision making

even if the these numbers did not occur2. Carlin and Louis (1996, pp.8) state �.. this

violates the Likelihood Principle...frequentist test results actually depend not only on

what is observed, but also on how the experiment was stopped�.

In the Bayesian framework, the terminology to deal with hypotheses is �comparing�

rather than �testing�. Therefore, decision makers can have an option to choose either

the H0 or the H1 based on the posterior probabilities p (H0 j y) and p (H1 j y), where
the posteriors p (H0 j y) and p (H1 j y) are merely the updated prior belief of p (H0)
and p (H1) conditional on the data information y. Since the posterior probabilities

can be calculated numerically and represent degrees of belief in di¤erent propositions,

the decision maker can then make explicit conclusions of not only which proposition

is preferred but also to what extent the proposition is preferred in a quantitative

2Please see Carlin and Louis (1996, pp8) Example 1.2, based on two di¤erently designed experi-
ments, the P-value di¤ers although the two experiment have identical likelihood functions.
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manner. Furthermore, Bayesians do not su¤er from problems when comparing non-

nested models. Based on the quanti�ed degree of belief, a group of propositions can

be ranked and compared according to the posterior probabilities via Bayes Factors.

This will be discussed in more details in Section 4 with respect to model selection in

the Bayesian framework.

Talking about sharp point null hypothesis testing, the frequentist and Bayesian

could provide entirely di¤erent answers. This is illustrated by Zellner (1971, pp.303-

305). When the H0 is rejected by the classical approach according to the conventional

statistics at P�value = 0:05, the posterior probability p (H0 j y) could be substantially
large that no evidence is provided against H0 under certain speci�ed priors. In a more

extreme case, if the sample size becomes very large, the P-value will be so small that

H0 is rejected classically. However, the posterior probability p (H0 j y) could be close
to 1 supporting the H0 hypothesis. This surprising result is referred to �Lindley�s

paradox�or �Je¤rey�s paradox�. Details about hypotheses testing in the frequentist

and Bayesian approaches can be found in to Berger (1985, pp.145-157), Zellner (1971,

pp.291-306).

2.2 Prior Elicitations

This section reviews the prior elicitation methods and some con�icting views and

arguments in the literature. In this thesis, all elicited priors are proper and most of

them are conjugate priors. Thereby, it is necessary to explain brie�y why and how the

priors are elicited. Detailed prior elicitations for di¤erent entertained models shall be

discussed in future Chapters respectively.

The nature of Bayesian inference relies on the prior belief p (M j I0) about various
possible hypothesis and the un-neglectable data information y. A prior represents

a �priori� belief that exists before the data is available. The priors play a central

role in Bayesian analysis. Because the approach to choosing a prior distribution may

di¤er among various researchers and di¤erent reasonable priors will result in di¤erent

answers, Bayesian analysis is often criticized as being �subjective�.

Bayesians respond to the criticism mainly in the following ways: (1) Select non-

informative priors that are the least �subjective� so that inference in the posterior

will solely depend on the current data information. (2) Carry out the prior sensitivity

analysis, or �robustness analysis�by employing di¤erent priors. If all reasonable priors

yield similar results, problems such as selecting what prior will receive less concern.

Berger (1985, pp.77-104) provides a variety of approaches to select both the non-
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informative and informative priors. Non-informative priors can be applied when no

priori information is available. Zellner (1971, pp.41-53) proposes choosing a di¤use

prior and provides many examples of the use of non-informative priors. There are

some criticism about the use of non-informative priors when they become improper.

The improper priors are with in�nite variances so that the probability density does

not integrate to 1. First, it is argued that the Likelihood principles maybe violated

by the use of improper priors (Geisser, 1984). Second, the �marginal posterior distri-

butions are found to have an un-Bayesian property�(Dawid, Stone and Zidek (1973))

when improper priors are employed. This problem is known as the �marginalization

paradox�. Third, a non-integrability of the posterior may arise with an improper prior

(see Wago, 2003), because we cannot always obtain a proper posterior when a non-

informative prior is applied. In this thesis, to avoid non-integrability problems in the

posterior, all priors applied are proper.

For computation simplicity, we would like to choose some prior distributions p (�)

that is conjugate to the likelihood p (y j �). Under these priors, the posterior distrib-
utions p (� j y) share the same distribution as the priors. Also, these priors have the
same functional form as the likelihood function. These priors are referred to as natural

conjugate priors. When the entertained model is highly dimensional, we can assign

independent conjugate priors to each parameter. Accordingly, corresponding conju-

gate forms of each conditional posterior can be obtained. Even in high dimensional

settings, the conjugate priors can produce unidimensional conditional posteriors in a

closed form (see Carlin and Louis (2000, pp.27)). This feature of conjugate priors is

very important when the Markov chain Monte Carlo integration techniques are heav-

ily employed to construct conditional posterior distributions from the joint posterior

distributions. Since the natural conjugate prior share the same functional form as

the likelihood function, the interpretations of eliciting natural conjugate priors are

reasonable. Koop (2003, pp.18) indicates that �the natural conjugate priors can be

interpreted as arising from a �ctitious data set from the same process that generate

the actual data�. Exponential families have conjugate priors, such as the normal dis-

tribution, Gamma distribution and the Chi-square distribution (see Morris, 1983). In

this thesis, most of the priors elicited are conjugate priors.

Since we prefer to elicit proper priors that could adequately re�ect available prior

information, the assessment of prior density functions as to what values should be

chosen in the corresponding informative conjugate prior distributions becomes crucial.

Berger (1985, pp94-104) introduces the marginal distribution method to determine the

prior distributions. Therefore, actual values can be applied to determine the priors.
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We adopt the idea that priors should provide good predictions of what we think the

data would look like. Thus, in this thesis, we carried out experiments and simulated

data from the priors based on the parametric model to help eliciting the priors, based

on the idea that �ctitious data generated from the prior could mimic the actual data

to a certain extent.

2.3 Bayesian Estimation

Section 1 has compared the estimation procedures in the frequentist and the Bayesian

framework. This Section reviews the Bayesian estimations by focusing on a commonly

applied numerical approximation method: Markov chain Monte Carlo (MCMC). First,

we introduce the motivation of applying MCMC. Second, we present four conventional

MCMC sampling algorithms, which are later on applied in Chapters 3, 4 and 5. Third,

the MCMC diagnostic methods applied in this thesis are reviewed.

2.3.1 The Motivation of Applying Markov chain Monte Carlo

In the Bayesian framework, estimations for parametric models involves evaluations

of marginal densities of each parameter from the joint posteriors density. Therefore,

evaluation of integrals from the posterior conditionals provides the fundamentals for

Bayesian inference. In low-dimension parametric models, the integrals can be obtained

analytically. However, in high-dimensional models, complex integrals are hard to

achieve in closed form, and thus must be evaluated numerically. Thanks to modern

computing power, sampling-based methods have been dramatically developed in recent

years to solve numerical integration problems in empirical Bayes analysis. The MCMC

method for numerical approximations is commonly applied, where a posterior can be

simulated from a certain Markov chain. Gelfand and Smith (1990) and Tanner and

Wong (1987) point out that, in the context of empirical Bayes analysis, estimations

via simulation has been virtually revolutionized by the Markov chain Monte Carlo

method. Chib et.al (2002) o¤ers the following illustration for the MCMC

..., the posterior distribution is sampled by simulation methods and the

draws generated from the simulation are used to summarize the posterior

distribution. The simulation is conducted by devising, and simulating,

the transition density of an irreducible, aperiodic Markov Chain whose

invariant distribution is the target posterior distribution.
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We are motivated to apply MCMC because of its obvious advantages, which are

demonstrated in Geweke (1989), Carlin and Chib (1995): simulations via MCMC

techniques could not only shed light on the distribution properties for any feature of

interest, but also be diagnosed. We will elaborate the above statements at the end of

this paragraph. Also, in Jun S. Liu (2001, pp.245) �one advantage of MCMC sampler

is that the sampler can produce desirable random samples from a target distribution

by making a series of local changes to an arbitrary initial state�.

First, we introduce the advantage of MCMC applications in highly parameterized

models. Compared to classical estimation, a distinct advantage of Bayesian estima-

tion via the MCMC method is that simulation of posterior distributions is generally

applicable to any model with complexity (Carlin and Chib 1995, Geweke 1989). In

the classical framework, estimations can be carried out via maximum likelihood (see

Sowell for example with an application to ARIMA, 1992), approximate maximum like-

lihood (Fox and Taqqu 1986, Li and McLeod 1986) and two-step procedures (Geweke

and Porter-Hudak 1983). However, the frequentist always encounters problems if the

parameter space in the entertained model is highly dimensional, especially when the es-

timations of latent variables are involved. Moreover, the maximum likelihood method

is not always easy to conduct and estimations from the approximate maximum like-

lihood sometimes result in inconsistency. In the Bayesian framework, as long as the

posterior moments exist, estimations can be achieved with the applications of MCMC,

regardless of how highly parameterized the model is. Given enough replications, the

numerical approximation of posterior moments converges almost surely to the true

value, and the numerical accuracy of this numerical approximation can be diagnosed

(see Carlin and Chib 1995, Geweke 1989). The MCMC convergence and accuracy

diagnostics will be introduced in Section 3.3.

Second, simulations via MCMC techniques can also shed light on the posterior

distribution properties. With the sampling outputs from a certain Markov chain, we

can visualize the distribution of the parameter of interest by plotting the histograms of

the sampled draws. Posterior moments and quantiles, mean that it is straight forward

to make inference from the simulated distribution.

2.3.2 Sampling Algorithms

Substantive Monte Carlo strategies have been developed and applied in scienti�c com-

puting, please refer to Jun S. Liu (2001) for detailed reviews. In this section, we

provide brief reviews of some commonly applied MCMC algorithms, which are applied

in this piece of research.
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1. Gibbs Sampling Algorithm
The Gibbs sampler (Geman and Geman, 1984) is one of the most straightforward

MCMC schemes to simulate the posterior distributions, where sequential draws are

randomly drawn from the posterior conditionals. In this thesis, the Gibbs sampling

algorithm will be applied extensively in Chapters 3 and 4.

In Liu (2001, pp.129-150) and Carlin and Louis (2000, pp.141-142), the Gibbs

sampling algorithm is outlined as follows:

In the Bayesian context, we always encounter the joint posterior distributions

p (x1; � � � ; xk j y) with k variables, where the full or complete conditional distributions
p (xi j xj 6=i; y) with i = 1; � � � ; k, are available for sampling. However, our interest is
in the marginal posteriors for p (xi j y) ;with i = 1; � � � ; k. Given an arbitrary set of
starting values

n
x
(0)
1 ; � � � ; x

(0)
k

o
, the Gibbs sampling algorithm proceeds as follows

Get a random draw x(1)1 � p
�
x1 j x(0)2 ; � � � ; x

(0)
k ; y

�
;

Get a random draw x(1)2 � p
�
x2 j x(1)1 ; x

(0)
3 ; � � � ; x

(0)
k ; y

�
;

...

Get a random drawx(1)k � p
�
xk j x(1)1 ; x

(1)
2 � � � ; x(1)k�1; y

�
The �rst iteration of the scheme is completed when we have vector

x(1)=
�
x
(1)
1 ; � � � ; x

(1)
k ; y

�0
. After S iterations, we can have S vectors

x(j) =
�
x
(j)
1 ; � � � ; x

(j)
k ; y

�0
, where j = 1; � � � ; S. If we discard the initial S0 vectors, the

remained chain of
�
x
(S0+1)
i ; � � � ; x(S)i

�0
will be considered as valid random draws from

p (xi j y), where i = 1; � � � ; k.
2. Metropolis-Hasting Algorithm
Very similar to the Gibbs Sampling Algorithm, the Metropolis-Hasting (M-H) al-

gorithm is one of the most widely applied MCMC methods. The simplest form of the

M-H algorithm is called the Metropolis algorithm, which was introduce by Metropolis

et al. (1953). The Metropolis algorithm is generalized by Hastings (1970) and the al-

gorithm is called the Metropolis-Hasting algorithm thereafter. We brie�y summarize

the M-H algorithm here (see Liu 2001, pp.115, Carlin and Louis, 2000, pp.152 and

Koop 2003, pp.92 for detailed reviews).

The main feature of the M-H algorithm is a selection of a candidate generating

density. The MCMC e¢ ciency using M-H algorithm depends heavily on the choice of

the candidate density.

Suppose the joint posterior density is denoted as p (x j y), where x =x1; � � � ; xk.
We can select a candidate density denoted as q (�), from where candidate draws x�are
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taken. Given an arbitrary set of starting values x0 =
�
x
(0)
1 ; � � � ; x

(0)
k

�0
, the M-H

sampling algorithm is conducted as follows:

1. Take a candidate draw, x� from the candidate generating density q
�
x(s�1);x

�
,

which indicates the density q
�
x(s�1);x

�
depending on the previous state in the

Markov chain x(s�1).

2. Calculate an acceptance probability,

�
�
x(s�1);x�

�
= min

"
p (x = x� j y) q

�
x�;x = x(s�1)

�
p (x = x(s�1) j y) q (x(s�1);x = x�) ; 1

#
;

where p (x = x� j y) is the posterior density evaluated at x�, while
q
�
x�;x = x(s�1)

�
is the q (�) density evaluated at x = x(s�1).

3. Set x(s) = x� with probability �
�
x(s�1);x�

�
and set x(s) = x(s�1)with probability

1� �
�
x(s�1);x�

�
.

4. Do steps 1, 2 and 3 S times and discard the initial S0 draws.

Other evolutive M-H algorithms have been developed based on the M-H sampling

algorithm, such as the Independent Chain M-H sampling. The Independent Chain

M-H sampling does not require the candidate generating density depending on x(s�1).

When a convenient approximation to the posterior exists, the convenient approxima-

tion can be used as a candidate generating density. Then, the acceptance probability

simpli�es to

�
�
x(s�1);x�

�
= min

"
p (x = x� j y) q�

�
x = x(s�1)

�
p (x = x(s�1) j y) q� (x = x�) ; 1

#

3. Griddy-Gibbs Sampling Algorithm
The Griddy-Gibbs sampling algorithm can be applied when the full conditional

posterior density is not available. Griddy-Gibbs Sampling is extensively discussed in

Ritter and Tanner (1992). Bauwens and Lubrano (1998) show that the Griddy-Gibbs

sampler works well in practice with GARCH models. Here, we brie�y introduce the

Griddy-Gibbs sampling algorithm and its areas of application.

The idea of Griddy-Gibbs sampling is simple: Suppose we have a non-standard

posterior that we wish to obtain random draws from, the density can be approximated

on a grid of points. Then, we can apply the Inversed cdf sampling method to obtain
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random draws from the approximated posterior density. The Griddy-Gibbs sampling

algorithm is conducted as follows (please see details in Ritter and Tanner (1992) ):

1. Set the number of grid points as n and evaluate posterior densities p (XijXj; y) ;

where i 6= j; at n number of discrete points Xi = x1; x2; � � � ; xn. Then, we have
the posterior densities w1; w2; � � � ; wn evaluated at x1; x2; � � � ; xn.

2. Use w1; w2; � � � ; wn to obtain an approximation to the inverse cdf of p (XijXj; y),

where i 6= j.

3. Get a random draw from a uniform distribution u � fU (0; 1).

4. Find the point xi, at which the approximated cdf corresponding to

p (XijXj; i 6= j) equals to u. Then, xi is a valid random draw from p (XijXj; y).

There are 5 important remarks to be made regarding to the Griddy-Gibbs sampling

algorithm, which are summarized as follows:

(1) The function p (XijXj; i 6= j) needs be known only up to a proportionality
constant.

(2) The grid x1; x2; � � � ; xn need not to be uniformly spaced.
(3) The number of points in the grid need not to be constant over the iterations of

the Gibbs sampler.

(4) Over an unbounded interval it is important to compare w1 and wn to

M = max(w1; � � � ; wn) If w1 > f � M , where 0 < f < 1, the grid must be aug-

mented with points to the left of x1; if wn > f �M , the grid must be augmented with
points to the right of xn.

(5) Simple approximations to the inverse cdf are (a) Piecewise constant correspond-

ing to a discrete distribution for p (xi) = wi
nP
j=1

wj

(b) Piecewise linear corresponding

to a piecewise uniform distribution on the interval [ai; ai+1], i = 1; � � � ; n � 1 with
xi 2 [ai; ai+1] and density fi = wi

nP
j=1

!j

, where !j = wi � (ai+1 � ai). Typically, xi is the

mid-point in the interval[ai; ai+1] :

4. Other Sampling Algorithms
The sampling algorithms introduced above can be easily applied in practice. For

other sampling algorithms and their applications, please refer to Liu (2001), which

provides detailed and extensive reviews of Monte Carlo strategies.
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2.3.3 MCMC Diagnostics

Since the MCMC algorithms are in fact plans for moving a point around its sample

space, a proper MCMC algorithm should satisfy the following two criteria: (1) We

have to make sure the point�s movement leaves the target distribution invariant. (2)

Further to this, we have to provide su¢ cient samples so that the target distribution

could be represented and simulated, where �su¢ cient�means that at a time T the

MCMC algorithm has converged. In Carlin and Louis (2000, pp.172), if an MCMC

algorithm converges at time T , �no pre-convergence, or burnt-in, samples should be

retained for subsequent inference�. According to Carlin and Louis, in practice, �safely�

is taken as �no pre-convergence samples should be retained for subsequent inference�,

where the pre-convergence samples is also often referred as burnt-in samples. In other

words, the stopping rule for a MCMC algorithm is that the convergence of MCMC

must be achieved after the burn-in. Carlin and Louis (2000, pp.172) demonstrate

why a MCMC algorithm may be expected to converge using a simple bivariate two-

compartment model.

With respect to MCMC diagnostics, one of the most frequently cited papers is

Geweke (1992), titled �Evaluating the accuracy of sampling-based approaches to the

calculation of posterior moments�. Geweke�s idea lies in the assumption that the

chain can be treated as a time series. Concerning various approaches to diagnosing

the convergence in the MCMC, Cowles and Carlin (1996) provides a comprehensive

review of the Markov chain Monte Carlo convergence diagnostics in the Journal of the

American Statistical Association.

Following Carlin and Louis (2000, chapter 5.4.6), in this section, we provide a brief

review and references of the (a) common causes of convergence failure, (b) diagnostic

tools used to make stopping decisions for MCMC algorithms. For understandings

of Monte Carlo Strategies in depth, Liu�s book (2001) �Monte Carlo Strategies in

Scienti�c Computing�o¤ers comprehensive reviews in this regard.

(a) In general, the convergence failures are mostly due to the high autocorrela-

tions in the realized sample chains. The high autocorrelations and slow convergence

normally occur when the model is so large that the model is overparameterized. In

Carlin and Louis (2000, pp.175 line 10), �Overparameterizations typically lead to high

posterior correlations among the parameters and, therefore, high crosscorrelations will

retard the movement of the Gibbs sampler through the parameter space�.

LeSage (1998, pp.161) stress that � a high degree of autocorrelation indicates that

we may need to carry out more draws to achieve a sample of su¢ cient size to draw

accurate posterior estimates�.

26



(b) As Carlin and Louis (2000, PP.177 line 11) pointed out, theoretical convergence

bounds and perfect sampling strategies3 are di¢ cult in practical use, �almost all of the

applied work involving MCMC methods has relied on the applications of diagnostic

tools to output produced by the algorithm�. References of a few of other methods can

also be found in Carlin and Louis (2000, pp.178).

However, we have to emphasize that no diagnostic can �prove�convergence of a

MCMC algorithm. Because whatever the diagnostic is, it only use a �nite realization

from the chain. Cowles and Carlin (1996) summarize that all diagnostics are fun-

damentally unsound. We use the diagnostic tools to analyze the convergence in the

MCMC, same as other statisticians, simply because that �a weak diagnostic is better

than no diagnostic at all�(Carlin and Louis, 2000, pp.178 line 12).

There are various methods to see whether the estimated results from the MCMC are

reliable. Di¤erent MCMC diagnostics are applicable in regards to their diagnostic goals

and dimensionality of the posteriors. Carlin and Louis (2000, pp.179) reviewed several

diagnostics with respect to di¤erent characteristics. In the end, they summarized the

diagnostic strategy, which was recommended by Cowles and Carlin (1996).

Following the recommendation in Carlin and Louis (2000, pp.182) in general, the

MCMC diagnostics are carried out with the following strategy:

1. Run 3-5 parallel chains with di¤erent starting points drawn from a distribution

believed to be overdispersed with respect to the stationary distribution (say,

covering �3 prior standard deviations from the prior mean). The �rst 10%�20%
of the chain is discarded as the burnt-in, whereas the rest of the chain is retained

for inference (For discussions in regard to overdispersed initial conditions and

burn-in, please refer to Gelman and Rubin (1992)).

2. Inspect the chains by plotting the sampled values from the MCMC algorithm.

3. Provide the correlograms of the sample draws in a sense that correlation rates

are a useful tool for MCMC e¢ ciency diagnostics. In Liu (2001, pp.130), as

the sequential draws from the MCMC are correlated, the convergence speed

depends on the correlation rates between the iterations. In practice, putting

variables that are highly correlated into blocks can help to improve e¢ ciency,

e.g. MCMC sampling scheme for Stochastic Volatility models developed by Chib

et al. (2002).

3In Carlin and Louis (2000, pp.176), �perfect sampling� refers to MCMC simulation methods,
which can guaranee that a sample drawn at a given time will be exactly distributed accoridng to the
chain�s stationary distribution.
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4. Calculate Numerical Standard Errors (NSE), Relative Numerical E¢ ciency

(RNE) and Convergence Diagnostic (CD) values using the retained samples.

NSE is a measure of the precision of the Monte Carlo estimate. In Geweke

(1992) section 3.1, given the idea that the chain can be treated as a time se-

ries fG (j)g with power spectrum SG ($), the corresponding numerical standard
error (NSE) of the estimate is: NSE =

h
R�1cSG (0)i1=2where R�1SG (0) is the

asymptotic variance of fG (j)g, SG (0) is the spectrum of fG (j)gat 0 frequency,
estimated as cSG (0) and R is the Monte Carlo sample size. According to LeSage
(1998, pp.164), �RNE estimates provide an indication of the number of draws
that would be required to produce the same numerical accuracy if the draws

represented had been made from an iid sample drawn directly from the posterior

distribution.�Geweke (1992) promotes the use of the RNE as a measure for the

quality of a correlated sample, where RNE is the ratio between the empirical

variance of the sample and a correlation-consistent variance estimator. Accord-

ing to Geweke (1992), RNE =dvar [g (�)] =cSG (0) :The RNE does not depend on
the number of iterations taken from the sampler. �Positive serial correlation of

fG (j)g renders the Gibbs sampling estimator less e¢ cient, and negative serial
correlation in fG (j)g renders it more e¢ cient�(Geweke, 1992). CD is assess-

ing the convergence of the chain. The CD value is also proposed by Geweke

(1992), the MCMC is converged as long as the absolute CD value is smaller than

1:96. In Koop (2003, pp.66), the �CD value can be calculated and compared

to critical values from a standard Normal statistical table�. Also, in Geweke

(1992), equation 3.1. The formula of calculating CD values are given on pp.33.

(For details of the usage of NSE, RNE and CD, please see Geweke (1992), Koop

(2003, pp.64-68) and Appendix A).

In this thesis, MCMC algorithms are diagnosed following the above steps.

2.4 Model Selections

Model selection should best be viewed as a decision problem (Draper 1999 and Hoeting

et al. 1999). In the Bayesian context, we review the model assessment and selection

procedure in this section. Regarding questions such as how the selection of priors a¤ect

the model selection decision, how to compare entertained models based on the data

information and how to make the ultimate decision in the model selection. Some com-

putational methods involved for model assessment are reviewed, and are intensively

applied in future chapters.
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First, model assessment in the Bayesian framework is achieved by the Bayes Factors

Bij (choice between model Mi and model Mj), which is also known as the marginal

likelihood ratio

Bij =
p (y jMi)

p (y jMj)

where p (y jMi) and p (y jMj) are the marginal likelihoods in the light of available

data based on modelMi andMj respectively. Any models of interest can be compared

as long as their marginal likelihoods are achievable. Therefore, using the marginal like-

lihood for model selection is conceptually the simplest. Further, rather than presenting

pairwise comparisons, the �t of the entertained models in any form can be inferenced

via the marginal likelihood, while these inference or tests in the classical framework

are always di¢ cult to attain.

In practice, the ultimate decision of model selection among a group of entertained

models will depend on the model�s marginal likelihood based on the data.

Bayes Factors for model comparison have many advantages. Interested readers

are directed to Kass and Ra¤rey (1995) who provide comprehensive reviews of Bayes

factors. In regard to the nonlinearity issue in time series modelling, Koop and Potter

(1999) state that, �the Bayesian is forced to specify the types of nonlinearity that

he/she expects to occur and only if the nonlinearity occurs as expected will the Bayes

Factors favour the nonlinear model... This is a positive development since it forces the

econometricians to think carefully about the underlying economic theory�4.

The connection between the Bayes factor Bij and the posterior odds ratio
p(Mijy)
p(Mj jy)

are expressed as the following

p (Mijy)
p (Mjjy)

=
p (y jMi) p (Mi)

p (y jMj) p (Mj)
= Bij

p (Mi)

p (Mj)
(2.1)

where p(Mi)
p(Mj)

is known as the prior odds ratio. If all models are treated as �priori�

equally likely, the prior odds ratio equals one. Consequently, the posterior odds ratio

equals the Bayes factor. In the cases that the prior odds ratio does not equal unity,

such that we have di¤erent preferences over di¤erent models in the prior belief, a choice

between model i and j should be based on calculations of the Bayes factors.

The strength of evidence in favours of model Mi versus Mj is evaluated according

to the Bayes factor scale in Table (2.1) under Je¤reys�s classi�cations:

4These issues are discussed on a more general level in Poirier (1995), Chapter 10.
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Table 2.1: Je¤reys Interpretation of Bayes Factors

Bij > 1 Support for Mi

10�
1
2 < Bij < 1 Very slight evidence against Mi

10�1 < Bij < 10
� 1
2 Slight evidence against Mi

10�2 < Bij < 10
�1 Strong to very strong evidence against Mi

Bij < 10
�2 Decisive evidence against Mi

Since the Bayes factor is the fundamental tool for model selection in the Bayesian

context, it is intuitive to calculate the marginal likelihood of all entertained models and

calculate the model probabilities. Using the compound probability rule, the marginal

likelihood can be calculated by numerical integration

p (y jMi) =
R
�

p (y jMi;�) p (� jMi) d� (2.2)

where � denotes the parameters in Mi. However, when Mi is highly parameterized,

the calculation from (2.2) will rarely be available in closed form. However, modern

computational methods (i.e. the MCMCmethod) facilitate the development of applied

Bayesian in the context of nonlinear modelling. For many high dimensional nonlinear

models, estimations always involve MCMC in practice, which require some form of

sampling to evaluate the posterior distributions of interest. This means that common

model checks will be available at little extra cost when the posterior simulator is

available.

The calculations of Bayes factors via marginal density estimations have been re-

viewed in Kass and Raftery (1995), Carlin and Louis (2000, pp.204-210), Han and

Carlin (2001), which include all of the computational methods described below.

1. Monte Carlo Integration with Observations from the Prior
It is often referred to a direct method, when we generate observations directly from

the prior to estimate the entertained model�s marginal likelihood. Recall the numer-

ical expression of marginal likelihood in (2.2), We could generate G : g = 1; � � � ; G
observations of

n
�
(g)
j

o
from the prior p (�j) and estimate the following

bp (y jMj) =
1

G

GX
g=1

p
�
y j �(g)j ;Mj

�
;
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As remarked in Carlin and Louis (2000, pp.207), this direct Monte Carlo integration

method is normally very unstable and ine¢ cient, due to the fact that the conditional

likelihood p (y j �j;Mj) can be very peaked compared to the prior p (�j), which leads

to most of p
�
y j �(g)j ;Mj

�
being near 0 and a very ine¢ cient estimator of bp (y jMj).

As shown in Fig (2-1), in a case that 5; 353 out of 6; 000 of �(g)j from p (�j) fall in a

low-likelihood region, which make most of p
�
y j �(g)j ;Mj

�
equals to 0. The estimate

of bp (y jMj) is dominated by 647 large values of the likelihood.

Figure 2-1: log Likelihood Using Samples from the Prior

The graph on the left hand side plots the histogram of p
�
y j �(g)j ;Mj

�
and the

graph on the right hand side plots the correlograms of �(g)j . Bos (2002), provides a

summary of various approaches to calculating marginal likelihood.

2. Harmonic Mean Method
A generalized Harmonic Mean (HM) method is proposed by Newton and Raftery

(1994),

bp (y jMj) =

GP
g=1

w(g) � p
�
y j �(g)j ;Mj

�
GP
g=1

w(g)

where the Central Limit Theorem is satis�ed. In this case, �(g)j are sampled from an

importance density p� (�j), calculated as:

p� (�j) = �p (�j) + (1� �)p (�j j y)

where p (�j)is the prior density and p (�j j y) is the posterior density of the entertained
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model (Mj) respectively, and w(g) = p
�
�
(g)
j

�
=p�
�
�
(g)
j

�
. According to Newton and

Raftery (1994), � can be chosen as a small number.

3. Gelfand-Dey Method
Gelfand and Dey (1994) provide another approach to calculating the marginal like-

lihood. If the inverse of the marginal likelihood p (y jMj)for model Mj only depends

upon a parameter vector �j, this inversed marginal likelihood can be written as

1bp (y jMj)
= E [g (�j) j y]

for a particular choice of g (�j),

g (�j) =
f (�j)

p (�j jMj) p (y j �j;Mj)

where f (�j) is any p.d.f with support contained in b�. For proof, please refer to Koop
(2003, pp.104-106, section 5.7). To insure that the Gelfand-Dey method works well,

f (�j) must be selected with caution.

To choose f (�j), we follow the recommendations in Geweke (1999), which has

been found to work well in practice. This strategy involves letting f (�j) be a Normal

density with the tails chopped o¤. The justi�cation for this truncation is that the

Gelfand-Dey method requires f(�j)

p(�j jMj)p(yj�j ;Mj)
to be �nite for every possible value of

�j. However, it is often di¢ cult to verify whether
f(�j)

p(�j jMj)p(yj�j ;Mj)
is also �nite in the

tails of the Normal density. Therefore, f (�j) is set to zero in these (tails) potentially

problematic regions.

Formally, let b�j = E (�j j y;Mj) and cP = var (�j j y;Mj), which can be obtained

from the posterior simulator. Further, for some probability, p 2 (0; 1), let b� denote

the support of f (�j) which is de�ned by

b� = ��j : ��j � b�j�0dX�1 �
�j � b�j� � �21�p (k)�

where �21�p (k) is the (1�p)th percentile of the Chi-squared distribution with k degrees
of freedom and k is the number of elements in �j. Then Geweke (1999) recommends

letting f (�j) be the multivariate Normal density truncated to the region b�;
f (�j) =

1

p (2�)
k
2

����dX����� 1
2

exp

�
�1
2

�
�j � b�j�0dX�1 �

�j � b�j�� 1��j 2 b��
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where 1 (�) is the indicator function. In Koop (2003, pp.106), p can be selected as
a small value, e.g 0:01, or a range of small values, since �there is almost no addi-

tional cost� (Geweke 1999) in doing so. To evaluate the accuracy of the estimatedbp (y jMj), NSE values can be calculated in a standard way (see Chapter 2, Section

3.3 for discussions in regard to NSE).

In general, the Gelfand-Dey method for estimating bp (y jMj) works for any kind of

models. However, there are some limitations of the Gelfand-Dey method: First, Carlin

and Louis (2000, pp.208) point out that if �j is with a very high dimension, it will be

di¢ cult to choose an appropriate density f (�j), thus the Gelfand-Dey method may

be incompetent to estimate bp (y jMj). Second, Koop (2003, pp.106) stresses that the

Gelfand-Dey method requires the full p.d.f of p (�j jMj), p (y j �j;Mj) and a posterior

simulator. In the cases that only kernels of the prior and/or likelihood is/are known,

the Gelfand-Dey method cannot be applied. Finally, If there is a small number of

�j 2 b�, greater simulation error could occur.
The follows discusses the methods using samples from the prior, Harmonic mean

method, where the estimate of marginal likelihood is denoted as m (Bos, 2002):

...a simulation method may help. The method ofmprior is very unstable

and ine¢ cient. The method mIS is not operational without a choice for

the importance sampling density �� (�), approximating the prior density.

Using the prior density as importance function leads to weights wi � 1 as
in mprior, but many drawings will fall in low-likelihood regions. Sampling

from the posterior density gives more drawings in the correct region, but

leads to an estimate ofm which may not have a �nite variance (Newton and

Raftery 1994). Intermediate positions, like �� (�) = �� (�)+(1� �) p (� j y)
can be chosen: This gives a consistent estimate with better convergence

behaviour (see also Newton and Raftery 1994). A more recent solution for

stabilizing the harmonic mean estimate, utilizing a technique of lowering

the dimension of the problem, is given in Satagopan, Newton and Raftery

(2000).

Both mprior and mHM methods are special versions of mIS.

The Gelfand-Dey estimator (see Gelfand and Dey, 1994 for details) is commonly

known as the modi�ed harmonic mean estimator in the literature.

4. Chib Method: Using Gibbs Sampler Output
Chib (1995) provided a method, which is therefore referred to as the Chib method.

This method uses the Gibbs sampler with closed form full conditional distributions,
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to calculate the marginal likelihood of the entertained model. In Chib (1995), the

method begins with the marginal likelihood identity.

According to the Bayes�rule, the marginal density p(y jMj) can be written as

p(y jMj) =
p(y j �j;Mj)p(�j jMj)

p(�j j y;Mj)

where the numerator is the product of the sampling density and the prior, and the

denominator is the posterior density of �j, with all the integrating constants included.

As the above identity holds for any �j, say �
�
j , the value of posterior density p(�

�
j j y)

can be estimated as bp(��j j y) using Monte Carlo samples.
Therefore, the log marginal likelihood can be estimated as

ln bp(y) = ln p(y j ��j) + ln p(��j)� ln bp(��j j y)
at an arbitrary value of ��j . While ln p(y j ��j) and ln p(��j) are available straight forward
from the Gibbs sampler outputs, as long as we know the exact form of the p(�j) and

the p(y j �j), the estimate of ln bp(��j j y) involves a �reduced Gibbs run�.
Take the same case in Carlin and Louis (2000, pp.209) as an example, suppose

model Mj is a simple model with only two dimensions in �j, where �j = (�j;1; �j;2),

then the joint posterior at ��j will be

p(��j;1; �
�
j;2 j y) = p(��j;2 j y; ��j;1)p

�
��j;1 j y

�
while p

�
��j;1 j y

�
can be estimated via the �Rao-Blackwellized�mixture estimate as

follows:

bp ���j;1 j y� = 1

G

GX
g=1

p
�
��j;1 j y; �

(g)
j;2

�
(2.3)

since �(g)j;2 � p (�j;2 j y) : g = 1; � � � ; G. More explicitly, we can use the output of
�
(g)
j;2 : g = 1; � � � ; G from the Gibbs sampler to estimate bp ���j;1 j y� in (2.3) at ��j;1.
Therefore, if the parameters in �j are divided into B blocks, we need to run the Gibbs

sampler B � 1 times consecutively to estimate ln bp(��j j y).
The Chib method can be applied virtually for any type of model of interest for

marginal likelihood estimation. One disadvantage of the Chib method is the com-

putational burden. Since this algorithm demands a huge amount of iterations, the

execution time will be long if the dimension of �j is very high. To reduce sampling

time and improve computational accuracy, it will be necessary to partition �j into
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Figure 2-2: Marginal Likelihood evaluations from Bos (2002)

blocks (see Chib et al. 2002).

5. Other Methods
Many scholars have been concerned with the computational issues in regard to mar-

ginal likelihood for model comparisons. Besides the four methods introduced above,

Bos (2002) reviews other methods that are commonly applied in practice, such as the

LaPlace method and Kernel smoother method (see attached Figure 2-2).

Also, the Chib method has been extended in Chib and Jeliazkov (2005) to esti-

mate the marginal likelihood via Metropolis-Hastings output. In this thesis, since the

Gelfand-Dey and the Chib method are intensively applied in Chapter 3 and Chap-

ter 4, we do not provide lengthy reviews of other methods. For other methods of

Bayes factor calculations, such as Savage-Dickey density ratio method please refer to

(Verdinelli and Wasserman (1995), Koop (2003, pp.81-82)), sampling over the model

and parameter space method, please refer to Carlin and Louis (2000, pp.211-219).
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2.5 Bayesian Forecasting and Bayesian Model Av-

eraging

In this section, we aim to provide a brief review of Bayesian Model Averaging (BMA), a

distinctive approach in Bayesian context, when we inevitably encounter the forecasting

uncertainties.

Forecasting, in a Bayesian context, is carried out based on the predictive densities

p (y� j y), where the future y� are mapped from the past y through conditional prob-

abilities that all uncertainties are (or should be) represented. Zellner (1971, Chap 2),

Bernado and Smith (1994, Chap 2), and Berger (1985, Chap 4, Chap 7, Chap8), Car-

lin and Louis (2000, Appendix B) o¤er very general ideas of Bayesian forecasting and

Bayesian decision making theories. West and Harrison (1997) o¤ers very systematic

introductions of Bayesian modelling and Bayesian forecasting in regards to various dy-

namic models. Bayesian forecasting methods have great potential due to the fact that

�they provide tractable solutions for problems that prove di¢ cult when approached

using non-Bayesian methods�(Geweke, 2001).

Combining forecasts has strong advocates in both the Bayesian and Classical frame-

work. Bates and Granger (1969) is an in�uential paper in the combining forecasts

literature, which argues that a combination of two models can give a better forecast

than either individual model. Inference from a single model alone is often considered

risky, since �...conditional on the chosen model would of necessity ignore the uncer-

tainty in the model selection process itself and the process of model selection may be

somewhat arbitrary in that a number of models may �t equally well and simultane-

ously provide plausible explanations of the data�(see Carlin and Louis 2000, pp.49).

Madigan and Raftery (1994) support the idea of model averaging and show that av-

eraging over all models can provide better predictive ability using the nonnegativity

of the Kullback-Leibler divergence. Therefore, questions, such as how to combine the

forecasting models, are naturally raised. Researchers propose di¤erent ways to com-

bine forecasts (see Draper 1995, and Min and Zellner 1993). In regards to this area,

Clemen (1989), and de Menezes, Bunn, and Taylor (2000) provides intensive reviews

of historical research from the 60�s to the 90�s. The area of combining forecasts can

be fractionalized into di¤erent divisions, such as combining event (Clements, 2006)

and quantile forecast (Clements et al., 2006), combining density forecasts in Hall and

Mitchell (2004, 2007) and Clements (2004).

In recent years, density forecasts have become very attractive in the sense that all

uncertainties associated with the forecast can be presented. The Bayesian approach
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became very appealing for the following reasons:

1. The whole predictive density could be represented with no extra cost when the

posterior simulator is available.

2. Bayes factors can be used to construct model probabilities for any kind of enter-

tained models.

3. Furthermore, BMA provides a good solution to combining forecast densities

based on a simple idea: many models are plausible representations of the data

and models should be weighted averaged according to their posterior model prob-

abilities. Hoeting et al. (1999) provides an excellent historical perspective and

summarization of the literature on BMA.

Hoeting et al. (1999) also provides insightful examples in a wide variety of appli-

cations, demonstrated that BMA provides much better predictive performance than

using a single model. BMA appears to have worked well in practice with monetary

policy (Milani 2004, Garratt et al. 2007), consumption and wealth e¤ects (Potter et

al., 2005), forecasting Swedish in�ation (Eklund and Karlsson, 2005, Karlsson and

Jacobson, 2004) and US exchange rates (Koop and Potter, 2003).

For a coherent systematic analysis accounting for model uncertainties, we summa-

rize that the BMA can be carried out with the following procedure:

1. We start with specifying the model space, where K selected candidate models

(M1; � � � ;Mk) are contained. Elicit priors for �, which is a vector of common

parameters across all the models.

2. In Raftery et al. (2003), using a few simple probability rules, the forecast pdf

for given data y, p (y� j y), is given by

p (y� j y) =
KP
k=1

p (y� j y;Mk) p (Mk j y)

where p (y� j y;Mk) is the forecast pdf based on statistical model Mk and data

information, and p (Mk j y) is the posterior model probability ofMk. If we denote

$k = p (Mk j y), since the posterior model probabilities of all candidate models
adds up to 1, we have

KP
k=1

$k = 1

where $k can be evaluated via Bayes factors by model comparison amongst all

the entertained models.
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Intuitively, posterior model probabilities can be obtained straight forwardly as the

following:

$k =
p (y jMi)
KP
k=1

p (y jMk)

where p (y jMk) is the marginal likelihood of Mk. However, this method only works

when K is small. In this thesis, we focus on a reduced set of nonlinear and linear

statistical models (Chapter 5 provides more details in terms of model speci�cations).

Besides, we are also interested in each model�s forecasting performance. Therefore,

BMA via the marginal likelihoods is applicable.

In other cases, where the number of models under consideration is enormous, im-

plementing BMA via the marginal likelihood would be di¢ cult. One solution to a

large K is the Markov Chain Monte Carlo Model Composition (MC3) algorithm,

which has been commonly applied with normal linear regression models to serve the

purpose of BMA (see Madigan and York (1995) for MC3 algorithm, Fernandez, C. et

al. (2001) in relation to an investigation of �benchmark priors�and an application with

cross-country growth). Some algorithms, such as reversible jump Markov Chain Monte

Carlo method (Green, 1995), the Carlin and Chib method (Carlin and Chib, 1995)

and importance sampling method (Clyde, DeSimone and Parmigiani, 1996) are also

very popular and can be applied for BMA under di¤erent circumstances. For detailed

review of the above algorithms, please refer to Carlin and Louis (2000, pp.211-225),

and Elliott, Granger and Timmermann (2006, Chapter 10). Clearly, investigating e¢ -

cient algorithms and developing computational methods of BMA over di¤erent kinds

of models has been a �eld with substantial challenges.

2.6 Concluding Remarks

In this chapter, we have described the perspective of Bayesian decision theory along

with some computational techniques required for Bayesian inference at a high level of

abstraction.

In the Bayesian context, Bayesian inference involve prior elicitations (2. 2), estima-

tions of speci�ed models (2.3), model selections (2.4) and forecasting (2.5). Following

this logical modelling approach, we reviewed various methods and computation algo-

rithms that are intensively applied in Chapter 3, 4 and 5.

The logic of the Bayesian modelling approach provides a routine for the rest of the

thesis. Future chapters will go through particular models, and show how the reviewed
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methods/algorithms are implemented. Thus, the organizations of Chapter 3 and 4

are as the follows: We start by introducing the speci�ed model. Then the likelihood

function and elicited priors are presented. We then introduce a posterior simulator

for model estimation, followed by a model marginal likelihood estimation method for

model comparison. Having developed the analyzing tools, they are evaluated with

arti�cial data and applied with real life data in practical contexts.

Utilizing the tools developed from Chapter 3 and Chapter 4, Chapter 5 focuses on

a BMA. More details, such as forecasting evaluations and how the candidate models

perform in forecast setting, are revealed in Chapter 5.

Appendix 2.A Calculations of NSE, RNE and CD

All this section is cited from Koop (2003). Before we introduce the calculations for

NSE, RNE and CD values, we �rstly introduce two theorems in Monte Carlo integra-

tions, which are implied by the central limit theorem,

Theorem 14 Let �(s) for s = 1; � � � ; S be a random sample from p (� j y), and de�ne

bgS = 1

S

SX
s=1

g
�
�(s)
�

then bgS converges to E [g (�) j y] as S goes to in�nity.
Theorem 15 Using the step-up and de�nitions in �rst Theorem,

p
S fbgS � E [g (�) j y]g ! N

�
0; �2g

�
as S goes to in�nity, where �2g = var [g (�) j y].

1. Calculation of NSE
Based on the above two Theorems, we can obtain an estimate of the approximation

error in a Monte Carlo integration by using the properties of the Normal distribution.

For instance, using the fact that the standard Normal has 95% of its probability located

within 1.96 standard deviations from its mean yields the approximate result that

Pr

�
�1:96 �gp

S
� bgS � E [g (�) j y] � 1:96 �gp

S

�
� 0:95

and

Pr

�
E [g (�) j y]� 1:96 �gp

S
� bgS � E [g (�) j y] + 1:96 �gp

S

�
� 0:95
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Then, the con�dence interval for E [g (�) j y] can be approximated by

hbgS � 1:96 �gpS ; bgS + 1:96 �gpSi.
By controlling S, we can ensure that bgS � E [g (�) j y] is su¢ ciently small with a

high degree of probability. If enough itertations are taken, NSE should be approximate

to 0. In practice, �g is unknown, but the Monte Carlo integration procedure allows us

to approximate it. The term �gp
S
is known as the Numerical Standard Error (NSE). If

S = 10000, then the NSE is 1% as big as the posterior standard deviation.

2. Calculation of CD
Geweke (1992) suggests that, based on the intuition that, if a su¢ ciently large

number of draws have been taken, the estimate of g (�) base on the �rst half of the

draws should be essentially the same as the estimate based on the last half. If the two

estimates are very di¤erent, this indicates either that too few draws have been taken

(and estimates are simply inaccurate), or that the e¤ect of initial draw, �(0), has not

worn o¤ and is contaminating the estimate which uses the �rst draws.

In the manual book provided by James LeSage, "Applied Econometric using Mat-

lab" (pp.164), the Geweke�s convergence diagnostic "represents a test of whether the

sample of draws has attained an equilibrium state based on the means of the �rst 20%

of the sample of draws versus the last 50% of the sample. If the Markov chain of draws

from the Gibbs sampler has reached an equilibrium state, we would expect the means

from these two splits of the sample to be roughly equal. A Z-test of the hypothesis of

equality of these two means is carried out. "

Therefore, we could divide the whole Monte Carlo draws into three sets, SA, SB
and Sc. bgSA and bgSCare estimates of E [g (�) j y] using the �rst SA replications after
discarding the �rst S(0)draws and last Sc replications, respectively. If we de�ne c�Ap

SA
andc�Cp

SC
be the NSE of bgSA and bgSC . Then

CD =
bgSA � bgSCqc�A2
SA
+ c�C2

SC

According to a central limit theorem,

CD ! N (0; 1)
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In Koop (2003, pp.75, line 10), "noting that CD is asymptotically standard normal, a

common rule is to conclude that convergence of the MCMC algorithm has occurred if

CD is less than 1.96 in absolute value for all parameters"

3. Calculation of RNE
The Relative Numerical E¢ ciency (RNE) is calculated as follows,

RNE =
�2�
�2NW;q

where �2� is a direct estimator of the variance, and �
2
NW;q is the Newey-West (Newey

and West 1987) variance estimator taking the correlation up to lags of q% of the size

of the sample into account. Practical values for q can be 4,8 or even 15%.

Based on the NSE, RNE and CD values, we can diagnose the MCMC convergence

su¢ ciently.
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Chapter 3

Evidences of Changing Persistence
from A Generalized Stochastic Unit
Root Model

3.1 Introduction and Motivations

Application of conventional econometric tests indicates that many macroeconomic

time series contain unit roots and are therefore, nonstationary I(1) processes. Some

of these results contradict economic theories. Also, there is always an uncertainty

about shifts in the persistence of a time series, such as shifts from stationarity I(0) to

nonstationarity I(1) or vice versa. Based on these unsolved problems in applications

of time series tests, this chapter focuses on two aspects: One is about analyzing the

uncertainty of changing persistence in the time series, with the purpose of solving

the Purchasing Power Parity puzzle; the other is about analyzing the uncertainty of

deterministic trend in the time series. How sure one can be that an economic time

series has a deterministic trend, especially when there is a change in the underlying

properties? This chapter makes use of Bayesian model estimation and model compar-

ison techniques to investigate the deterministic time trend and changes in persistence1

in time series with a Generalized Stochastic Unit Root (GSTUR hereafter) model.

This coe¢ cient nonlinear GSTUR model is speci�ed to allow for shifts in the values of

the roots in a time series. Empirical analysis indicates that the GSTUR model could

provide new insights in time series studies.

1A change in persistence in this Chapter specially refers to the root of the series jump to/above
the unity, or vice versa.
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To motivate the GSTUR model, �rst, we brie�y review the Purchasing Power

Parity (PPP hereafter) puzzle in the literature. Second, we address the mystery of

the deterministic trend in time series modelling. Finally, we introduce the properties

of GSTUR model and present why the GSTUR model could potentially solve these

puzzles.

3.1.1 A Puzzle of Purchasing Power Parity

Understanding the underlying properties of the real exchange rate is considered vital as

well as is PPP2, which is a cornerstone of many open-economy macroeconomic models.

Further to this, policy makers have to consult the movements of real exchange rates in

decisions of settings of exchange rate parity, evaluating the stability of trading �ows

and determining the degree of misalignment of the nominal exchange rate. The PPP

puzzle is that the logarithm real Exchange Rate (ER hereafter)3 series exhibits high

persistence in empirical �ndings. In the survey of PPP literature (see Rogo¤ (1996),

Taylor (1995)), problem are raised such that it takes a long time for the real exchange

to revert to the stable equilibrium level.

Early investigations of PPP were based on linear models, utilizing the conventional

augmented Dickey�Fuller (ADF) tests for the real exchange rate series, and results

turned out to be invalidity of the PPP. The reason for a failure to reject the unit-

root could be due to our lack of competency in the developed statistics knowledge

that the unit root tests and cointegration tests have low power. For details of low

power of the conventional ADF test in distinguishing the unit root and near unit root

behaviour, refer to Lothian and Taylor (1997). Then, researchers have to resort to

long-spans of data (e.g. Kim (1990); Lothian and Taylor (1996)), or panel unit root

studies (e.g. Frankel and Rose (1996); Papell (1997), O�Connell (1998); Taylor and

Sarno (1998)), or time-series models that account for the possibility of nonlinear mean

reversion towards PPP (e.g. Obstfeld and Taylor (1997), Baum et al. (2001), Taylor

2PPP is a propostion that the national price levels should be equal when expressed in a common
currency.

3Real Exchange Rate, which can be interpreted as a measuremnet of the deviation from the
absolute PPP, is calculated as the norminal exchange rates adjusted by the price levels

RER = NER+ p� � p

where RER denotes the real exchange rate between the foreign currency and domestic currency.
NER denotes the nominal dollar-sterling exchange rate, which is the amount of US dollar to pay for
1 UK Pound Sterling. p� denotes the UK price level and p denotes the US price level. The data used
in this thesis is the same data used in Engel and Kim (1999), monthly data from 1885:1 to 1995:2,
which was originally provided by Graciela Kaminsky.
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et al. (2001)). These researches have the purpose of overcoming the conventional low

testing power problem and trying to �nd stationarity in the real exchange rates and

the validity of PPP (see Sarno 2005 for a recent survey). In a very recent strand,

nonlinear models such as the Threshold Autoregressive (TAR model applied by Sarno,

Taylor and Chowdhury 2004) and STAR (Smooth Transition Autoregressive applied

by Sarantis 1999), Exponential Smooth Autoregressive (ESTAR applied by Michael,

Nobay and Peel 1997, Baum, Barkoulas and Caglayan 2001), Self-Exciting Threshold

Autoregressive (SETAR applied in a very recent paper by Serletis and Shahmoradi,

2007) for the PPP puzzle, are motivated by the fact that a transaction cost could

be the reason for nonlinear adjustment between the price di¤erentiates and nominal

exchange rates.

Given the large literature, regarding the PPP puzzle, this Chapter is motived by

the following questions: (1) With what kind of models, can we export the real exchange

rates�underlying properties, in order to �nd support for the PPP theory? (2) Further

to this, we want to know whether monetary events are in correspondence with the

shifts in the structural dynamics of PPP deviations.

3.1.2 An Uncertainty Associated with Deterministic Time

Trends

In time series modelling, a common question is asked: Why should we worry about

integration degrees of a time series, and why should we care about the characteristics

(stochastic and/or deterministic) of the trends in the �rst place4? One answer to

the above questions is: analyzing those properties, such as integration degree and

the existence of a deterministic time trend, are crucial because those properties will

determine the ultimate forecasts.

However, it is di¢ cult to identify a deterministic time trend in a sense that a

Trend Stationary (TS) series and a Di¤erence Stationary (DS) series can hardly be

distinguished from each other. In empirical studies, the results of testing whether the

macroeconomic time series are TS or DS are full of ambiguity (see Nelson and Plosser

(1982), DeJong and Whiteman (1991a, b), Phillips (1991), Kwiatkowski, Phillips,

Schmidt, and Shin (1992)).

Furthermore, the integration degree of a time series might change over time. With

applications of the U.S. macroeconomic data sets, a lot of evidence was found con-

cerning the changes in persistence (Kim 2000, Kim and Amador 2002, Busetti and

4A stochastically trending variable refers to a variable that is integrated with order 1
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Taylor 2004, Harvey et al. 2006, Cogley, Primiceri and Sargent 2008). Therefore, it is

sensible to argue that a deterministic time trend hypothesis is often rejected because

of the changes in the persistence. Some crucial questions appear immediately, such

as how sure are we that economic time series have a deterministic trend if the under-

lying properties changed and whether the variations of persistence correspond with

historical events?

More explicitly, in regards to the uncertainties of deterministic trends and changing

persistence, we also would like to ask the following question: can we �nd a �exible

model to accommodate a possible deterministic linear time trend when the underlying

property changes?

3.1.3 Solutions to the Puzzles: GSTURModel with Bayesian

inference

GSTUR models provide a potential solution to the questions raised in sections 3.1.1

and 3.1.2. In a recent strand of time series modelling, nonlinear models, such as TAR

(Caner and Hansen 2001), STAR (van Dijk et al. 2002), ESTAR (Kapetanios et al.

2003), and alternative forms of stationarity, such as ARFIMA (Koop et al. 1997),

have been proposed for reconciling the nonstationarity in macroeconomic time series

to economic theory. The GSTUR model is a class of nonlinear models, yet it has not

been fully investigated.

Granger and Swanson (1997) proposed a highly parameterized model, the Stochas-

tic Unit Root (STUR) model

yt = exp(�t)yt�1 + "t (3.1)

�t = �0 + �1�t�1 + �t (3.2)

E (�t) = 0

where "t is i:i:d:N(0; �2") and �t is i:i:d:N
�
0; �2�

�
. One main distinctive feature of

the STUR model is that it allows for the persistence of macroeconomic series to vary

with time. This changing persistence property could be a characteristic of a series

that cannot be di¤erenced to stationarity. The GSTUR model is a �exible model

in capturing the statistical properties of the data which are attractive. It does not

have economic implications as does STAR. However, the STUR process may shed light

on the data properties on the levels as pointed out in Granger and Swanson (1997).
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Although the STUR model has many appealing properties, it has not yet been fully

studied and widely applied in the literature.

The literature with regards to the STUR model consists of the following: Granger

and Swanson (1997) estimate the STUR model and evaluated its forecasting perfor-

mance. Testing a STUR process is developed and evaluated in Taylor and van Dijk

(2002). Some empirical applications involved the STURmodel can be found in Bleaney,

Leybourne and Mizen (1999) for real ER, Sollis, Leybourne and Newbold (2000) for

worldwide stock market indices, Yoon (2005) with the risk-free interest rate. Regard-

ing the properties of a STUR process, Yoon (2006) provides intensive reviews. To

fully understand the STUR process in (3.1 and 3.2), and its potential with empirical

applications, we summarize them as follows based on Yoon (2006):

1. yt has a unit root only on average and can be explosive for some periods. How-

ever, yt is not a non-stationary process.

2. The STUR processes have very heavy tails and extreme values are very likely to

occur.

3. A STUR process cannot be transformed to stationarity by taking di¤erences.

Because of property 1, STUR processes are hard to distinguish from a Random

Walk (RW) process5, especially when var (�t) is small. Therefore, �taking di¤erences

cannot make the STUR processes weakly stationary�(Yoon, 2006).

Within the understanding of the STUR process, we generalized the STURmodel to

a Generalized STUR (GSTUR) model. The generalization is carried out by assuming

the existence of a deterministic time trend and a shift in the underlying process of yt:

�t = yt � 
 � �t (3.3)

The motivation for the generalization is based on the fact that there is always an

uncertainty as to whether a macroeconomic series is trend stationary (TS) or di¤erence

stationary (DS), or neither, using the conventional econometric tests. In the GSTUR

model, �t is a STUR process.

�t = exp(�t)�t�1 +
lP
i=1

�i4 �t�i + "t (3.4)

�t = �0 + �1�t�1 + � � �+ �p�t�p + �t (3.5)

5Random Walk process: yt = yt�1 + "t, where "t � N(0; �2")
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where "t is i:i:d:N(0; �2") and �t is i:i:d:N
�
0; �2�

�
:

Standard algebra shows that this GSTUR model has the following desirable fea-

tures: (1).The changes in persistence could have taken place at any time point. (2).The

values of the parameters characterize a new degree of persistence, which is potentially

dependent on its own lagged values. (3).Previous information and the previous degree

of persistence provide information of newly commencing information. (4).A determin-

istic trend might exist regardless the variations of persistence degrees.

While modelling the changes in persistence as a stochastic process seems attrac-

tive in both the STUR and GSTUR models, estimation was problematic. Granger

and Swanson (1997) used the approximate maximum likelihood (approximate ML

hereafter) method (Guyton et al.1986) and the approximate minimum sum squares

method to estimate the parameters in a STUR model. These estimation methods pro-

duced �fairly imprecise�and �wild estimates�(see Granger and Swanson, 1997). The

ine¢ cient estimates using approximate ML estimation may be due to the idiosyncratic

properties of the STUR process. Yoon (2006) states, since �the STUR process do not

have any �nite moments as t!1 �, the approximate ML is not applicable because �

the approximate ML method requires the existence of moments of high enough order

for the estimates to be consistent and asymptotically normal�. To solve the problem

of estimating the highly parameterized STUR model, Jones and Marriott (1999), JM

hereafter, provided a Bayesian method for parameter estimations in (3.1, and 3.2). For

details of estimations in Bayesian framework, please refer to Chapter 1.3.2 (Bayesian

estimations).

In this chapter, Bayesian analysis of a GSTUR model (in 3.4 and 3.5) is presented.

The motivation for using the Bayesian method are as follows: (1) From the model es-

timation aspect, high dimensional model with latent variables can be estimated with

Bayesian MCMC methods easily. (2) From the model comparison aspects, marginal

likelihoods in Bayesian model selection procedures could not only tell which proposi-

tion is the most supported, but also to what extent the proposition is favoured accord-

ing to the data information. Besides, a comparison between the nonlinear GSTUR

model and the linear RW model can be achieved via the Bayes factors, which is not

available in the classical framework .

The remainder of this chapter is organized as follows: Section 2 develops a pack

of tools for practitioners, who wish to apply the GSTUR model with empirical appli-

cations. This completed tool pack includes a sampler for estimation and the GSTUR

model�s marginal likelihood evaluation in a Bayesian framework. In Section 3, the

tool pack is evaluated with a simulated arti�cial data series. Section 4 presents the
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�ndings using the GSTUR model with applications of one of the Nelson and Plosser�s

data series, the S&P 500 series. The U.K. /U.S. long run exchange rates data is also

applied for empirical illustrations. Section 5 contains brief concluding remarks.

3.2 Bayesian inference

According to the GSTUR model (3.3, 3.4 and 3.5), �t is literarily an AR(P) process.

The roots of the polynomials �t are restricted to a region within the unit circle. Then

an unconditional mean �� of the stationary �t process has the following expression:

�� =
�0

1�
pP
j=1

�j

also,

�t = exp(�t) (3.6)

We begin by introducing some notations:

In this GSTUR model, Ft = (y1�l; � � � ; y1; � � � ; yt)0. The whole sample of observa-
tions is denoted as y = (y1�l; � � � ; y1; � � � ; yn)0 with a sample size of T = n + l, where
the �rst l + 1 values yinit = (y1�l; � � � ; y1)0 are treated as the starting values. Latent
variable �, where � = (�2; � � � ; �n)0, denotes the series of stochastic roots over the
whole time T period, which are structurally unobservable and indicate changes in the

persistence of y. The initial state of � is denoted as �init = (�2�p; � � � ; �1)0, in which
all elements are equal to 0. Also, we de�ne ��t as the lagged data sequence of �t,

where ��t = (�2�p; :::; �t�1)
0

Vector � and � are de�ned as � =
�
�1; � � � ; �p

�0
, � = (�1; � � � ; �l)0. According

to equation (3.6), vector � = (�2; � � � ; �n)
0 associate with �. The error precisions are

denoted as h" = ��2" and h� = ��2� . � stands for a vector of all the parameters of

interest, where � = (
; �; �; ��; h"; h�), where 
 := (
; �) :

As motivation, we should mention that �t, where t = 2; � � � ; n, varies stochastically
in the GSTUR process. To investigate if a process y undergoes shifts in persistence, or

being parameter nonlinear, we can make inference from the estimates of �t. According

to equation (3.5), a small �2�, which is the variance of �t in the transition equation,

enables �t to vary around the conditional mean. Consequently, process y may maintain

stationarity ( I(0) ) if �t < 1, but becomes a process with higher persistence ( I(1) )

if the averaged values of �t > 1. Therefore, the STUR process is not a pure I(1) or a

pure I(0) process, but follows a near integrated process. These idiosyncratic properties
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of a STUR process make it very di¢ cult to distinguish from a RW process .

How frequently the process becomes temporarily nonstationary depends upon how

negative �� is and the size of �
2
�. If �� = 0, the stochastic root �t will vary around the

unity such that the process is as often stationary as it is nonstationary. The di¤erence

stationary RW process is nested within the GSTUR process at the point where �� = 0

and �2� = 0 such that �t will be a constant and equal to 1 for all the t. Therefore, the

behaviour of a process could be learnt about by observing the distribution of �� and

the evolution of �t over time. Hence, our estimations focus on ��, �t, and �, where �

represent a deterministic time trend behavior in y.

3.2.1 Bayesian Model Estimation

The parameters that have to be estimated in the GSTUR model are � and �. We �rst

develop the forms of prior, likelihood and the full posterior conditionals. Then, the

Gibbs sampling algorithm and Metropolis-Hastings algorithm are implemented for the

parameter estimations (for reviews of these algorithms, please see Chapter 2.3.2).

As � denotes a vector, which includes all the parameters of interest in the GSTUR

model, the properties of vector � will determine the properties of the latent data �.

As a standard practice with Bayesian methods, the latent data in � are treated as

�pseudo�parameters whose behaviour is governed by values of the elements of �, in

particular the values of ��, �
2
� , � and the initial values �init. Treating � as data,

the vector � enters the posterior via the likelihood. As the � are both stochastic and

unobserved then they must be estimated as must the parameters in �. Thus, Bayesian

analysis uses the joint density of �, and � conditional on y will be

p (�; �jy) / p (yj�; �) p (�; �)
= p (y j �; �) p (� j �) p (�)

According to Equation (3.3), (3.5) and (3.4), the likelihood function of p (y j �; �)
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is

p (y j �; �) =
nQ
t=2

p (yt j �; �t; Ft�1) 6

=
1

(2��2")
n�1
2

exp

8>>>>>>>>><>>>>>>>>>:

� 1
2�2"

nP
t=20BBBBB@

yt � exp(�t)yt�1 �
lP
i=1

�i4 yt�i�


 [1� exp(�t)]�

�

�
t� exp(�t)t+ exp(�t)�

lP
i=1

�i

�
1CCCCCA
2

9>>>>>>>>>=>>>>>>>>>;
The joint density of the � is given by the sequence of conditionals as

p (� j �) = p (�n; �n�1; :::; �2�p j �)
= p (�n j �n�1; :::; �2�p; �) p (�n�1 j �n�2; :::; �2�p; �) :::

p (�2 j �1; :::; �2�p; �) p (�1; :::; �2�p j �)

=
nQ
t=2

p (�t j �t�1; :::; �2�p; �)

where the likelihood p (y; �j�) equals p (yj�; �) p (�j�).
An important issue in calculating Bayes factors is Bartlett�s paradox (Bartlett,

1957). This paradox implies that improper priors cannot be used if one intends to

compute informative Bayes factors. The issue is that in this case the model with the

smallest dimension will be selected with probability one regardless of the information

in the data. Thus we con�ne ourselves to using proper priors and generally follow

the recommendations of JM with some important exceptions. We assume that each

parameter is a �priori� independent and we formulate prior distributions on the pa-

rameters of interest. The prior of �, which include the variables of interest takes the

following form:

p (�) = p (
; �; �; ��; h"; h�) (3.7)

= p (��) p (
) � � � p
�
�p
�
p (h") p (h�)

The notations of relevant distributions are given as follows: The prior distributions

are chosen as Normal for ��, denoted as fN
�
�
�
; V �

�
and Multivariate Normal for

f
g and f�g, which are denoted as fMN

�
�


; V 


�
and fMN

�
�
�
; V �

�
. The prior of

�i is �i s fN
�
�
�i
; V �i

�
1 (kzjk > 1). Since �t is restricted to be a stationary AR(p)
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process, the roots of the estimated polynomial (also in Enders 1995, pp.96):

� (z) = 1� �1z � � � � � �pzp

should all lie outside of the unit circle. In the prior, 1 (kzjk > 1) is an indicator function
for the event that �i : i = 1; � � � ; p jointly satisfy the stationary condition. The error
precisions�priors are chosen as h" s f�"

�
�"; �"

�
and h� s f��

�
��; ��

�
7.

Since the priors represent our �priori� belief over the parameters, selecting the

values in the prior distributions are important. The selected values in Table (3.1)

represents our belief that �� varies around ln 0:9 with a small variance V �. In JM, the

prior of �� is chosen as normal distribution conditional on �
2
� such that �� s fN(0; �2�).

Besides, in JM, the selected priors for the �2" and �
2
� indicate 0 < �2" < 1 and

0 < �2� <1 in corresponding to �little prior information�, denoted as �di¤use�priors

(see JM for prior elicitations and Zellner, 1971 for details regarding di¤use priors). In

this chapter, we assume �� and �
2
� are independent. More over, rather than choosing

di¤used priors for �2" and �
2
�, we elicit a prior in a belief that �

2
� is a small value, which

corresponds to the properties of a STUR process such that the values of �2� should be

small, which may allow the root to vary above 1 after certain periods of time, but not

diverge far from the previous period�s root. For the purpose of empirical applications

with a GSTUR model, the probability of �2" being extremely large should be small.

Table 3.1: Summarized Prior Properties in GSTUR

parameters Selected Values in the Prior

�� �
�

ln 0:9 V � 0:12

�i �
�i

1 V �i 0:1

h" �" 1:1 �
"

0:2

h� �� 1:5 �
�

2:5


 �



�
0
0

�
V 
 104eye(2)

� �
�

(0; � � � ; 0)0 V � 104eye(i)

Figure (3-2) plots the prior of �1 when p = 1. This prior indicates that the �t and

�t�1 has positive correlation and it tends to be high.

7Refer to Appendix 3.A for the prior densities.
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Figure 3-1: Plot of � prior p=1

In Table (3.1), the selected prior for h" indicates the error precision ��2" has high

densities around small values (see Fig 3-2 for the density plot of h"). Consequently,

the �2" distribution, in which �
2
" is the inverse of h", has a wide scale (see Fig 3-3 for

the density plot of �2" ). Similarly, the selected values of �� and �� in the prior for h�
indicates a small value of �2� in a narrow scale (see Fig 3-4 for the density plot of error

precision h� and the corresponding density plot of �2� in Fig 3-5)
8.
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Figure 3-2: Prior pdf for Error Precision in GSTUR ��2" � f�"
�
�"; �"

�

Given the above prior information, we are able to derive the conditional posterior

distributions that can be used in the Gibbs sampling scheme. The full conditional

density of most of the parameters have standard forms. Via the Bayes Theorem, the

joint posterior density for (�; �) is then

8For the relations between Gamma and inverse Gamma distributions, refer to Appendix B.
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p (�; � j y) /
n

�
t=2
p (yt j �; �; Ft�1) p (�; �)

=
n

�
t=2
p (yt j �; �; Ft�1) p (� j �) p (�) (3.8)

Using many of the results from JM, we can present the following conditional distri-

butions: the posterior conditionals of f
g � fMN

�
�
; V 


�
, f�g � fMN

�
��; V �

�
,

�� � fN
�
��; V ��

�
, �i � fN

�
��i ; V �i

�
1 (kzjk > 1), where �i : i = 1; � � � ; p jointly

satisfy the stationary condition. Finally, the posterior conditionals of error precisions

are h" s f�"
�
�"; �"

�
and h� � f�

�
��; ��

�
9 and the posterior conditional for �t is

described as follows:

p (�t j 
; h"; h�; �; ��; �; ��t; y)

/ exp

26664��2t�12�2"

0BBB@e�t �
�t �

lP
i=1

�i4 �t�i

�t�1

1CCCA
2

� # (�t)
2�2�

�
�t �

� (�t)

# (�t)

�237775
where �t = yt � 
 � �t, # (�) is a function of �, and � (�t)is a function of ��; �; ��t; p
and t.

The latent variable �t follows a non-standard conditional distribution. JM applied

9Refer to Appendix 3.B for the derivations of the posterior conditionals.

54



a ratio of uniforms method(see Devroye, 1986) to sample �t. As we can see that the

posterior conditionals of �t is similar to a normal density, the Metropolis-Hastings

(M-H) algorithm (for details of M-H algorithm, please refer to Chapter 2.3.3) can be

implemented to simulate �t. The proposed M-H algorithm exhibits speedy convergence

in later experiments, which is an e¢ cient sampling scheme for �. The full expression

of # (�) and � (�t) are provided in Appendix 3.B. As all the posterior conditionals

are attainable, we apply this following MCMC procedure to simulate the posterior

distributions for the parameters of interest in the GSTUR model.

Algorithm 1: Posterior Simulator of GSTUR-Implementations of Gibbs
and MH Sampling Algorithms

1. Give initial values to �2"; �
2
�; ��; �;�; �;


2. Sample �2" from
�
�2" j y;
; �; �; �; ��; �2�

�
� f�1�"

�
�"; �"

�
3. Sample �2� from

�
�2� j y;
; �; �; �; ��; �2"

�
� f�1��

�
��; ��

�
4. Sample �� from

�
�� j y;
; �; �; �; �2"; �2�

�
� fN

�
��; V ��

�
5. Sample �i from

�
�i j y;
; �; �; ��; �2"; �2�

�
� fN

�
��i ; V �i

�
draw �i, if all �is

jointly satisfy the stationary conditionkzjk > 1, accept the vector of � draw,

otherwise draw the whole vector � again.

6. Sample � from p
�
�t j y;
; �; �; ��; �2"; �2�; ��t

�
using independent chain M-H

algorithm, in which a univariate t-denstiy is chosen as the candidate generating

density.

7. Sample � from � j y;
; �; �; ��; �2"; �2� � fMN

�
��; V �

�
8. Sample 
 from 
 j y; �; �; �; ��; �2"; �2� � fMN

�
�
; V 


�
9. Goto 2

10. Jump out of the loop until S iterations are accomplished.

3.2.2 Bayesian Model Comparison

In this chapter, one of the main concerns is the existence of a deterministic time trend

such that � equals 0. Another concern is the parameter nonlinearity in the process

such that � is time-variant. Thus, a group of models holding di¤erent hypotheses

will be compared. According to each model�s probability based on the available data
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information, the optimal model to represent the data will be selected. If we weight

average the models according to the model probabilities, uncertainties could be re-

duced. This model selection procedure is easily achievable using the Bayes Factors

even if entertained models are not nested. Please refer to Table (2.1) in chapter 2.4

for the criterion of model selection using Bayes Factors.

As the GSTURmodel is highly dimensional, the non-linearity in parameters and/or

the choice of nonconjugate priors that makes the marginal likelihood unavailable in

closed form. The model is highly dimensional. Therefore, the marginal likelihood

cannot be obtained using numerical integration method in a straight forward manner,

because �the brute-force integration method su¤ers from the curse of dimensionality�

(Bos, 2002). In the case where a Gibbs Sampler is already implemented in section

3.2.1 and all the full posterior conditionals are known, it is possible to approximate

the marginal likelihood of each competing model from the posterior samples using the

approach introduced by Chib (1995). In chapter 2.4, we provided a brief review of

using the Chib method to compute Bayes factors. In this chapter, Chib method is

applied to compute the marginal likelihoods.

The idea of the Chib method starts from the basic �marginal likelihood identity�.

If we denote C and C as the integrating constants in the truncated normal priors and

posteriors, in Chib (1995), the marginal density of y = (y2; :::; yn)
0, can be written as:

p(y) =

n

�
t=2
p(yt j �)p(�)=C

p(� j y)=C

where the numerator is the product of the sampling density and the prior with all inte-

grating constants included, and the denominator is the posterior density of � including

the integrating constant. In the transition equation, as � is truncated to satisfy the

stationary restriction, the integrating constant for the � prior and the � posterior,

denoted as C� and C�
10respectively, can be evaluated in a simulation manner (Refer

to Judge et al. (1985, pp.128) for details). As the above �marginal likelihood identity�

holds for any �, say ��, the log marginal likelihood can be approximated as

ln bp(y) / nX
t=2

ln bp(yt j ��; Ft�1) + ln �bp(��)=C��� ln �bp(�� j y)=C�� (3.9)

where bp(��) is available straight forward by evaluating the prior densities at ��11. The
10The estimation of C� used the method explained in Koop (2003, pp.134).
11For the approximation of prior ordinates evaluated as p (��) = p

�
��; ���; h

�
�; 


���; ��; h�"
�
please
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posterior ordinates ln bp(�� j y) and the likelihood ordinates ln bp(yt j ��; Ft�1) at �� can
be evaluated using the Monte Carlo samples. �� is normally chosen as the posterior

means or modes.

To estimate the posterior ordinate bp(�� j y) = bp(��; ���; h��; 
���; ��; h�" j y), we
may use a marginal/conditional decomposition together with the outputs from the

original and subsequent �reduced MCMC runs�, or so called �replicated Gibbs sampler

procedures�(see chapter 2.4 for details).

Using a multiplication rule

bp(��; ���; h��; 
���; ��; h�" j y) / bp(�� j y) � bp (��� j y; ��)
�bp �h�� j y; ��; ���� � bp �
�; �� j y; ��; ���; h���

�bp(�� j y; ��; ���; h��; 
���) � bp(h�" j y; ��; ���; h��; 
���; ��)(3.10)
The �rst term bp (�� j y) in Equation (3.10) can be estimated from the Gibbs sampler

outputs as bp (�� j y) ' 1

S

SP
s=1

p(�� j y; �(s)� ; h(s)� ;
(s); �(s); h(s)" )=C�

where C� is the proportion of accepted draws to the total number of draws. Evalua-

tions for bp (��� j y; ��) is taken using a �xed �, where � = �� and �� is chosen as the
posterior mean of �.

bp (��� j y; ��) ' 1

S

SP
s=1

p(��� j y; ��; h(s)� ;
(s); �(s); h(s)" )

and bp �h�� j y; ��; ���� ' 1

S

SP
s=1

p(h�� j y; ��; ���;
(s); �(s); h(s)" )

bp �
��� j y; ��; ���; h��� ' 1

S

SP
s=1

p(
��� j y; ��; ���; h��; �(s); h(s)" )

bp(�� j y; ��; ���; h��; 
���) ' 1

S

SP
s=1

p(�� j y; ��; ���; h��; 
���; h(s)" )

bp(h�" j y; ��; ���; h��; 
���; ��) = p �h�" j y; ��; ���; h��; 
���; ���
With a total of 4 iterated Gibbs runs, we are able to estimate the posterior ordinates.

With the prior ordinates and the posterior ordinates available in a straight forward

manner, the likelihood ordinates p(y j ��) involves an application of the Auxiliary

refer to Appendix 3.A for the forms of the prior densities.
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Particle Filter (APF).

Since yt is a function of latent variable �t, conditional on

Ft�1 = (y1�l; � � � ; y1; � � � ; yt�1), the estimation of the likelihood ordinate p(yt j ��; Ft�1)
evolves an integration of the joint likelihood p(yt; �t j ��; Ft�1), since

p (yt j ��; Ft�1) =

Z
p(yt; �t j ��; Ft�1)d�t

=

Z
p (yt j �t; ��; Ft�1) p (�t j ��; Ft�1) d�t (3.11)

As �t is non-observable, the exact integral in Equation (3.11) using an analytical

method is hard to obtain. However, with the help of Monte Carlo averaging

p (yt j �t; ��; Ft�1) over a large sample of draws of �1t ; :::; �Mt from p (�t j ��; Ft�1), we
could have an approximation of p (yt j ��; Ft�1) as the following:

p (yt j ��; Ft�1) '
1

M

MX
g=1

p
�
yt j �(g)t ; ��; Ft�1

�
(g �M)

Herein, a repeated two-stage �ltering procedure is involved. In the next several para-

graphs, we �rstly introduce the �ltering principle. Secondly, we introduce the Particle

Filter, together with some sampling methods within the Particle Filter framework and

the weakness of the Particle Filter. Finally, we introduce the APF, which is an evolu-

tive form of the PF, along with a sampling method within the APF and the application

algorithm of APF for the evaluation of GSTUR model�s likelihood ordinates.

(1) Filtering Principle
The target sampling density p (�t j ��; Ft�1) can be derived from the previous den-

sity p (�t�1 j ��; Ft�1) via the transition density p (�t j �t�1).

p (�t j ��; Ft�1) =

Z
p (�t j �t�1; ��; Ft�1) p (�t�1 j ��; Ft�1) d�t�1

=

Z
p (�t j �t�1; ��; Ft�1) dF (�t�1 j ��; Ft�1) (3.12)

A numerical method can be applied to evaluate the moments of p (�t j ��; Ft�1) by
taking samples from p (�t�1 j ��; Ft�1).
Via the Bayes theorem,

p (�t j ��; Ft) =
p (yt j �t; ��; Ft�1) p (�t j ��; Ft�1)

p (yt j ��; Ft�1)
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p (yt j ��; Ft�1) =
Z
p (yt j �t; ��; Ft�1) dF (�t j ��; Ft�1) (3.13)

The current state p (�t j ��; Ft) can be propagated into the future as it shown in (3.12),
where the previous state p (�t�1 j ��; Ft�1) is propagated into the current state. This
procedure is taken throughout the data for all the t.

(2) SIR-based Particle Filters
The Particle Filters (PF hereafter) are de�ned as

�the class of simulation �lters that recursively approximate the �ltering

random variable �t j Ft by �particles��1t ; � � � ; �Mt , with discrete probability
mass of �1t ; � � � ; �Mt . Hence a continuous variable is approximated by a
discrete one with a random support. These discrete points are viewed as

samples from p (�t j Ft).��Pitt and Shephard (1999)

At the state of t � 1, since the discrete support �1t�1; � � � ; �Mt�1 of the particles
�1t�1; � � � ; �Mt�1 are treated as the true �ltering density in the PF, we can produce an
approximation to the density

bp (�t j ��; Ft�1) = MP
j=1

p
�
�t j ��; �jt�1

�
�jt�1 (3.14)

And then, step 1 in (3.13) can be approximated as

bp (�t j ��; Ft) / p (yt j �t; ��; Ft�1) MP
j=1

p
�
�t j ��; �jt�1

�
�jt�1 (3.15)

If �jt�1 are assumed to equal 1=M , (3.15) will be just the same as combining a prior

p (�t j ��; �t�1) and the likelihood p (yt j �t; ��; Ft�1) to obtain a posterior.
In the PF literature, important work includes the following: It is proposed that the

algorithm PF be applied with nonlinear/non-Gaussian models in Gordon, Salmond and

Smith (1993) in the �eld of signal processing. In the time series area, the PF algorithm

was introduced in Kitagawa (1996) as a solution to nonlinear non-Gaussian higher

dimensional state space models. Some statistical re�nements and further investigations

regarding PF can be found in Carpenter, Cli¤ord and Fearnhead (1999) and Fearnhead

(2002, 2004). In Pitt and Shephard (1999), di¤erent types of PF and their limitations

were intensively reviewed and the novel APF was proposed.

We �rstly introduce a Sampling/Importance Resampling (SIR) method. This SIR

has been suggested in the PF framework in Gordon et al. (1993) and Kitagawa (1996).

The idea of SIR is that if we can get a sample of
�
�1t�1; � � � ; �Rt�1

	
according to the
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normal transition prior density p (�t�1 j ��; �t�2), when the new data yt�1 arrives and
data information is updated from Ft�2 to Ft�112,

�
�1t�1; � � � ; �Rt�1

	
is resampled M

times by associating each of the draw with weights �j, where

wj = p
�
yt�1 j �jt�1; ��; Ft�2

�
; (3.16)

�j =
wjPR
i=1wi

; j = 1; � � � ; R

The resampled
�
�1t�1; � � � ; �Mt�1

	
with a sample size ofM will then be an approximated

sample from our target density p (�t�1 j ��; Ft�1). This SIR method requires R�M .

There are two main weakness in this SIR-based PF. The �rst weakness is the poten-

tial ine¢ ciency of the SIR-based PF. When the conditional likelihood is highly peaked

compared to the prior and �j is very variable, the SIR-based PF would become very

imprecise as many of the samples from p (�t�1 j ��; �t�2) will be in the region where
the conditional likelihood p

�
yt�1 j �jt�1; ��; Ft�2

�
is very small, and would therefore

contribute little to the accuracy of the approximation of the posterior density. The

second weakness is the poor tail approximation, which holds in general for all PFs

if �j are treated with equal weights. When there is an outlier in p (�t�1 j ��; Ft�2),
the tail densities of p (�t�1 j ��; Ft�2) can only be poorly approximated by the discrete
sample from p (�t�1 j ��; �t�2) in (3.14). Consequently, the approximation of the tails
in (3.15) will be very poor.

These limitations of PF together with other sampling methods in the PF frame-

work, such as the adapted SIR-based PF, the blind rejection sampling-based PF, and

the blind MCMC method are all reviewed in Pitt and Shephard (1999).

(3) APF and its Application
APF is actually an evolved form of the Particle Filters. In the APF, the target

is to sample from the joint density p (�t�1; k j ��; Ft�1) rather than p (�t�1 j ��; Ft�1).
The APF involves a two-stage reweighting and resampling by introducing the index, k,

which is called an auxiliary variable. An importance function g (�) is also introduced,
which plays an important role associating draws from the prior with the predictive

likelihood.

The SIR-based APF is described as follows: we can make R proposals �jt�1; k
j :

j = 1; � � � ; R
�jt�1; k

j � g (�t�1; k j ��; Ft�1)

12This indicates that the states are updated one period at a time.
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and the resampling weights are constructed as the follows:

wj =
p
�
yt�1 j �jt�1; ��; Ft�2

�
p
�
�jt�1 j ��; �k

j

t�2

�
g
�
�jt�1; k

j j ��; Ft�1
� ;

�j =
wjPR
i=1wi

; j = 1; � � � ; R

The importance function g (�) should be designed depending on the updated data
yt�1 and also �k

j

t�2 to make the weights even. With g (�), �
j
t�1 that associate with

large predictive likelihood would receive higher weights. If we denote Ek�t�1j�t�2 as the

mean associated with the transition density of p
�
�t�1 j �kt�2

�
, according to Pitt and

Shephard (1999), g (�) can be selected as the following approximation from Equation

(3.17)

g (�t�1; k j ��; Ft�1) / p
�
yt�1 j Ek�t�1j�t�2 ; �

�; Ft�2
�
p
�
�t�1 j ��; �kt�2

�
�k; (3.17)

where k = 1; � � � ;M . This form of the approximating density g (�) is designed so that

g (k j Ft�1) / �k
R
p
�
yt�1 j Ek�t�1j�t�2 ; �

�; Ft�2
�
dF
�
�t�1 j ��; �kt�2

�
/ �kp

�
yt�1 j Ek�t�1j�t�2 ; �

�; Ft�2
�

wk = p
�
yt�1 j Ek�t�1j�t�2 ; �

�; Ft�2
�

�k =
wkPM
i=1wi

; k = 1; � � � ;M

where F
�
�t�1 j ��; �kt�2

�
is the corresponding c.d.f. Thus, we get samples of (�t�1; k)

from g (�t�1; k j Ft�1) by simulating k with probability �k proportional to g (k j Ft�1),

�k / g (k j Ft�1)

then associate the k with �kt�1 and �
k
t�2. �k is the so called the �rst-stage weights. By

the end of the �rst-stage weights, a discrete sample with a size of M is obtained from

the target density g (�t�1; k j Ft�1) with a random support.

In the second-stage, we sample the indices k for R times and index these sam-

ples as
�
�jt�1; k

j
�
: j = 1; � � � ; R, where R is 5 � 10 times larger than M recom-

mended by Chib et al. (2006). By doing so, we have R samples from the joint density

g (�t�1; k j Ft�1). As we would like to get particle samples where predictive likelihoods
are high, a reweighting can be performed by putting weights on the draw

�
�jt�1; k

j
�
,
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where the weights are proportional to the second-stage weights �j

wj =
p
�
yt�1 j �jt�1

�
p
�
yt�1 j Ekj�t�1j�t�2

� ;
�j =

wjPR
i=1wi

;

The hope is that these second-stage weights �j are much less variable than those using

the original SIR-based PF in equation (3.16). Finally, we randomly get M samples

from the R discrete draws
�
�jt�1; k

j
�
.

The beauty of APF lies in the choice of g (�) and the auxiliary variable k. In the
�rst-stage, the discrete samples are weighted to approximate the g (�t�1; k j Ft�1). In
the second-stage, the weights are reweighted to associate with the likelihood p

�
yt�1 j �jt�1

�
.

According to the simulation results in Pitt and Shephard (1999), the APF is very �ex-

ible and reliable to approximate p (�t j yt) when the conditional likelihood p (yt j �t)
is very sensitive to �t. Algorithm 2 explains how the APF is applied with the GSTUR

model for the likelihood ordinates estimation at ��.

Algorithm 2: Estimate the log Likelihood Ordinates at �� Using the
Auxiliary Particle Filter
First, at time t, we call the lags of �t as �t = (�t�1; � � � ; �t�p)0. The lags of �2

denoted as �(g)2 : g = 1; � � � ;M , which are the initial values that can be either set as
a M � p zeros matrix or a sample of M draws (�(1)2 ; � � � ; �

(M)
2 )0 from the conditional

prior p(�2j��). In my Matlab code, �
(g)
2 : g = 1; � � � ;M is set as a M � p zeros matrix

and M is set as 3; 000.

1. t starts from t = 2.

(a) For each �(g)t , g = 1; � � � ;M , sample a value �4(g)t using the transition

density:

�
4(g)
t � fN(�(g)t �; �2�� )

Note that �4(g)t is a sample from p(�tj��; �t).

(b) An estimate of the likelihood ordinate p(ytj��; Ft�1) is given by:

p̂(ytj��; Ft�1) =
1

M

MX
g=1

p(ytj��; �4(g)t ; F t�1) (3.18)
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2. For each g = 1; � � � ;M de�ne �̂gt = E(�
g
t j�gt ) = �gt� and calculate:

wg = p(ytj�̂gt ; ��; Ft�1)
�k =

wgPM
j=1wj

; k = 1; � � � ;M

�k is the �rst-stage weights. Get R draws (k1; � � � ; kR) from the discrete distri-

bution de�ned on the integers (1; � � � ;M) with probabilities �1; � � � ; �M , where
R is set as larger as 5�M . This step is to get R samples from the importance

function g (�t; k j ��; Ft) by simulating the index with probability �k. Note that
each value of kr is used to indicate a value of �

(kr)
t (and of �̂krt ) and kr. Explicitly,

step 2 is using the importance function g (�)

g (�t; k j ��; Ft) / p
�
yt j Ek�tj�t ; �

�; Ft�1

�
p
�
�t j ��; �kt

�
�k

k = 1; � � � ;M

to get a sample of R draws.

3. For each �(kr)t , r = 1; � � � ; R, draw a scalar ��(r)t using the transition density

p(�tj��; �t) with
�
�(r)
t � fN(�krt �; �2�� ) (3.19)

Note that
�
�
�(r)
t : r = 1; � � � ; R

�
and (kr : r = 1; � � � ; R) is a sample from the

joint density g(�t; krj��; Ft; �t)

4. Resample the R�1 vector
�
�
�(r)
t : r = 1; � � � ; R

�0
M times with probabilities �r

de�ned as:

w�r =
p(ytj��; Ft�1; ��rt )
p(ytj��; Ft�1; �̂krt )

(3.20)

�r =
w�rPM
r=1w

�
r

�r is the second-stage weights. Then, the resampled M � 1 vector, which con-
tains values (�(1)t ; � � � ; �

(M)
t )0 is (approximately) distributed as p(�tj��; Ft; �t).

These second-stage weights are associated with the conditional likelihood by the

importance function g (�). Hence, the APF is better than the SIR-based PF, in
which �t only relies on the transition density and (�

(1)
t ; � � � ; �

(M)
t )0. Stacking this

sampled (�(1)t ; � � � ; �
(M)
t )0 on �(g)t : g = 1; � � � ;M . We have the updated lags of

�gt+1 =
�
�
(g)
t ; �

(g)
t�1; � � � ; �

(g)
t�(p�1)

�
: g = 1; � � � ;M
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5. Fix t = t + 1 go to step 1(a) to get �4(g)t+1 from �gt+1 in step 4. Note that �
4(g)
t+1

are samples from p(�
4(g)
t+1 j��; Ft; �

g
t+1) and following 1(b) to get p̂(yt+1j��; Ft)13,

until t = n.

6. Finally, the estimate of the log likelihood is

log bp (y j ��) = nX
t=2

log bp (yt j ��; Ft�1) (3.21)

It might be argued that if it is good enough to set �(g)2 as a M � p zeros matrix.
Our explanation is as follows: if y1 is deterministic, the particle �lter starts with

�
(g)
2 =

0BBBB@
�
(1)
1 � � � �

(1)
2�p

�
(2)
1 � � � �

(2)
2

...
...

�
(3000)
1 � � � �

(3000)
2�p

1CCCCA
, which is a 3000 � p zero matrix. Once �4(g)2 � fN(�

(g)
2 �

�; �2�� ) is simulated from

the transition density, �4(g)2 is a sample from p(�2j��; �2), where �� are the estimated
values of � from the posterior sampler. The likelihood ordinate at time t = 2 for y2,

p(y2j��; y1) is then estimated as

p̂(y2j��; y1) =
1

M

MX
g=1

p(y2j��; �4(g)2 ; y1) (3.22)

Notice that �4(g)2 is a sample from p(�2j��; �2), hence 1
M

PM
g=1 p(y2j�

�; �
4(g)
2 ; y1)

can be a good estimate of p̂(y2j��; y1). M can be chosen as a larger value when

estimate p̂(y2j��; y1). However, since we require R to be 5 � 10 times larger than M
recommended by Chib et al. (2006), a larger M will induce bigger computational

costs.

To sum up, a particle �ltering method could recursively deliver sequence of draws of

p
�
�
(g)
2 j ��; F2; �2

�
,..., p

�
�
(g)
t j ��; Ft; �t

�
, ..., p

�
�
(g)
n j ��; Fn; �n

�
. Note that there are

other less e¢ cient methods to estimate the likelihood ordinate p(y j ��). For example,

13An estimate of p(yt+1j��; Ft) is given by:

p̂(yt+1j��; Ft) =
1

M

MX
g=1

p(yt+1j��; Ft; �4(g)t+1 )
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one could get sample draws of �(g)2 ; � � � ; �
(g)
n : g = 1; � � � ;M from the conditional prior

p(�2; :::; �n j ��) and simply average the conditional likelihood p(y j �; �2; :::; �n) over
these draws. Even though this method would also deliver an estimate of the likelihood

p(y j ��), it is less e¢ cient than using the two-stage reweighting and resampling APF.
Because this method shares the same disadvantages as the SIR-based PF that most of

the draws from the prior may contribute little to the estimate of the likelihood when

the likelihood is sensitive to the prior. The advantages of using an APF is that in

the APF, a sample of �(g)t : g = 1; � � � ;M that receives high conditional predictive

likelihood receives more weights and the sample of �(g)t is updated along with t and

the yt so that the estimate of the log likelihood ordinate at �
� will be more accurate.

With the �marginal likelihood identity�from (3.9), estimated posterior ordinates

using a �reduce Gibbs runs�from (3.10) and the estimated log likelihood ordinates from

an APF, we are able to estimate the log marginal likelihood of any model of interest,

such as GSTUR model with di¤erent speci�cations. We also would like to compare

the simplest linear RW model with the complicated nonlinear GSTUR model. The

marginal likelihood of the RW model is computational simpler and the integral can be

evaluated analytically14. As in this case:

pRW (y) =

Z
p(yj�2")p(�2")d�2" (3.23)

In the RW model, �2" is the only parameter that has to be estimated. If h" = �
�2
" and

the prior chosen for h" follows a Gamma distribution h" s f�"
�
�"; �"

�
, the marginal

likelihood of the RW model would heavily depend on the values of �" and �". From

the model comparison aspect, it is sensible to choose the same prior for the common

parameters amongst the competing models. The values of �" and �" will be chosen as

the same as those for ��2" in the GSTUR model (see Table 3.1).

With the available marginal likelihoods for the model of interest, the Bayes factors

for competing models can be evaluated.

3.3 Evaluations Using Arti�cial Data

In this section, we evaluated the e¢ ciency of the developed GSTUR model�s posterior

simulator. A series of arti�cial data with a sample size of 120 is simulated from the

14Please refer to Appendix A for the derivation of the analytical integration with the RW model.
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Figure 3-6: Simulated Data from GSTUR DGP

GSTUR DGP, speci�ed as the following

�t = yt � 
 � �t

where

�t = exp(�t)�t�1 +
lP
i=1

�i4 �t�i + "t (3.24)

�t = �0 + �1�t�1 + �t (3.25)

where "t is i:i:d:N(0; �2") and �t is i:i:d:N
�
0; �2�

�
. Figure (3-6) plots the simulated

series

3.3.1 Estimation

The �true values�and estimated values are provided in Table (3.2). A GSTUR model

with p = 1 and l = 2 is estimated by running the Gibbs Sampler for 25; 000 replications

with the initial 5; 000 replications discarded. The estimated results for posterior means,

standard deviations, CD diagnostics of the MCMC convergence and high density of

the posterior interval are provided in Table (3.2). The �true�values of the parameters

are provided as a benchmark to evaluate the e¢ ciency of the estimates.

From Table (3.2), the estimated results for all parameters are close to the �true�

values and are within 99%High Posterior Density Intervals (HPDI). The Gibbs sampler

converged for all the parameters according to the CD values. Therefore, it is not

necessary to increase the iteration numbers as the convergence is achieved after 25; 000

replications. Fig (3.a-3.h) plots the posterior distributions of all the parameters of
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Table 3.2: GSTUR Estimates Using Simulated Data

parameters trueV Est:mean s:t:d CD HPDI:99
�� �0:2106 -0.165 0.0681 0.317 -0.3292 -0.0181
�2� 0:0373 0.0332 0.0103 0.5601 0.0169 0.0662
�2" 0:919 1.1682 0.1645 0.2124 0.8457 1.6113
�1 �0:2276 0.1152 0.1326 -0.1481 -0.194 0.4249

 1 0.9731 1.5336 -0.5188 -3.0144 4.8222
� 0:05 0.0446 0.0198 0.3196 -0.005 0.0946
�1 0:1619 0.1328 0.0983 -1.1332 -0.0971 0.3635
�2 �0:0165 -0.0214 0.1001 -0.0686 -0.2575 0.2126

parameters NSEno NSE:04 NSE:08 NSE:15 RNEno RNE:04 RNE:08 RNE:15
�� 0.002 0.0284 0.0334 0.0326 1 0.0049 0.0035 0.0037
�2� 0.0002 0.0007 0.0007 0.0007 1 0.0474 0.0484 0.0595
�2" 0.0047 0.0077 0.0075 0.0069 1 0.3761 0.3907 0.4611
�1 0.0013 0.0012 0.0011 0.0011 1 1.1066 1.2577 1.2777

 0.0167 0.0153 0.0132 0.0122 1 1.1949 1.5987 1.8747
� 0.0002 0.0002 0.0002 0.0002 1 1 1.5285 1.6782
�1 0.0017 0.0089 0.0105 0.0103 1 0.0369 0.0268 0.0276
�2 0.0018 0.0106 0.0124 0.0121 1 0.0276 0.0205 0.0214
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According to the experimental results under the controlled settings, the MCMC

Gibbs sampler is able to provide e¢ cient estimates for most of the parameters of

interest. From Fig (3.a-3.h), normal posteriors can be well �tted with Normal distri-

butions and the simulated posterior distributions of �2� and �
2
" can be well �tted with

the Inverse-Gamma distributions.
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Table 3.3: Over-Dispersed Starting Points in 5 Chains

chain1 chain2 chain3 chain4 chain5
�� ln 0:9 ln 0:9 + 3 � 0:1 ln 0:9� 3 � 0:1 ln 0:9 + 5 � 0:1 ln 0:9� 3 � 0:1
�1 1 1 + 3 � 0:11=2 1� 3 � 0:11=2 1 + 5 � 0:11=2 1� 3 � 0:11=2
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Figure 3-7: GSTUR 5 Parallel chains with Overdispersed Starting Points

3.3.2 MCMC with Dispersed Initial Values

From Table (3.2), the CD values show that the chain converges after the burn-in

samples are discarded. To ensure the initial values do not contaminate the results,

following the MCMC diagnostic procedure reviewed in Chapter 2.3.3, we run 5 parallel

chains from di¤erent initial conditions and overlaying the sampled chains on a common

graph for a visual inspection. The starting points are chosen as �5, �3 and 0 prior
standard deviations from the prior means (see Table 3.3).

To illustrate the fast movements of the chains, we plot the �rst 100MCMC samples

for �� and �rst 40 MCMC samples for other parameters. From Fig (3-7), we may

see the 5 parallel Markov chains converge for all the parameters within the �rst 40

iterations according to the visual inspection. Hence, the burn-in period with 5; 000

samples is big enough to avoid the contamination from the initial conditions.

Another way to visually inspect the MCMC e¢ ciency is to plot the correlograms

of the sample draws. An e¢ cient MCMC requires small autocorrelations amongst the

sample draws. Fig (3-8) plots the correlograms for chain 1.
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Figure 3-8: Correlograms: GSTUR parameter with 25,000 Iterations

From Fig (3-8), the correlogram (autocorrelation function) indicates small autocor-

relations for most of the parameters. Only the correlogram of �� indicates autocorrela-

tions at large (around 100) lag lengths. According to the derivations in Kim Shephard

and Chib (1998), in the cases where the draws are uncorrelated, 10; 000 iterations is

su¢ cient for an NSE to be less than 1% of the posterior standard deviation.

3.3.3 Prior Sensitivity Analysis

In this section, we employed much �atter priors for a simple prior sensitivity analysis.

In Table (3.4), the prior variances (covariances) for ��, �1, 
 and � are 100 times

larger than those priors listed in Table (3.1).

From Table (3.4), the estimate of �2" is sensitive to the prior choices. Whereas,

the prior �2"� f�1� (1; 1=128) indicates a di¤use prior corresponding to a high degree

of belief in �2" being in the right tail, where 0 < �
2
" <1. As was mentioned in section

3.2.1, the values of the parameters in the prior �2"� f�1�
�
�"; �"

�
cannot be chosen

arbitrarily because the �priori�belief should at least to some extent, be a re�ection of

the real life data. The �
"
= 1=128 in the prior �2"� f�1�

�
�"; �"

�
is not a sensible one,

since if we simulate data using a random sample �2" from this prior, the hypothetical

data will diverges from a reasonable range due to the large value of �2". Hence, using

di¤erent reasonable priors, as long as �
"
is not selected to be extremely small values,

the estimates will not alter much.
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Table 3.4: GSTUR Priors Sensitivity Analysis

priors trueV Estmean s:t:d HPDI:99
��� fN (ln 0:9; 1) �0:2106 �0:3271 0:1915 �0:818 0:0283

�2�� f�1� (1:5; 2:5) 0:0373 0:044 0:0163 0:0207 0:0986

�2"� f�1� (1; 1=128) 0:919 3:4371 0:4686 2:5254 4:7151
�1� fN (1; 10) �0:2276 0:1047 0:1285 �0:1954 0:4059�


�

�
� fMN

�
0
0
;�
� �

1
0:05

�
1:0021
0:0442

1:6088
0:0219

�3:4709
�0:0134

5:3345
0:1041�

�1
�2

�
� fMN

�
0
0
;�
� �

0:1619
�0:0165

�
0:1858
0:0353

0:1727
0:1753

�0:2205
�0:3781

0:5833
0:4466

para NSEno NSE:04 NSE:08 NSE:15 RNE:04 RNE:08 RNE:15 CD
�� 0:0007 0:0036 0:0032 0:0033 0:0405 0:0522 0:0489 �1:3072
�2� 0:0001 0:0003 0:0003 0:0002 0:1616 0:1891 0:2568 0:3926
�2" 0:0018 0:0023 0:0024 0:0022 0:6377 0:6131 0:7267 0:5403
�1 0:0015 0:0017 0:0017 0:0017 0:8031 0:7541 0:7569 �1:3711

 0:0176 0:026 0:0272 0:0275 0:4567 0:4179 0:407 1:0654
� 0:0002 0:0003 0:0003 0:0003 0:6325 0:5938 0:5801 �0:3911
�1 0:0011 0:0017 0:0017 0:0018 0:4107 0:4106 0:3808 1:0841
�2 0:0011 0:0022 0:0019 0:0019 0:2597 0:3607 0:3529 1:2177

� = 106eye (2)

3.3.4 Model Comparison via Bayes Factors

Under the controlled settings, using the Bayes Factors and the Chib method discussed

in Section 2.3, we are able to focus on the existence of a deterministic time trend and

the nonlinearity by investigating model probabilities for a group of competing models,

which are speci�ed as

1. GSTUR with constant and trend, where 
 6= 0; � 6= 0:

2. GSTUR with constant only, where 
 6= 0:

3. GSTUR with trend only, where � 6= 0:

4. GSTUR without constant and trend, where 
 = 0; � = 0:

5. A pure RW model.

Table (3.5) presents the log marginal likelihood of the �rst four models and the

Bayes Factors of GSTUR class models over the RW model. From Table (3.5), we see

that the GSTUR model with � 6= 0 receives the highest marginal likelihood, which

indicates the highest model probability amongst the four GSTUR class models of
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Figure 3-9: log Marginal Likelihood of RWwith Simulated Data from GSTUR DGP

interest. According to the log Bayes Factors (2:0887), the GSTUR model with � 6= 0
is supported when we compare it with the RW model.

Table 3.5: Model Comparison GSTUR VS RW Using a Common Prior

with �xed p = 1 and l = 2
GSTUR 
 6= 0; � 6= 0 
 6= 0 � 6= 0 
 = 0; � = 0
log ML �202:7103 �188:522 �179:051 �208:3532
log BFGSTUR;RW �21:5706 �17:3823 2:0887 �27:2135

Fig (3-9) plots the log marginal likelihood of a RW model with di¤erent selected

priors of ��2" �f�"
�
�"; �"

�
, where the values of �" and �" are ranged from 0:1 to 5 with

a step of 0:01. The log marginal likelihood reaches the maximum point at �178:7182
when �" = 5 and �" = 0:17. Under the same prior as that in the GSTUR model for the

common parameter ��2" by setting �" = 1:1 and �" = 0:2, the log marginal likelihood

using the RW will be �181:1397. Under the controlled setting using a common prior
for ��2" , if we compare the GSTUR model, MGSTUR:� 6=0, with the RW model, MRW ,

the log Bayes Factor, logBFGSTUR:� 6=0;RW , is larger than 0, which indicates a support

for the GSTUR model according to the Je¤reys classi�cations in Table (2.1). If we

just consider two models Mi and Mj (which are RW and GSTUR with � 6= 0), the

weight averaged model M can be expressed as

M =Mip(Mi) +Mjp(Mj) (3.26)

and
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p(Mj) =
p(y jMj)

p(y jMj) + p(y jMi)
=

1

1 +Bij
; (3.27)

where p(M) indicates the model probabilities. We may conclude that, using the Bayes

Factors, both a nonlinearity in the form of GSTUR and a deterministic time trend

exist with a probability of 90% in the simulated data. This result is consistent with

our DGP in (3.24 and 3.25).

3.4 Empirical Illustrations with a GSTUR Model

3.4.1 Empirical Results with Stock Price

To illustrate the model estimation and model comparison algorithms, a S&P500 annual

data set, measured in logarithms, is chosen from the extended Nelson and Plosser�s

data set (from 1877 to 1988) for empirical applications. This data set has been pre-

viously tested for an exact Unit Root, deterministic time trend and changing persis-

tence (see Nelson and Plosser 1982, Kwiatkowski et al. 1992, Gil-Alana and Robinson

1997). Whether this univariate time series is Trend Stationary (TS), Di¤erence Sta-

tionary (DS) or neither, or if there is any change in the underlying processes cannot be

concluded with certainty. This data set has also been applied by Jones and Marriott

(1999) with the original Stochastic Unit Root model (the simplest form of the GSTUR

in equation 3.1 and 3.2).

In this Chapter, not only the S&P 500 data is applied with the GSTUR model for

estimations, but also the model probabilities are evaluated to shed light on the model

uncertainties.

Estimation

To ensure that the e¤ects of the starting values in the MCMC algorithms are insignif-

icant, we take 25; 000 draws with the �rst 5; 000 discarded. The simulation e¢ ciency

is evaluated by the Numerical Standard Errors (NSE)15, Convergence Diagnostic val-

ues (CD) and correlograms of the samples. Because the initial replications from the

Gibbs Sampler are worn o¤, the MCMC convergence diagnostic results show that it

is unnecessary to run the MCMC from dispersed starting values.

The correlogram (autocorrelation function) plots serial correlations of the draws

from the posterior simulator. Fig (3-10 and 3-11) indicates that, for all the parameters

15NSE is reported taking the correlation up to lags of 15% of the size of the sample into account.
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of interest, there is no signi�cant autocorrelations at lag lengths larger than 15. Thus,

the quick decaying autocorrelation indicates quick movements in the sampled draws.

The Gibbs Sampler is e¢ cient and the sampled draws converge fast to a consistent

estimator. In the cases where the draws are uncorrelated, 10; 000 iterations is su¢ cient

for an NSE to be less than 1% of the posterior standard deviation. The iteration

number we are taking, which is 25; 000 draws with the �rst 5; 000 discarded, is much

larger than required to ensure the Gibbs Sampler converges.

Figure 3-10: SP500 with GSTUR: Posterior Draws of ��, �
2
" and �

2
�

The summary statistics of Table (3.6) reports the estimated results and e¢ ciency

diagnostics of the Gibbs sampler. According to the CD value and NSE values, the

Gibbs sampler converges for all the parameters of interest. The estimates from the

Gibbs sampler could be su¢ cient for inferential purpose. The posterior distribution

properties indicate the signi�cances of the parameters of interest. A negative �� and

small �2� indicate that the S&P500 series could be a good realization of a process with

Stochastic Unit Roots.
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Figure 3-11: SP500 with GSTUR: Posterior Draws �1,
, �, and �1
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Table 3.6: Estimates: GSTUR with an Application to SP500

Prior Posterior
Mean StDev Mean StDev CD Median :95HPDI

�� ln 0:9 0:12 -0.145 0.1036 0.0616 -0.137 -0.3259 0.0112
�2� - - 0.0393 0.0131 -0.5059 0.0368 0.0229 0.0636
�2" - - 0.1167 0.016 -0.6674 0.1153 0.093 0.1449
�1 y y 0.1094 0.1305 0.9928 0.1087 -0.1048 0.3255

 0 106 0.7657 0.3769 1.0057 0.7658 0.1415 1.3768
� 0 106 0.0346 0.0054 -1.5527 0.0346 0.0256 0.0434
�1 0 106 0.2609 0.2128 -0.7117 0.2608 -0.0876 0.6115

parameters NSEno NSE:04 NSE:08 NSE:15 RNEno RNE:04 RNE:08 RNE:15
�� 0.0011 0.01 0.0101 0.0112 1 0.0129 0.0126 0.0103
�2� 0.0001 0.0005 0.0006 0.0005 1 0.0765 0.0683 0.0768
�2" 0.0002 0.0003 0.0003 0.0003 1 0.3753 0.3418 0.369
�1 0.0015 0.002 0.0023 0.0025 1 0.5321 0.3984 0.3537

 0.0042 0.0058 0.0056 0.0058 1 0.5189 0.5602 0.5248
� 0.0001 0.0001 0.0001 0.0001 1 0.762 0.86 0.9842
�1 0.0024 0.0056 0.0059 0.0068 1 0.182 0.1599 0.121
y : �1� fN (0; 1) 1 (kzjk > 1) where 1 (A) is the indicator function for the event A

� : see Table (3.1) for prior descriptions

Model Selection

Imposing � = 0 or 
 = � = 0 signi�cantly change the estimation results of the stochas-

tic roots. Koop (1994) points that �imposing restrictions on the deterministic time

trend is ruling out the possibility of a deterministic trend so that any trend behavior

must manifest itself stochastically, biasing the tests in favour of stochastic nonstation-

arity�. Considering over-parameterizing problems, it is also important to decide which

parameters should be included for a good �tting model. In a Bayesian framework, the

Bayes Factors is an e¤ective tool in model selection procedures and can be applied to

avoid the over-parameterizing problems (see Koop and Potter, 1999). The algorithms

developed in Section 2, using the Chib method associated with the APF, are applied

to calculate the model marginal likelihoods for an empirical application. Then, ac-

cording to (2.1), the log Bayes Factors (logarithm of the marginal likelihood ratios)

can be evaluated and model with the highest log marginal likelihood will be the most

favoured model.
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Table 3.7: log Marginal Likelihood with a GSTUR class of Models


 6= 0; � 6= 0 
 6= 0 � 6= 0 
 = � = 0

(a) p = 3

l = 0 -25.1406 -27.935 -4.7795 -66.5449

l = 1 -29.1619 -31.2879 -8.9852 -75.0414

l = 2 -36.9802 -39.3019 -16.77 -82.308

l = 3 -45.9399 -47.1458 -24.9254 -91.1269

(b) p = 2

l = 0 -23.9927 -26.4499 -2.7145 -62.7711

l = 1 -28.3142 -30.2792 -7.3366 -71.3285

l = 2 -35.5217 -37.6665 -14.7954 -79.0727

l = 3 -44.2955 -45.3416 -22.3381 -87.3335

(c) p = 1

l = 0 -21.6808 -23.4512 -0.2384� -58.3054

l = 1 -26.0272 -27.51 -4.6843 -66.8312

l = 2 -33.4339 -34.7273 -11.6567 -74.8015

l = 3 -41.5651 -42.8262 -20.1654 -83.4481

Table (3.7) illustrates the estimated log marginal likelihood results. From Table

(3.7), when the lag lengths are equal (same number of l) and under the same spec-

i�cations of 
 and �, log marginal likelihoods of the GSTUR models do not alter a

lot, given p varies from 1 to 3. Since p in the GSTUR model stands for the order of

autoregressive in the hidden process, the transition equation (3.5) has little impact in

determining the model �ts. The model selection procedure, then, will highly depend

on the speci�cations in the measurement equation (3.4).

To compare the highly parameterized nonlinear GSTUR model with a simple linear

RW model, we calculate the marginal likelihood from the RW model using the S&P

500 data. Because the marginal likelihood from the RW model very much depends

on the values of �" and �" in the prior �
�2
" �f�"

�
�"; �"

�
, which has been shown in

Fig (3-9) under the controlled settings, we choose a range of values of �" and �" to

calculate the marginal likelihood for a simple prior robust analysis. Both �" and �"
start from 0:1 to 5 with a step of 0:01.

From Fig (3-12), the log marginal likelihood of a RandomWalk model is maximized

at 46:2606 with �" = 5 and �" = 5. If the values are chosen as �" = 1:1 and �" = 0:2,

77



0
1

2
3

4
5

0
1

2
3

4
5

­100

­50

0

50

α

ML using SP500 with RW under Different apha&beta

β

m
ar

gi
na

l l
ik

el
ih

oo
d 

fro
m

 R
W

Figure 3-12: log Marginal Likelihood of RW with an Application of SP500

which are the same as those in the prior of ��2" �f�"
�
�"; �"

�
in the GSTUR model,

the log marginal likelihood is �34:413. Due to the fact that it is sensible to choose the
same priors for the common parameters when we do the model comparison, under the

same prior for ��2" , the Bayes Factors between the RW and the GSTUR model with a

deterministic time trend (� 6= 0) can be calculated as:

BFRW :GSTUR =
p(MRW )

p(MGSTUR)
=
exp(�34:413)
exp(�0:2384) = 1: 439 3� 10

�15

According to Table (2.1), the coe¢ cient nonlinearity in the form of stochastic unit

roots is supported in the sample series. Taking the model uncertainties into account,

if we just consider the RWmodel and the GSTUR (with l = 1, � 6= 0), we could weight
average the probabilities of the roots being time-varying or being a constant according

to equation (3.26 and 3.27). Therefore, we may conclude that the sample series has a

99% probability of being a stochastic unit root process.

To illustrate the possible changes of the persistence in the underlying process over

the sample period, the estimated time-varying roots of �t (t = 1878 � 1988) from
the GSTUR model are plotted corresponding to the S&P 500 data. The estimates of

the roots �t vary under di¤erent speci�cations of the constant 
 and the deterministic

time trend �. Fig (3-13) plots the stochastic roots estimated using a restricted GSTUR

(p = 1; l = 1) model with no constant but a deterministic time trend, which is speci�ed

as � 6= 0. Fig (3-14) plots the stochastic roots estimated using a totally unrestricted
GSTUR (p = 1; l = 1) model, which is speci�ed with � 6= 0 and 
 6= 0.
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Figure 3-13: GSTUR with � 6= 0 : Time-Varying Roots of SP500 1878-1988
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Figure 3-14: GSTUR with 
 6= 0 � 6= 0 : Time-Varying Roots of SP500 1878-1988
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From Fig (3-13 and 3-14), the roots go above unity occasionally. Explicitly speak-

ing, the roots of the Stock prices series vary around E [exp (��)] in the stationary

region for most of the time, but go beyond 1 at certain time points and exhibit an

explosive behaviour. At these time points, there might be changes in the persistence

of the underlying process. The interval and the variances of the estimated stochastic

roots �t are small. These indicate that the STUR process may not be easily dis-

tinguished from a linear �xed unit root process. This may explain why Nelson and

Plosser (1982), Kwiatkowski et al. (1992) all �nd evidences of a Unit Root in the S&P

500 series.

3.4.2 Empirical Results with Long-run Real Exchange Rate

Another empirical application for the GSTUR model is to analyze the real exchange

rates. The data set applied in this chapter is the monthly U.K./U.S. real exchange

rates from January 1885 to February 1995, with a sample size of 1; 322 over 111-year

period. This data has been analyzed by Engel and Kim (1999) with a state space

model. They applied an Augmented Dickey-Fuller (ADF) test and rejected the unit

root in this long-span real exchange rate series at the 5 percent level.

In this section, a restricted GSTUR model (
 = � = 0, p = 1 and l = 1) is applied

for analysis. The Gibbs Sampler uses 25; 000 iterations with the �rst 5; 000 discarded.

The e¢ ciency of the algorithm is shown according to the RNE values. The summary

statistics of Table (3.8) reports the estimated results and diagnostics of the MCMC

for this empirical application.

Figure (3-15) plots the U.K./U.S. real exchange rates, nominal exchange rates and

estimated roots over 111 year span. According to the summaries in Engel and Kim

(1999), we also provide the historical monetary events within the 111-year span:

1. Mid-1898. This period is congruent with the gold rush (Friedman and Schwartz,

pp.135-28). During this period, nominal price levels in both the U.S. and the

U.K. �uctuated wildly from month to month (while the nominal exchange rate

remained �xed) as the money supplies of the two countries were jolted by in-

creases in their stocks of gold.

2. Late 1902, there was a rapid in�ation in the U.S. through September of 1902.

This in part was driven by an expansionary monetary policy followed by the U.S.

Treasury, which increased its deposits at major banks and persuaded the larger

national banks to increase currency in circulation. The business cycle peaked in
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Table 3.8: Estimates: GSTUR with U.K./U.S.Real Exchange Rates

Prior Posterior
Mean St:Dev Mean St:Dev CD Median 95%Posterior Band

�� ln 0:9 0:12 �0:0211 0:0510 0:0204 �0:0090 �0:1330 0:0276
�2� � � 0:0002 0:0002 �0:1093 0:0001 0:0000 0:0006

�2" � � 0:0507 0:0020 �0:2337 0:0506 0:0475 0:0540
�1 y y 0:4375 0:4855 �0:3223 0:5488 �0:5100 0:9812
�1 0 106 0:9461 0:0555 1:0901 0:9553 0:8416 1:0204

parameters NSEno NSE:04 NSE:08 NSE:15 RNEno RNE:04 RNE:08 RNE:15
�� 0.0009 0.0012 0.0011 0.001 1 0.5891 0.7629 0.9316
�2� 0 0 0 0 1 0.0556 0.0475 0.0499
�2" 0 0 0 0 1 1.0396 0.7532 0.5939
�1 0.0085 0.0164 0.0171 0.0158 1 0.2682 0.2487 0.291
�1 0.001 0.0027 0.0026 0.0021 1 0.1381 0.1511 0.2373
y : �1� fN (0; 1) 1 (kzjk > 1) where 1 (A) is the indicator function for the event A

� : see Table (3.1) for description

September 1902, according to the NEBR. chronology, and prices fell from then

until the end of the year(see Friedman and Schwartz, pp.149-52).

3. Mid-to-late-1910, As word War 1 began, the gold standard was abandoned. (See

Grilli and Kaminsky, pp.193-94)

4. Mid-1919 to late-1920, the British ceased intervention in the foreign exchange

market that had begun in December 1914, and the dollar began to �oat freely

against the pound. This period of �oating lasted until May 1925, as was noted

above, but initially there was a large realignment of the exchange rate as the

pound depreciated from $ 4.76 to less than $ 3.40 by February 1920. (See Grilli

and Kaminsky, pp.194)

5. September 1931. Britain abandons the gold standard (Friedman and Schwartz,

pp.380-84).

6. Mid-to late 1933. The United States ceases stabilizing the price of gold. The

price of gold rises from $20.67 to $34 by January 1934 (Friedman and Schwartz,

pp.462-91, and Grilli and Kaminsky, pp.194-95)

7. September 1939. Britain devalues the pound (See Grilli and Kaminsky, pp.195)

8. July 1946. Rapid U.S. in�ation when price controls are removed (Friedman and

Schwartz, pp.557-58)
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9. September 1949, The pound is devalued (Grilli and Kaminsky, pp.195)

10. Late-1967, The pound is devalued.

11. Early-1985, Frankel (1994, pp.301-302) describes the period from June 1984 to

February 1985 as a �speculative bubble�in the dollar. The price of the pound

fell from about $1.40 to less than $1.10 during the period. The bubble burst in

February 1985 and the exchange rate rose to near the $1.40 by July of 1985.

12. Late-1992, The United Kingdom leaves the Exchange Rate Mechanism of the

EMU. Between August and November 1992, the price of the pound falls from

$1.95 to $1.52.

From Figure (3-15), the U.K./U.S. long run real exchange rate is highly persistent

according to the estimated Stochastic Unit Roots. The range of the stochastic unit

roots is narrow (from 0:98�1:015), and the variance of the stochastic unit roots is small.
For most of the time, the roots are below one, which indicates the series is stationary.

At certain time points, the roots jump to or above one, which are marked with u.
At these time points, the series exhibit nonstationary and/or explosive behaviors. We

mark these time points, where the roots jump out of the unity, with u in the plot

of nominal exchange rates and real exchange rates. In the plot of nominal exchange

rates, we �nd where the monetary events took place according to the list of historical

record. The vertical bars in the plots indicate the time of signi�cant monetary events.

The stochastic roots, which are estimated to be above 1, are plotted together with

the events together on the time line. We �nd that a change of the persistence in the

series normally goes with an important monetary event sometime as shown in Fig

(3-15). Since we might have omitted some other important events, the illustration of

the correlation may not be signi�cantly substantial.

3.5 Conclusions

For forecasting purposes, it is important to identify if a series is trend stationary or

di¤erence stationary, or neither. A coe¢ cient nonlinear model, the GSTUR model

is a �exible approach for modelling some macroeconomic time series�. Because in

the GSTUR model, the roots are relaxed from a constant value to a process and the

persistence in the series is allowed for changes with time. At this point, the GSTUR

model could provide a better understanding and di¤erent implications about the source

of macroeconomic �uctuations. The marginal likelihoods of the competing models are
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adequate to shed light on the model uncertainties and the existence of a deterministic

time trend.

For Bayesian inferential purpose, with applications of the S&P 500 data sets and

the U.K./U.S. long run real exchange rates, the Gibbs Sampler algorithm is e¢ cient in

providing consistent estimates for the highly parameterized dynamic GSTUR model.

The �e¢ cient� Gibbs Sampler here, in particular, refers to a quick convergence in

the MCMC algorithm, small serial correlations between the sample draws and fast

movements in the sample draws. This MCMC e¢ ciency is examined under controlled

settings by the use of a simulated data series.

One of the main contributions of this chapter is to provide a complete set of

tools for empirical practitioners, who wish to use the GSTUR model with empirical

applications. This developed tool set contains a posterior simulator for estimation, a

tool for MCMC diagnostics, model marginal likelihood evaluation, and estimations of

the latent data �t. Forecasting issues regarding the GSTUR will be discussed in more

details in chapter 5. Considering the di¢ culties in the marginal likelihood evaluations

for the high dimensional GSTUR model, where an analytical integral has a closed form

cannot be obtained due to a T �1 dimension latent variables (�t where t = 2; � � � ; T ),
this chapter implements the Chib method with an APF algorithm in this regards.

Another contribution of this chapter is a revisit of the dispute concerning the de-

terministic time trend in the S&P 500 series, which is part of the extended Nelson

and Plosser�s data set. An analysis using the GSTUR model suggests that the persis-

tence has shifted within the sample. Comparing the computed log marginal likelihoods

amongst the competing models, a GSTUR with a deterministic time trend model re-

ceives the highest marginal likelihood, which indicates a support of the deterministic

time trend. Therefore, excluding the possibility of a deterministic trend may provide

misleading inference. We propose that the underlying process of the S&P 500 series

should be modelled with a more realistic approach, such as a combination of a deter-

ministic time trend and a time varying persistence with roots varying stochastically.

Last, a simple analysis of the monthly U.K./U.S. long run real exchange rates over

111-year span suggests that a GSTUR model may help to resolve the PPP puzzle. The

estimated time varying stochastic roots of the series suggest that important monetary

events are connected to the shifts in the persistence of the real exchange rates.

Appendix 3.A Prior densities

According to the elicited priors, prior densities are expressed as follows
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Appendix 3.B Posterior conditionals

The data series is denoted as y = (y1�l; � � � ; y1; � � � ; yn)0 with a sample size of T = n+l,
where the �rst l + 1 values (y1�l; � � � ; y1)0 are treated as the starting values and the
initial values of � is denoted as �initial = (�2�p; :::; �1)

0, in which all elements equal

to 0. We also denote ��t = (�2�p; :::; �t�1)
0.The joint density of the � is given by the

sequence of conditionals as

p (�j�) =
nQ
t=2

p (�tj��t; �)

Since

�� =
�0

1�
pP
i=1

�i
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Given the likelihood function of p (yj�; �)

p (yj�; �) = 1
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The posterior is proportional to the product of prior and likelihood. With the speci�ed

priors p (�) = p
�

; �; �; ��; �

2
"; �

2
�

�
and via the Bayes Theorem, the joint posterior

density for (�; �) is then
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Then, we are able to develop the full conditional densities for the parameters of

interest.

1. If we denote h" = 1
�2"
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From (3.3), (3.5) and (3.4), the regression of 
 are with the following equation
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If we take left hand side of (3.31) as Y

Y = yt � exp(�t)yt�1 �
lP
i=1

�i4 yt�i
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and the right hand side of (3.31) as X

X =

�
1� exp(�t); t� exp(�t)t+ exp(�t)�

lP
i=1

�i

�
where t = 2; � � � ; n, Regression Equation (3.31) became a simple linear regression
equation

Y = X � 
 + "t

The posterior of 
 follows a normal distribution fN
�
�
; V 


�
. See Koop (2003

pp.36-37) for details.

2. The posterior conditionals � � fMN

�
��; V �
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. The derivation of posterior con-

ditionals is similar to that of 
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Y � = (yt � 
 � �t)� exp(�t) [yt�1 � 
 � �t+ �]

X� = (4yt�1 � �; � � � ;4yt�i � �)

where t = 2; � � � ; n, Equation (3.32) became

Y � = X� � �+ "t

Then, we have posterior of � follows a multivariate normal distribution fMN

�
��; V �

�
,

where �� and V � can be obtained straight forward.

3. The posterior conditionals of error precision h" s f�"
�
�"; �"

�
. According to the

prior density of h"
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5. The posterior conditionals of �i
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the stationary condition, it is straight forward to derive the posterior conditionals for

�i : i = 1; � � � ; p �i � fN
�
��i ; V �i

�
, with mean
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and variance
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The derivation for �1 are as follows:
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Then we can have the variance

V �1 =
�2�
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2

and the mean
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The derivations are all the same for i = 1; � � � ; p.

6. The posterior conditionals for h�

90



p (h� j �; ��; �) / 1

���
�
�
�
��
�h���1� exp

 
�h�
�
�

!
h
n�1
2

�

(2�)
n�1
2

exp

(
�h�
2

nP
t=2

�
(�t � ��)�

pP
i=1

�i (�t�i � ��)
�2)

/ h
��+

n�1
2
�1

� exp

(
�h�

 
1

�
�

+
1

2

nP
t=2

�
(�t � ��)�

pP
i=1

�i (�t�i � ��)
�2!)

/ h���1� exp

(
�h�
��

)

�� = �� +
n� 1
2

� 1

�
�1
� =

1

�
�

+
1

2

nP
t=2

�
(�t � ��)�

pP
i=1

�i (�t�i � ��)
�2

7. The remaining conditionals that are needed for the �t are described as follows:

The conditional densities for �t are nonstandard and given by the following ex-

pression

p
�
�t j 
; �2"; �2�; �; ��; �; ��t; y

�
/ exp

26664��2t�12�2"

0BBB@e�t �
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1CCCA
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� # (�t)
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�t �

� (�t)
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�237775
where �t = yt � 
 � �t

and # (�) is a function of �i

� (�t) is a function of ��; �i; ��t; p and t

Derivations are as follows:

91
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Next, we can rearrange it to make it looks nicer, rearrange into the form in Mar-

riott�s paper
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when p = 1
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For t from 2 to n� 1
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where
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and

� (�t) = �1�t�1 + �� (1� �1)

When p � 2, the whole derivation procedure is the same and we summarize in the
following table, which is also available in Jones and Marriott (1999)

Table 3.9: Appendix: Functions for Sampling apha (a)

values for # (�) p = 1
t # (�)

t 2 [2; n� 1] 1 + �21
t = n 1

values for � (��) p = 1
t � (��)

t 2 [2; n� 1] �1 (�t�1+�t+1)+�� (1� �1)
2

t = n �1�n�1+�� (1� �1)

Since part B can be approximated using a t-density, we used Independent Chain

M-H algorithm to sample �t. To generate draws with high acceptance probabilities,

the selected candidate generating density should be with tails at least as fat as that

of the posterior. I have chosen the degree of freedom as � = 1 in the t-density, which

allows the t-density to have very fat tails.
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Table 3.10: Appendix: Functions for Sampling apha(b)
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Chapter 4

Evidence of Nonlinearity in the
In�ation Rates with a Stationary
Bilinear model

4.1 Introduction and Motivation

In this chapter, Bayesian methods are applied to a Stationary Bilinear (SB) model,

in which the autoregressive (AR) coe¢ cients are restricted within, and close to, the

boundaries required for stationarity. The special feature of the SB model is that the

�rst order AR coe¢ cients are not only time variant but also are correlated with the

random error terms in an economic context.

By adopting the Bayesian approach, a posterior simulator for model estimation,

with a toolkit, which includes the model marginal likelihood evaluation and model

forecasting, is developed. In the Bayesian context, a model selection between two

non-nested models, which are the nonlinear SB model and the Random Walk (RW)

model, is easily achievable via the Bayes factors.

Via experiments using the simulated data, we demonstrate that classical hypothesis

testing and Bayesian model comparison may arrive at di¤erent conclusions. In the

classical framework, a unit root in the series cannot be rejected using the conventional

Augmented Dickey Fuller (ADF) test and the Phillips-Perron (PP) test. However,

in the Bayesian context, compared with a RW model, the SB model based on the

available data information receives a higher model probability according to the Bayes

factors. A better �t of a Stationary Bilinear model leads us to question the feasibility

of the conventional ADF test and the PP test with a nonlinear, parameter time-varying

procedure.
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For empirical illustrations, we applied the quarterly UK in�ation rate from 1957

quarter one to 2007 quarter one. We found that the SB model could better represent

the underlying process of the in�ation series than a RW model.

The outline of this chapter is as follows: In this introduction and motivation section,

we will elaborate the literature regarding in�ation modelling. Also, we motivate the

uses of the SBmodel and the Bayesian techniques via a survey of the literature. Section

2 gives the constructed proper priors and the forms of the corresponding posterior

conditionals. Section 3 focuses on the methodology issues involved for analyzing the

SB model, which include detailed discussions regarding the model estimation and

the marginal likelihood evaluations. Section 4 evaluates the Markov chain Monte

Carlo (MCMC) sampling e¢ ciency with an application of a simulated data series in

a controlled setting. In section 4, to evaluate the estimation e¢ ciency with concern

to the samples sizes, we also calculate and compare the Root Mean Square Errors

(RMSE) of the estimates from the classical approach and the Bayesian approach.

Section 5 uses the UK in�ation rates data series for an empirical application. Finally,

Section 6 concludes.

4.1.1 A Brief Review of In�ation Modelling

In this chapter, the UK headline in�ation series is studied with a purely univariate

statistical model, the Stationary Bilinear (SB) model. Based on the special features of

the SB model, which is going to be reviewed in section 4.1.2, we pursue the research

driven by the following questions: How persistent is the headline in�ation rate? Do

shocks in the economy have impacts on in�ation rate persistence? Can we rely on the

conventional ADF and PP tests results, to explain the persistence of the in�ation time

series?

As motivation, we address the importance of in�ation modelling and some research

puzzles in this area. Understanding in�ation behaviour and its consequences are im-

portant subjects in modern macroeconomics because high rates of in�ation reduce

welfare (Lucas, 2000). Further more, high and persistent in�ation undermines public

con�dence in the economy and in the management of economic policy (Bernake, 2007).

In the long term, low in�ation promotes growth, e¢ ciency, and stability�which, all else

being equal, support maximum sustainable employment (Bernake, 2007). Therefore,

central bankers heavily rely on in�ation forecasts to formulate monetary policies, in

the pursuit of controlling in�ation and achieving a stable price. To provide good fore-

casts of the in�ation rate, economists have studied in�ation from various perspectives.

We will not attempt to provide even a partial review of a huge literature. Thus, in
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this section, we focus on reviewing some main issues raised by economists regarding

in�ation modelling. By doing so, we aim to provide the readers with a general idea

of the framework in in�ation research. As a result, we hope the brief summarizations

could stimulate readers�interest in this challenging research area. We then summarize

some important references in the literature which interested readers could refer to.

The following topics are the current focus of research: The �rst focus is, by al-

lowing for learning in macroeconomics, to model the dynamics of the in�ation rate

of in�ation expectations with key economic variables, such as the unemployment rate

and output. The second focus is to model in�ation expectations, especially anchored

in�ation expectations. To do so, we have to model in�ation uncertainties, as well as

the impacts of the shocks on in�ation. The third focus is modelling the underlying

processes of the core and headline in�ation rates, we could then evaluate how respon-

sive in�ation is to the food and energy shocks. Last but not least, price movements on

both the aggregated level and disaggregated levels is of interest. By looking into the

disaggregated price indices, we can investigate how in�ation expectations change and

how the pricing decisions are made. Using the disaggregated data, we may identify

and forecast the weights of the various economic price indices according to our per-

ceptions of the whole economy. Thereby, a summarization of the disaggregated data

could provide an insight of the in�ation behaviour on an aggregated level.

Further to the interesting topics above, some mysterious historical events have also

drawn great attention since we believe learning from the past may help to reduce the

likelihood of the same things to happen in the future. The following question is raised

in the literature: Is in�ation easier or harder to forecast nowadays (see Stock and

Watson, 2007)?

Next, we provide some references in the literature with respect to the in�ation

rates modelling. In the literature, in�ation rates models fall into two genres: (1) The

�rst category includes the models based on the new Keynesian Phillips curve and the

dynamic stochastic general equilibrium (DSGE) models. These models are normally

applied to project the core in�ation at longer-term horizons (Bernanke, 2007). (2) The

second category consists of purely statistical models. Based on these statistical models,

we project the near-term in�ation using time series analysis techniques. Although this

chapter focuses on univariate time series based on a statistical model, in the following,

we provide some references to modelling of the in�ation rate from various economic

variables �rst, and some references on the statistical modelling regarding the in�ation

time series second.

The relationship between the in�ation rate (also in�ation expectations) and the
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key economic variables, such as nominal interest rates, the unemployment rate, the

openness of an economy, the exchange rate, and the tax system, have been profoundly

studied. A recent article from Edward (2006) researches whether the exchange rates

should be considered under the in�ation targeting policy. The literature in this regards

is too large to survey comprehensively.

Various statistical models have been applied to �t the in�ation data sets. A very

recent article from Watson and Stock (2007) applies a time varying trend-cycle (TC)

model for the US in�ation rates. Forecasting results from this time varying TC model

provides smaller forecast errors comparing to the AR (4) model. They suggest that

the univariate in�ation process can be well described by a trend-cycle model with

stochastic volatility or, equivalently, an integrated moving average process with time-

varying parameters. Baillie et al.(1996) applied an ARFIMA-GARCH model to test

the Friedman hypothesis. Kim (1993) applied a Markov-Switching model to investigate

the in�ation and in�ation uncertainties. Cogley and Sargent (2001, 2005) applied a

time varying AR model to investigate the in�ation persistence. Many other statistical

models, such as the State Space model, the simple AR (p) model, the Integrated

Moving Average (IMA) model, and the cyclical models, have been used to model the

in�ation rate. From the perspective of purely statistical models, how to model the

underlying process of the in�ation and �lter out the movements of the unobservable

components, clearly, is an area that needs a lot of research.

4.1.2 Motivating the Stationary Bilinear Model

After a review of in�ation modelling at a high level of abstraction, in this section, we

introduce a purely statistical univariate nonlinear model, the Stationary Bilinear (SB)

model, speci�ed as the following:

yt = (a+ b"t�1) yt�1 + "t (4.1)

where b is the bilinear term and "t � i:i:d:fN (0; �2").
First, we review the development of the Bilinear class of models and its extensions.

Then, we look into the model speci�cation and elaborate the feasibility of applying

the SB model to the in�ation series.

The bilinear models were �rst proposed by Granger and Anderson (1978). The

class of bilinear process is found to be able to �approximate any nonlinear model to an

arbitrary degree of accuracy over a �nite time interval�(see Lane, Peel and Raeburn

1996). Brunner and Hess (1995) point out that this capacity of to approximate any
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well-behaved nonlinear relationship is analogous to the ability of an ARMA model of

approximating well-behaved linear relationships. Because of the capability of bilinear

models to accommodate a wide variety of nonlinear behaviours, the bilinear class of

models are interesting to many researchers. Further research of special cases in the

bilinear class of models as carried out by Rao (1981), Quinn(1982), Hannan (1982),

Martins (1997) and Igloi and Terdik (1999). The bilinear process is also studied under

special circumstances, such as when extreme events exist. Davis and Resnick (1996)

provided the asymptotic properties of a bilinear process and analyzed the stationary

bilinear process generated from heavy-tailed noise variables. Other extensions of the

bilinear process can be found in Giraitis and Surgailis (2002), where the properties

of an ARCH-type bilinear models have been investigated. In Francq et al. (2008),

the feasibility of the Dickey-Fuller and the PP test for a class of stochastic unit root

bilinear process has been studied.

Since the bilinear models are simple non-linear extensions of the linear models

and bilinear models can approximate most nonlinearities, bilinear models have been

successfully applied to analyze macroeconomic and �nancial series in the economics

context.

Byers and Peel (1995) use a bilinear-QARCH model to �t the inter-war exchange

rate data. They found empirical evidence of bilinearity in both mean and variance.

Peel and Davidson (1998) propose a Bilinear Error Correction Mechanism (BECM)

for �data variables displaying abrupt changes�. For an empirical illustration, they

apply the BECM of an annual data on the real consumer�s expenditure and the real

gross national product in the UK. Their results show that the BECM is superior to

the alternatives. Maravall (1983) used the bilinear model with an application of the

supply of Spanish currency. He found that the application of the bilinear models for

forecasting nonlinear processes demonstrates improvement over the ARIMA forecasts.

Weiss (1986) stresses that bilinearity was important in explaining the behaviour of the

sunspot data, the Canadian Lynx population data, and the stock price data. In addi-

tion, he emphasized that ignoring the possibility of bilinearity could lead to incorrect

inference about conditional heteroscedasticity. Charemza et al. (2005) propose a Unit

Root Bilinear process and a two-step testing procedure for detecting the bilinearity.

They applied 65 countries stock market indices and they found strong evidence of the

presence of Unit Root Bilinearity in a large number of mature and emerging markets.

Charemza et al. (2006) use a bilinear model to evaluate the non-systematic part of

the in�ation, which is de�ned as the di¤erence between the headline in�ation and the

core in�ation. They applied 141 countries�monthly in�ation rates and found the max-
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imum admissible forecast horizons1 in the developed countries are shorter than those

in the developing countries. Other reviews of the bilinear model with an engineering

perspective can be found in the work of Meddeb, Tourneret and Castanie (1998).

Figure 4-1A. Simulate Data series from a

Unit Root Bilinear DGP

Figure 4-1B. Series Plot of Finland Stock

Market Index: Daily Data

We simulated a data series from a Unit Root Bilinear DGP, and compare it with

a daily Finland stock market index data. From a simple visual inspection, we found a

lot of similarities between the simulated data and the real life data, see Fig (4-1A and

4-1B).

1The misspeci�cations in the forecasting will is created because of the existence of the bilinear
component. The distorted forecast period depends on the forecast horizons. In Charemza et.al
(2006), the maximum admissible forecast horizon is de�ned as the longest period, or the longest
forecast horizon, that the distortions in the forcast are not substantial.
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The bilinear model has good potential for being applied to macroeconomic and

�nancial data, a better forecasting capacity than the ARIMA model (see Maravall,

1983) and can mimic the movements of the real life data to a certain extent. We are

inspired to evaluate a �rst order Stationary Bilinear (SB) model, a special case of the

bilinear class model, in a Bayesian context. The SB model is speci�ed in Equation

(4.1). Granger and Anderson (1978) point out, the necessary stationary restriction for

a bilinear process is

a2 + b2�2" < 1 (4.2)

where a, b 6= 0. This necessary restriction together with three other necessary restric-
tions meet the assumption that the �rst four moments of fytgTt=1 are �nite (see Sesay
and Rao, 1988, Kim et al., 1990). The other three necessary restrictions are listed as

follows:

jaj < 1 (4.3)

��a3 + 3ab2�2"�� < 1 (4.4)

a4 + 6a2b2�2" + 3b
4�4" < 1 (4.5)

Unlike the Unit Root Bilinear (URB) process in Charemza et al. (2005)2, in this

chapter, a and b in the SB model jointly meet the stationary condition a2 + b2�2" < 1.

Since the AR coe¢ cient a+ b"t�1 is not independent on the error term "t�1, a nonzero

b would induce a time varying parameter a + b"t�1 that changes correspondingly to

the lagged shocks "t�1. Therefore, the series�persistence will not only depend on the

long-range shocks, but will also depend on the magnitude and the sign of the shocks.

Charemza et al. (2005) use stock prices to interpret the economic sense of b. They state

that b �re�ects the extent to which consumers�decisions regarding �nancial market

transactions are a¤ected by previous mistakes regarding share prices�. According to

Equation (4.1), one-step ahead forecast of yt+1 will be

E (yt+1) = (a+ b"t) yt

which indicates that a big shock (extreme event) in the system may induce a jump

in the series� persistence. Moreover, all the past shocks f"igti=1 will inevitably be
propagated via Equation (4.1) to a¤ect E (yt+1). If the near-term forecast E (yt+1) is

2In the URB model, a is assumed to equal to one. Then, a two-step testing procedure is proceeded
to test the signi�cance in the bilinear term b.
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constructed in a way such that the bilinear term b and the contingency "t are neglected,

the forecast will be severely distorted3.

Although the bilinear process has great potential for empirical applications, the

estimations of a bilinear process could be problematic. Brunner and Hess (1995) point

out when the bilinear model is close to violating at least one of the four moment con-

ditions in Equation (4.2, 4.3, 4.4, and 4.5), the expected likelihood function becomes

bimodal. In such a situation, the true optimum is characterized by a long narrow

spike and the conventional optimization routine would frequently miss this global op-

timum. As a consequence, it may not be appropriate to �t the bilinear model to

the time series data following the standard model �tting procedure. Moreover, �the

classical inference tests cannot be used for the bilinear models...and the t-statistic has

very undesirable properties, especially when the model is close to violating its mo-

ment conditions� (Brunner and Hess, 1995). Brunner and Hess (1995) evaluate the

Maximum likelihood estimates from the NPSOL4 optimization algorithm. They found

that when the moment conditions in Equation (4.2, 4.3, 4.4, and 4.5) are easily satis-

�ed, the estimates of a and b converge to the true value as the sample size increases.

However, in the cases that the model�s moment conditions are almost violated, the

maximum likelihood estimates have very poor properties, such as signi�cant bias. In

addition, �as the bilinear term becomes larger, the omitted variable bias introduced by

ignoring the bilinear term causes the autoregressive parameter a to be substantially

over-estimated� (Brunner and Hess, 1995). Based on above problems in the Maxi-

mum Likelihood Estimation (MLE) method for the bilinear model, we are inspired to

evaluate the bilinear model in a Bayesian context.

Hristova (2005) applies the MLE method for estimating the coe¢ cient in a Unit

Root Bilinear process, in which the stationary condition in Equation (4.2) is broken.

She maximizes the likelihood function by switching between a Newton-Raphson (NR)

algorithm and a Simulated Annealing (SA) algorithm, in case that NR algorithm fails.

Hristova (2005) claims that the SA algorithm could overcome the problems caused by

bimodality in the expected likelihood function, and �nd the global optimum or a good,

3If b = 0, the SB model will be an AR(1) model:

yt = ayt�1 + "t

and the one-step ahead forecast is:
E (yt+1) = ayt

4An algorithm invented by Philip Gill, Water Murray, Michael Saounders and Margaret Wright.
This algorithm is to solve constrained optimization problems.
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near optimal local optimum.

Motivated by the fact that the SB model has a great potential for being applied in

economics or �nance on the one hand, yet some potential estimation problems exist

on the other hand, we focus on developing a posterior simulator for the SB model

in the Bayesian context, in section 4.2 and section 4.3. To compare the estimation

e¢ ciency between the Bayesian MCMC and the classical MLE, we compare the Root

Mean Square Errors (RMSE) of the estimates using 100 simulated series with various

sample sizes, in section 4.4.1 and 4.4.2. In section 4.4.3, we evaluate the validity of

the conventional ADF test and PP test under the existence of a bilinear process. For

an empirical illustration, in section 4.5, we applied the UK�s quarterly in�ation rates

series.

4.2 Bayesian inference of the SB Model

Following the Bayesian reasoning, we �rstly derived the posterior conditionals from

the likelihood function and the priors in section 4.2.1. Secondly, in section 4.2.2, we

conducted two experiments to illustrate what forms of priors can be elicited.

4.2.1 Posterior Conditionals

We start by introducing some notations: a time series with a sample size of n is

denoted as y = (y1; � � � ; yn)0, in which we assume the �rst observation y1 as the initial
value. The error disturbances "t for t = 1; � � � ; n are " = ("1; � � � ; "n)0, where the
initial disturbance value "1 = 0. The parameters of interest are � = (a; b; h")

0 in this

SB model, and the error precision h" = ��2" . Taking Equation (4.1) recursively by

"t�1 = yt�1 � (a+ b"t�2) yt�2

we can express yt as a function of Ft�15.

For t = 3; � � � ; n
yt = af1 (t; b) + f2 (t; b) + "t (4.6)

For t = 2, f2 (t; b) = 0 and we have

yt = af1 (t; b) + "t (4.7)

5Refer Appendix 4.A for detailed recursive derivations.
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where

f1 (t; b) =

t�1X
i=1

�
(�b)i�1

i

�
j=1
yt�j

�

f2 (t; b) =
t�2X
i=1

�
(�1)i+1 biyt�i

i

�
j=1
yt�j

�
According to Equation (4.7) and Equation (4.6), the likelihood function p (yt j �; Ft�1)
is the following:

p (yt j �; Ft�1) =
h
1
2
"

(2�)
1
2

exp

�
�h"
2
[yt � af1 (t; b)� f2 (t; b)]2

�
;

which leads to a joint likelihood function of p (y j �) expressed as follows:

p (y j �) = h
N�1
2

"

(2�)
N�1
2

exp

(
�h"
2

NX
t=2

[yt � af1 (t; b)� f2 (t; b)]2
)

(4.8)

According to the necessary stationary restriction in Equation (4.2), the joint prior

p (a; b; h") is:

p (a; b; h") = p (b j h"; a) p (h" j a) p (a) 1
�
a2 + b2�2" < 1

�
(4.9)

1. The Unconditional Prior of a

According to the necessary restriction in (4.3), it is reasonable to have a prior belief

that a follows a truncated normal distribution within the unity region. The variance of

a, V a can be chosen at di¤erent values according to our �priori�belief, as to the way we

expect a to vary. Then, we have the prior of a speci�ed as a � fN
�
�
a
; V a

�
1 (jaj < 1),

with a prior density as

p(a) =
1p
2�V a

exp

8><>:�
�
a� �

a

�2
2V a

9>=>; � 1 (jaj < 1) (4.10)

where �
a
is the prior mean and V a is the prior variance.

For model comparison reasons, we would like to have a proper prior. Hence, a

truncated proper prior of a can be obtained by dividing the improper prior�s density

with a normalizing constant Pr (1 jjaj < 1j). Therefore, the proper prior of a is as
follows:
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p(a) / 1

Pr (1 jjaj < 1j)
p
2�V a

exp

8><>:�
�
a� �

a

�2
2V a

9>=>; � 1 (jaj < 1)
where the normalizing constant Pr (1 jjaj < 1j) is:

Pr (1 jjaj < 1j) = �N

 
1� �

ap
V a

!
� �N

 
�1� �

ap
V a

!

2. A Conditional Prior of h"

The conditional prior for h" follows a Gamma distribution h" s f�"
�
�"; �"

�
1(a2+

b2=h" < 1) and b is uniformly distributed within a region such that the stationary

condition in Equation (4.2) can be satis�ed. The joint prior of h" and b conditional

on a can be expressed as follows:

p (h"; b j a) /
1

��"
"
� (�")

h�"�1" exp

 
�h"
�
"

!
1(a2 + b2=h" < 1) (4.11)

The conditional prior for p (h" j a) then can be obtained by marginalizing over b in
Equation (4.11) in the following:

p (h" j a) /
Z
p (h"; b j a) db

According to the stability condition, b is within a range speci�ed as below:

�
p
(1� a2)h" < b <

p
(1� a2)h"

Since Equation (4.11) is not a function of b, the conditional prior of h", p (h" j a) can
be obtained as the following:

p (h" j a) /
Z
p (h"; b j a) 1(a2 + b2=h" < 1)db

/ p (h"; b j a)
Z p(1�a2)h"

�
p
(1�a2)h"

db

/ 1

��"
"
� (�")

h�"�1" exp

 
�h"
�
"

!
� 2
p
(1� a2)h" (4.12)

3. A Conditional Prior of b
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We presume that b is uniformly distributed within a region, where the moment

conditions are met. Then, a proper conditional prior p (b j h"; a) for b is the following:

p (b j h"; a) /
1

2
p
(1� a2)h"

� 1
h
jbj <

p
(1� a2)h"

i
(4.13)

With the derived likelihood in (4.8) and the joint prior in (4.9), we are able to derive

a joint posterior according to the Bayes Theorem,

p (a; b; h" j y) / p (y j a; b; h") p (a; b; h")

Although we have the joint posterior for a; b and h", the marginal posterior conditionals

of each individual parameter are ambiguous. Next, we demonstrate the derived mar-

ginal posterior conditionals of a; b and h" and their detailed derivations can be found

in Appendix 4.B. With the marginal posterior densities, the MCMC algorithms can

then be implemented to simulate the marginal posterior distributions. The marginal

posterior conditionals are as follows:

1. The posterior conditional of a

The posterior conditional of a is a � fN
�
�a; V a

�
1
�
jaj <

p
1� b2=h"

�
, a truncated

normal distribution with a variance V a

V a =

2664
NP
t=2

f 21 (t; b)

�2"
+
1

V a

3775
�1

and a mean �a

�a = V a �
"
h"

NX
t=2

f1 (t; b) [yt � f2 (t; b)] +
�
a

V a

#
(4.14)

2. The posterior of the error precision h"

The posterior conditionals for h" follows a truncated Gamma distribution with a

density h" s f�"
�
�"; �"

�
1
h
h" >

b2

1�a2

i
, where

�" = �" +
N � 1
2

and

106



�" =

"
1

�
"

+
1

2

NX
t=2

[yt � af1 (t; b)� f2(t; b)]2
#�1

If b2

1�a2 is large, extreme values of h" have to be sampled from the upper tail of the

Gamma distribution. For simplicity, we approximate the tail of f�" with an exponential

distribution

fexp (x) = � exp (�x�) ;

where � = b2

1�a2 . A simple Inverse c.d.f Sampling with an exponential rejection sam-

pling method is applied for generating random draws of h". This will be discussed in

detail in the section of methodology issues, in section 4.3.1.

3. The full conditional density of b

The value of b depends on the values of a and h". The posterior conditional of b is:

p (bjy; a; h") / 1
h
jbj <

p
(1� a2)h"

i
� exp

(
�h"
2

NX
t=2

[yt � af1 (t; b)� f2(t; b)]2
)
(4.15)

Since b is bounded within a region to meet the stationarity requirement, and b does

not follow a standard distribution form, from which we can generate random samples,

we apply the Griddy-Gibbs sampling method to get random draws of b with this non-

standard density. Refer to chapter 2.3.2 for the reviews of Griddy-Gibbs sampling

method. Based on the available posterior conditionals of a; b and h", a straight forward

Gibbs samplings incorporated with a Griddy-Gibbs sampling algorithm can be carried

out to simulate the posteriors of a; b and h".

4.2.2 Prior Elicitations

To specify an appropriate prior that adequately re�ects the available information is

important. In this chapter, since investigating the UK�s in�ation rates will be our

main focus, we have to elicit appropriate prior parameters that are able to mimic the

patterns of the real life data. This prior elicitation procedure is the so-called �data

based prior elicitations�.

Imagine a series of T observations, we can count the proportion of the observations

jumping above x. Considering the UK�s in�ation rates, the probability of this propor-
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tion then should be realistic to a certain extent. Thus, if this proportion is denoted

as prop, we want to ask what is the probability that prop exceeds s?

To answer the above question, with the chosen prior distributions, we randomly

generate 2; 000 vectors of numbers,
�
��n = (a

�
n; b

�
n; h

�
n)
0	2000
n=1
. Then, with these vectors,

we generate 2; 000 series�with T = 200 observations following the SB DGP. Within

each single series, the proportion (denoted as prop) of yt goes beyond 40 and below�40
can be counted, denoted as prop (jytj > x), where x = 40. If this proportion is greater
than 0:5 in this particular simulated series, denoted as prop (jytj > x) > s, where

s = 0:5, we keep a record of this series. The notation prop (jytj > 40) > 0:5 actually
stands for a category, which indicates that within one particular series, more than 50%

of the observations goes beyond 40 or below �40. Then, we examine through all the
simulated data series�by counting the number of series, denoted as n, out of 2; 000

that fall into this category. Therefore, the percentage n=2000 can be an approximation

of the probability that a DGP consistently (more than half of the time) generates

observations beyond 40 or below �40, denoted as Pr [prop (jytj > 40) > 0:5].
If Pr [prop (jytj > 40) > 0:5] is high, it means that a great number of the series

out of the total 2; 000 are having large proportions (50%) of observations beyond a

certain level (x = 40). Consequently, it indicates that the prior is not a reasonable

prior because with the values ��n generated from the prior, the SB DGP is incapable

to mimic the pattern of the real life data. Thus it makes little sense to use this sort

of elicited prior to evaluate the UK in�ation rate.

Similarly, we apply the exact same procedure to elicit the prior in the RW model.

Next, we illustrate how to choose the parameter values in the prior via simulations in

more details.

1. Choose Values in the Prior of Error Precision h"

In the Gamma prior of h" s f�"

�
�"; �"

�
1(a2 + b2=h" < 1), �" and �" need to

be selected with caution. We want to select the appropriate priors that generate rea-

sonable values of h". After an inspection of the monthly UK in�ation rates, within

585 observations, 92 observations are above 10 (prop (jytj > 10) > 0:15) and 17 obser-
vations are above 20 (prop (jytj > 20) > 0:02). Thus, we should select a prior, with

which the simulated series could illustrate such properties.

In the prior a � fN

�
�
a
; V a

�
1 (jaj < 1), �

a
is selected as 1 and V a is selected

as 1002. It indicates a belief of a being uniformly distributed within a truncated

region. Then, we select 9 di¤erent combinations of �" and �" in the prior h" s

f�"

�
�"; �"

�
1(a2 + b2=h" < 1) and simulate 2; 000 series from each of the priors. The
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characteristics of simulated data from SB DGP are shown in Table (4.1).

With the same method, we use the simulate series to elicit the prior for h" s
f�"

�
�"; �"

�
in the RWmodel. Table (4.2) illustrate the characteristics of the simulated

data series with di¤erent values of �" and �".

From Table (4.1), We select �" = 2 and �
"
= 0:1 in f�"

�
�"; �"

�
as a reason-

able prior for h" with the SB DGP6. With this prior, we get the highest probability

(0:3335) that more than 10% of the observations are larger than 10, which can be

expressed as Pr [prop (jytj > 10) > 0:1] = 0:3335 with x = 10 and s = 0:1. With this
prior, the probability Pr [prop (jytj > 20) > 0:02], which indicates that around 2% ob-

servations are larger than 20, is also the highest compared with other prior choices.

The SB DGP is more likely to mimic the movements in the UK in�ation rates series

under this elicited prior. Therefore, other choices of priors will be less appropriate.

For instance, if we choose �" = 10 and �
"
= 0:1, from Table (4.1) we can read

Pr [prop (jytj > 10) > 0:1] = 0:0400. This indicates that the probability of more than
10% of the samples being larger than 10 is only 0:0400. In other words, in most of

the simulated series�, large number of observations are less than 10, which makes it

seeming unlikely that the SB DGP represents the UK in�ation according to the UK�s

historical in�ation data.

For the same reasons, we select the same values of �" and �" in the RW as those

in the SB for the prior h" � f�"
�
�"; �"

�
, where �" = 2 and �" = 0:1.

2. Choose Values in the Prior of a in the SB

Following the same prior eliciting procedure as that of �2", we have another look at

the prior of a � fN
�
�
a
; V a

�
1 (jaj < 1) to see if setting V a = 1002 is appropriate. The

value of �
a
is chosen as 1. There are two types of value for V a that can be chosen: one

is a �loose�prior with very large value of V a, and the other is a �tight�prior with a

very small value of V a. If we choose V a as a large value, it indicates a belief of a being

approximately uniformly distributed within the truncated region. If we choose V a as

a small value, it indicates we believe a to vary within a very tight region around the

mean �
a
where the stationary condition is satis�ed.

In the SB DGP, with the elicited prior of h" � f�"
�
�"; �"

�
1(a2+b2=h" < 1), where

�" = 2 and �" = 0:1, we select a range of values of V a from 0:01 to 1002 to illustrate

the characteristics of the simulated data. Based on Table (4.3), we are able to choose

a value of V a to elicit an appropriate prior of a.

6The inverse of h", 1=h" follows an Inverse-Gamma f
�1
�"

�
�"; �"

�
where �" = 2 and �" = 0:1.
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Table 4.1: Using Simulation to Elicit Priors of SB

prob[jprop(y > x)j > s] SBDGP
� = 10

s=x 10 20 30 40 50
� = 0:1 0:1 0:0400 0:0065 0:0035 0:0030 0

0:3 0:0065 0:0020 0:0010 0 0
0:5 0:0025 0:0010 0 0 0

� = 0:2 0:1 0:0135 0:0025 0:0005 0:0005 0:0005
0:3 0:0040 0:0005 0:0005 0 0
0:5 0:0025 0:0005 0 0 0

� = 1 0:1 0:0020 0:0010 0 0 0
0:3 0 0 0 0 0
0:5 0 0 0 0 0

� = 5
� = 0:1 0:1 0:1085 0:0185 0:0075 0:0050 0:0035

0:3 0:0165 0:0050 0:0030 0:0015 0:0015
0:5 0:0075 0:0025 0:0015 0:0010 0

� = 0:2 0:1 0:0365 0:0075 0:0025 0:0005 0
0:3 0:0080 0:0010 0 0 0
0:5 0:0020 0 0 0 0

� = 1 0:1 0:0015 0:0005 0 0 0
0:3 0:0005 0 0 0 0
0:5 0 0 0 0 0

� = 2
� = 0:1 0:1 0:3335 0:0905 0:0360 0:0165 0:0100

0:3 0:0900 0:0160 0:0090 0:0060 0:0030
0:5 0:0275 0:0070 0:0035 0:0020 0:0015

� = 0:2 0:1 0:1645 0:0310 0:0125 0:0070 0:0035
0:3 0:0330 0:0045 0:0015 0 0
0:5 0:0065 0:0005 0 0 0

� = 1 0:1 0:0230 0:0020 0:0010 0 0
0:3 0:0015 0:0005 0 0 0
0:5 0:0005 0 0 0 0
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Table 4.2: Using Simulation to Elicit Priors of RW

prob[jprop(y > x)j > s] RWDGP
� = 10

s=x 10 20 30 40 50
� = 0:1 0.1 0.6285 0.1785 0.0445 0.0105 0.0020

0.3 0.4090 0.0885 0.0150 0.0020 0
0.5 0.2375 0.0335 0.0020 0.0005 0

� = 0:2 0.1 0.3995 0.0460 0.0050 0.0020 0.0005
0.3 0.2130 0.0170 0.0025 0 0
0.5 0.1065 0.0055 0.0005 0 0

� = 1 0.1 0.0325 0.0010 0 0 0
0.3 0.0105 0 0 0 0
0.5 0.0035 0 0 0 0

� = 5
� = 0:1 0.1 0.8570 0.4165 0.1750 0.0680 0.0290

0.3 0.6310 0.2325 0.0845 0.0265 0.0135
0.5 0.4055 0.1230 0.0330 0.0120 0.0030

� = 0:2 0.1 0.6585 0.2120 0.0520 0.0105 0.0030
0.3 0.4335 0.1070 0.0175 0.0040 0.0010
0.5 0.2665 0.0370 0.0040 0.0005 0

� = 1 0.1 0.1550 0.0075 0.0005 0 0
0.3 0.0725 0.0030 0 0 0

0.0280 0.0010 0 0 0
� = 2

� = 0:1 0.1 0.9755 0.7635 0.5310 0.3545 0.2370
0.3 0.8745 0.5555 0.3360 0.2010 0.1325
0.5 0.6870 0.3635 0.1935 0.1130 0.0640

� = 0:2 0.1 0.9005 0.5590 0.3045 0.1735 0.0940
0.3 0.7275 0.3605 0.1740 0.0830 0.0450
0.5 0.5205 0.2065 0.0840 0.0415 0.0260

� = 1 0.1 0.4680 0.1245 0.0355 0.0145 0.0050
0.3 0.2990 0.0645 0.0175 0.0065 0.0020
0.5 0.1735 0.0295 0.0075 0.0015 0.0010
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Table 4.3: Simulation to Elicit Prior of Parameter a in SB

V a s=x 5 10 20 30 40
0:01 0:1 0:5975 0:205y 0:038 0:0145 0:007

0:3 0:194 0:0385 0:0065 0:002 0:0005
0:5 0:0595 0:0105 0 0 0

0:05 0:1 0:467 0:1285 0:03 0:009 0:0045
0:3 0:1105 0:022 0:0045 0:002 0
0:5 0:034 0:0075 0:002 0 0

01 0:1 0:3525 0:0895 0:016 0:0075 0:003
0:3 0:072 0:0125 0:0025 0:001 0:001
0:5 0:019 0:004 0:0015 0:001 0:0005

0:5 0:1 0:2145 0:047 0:0115 0:003 0:001
0:3 0:038 0:0105 0:001 0 0
0:5 0:0125 0:005 0:0005 0 0

1 0:1 0:1775 0:038 0:008 0:0035 0:001
0:3 0:03 0:008 0:0025 0:001 0:0005
0:5 0:0105 0:0025 0:001 0:0005 0

10 0:1 0:1425 0:0255 0:003 0:001 0:0005
0:3 0:023 0:006 0:0005 0 0
0:5 0:009 0:002 0 0 0

100 0:1 0:131 0:025 0:0035 0:0015 0:001
0:3 0:026 0:0065 0:002 0:0005 0
0:5 0:0105 0:0035 0:0005 0 0

1002 0:1 0:15 0:0315z 0:0085 0:0035 0:002
0:3 0:0285 0:0085 0:0025 0:001 0
0:5 0:011 0:003 0:002 0 0
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Table 4.4: Summarized Table of Elicited Priors in SB and RW

SB RW

h" � f�"
�
�"; �"

�
1(a2 + b2=h" < 1) h" � f�"

�
�"; �"

�
�" = 2; �" = 0:1 �" = 2; �" = 0:1

a � fN
�
�
a
; V a

�
1 (jaj < 1)

�
a
= 1; V a =

�
0:01
1002

	
With a tight prior by choosing V a = 0:01, we have Pr [prop (jytj > 10) > 0:1] =

0:205, which is the highest comparing with other choices. With a loose prior by

choosing V a = 100
2, the probability is decreased to 0:0315. This indicates that if we

choose V a = 100
2 in the prior of a, the probability of a series generating more than 10%

of observations exceeding 10 is as low as 0:0315. With V a = 100
2, numbers generated

from the prior distribution of a tend to be very small, which could easily satisfy the

stationary conditions7. Therefore, most of the simulated series tend to be stationary

with observations smaller than 5. As a consequence, the prior with V a = 100
2 may be

less appropriate.

Based on the experiments, our �rst choice for a prior is V a = 0:01 or small values

as a tight prior. This tight prior indicates a belief of high densities around the mean

�
a
= 1, around which the stationary restriction is very volatile. However, as we would

like to see how e¢ ciently the Bayesian approach to estimating performs when the prior

is elicited in such a way that a is believed to be a value not violating the stationary

restriction with high probabilities, we also elicit V a = 100
2 and compare the estimation

e¢ ciency under these two distinct priors. Later on, in section 4.4.2, we evaluate the

estimation e¢ ciency under di¤erent elicited priors, with di¤erent sample sizes under

the controlled settings with uses of the simulated arti�cial data sets. The selected

priors are summarized in Table (4.4).

4.3 Methodology Issues

This section focuses on some substantial methodology issues regarding the estimation

and the marginal likelihood evaluations of the SB model. Although we have provided

a general review of the sampling and the marginal likelihood calculation algorithms in

chapter 2.3 and 2.4, it is important to illustrate how to apply those algorithms in this

7This is because with V a = 100
2, a tend to be uniformly distributed within the truncated region

where the moment conditions are satis�ed.
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particular SB model framework. In this regard, section 4.3.1 focuses on the sampling

algorithms and section 4.3.2 introduces the marginal likelihood calculation in the SB

model context.

4.3.1 Sampling Method for Estimation

This section introduces the sampling algorithms regarding each parameter of interest

in the SB model. Four algorithms are used together to estimate the SB model. To

sample a, we apply two methods: one is Algorithm 1(a), the Inversed Cumulative

Density Function (c.d.f.) sampling method (Devroye, 1986), and the other is Algorithm

1(b), the Mixed Rejection sampling method (Geweke, 1991). Algorithm 2 applies the

Griddy Gibbs sampling method to sample b, in which we set the grid number as 100.

In Algorithm 3, the Mixed Rejection sampling method is applied again to get samples

of h". Algorithm 4 is a standard Gibbs sampler, which provides sequential draws of a,

b and h".

The following notations are employed in this section: The uniform distribution on

the interval of a lower boundary and a upper boundary is denoted as fU [lo; up]. The

univariate truncated normal distribution is denoted as fN (�) 1 (lo < x < up), with a
density:

1

[�N (up)� �N (lo)]
fN (�)

on the interval of [lo; up] and 0 elsewhere. The truncated normal distribution is denoted

as f� (�) 1 (lo < x < up). If the truncated region lies in the distribution tails such that
lo = +1 or up = �1, the density should be handled with special treatments. We
will discuss in details in Algorithm 3.

Next, we review the sampling method involved in drawing random samples of a.

The traditional rejection sampling method, where the random samples are dropped

if the sampled draws are out of the truncated region, is very impractical because the

probability of the acceptance is very unpredictable. For e¢ cient sampling, we have to

employ the inverse c.d.f. sampling method and the mixed rejection sampling method.

According to the posterior conditionals for a, a should be sampled from a truncated

normal distribution fN
�
�a; V a

�
1
�
jaj <

p
1� b2=h"

�
. The Inversed c.d.f. sampling

procedure for a can be conducted as follows:

Algorithm 1(a): Inversed c.d.f. Sampling for a

1. Calculate the lower boundary and the upper boundary of the truncated region:
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�
�
p
1� b2=h",

p
1� b2=h"

�
. Hence, the corresponding boundaries in a fN (0; 1)

will be lo =
��a�

p
1�b2=h"p
V a

and up =
��a+

p
1�b2=h"p
V a

:

2. Calculate the c.d.f. �N (lo) and �N (up)

3. if we want to get a random draw a from a truncated normal distribution, a �
fTN (lo; up), then

a = ��1N (u)

u � fU [�N(lo);�N(up)]

As pointed out by Geweke (1991), �this method requires the evaluation of one

integral for each draw, and if the values of lo and up change with the draws,

then three evaluations are required�.

This sampling method requires the evaluation of the �N (x), �N (lo) and �N (up).

If any of the above values approximates to 0, or 1, the computation will take a long

time. Geweke (1991) points out, if up is larger than 8 or lo is smaller than �8, the
double precision implementation in most statistical softwares are unable to compute.

I therefore apply the mixed rejection sampling method, which is proposed in Geweke

(1991). This method is very e¢ cient when we require draws from a truncated univari-

ate normal distribution. Samples can be drawn as long as jloj � 35, jupj � 35, when
programmed in double precision (64� bit) �oating point arithmetic.
The mixed rejection algorithm incorporates four di¤erent kinds of rejection sam-

pling, depending on the value of lo and up. (1) Normal rejection sampling, x is drawn

from fN (0; 1) and accepted if x 2 [lo; up]. (2) Half-normal rejection sampling, x is
drawn from fN (0; 1) and accepted if jxj 2 [lo; up], where ( lo � 0 ). (3) Uniform re-

jection sampling, x is drawn from fU [lo; up], u is drawn independently from fU [0; 1],

and x is accepted if u � fN(x)=fN(x�), x� = argmax [�N (x)] 8. (4) The Key point in
the mixed rejection sampling is the use of an exponential rejection sampling. The mo-

tivation of applying the exponential rejection sampling is that if the truncated region

is in the tails, where c.d.f. �N(lo) ! 1 and c.d.f. �N(up) ! 1(or �N(lo) ! 0 and

�N(up) ! 0), the truncated normal distribution comes to resemble an exponential

distribution, see Geweke (1991) for details. Hence, under any of the above conditions,

8In mathematics, argmax stands for the argument of the maximum, that is to say, the value of
the given argument for which the value of the given expression attains its maximum value. In this
case, at x�, fN (x) attains the maximum values within [lo; up] region.
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x should be drawn from fexp(x), with a p.d.f. as:

fexp (x) = � exp (�x�)

To obtain the highest acceptance probability, � = lo if lo > 0 and x is accepted if

x > lo. � = up if up < 0 and x is accepted if x < up.

According to Geweke (1991), we have to employ four constants with this algorithm:

t1 = 0:150, t2 = 2:18, t3 = 0:725, t4 = 0:45. These four values have been set through

experimentations with computation time in Geweke (1991). The selected value is

indicated when the constant is introduced. The sampling procedure depends on the

relative con�guration of lo and up. The mixed rejection sampling method for a is

conducted as follows:

Algorithm 1(b): Mixed Rejection Sampling for a

1. The same as step 1 in Algorithm 1(a).

2. Get a random draw of x

(a) On (lo;/): normal rejection sampling if lo � t4; exponential rejection

sampling if lo > t4

(b) On (lo; up) if 0 2 [lo; up]

i. If fN (lo) � t1 or fN (up) � t1: normal rejection sampling
ii. If fN (lo) > t1 or fN (up) � t1: uniform rejection sampling

(c) On (lo; up) if lo > 0

i. If fN (lo) =fN (up) � t2: uniform rejection sampling

ii. If fN (lo) =fN (up) > t1 and lo < t3: half normal rejection sampling

iii. If fN (lo) =fN (up) > t1 and lo � t3: exponential rejection sampling.

(d) The omitted cases, (� /; up) and (lo; up) with up < 0, are symmetric to

the case a and case c, respectively, and are treated in the same way.

3. Then, the random sample of a will be a = �a +
p
V a � x

These two methods are tested through the experiments. The execution time of the

Mixed Rejection method is smaller than the Inversed c.d.f. sampling method. For

10; 000 draws, the Mixed Rejection method took 920 seconds while the Inversed c.d.f.

took 2; 320 seconds. Results show that the Mixed Rejection algorithm is 1.5 times

faster than the Inversed c.d.f. algorithm.

Algorithm 2: Griddy Gibbs Sampling for b
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1. Calculate the boundaries (lo; up) with lo = �
p
(1� a2)h" and up =

p
(1� a2)h"

Then we divide the boundary with 100 grids and each step is de�ned as step =

(up � lo)=100. Each grid point can be calculated as bi = lo + 0:5step � i, where
i = 1; � � � ; 100.

2. Calculate f (bi) : i = 1; : : : ; 100 according to the posterior density in Equation

(4.15), g (bj) =
Pj

n=1 f (bn) and

C (bj) =
g (bj)P100
i=1 f (bi)

: j = 1; : : : ; 100

1. Get a random draw from the uniform distribution u � fU(0; 1)

2. Find the grid point bj, where

bj = C
�1 (u)

Note that maybe only a small number of grid points within the boundaries con-

tribute to the sum of the probabilities. In other words, the posterior density f (bi)

may be sensitive to the value of bi. Keeping in mind that the Griddy-Gibbs sampling

method is actually approximating a continuous density with a number of discrete grids.

If the grids are too coarse, we would inevitably lose the distribution on features of b.

Therefore, the random draws of b using a coarse grid maybe less e¢ cient. In this

regard, we choose the grid number as 100.

Algorithm 3: Mixed Rejection Sampling for h"
Since we may have to draw extremely large values in the Gamma tails, a mixed

rejection sampling method is also involved for h".

1. According to the stationary condition, h" > b2= (1� a2), where lo = b2= (1� a2),
we have to obtain the random draws from the upper tail of the Gamma distrib-

ution.

2. Calculate �� (lo) with the corresponding posterior density h" s f�"
�
�"; �"

�
and

�� = 1� �� (lo).

(a) If �� � 0:05, get a random draw from the uniform distribution u � fU(0; 1).
A random draw of h" can be obtained using the Inversed c.d.f method

h" = �
�1
� [�� (lo) + �� � u]
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(b) If �� < 0:05, we employ the exponential rejection method and the density

in the Gamma tail is resembled with an exponential density

fexp (h") = � exp (�h"�)

where � = b2= (1� a2). Accept the draw h" if h" > �.

Algorithm 4: Gibbs Sampling for a; b; h"

1. Give initial values to a; b; h" and the �nal results will not depend on the initial

values.

2. Sample h" from h" j a; b s f�"
�
�"; �"

�
� 1(A).

3. Sample a from a j b; h" � fN
�
�a; V a

�
� 1(A) using Mixed rejection sampling

4. Sample b from b j a; h" � f (b) � 1(A) using the Griddy-Gibbs sampling, see
chapter 2.2.3 for the reviews.

After taken S replications, with the �rst S0 draws discarded, we can have the

simulated distributions for a; b; h". Then the estimates of the parameters will be the

means of the posterior distributions and the convergence diagnostics can be conducted

to examine the MCMC e¢ ciency.

4.3.2 Model Comparison: Gelfand-Dey Method

In the SB model, since we know the forms of the exact likelihood function and the

full p.d.f. of the proper priors, the Gelfand-Dey Method can be applied to evaluate

the model�s marginal likelihood. Refer to chapter 2.2.4 for reviews of the Gelfand-Dey

Method.

Using the Gelfand-Dey method, the joint prior p (a; b; h") is evaluated at posterior

draws a(g)�; b(g)� and h(g)�" ,where g = 1; � � � ; G. If we denote �� = (a�, b�, h�")
0 and

�(g)� =(a(g)�, b(g)�,h(g)�" )0, the joint prior evaluated at each posterior draw is as the

following

p
�
�(g)�

�
= p

�
b(g)� j h(g)�" ; a(g)�

�
p
�
h(g)�" j a(g)�

�
p
�
a(g)�

�
=Ct

where Ct is the integrating constant over the truncated region.

Algorithm 5: Marginal Likelihood Using the Gelfand-Dey Method
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1. Get b� and cP , where b� = 1

G

GP
g=1

�(g)�

and cP =
�0�

G
� b�b�0

from the posterior simulator. Then, the truncated region is

b� = �� : �� � b��0dX�1 �
� � b�� � �21�p (k)�

p can selected as di¤erent values for the truncated tails. In our case, we selected

a range of values that p = [0:01; 0:02; 0:03]. k = 3, which is the dimension of the

parameter space in the SB model.

2. fMN (�) is the multivariate Normal density truncated to the region b�; for �(g)� :
g = 1; � � � ; G

fMN (�
g�) =

1
p

(2�)
k
2

����dX����� 1
2

exp

�
�1
2

�
�(g)� � b��0dX�1 �

�(g)� � b��� 1��g� 2 b��

If the condition
�
�(g)� � b��0cP�1 �

�(g)� � b�� � �21�p (k) is not met,
fMN

�
�(g)�

�
= 0.

3. Evaluate the likelihood ordinates at posterior draws p
�
yj�(g)�

�
according to

Equation (4.8) and the prior ordinates at p
�
�(g)�

�
at �(g)� according to Equation

(4.9).

4. Then, the marginal likelihood can be approximated as the following:

p (y jMj) / E
�

fMN (�
�)

p (�� jMj) p (y j ��;Mj)
j y;Mj

��1
, where the standard MCMC convergence diagnostic tools can be applied.

4.4 Bayesian Inference Using Simulated Data

This section aims to apply the developed algorithms to simulated data sets in a con-

trolled settings. In section 4.4.1, we randomly draw a vector � = (a; b; �2")
0 from the
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loose prior for a with �
a
= 1 and V a = 1002, the elicited priors of �2" and b. With

vector �, we simulate a series of data with the SB DGP. Then, using the simulated data

series and developed sampling algorithms from section 4.3.1, we carried out the model

estimation, the estimation e¢ ciency evaluations, the MCMC convergence diagnostics,

and the sampling algorithm e¢ ciency evaluations. The sampling algorithm e¢ ciency

is evaluated based on the convergence speed, movement of the Markov chain and au-

tocorrelations among the sequential draws. In section 4.4.2, to compare the Bayesian

approach and the classical MLE approach to estimating the SB model, we �rst arbi-

trarily choose a vector � = (a; b; �2")
0, where the stationary condition is violated. Then,

we simulate 100 parallel series�with gradually increasing sample sizes from 20 to 200

and calculated the Root Mean Square Error (RMSE) of the estimates from both the

classical MLE approach and the Bayesian approach. The comparison between the

classical approach and the Bayesian approach starts with sample sizes as small as 20,

because we would like to see if both the classical approach and the Bayesian approach

are equally e¤ective in estimating when the data is sparse. In section 4.4.3, using

a simulated series from the SB DGP, we carried out the unit root testing using the

conventional ADF test and the PP test in the classical framework, and a model com-

parison in the Bayesian framework using the model marginal likelihood. In section

4.4.3, the Gelfand-Dey algorithm reviewed in section 4.3.2 is applied.

4.4.1 Sampling E¢ ciency

Following the elicited priors: p (a) = fN (1; 10
4) 1 (jaj < 1),

p(�2" j a) = f�1�" (2; 0:1) 1(a
2 + �2"b

2 < 1) and p (b j a; �2") = 1 (a2 + �2"b
2 < 1) 9, we

randomly generate a vector of � = (a; b; �2")
0 that satisfy the stationary condition,

where a = 0:5094, b = 0:2176 and �2" = 2:0209.

With the SB DGP,

yt = (a+ b"t�1) yt�1 + "t

where "t � i:i:d:fN (0; �2"). A series with 200 observations is generated and plotted in
Fig (4-1).

Since the series is simulated with parameters generated from the prior and the four

moments conditions are easily satis�ed, we should expect the high posterior density

intervals (HPDI) to cover the �true�values. Table (4.5) presents the estimated results

using the simulated data. With a total of 12; 000 iterations and the �rst 2; 000 ini-

tial draws being discarded, the MCMC converges according to the CD and the NSE

91(A) is the indicator function
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Figure 4-1: Simulated Data with SB DGP Using Elicited Priors

values10. From Table (4.5), the true values are within the 95% high posterior density

intervals. Therefore, we may conclude that the MCMC converges and the estimation

is e¢ cient, and the posterior means are near the set values.

With an e¢ cient sampling algorithm, the initial values should not a¤ect the results

after the burn-in. Following the methodologies reviewed in chapter 2.3.3, we evaluate

the MCMC e¢ ciency by focusing on the movement of the chain and the correlograms

amongst the sequential draws.

Fig (4-2) plots the �rst 20, 50 and 100 draws from the sampling chains of a, b and

�2" respectively. Regardless of where the chain starts, the draws of a move towards to

the �true�value, 0:5094, quickly. Similarly, although �2" starts with value around 3,

the Markov chain of �2" move swiftly towards to and around the �true�value. We may

say that the developed MCMC sampling algorithm in section 4.3.1 is e¢ cient in the

sense that the movement in the chain is fast.

Fig (4-3) plots the actual 10; 000 draws of a, b and �2" after the �rst 2; 000 draws

were discarded. The correlograms of the draws indicate that the serial correlations

of the draws are small after the burn-in. We may also conclude an e¢ cient MCMC

sampling algorithm according to the small autocorrelations among the draws.

From Fig(4.a-4.c), we may see that a normal distribution �ts the posterior distri-

bution of a well and there is no signi�cant skewness or kurtosis. An Inverse Gamma

distribution �ts the posterior of �2" well. Since the posterior density of b does not have

a standard form, from Fig (4.b), the plot of posterior b follows an irregular form, which

10The MCMC converges if the CD values are smaller than 1:96 and if the NSE values are near 0
after su¢ cient iterations.
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Figure 4-2: Plots of Markov Chains: SB with Simulated Data
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Figure 4-3: Plots of Markov Chains and Corresponding Correlograms: SB with Sim-
ulated Data
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is multimodal. This shape of b�s posterior distribution does not a¤ect our inference or

estimations, because we believe that the existence of the multimodal means di¤erent

values of b�s could generate a similar process. From the Bayesian perspective and the

inference from the simulated posterior distributions, with a sample size of 200, the

Bayesian MCMC estimates do not su¤er from huge bias. From the classical perspec-

tive, Brunner and Hess (1995) simulate data with a = 0:5 and b = 0:1 and study the

properties of the densities for the maximum likelihood estimates. They found that the

densities for a and b are skewed and there is evidence of kurtosis in samples with sizes

smaller than 15011. However, �as the sample size increase, both the skewness and the

kurtosis essentially disappear�(Brunner and Hess, 1995).
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Fig 4.a Normal Fit of Posterior a : SB with

Simulated Data
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Fig 4.b Non-parametric Fit of Posterior b :

SB with Simulated Data

11Results can be found in Brunner and Hess (1995), Table 2 on page 672.
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Fig 4.c Inverse Gamma Fit of Posterior �2" :

SB with Simulated Data

This section evaluates the e¢ ciency of the designed sampling algorithm from sec-

tion 4.3.1 using a simulated data series with a sample size of 200, where the true values

easily satisfy the moment restrictions. From the results in Table (4.5) and all the �g-

ures above, we may conclude that the designed MCMC sampling algorithm is su¢ cient

to provide e¢ cient samples from the posterior conditionals for Bayesian inference.

4.4.2 Estimations from Classical and Bayesian Methods

This section aims to illustrate how the estimates are a¤ected by the sample sizes in

both the classical framework with the MLE and in the Bayesian framework with the

MCMC. Also, we would like to demonstrate how the estimates are a¤ected if the

elicited priors are hugely distinctive when the Bayesian approach is applied.

To compare the classical MLE, and the Bayesian MCMC estimation method with

�nite samples, we simulate 100 series with 20 observations, 100 series with 50 observa-

tions, 100 series with 100 observations, and another 100 series with 200 observations

respectively with the following SB DGP:

yt = (0:9 + 0:0543"t�1) yt�1 + "t

where "t � i:i:d:fN (0; 0:993). The �rst moment condition is close being violated

because the value of a is near 1. Then, all these data series with di¤erent sample

sizes are estimated using both the classical MLE method and the Bayesian Sampling

method.

To illustrate how the elicited priors a¤ect the estimation results, we employed
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Figure 4-4: Histogram of Posterior a Using 10 Simulated Series

two types of priors for a to estimate when the Bayesian method is employed. One

is a relatively loose prior of a, where p (a) = fN (1; 100
2) 1 (jaj < 1). The other is

a very tight prior of a, where p (a) = fN (1; 0:1
2) 1 (jaj < 1). We also use the prior

p(�2" j a) = f�1�" (2; 0:1) 1(a
2 + �2"b

2 < 1) and p (b j a; �2") = 1 (a2 + �2"b
2 < 1), which

were elicited in section 4.2.2. With a particular sample size, we have the estimated

values b�i : i = 1; � � � ; 100 from the 100 series. Using these 100 estimates, we are able

to calculate the Root Mean Square Errors (RMSE) to evaluate the estimates as the

following:

\RMSE
�b�� =s 1

N

NP
i=1

�
� � b�i�2

where N = 100 and � is the true value. The value of RMSE can help us to evaluate

the estimation accuracy based on the estimation bias, and the estimation e¢ ciency

based on the variances of the estimates.

We plot the histograms of the posteriors a using the MCMC outputs under the

elicited tight priors for 10 randomly simulated series with sample sizes of 20. From

Fig (4-4), all the posterior samples of a are within the unity and the posterior means

are near 1. From a visual inspection, the highest densities of these 10 posterior distri-

butions are around the �true�value 0:9, which illustrates that the Bayesian approach

is e¢ cient in estimating these 10 random series�.

RMSE results are presented in Table (4.6). Using the loose prior of a, the Bayesian

estimation and the Classical estimation perform similarly in terms of estimation ac-

curacy and e¢ ciency. When the sample sizes increase from 20 to 200, the RMSE

decreases with both the Bayesian approach and the classical MLE approach.

Comparing the results from an elicited loose prior and an elicited tight prior within

the Bayesian framework, RMSE exhibits a big di¤erence between using the loose prior
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Table 4.6: Monte Carlo Experiments: RMSE with Classical and Bayesian Approaches
to Estimate SB

sample size Estim ationfor100series

C lassica l RMSE Bayesian RMSE loose prior tight prior

T = 20
a 0:2211
b 0:2243

PostM ean Post Mode

a 0:2496 0:2078
b 0:1547 0:1831
err 0:6207 0:4619

Post M ean Post Mode

a 0:0309 0:0512
b 0:1723 0:2064
err 0:2928 0:3569

T = 50
a 0:1057
b 0:0841

Post M ean Post Mode

a 0:1052 0:0996
b 0:0831 0:0900
err 0:2763 0:2286

Post M ean Post Mode

a 0:0302 0:0394
b 0:0834 0:0883
err 0:1989 0:2161

T = 100
a 0:0660
b 0:0448

Post M ean Post Mode

a 0:0606 0:0526
b 0:0491 0:0535
err 0:1722 0:1521

Post M ean Post Mode

a 0:0323 0:0333
b 0:0484 0:0534
err 0:1255 0:1345

T = 200
a 0:0429
b 0:0317

Post M ean Post Mode

a 0:0415 0:0402
b 0:0389 0:0422
err 0:1230 0:1229

Post M ean Post Mode

a 0:0294 0:0321
b 0:0312 0:0385
err 0:0994 0:1017

and the tight prior.

These RMSE results in Table (4.6) show that both the classical approach and

the Bayesian approach under a loose prior of a to estimating the SB model perform

equally well. The estimation e¢ ciency and accuracy are increased when the sample

sizes increase. When a tight prior of a is employed instead of a loose prior, the estimates

e¢ ciency are hugely improved with any corresponding sample sizes. We can interpret

the results as the following: It is more about the data not being terribly informative

and the resulting large variance translates into a �bias�when the parameter space is

restricted from above but (e¤ectively) unrestricted from below.

4.4.3 Model Comparison Results from the Marginal Likeli-

hood

From the Bayesian point of view, we may compare the SB model with the RW model

even though these two models are not nested. The conventional ADF and PP test

may provide misleading results with a seeming-RW process, the SB process.

In this section, a series with 100 observations is generated from the SB DGP where

the moment restriction is violated. Firstly, this series is tested for stationarity using
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the ADF test and the Phillips-Perron (PP) test in the classical framework. Then, in a

Bayesian framework, we �t the data into a SB model and a RW model, then compare

these two models via the Bayes Factors. We would like to show that a series generated

from the SB DGP behaves like a Random Walk process. This �RW-like� process

cannot be distinguished from a RW process using the conventional ADF test or the

PP test in the classical framework. However, this �indistinguishable�problem can be

compromised in the Bayesian framework, because the model selection procedures in

the Bayesian are based on �comparing�rather than �testing�.

The SB DGP is as the following:

yt = (0:9689� 0:0459"t�1) yt�1 + "t

where "t � i:i:d:fN (0; �2"), �2" = 10:9513 is randomly generated from the prior f�1�" (2; 0:1)
Fig (4-5) plots the simulated data series.
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Figure 4-5: Simulated Data: A RW-like Process from the SB DGP

If we pretend without knowing the true DGP, from inspecting the data, a tight

prior of a can be employed, recall section 4.2.2 for prior elicitation.

Table (4.7) provides the Unit Root testing results using the conventional ADF test

and the PP test. The critical values at 1%, 5% and 10% are also provided. From

Table (4.7), the existence of a unit root is not rejected even at the 10% signi�cance

level for most of the cases, which indicates the nonstationarity in the data series.

Next, following the Bayesian model comparison procedure, we evaluate the mar-

ginal likelihoods of the RW model and the SB model respectively. Then, we calculate

the model probabilities via the Bayes Factors.
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Table 4.7: ADF and PP Tests for the Unit Root Using the Simulated Series

ADF Phillips� Perron
con con&trend none con con&trend none

test statistic �1:6425 �1:7437 �1:7803� �1:6425 �1:7437 �1:7803�
critical value
1% �3:4977 �4:0534 �2:5885 �3:4977 �4:0534 �2:5885
5% �2:8909 �3:4558 �1:9441 �2:8909 �3:4558 �1:9441
10% �2:5825 �3:1537 �1:6146 �2:5825 �3:1537 �1:6146

� : The null hypothesis of a unit root is rejected.

Fig (4-6) plots the log marginal likelihood of the RW model with the simulated

data, where the prior of �2" is chosen as an Inverse-Gamma �
2
" � f�1�"

�
�"; �"

�
. The

log marginal likelihood of the RW model highly depends on the values of �" and �".

Although the prior of �2" � f�1�"

�
�"; �"

�
has been elicited in section 4.2.2 as �" = 2

and �
"
= 0:1, we selected a wide range of �" and �" varying from 0:01 to 20 and see

how the log marginal likelihood of the RW changes based on di¤erent priors, for a

robust analysis. From Fig (4-6), the maximum log marginal likelihood is �243:8621
when �" = 20 and �

"
= 0:01. The prior density of �2" � f�1�" (20; 0:01) is plotted in

Fig (4-7.a). We may see that the highest density under this prior is around 5 and

the probabilities of �2" being a value larger than 7 or smaller than 3 are very low.

Therefore, the prior �2" � f�1�" (20; 0:01) will be very subjective if it had been chosen to
estimate the RWmodel. In other words, we would not choose prior �2" � f�1�" (20; 0:01)
for the RW model in the �rst place to estimate.

Figure 4-6: log Marginal Likelihood of RW with Simulated Data

To compare the RW model and the SB model, we select the same prior for the
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Figure 4-7: Prior Densities for �2" with Di¤erent Values of �" and �"

Table 4.8: log Marginal Likelihood of SB with Gelfand-Dey Method

Marginal Likelihood �" �xed as 2
�
"

p = 0:01 p = 0:02 p = 0:03

200 �273:7574 �272:9708 �272:5025
20 �270:5681 �270:4196 �270:3697
2 �265:3359 �265:0199 �264:8950
0:5 �262:2970 �261:6896 �261:3697
0:3 �261:3569 �260:6002 �260:1577
0:1 �260:9438 �260:1944 �259:7419

common parameter �2" � f�1�"

�
�"; �"

�
, where �" = 2 and �

"
= 0:1. This prior

represent a belief that the �2" could be a value from a wide range because the distrib-

ution has high densities towards to the right tail (Fig 4-7.b plots the prior density of

�2" � f�1�" (2; 0:1)). Also, this prior of the RW model has been elicited in section 4.2.2

based on simulations. With this elicited prior, the log marginal likelihood of RW is

�267:5175.
Table (4.8) reports the log marginal likelihood results with SB model using the

simulated data, where the Gelfand-Dey method is applied. Similar to the RW model,

although �2" � f�1�"
�
�"; �"

�
has been elicited in section 4.2.2 where �" = 2 and �" = 0:1

for the SB model, to illustrate how the choices of �" and �" a¤ect the log marginal

likelihood with the SB model, we �xed �" as 2 but allow �" to vary at di¤erent values

from 20 to 0:1 for a robust analysis. Then we calculate the log marginal likelihood of

the SB under di¤erent selections of �
"
.

In Fig (4-8), we also plot the prior densities with a range of �
"
when �" is �xed as
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2. From Fig (4-8), the scale of �2" increases when �" gets smaller. If the priors of �
2
"

is chosen with a large �
"
, clearly the prior will be so tight that it could not properly

represent our belief in �2".

From Table (4.8), the log marginal likelihood is higher with smaller �
"
. Using a

common prior �2" � f�1�" (2; 0:1) for the SB model and the RW model, the log marginal

likelihood of the SB model is �259:7419. With a log marginal likelihood from the RW
model at �267:5175, the log Bayes Factor will then be logBFRW :SB = �7: 775 6, which
provides strong evidence of supporting the SB model based on the data information.

4.5 Empirical Applications: a Study of the UK In-

�ation Rates

In this section, we apply the posterior simulator developed in section 4.3.1 and the

Gelfand-Dey method reviewed in section 4.3.2 with the real life macroeconomic data.

The data we applied is the quarterly UK headline in�ation rate from 1957 quarter

one to 2007 quarter one. This empirical application has two purposes: One is to �t

the SB model with the data and compare the di¤erences of the estimates between the

Bayesian MCMC method and the classical MLE method. The other is to evaluate the

uncertainties of the nonstationarity in the data series by comparing the nonlinear SB

model with the linear RW model using the log marginal likelihoods.

As motivation, we brie�y review the literature concerning the UK in�ation rates

in time series modelling. Fig (4-9) plots the quarterly �headline�UK in�ation rates,
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Figure 4-9: Data Plot: UK Quarterly In�ation Rates (1957Q1-2007Q1)

which is the annual percentage change in the seasonally unadjusted Retail Price Index

(RPI). The RPI is an all-inclusive RPI, which also includes the mortgage payments12.

As we mentioned in the introduction, inspired by Watson and Stock (2007), we

apply the SB model, which holds a time varying parameter feature, with the in�ation

rates. To motivate our studies in the UK�s experiences, we �rstly provide a brief review

of the important historical events and monetary policies in the UK after 1950s. Then,

we review the �ndings in the literature regarding the UK in�ation rates modelling. For

a thorough review of the economy and political history in the UK before the 1980�s,

refer to Caves (1980).

King (1997) summarizes the univariate in�ation in the UK

Over the three hundred years since the Bank of England was founded in

1694, the average in�ation in Britain has been 1.4%. But in the period

since the second world war, in�ation has averaged 6% and between 1965

and 1980 it averaged no less than 10.3%. Since 1945 prices have risen more

than twenty-fold. Creeping in�ation in the 1950s and early 1960s led to

rapid in�ation in the 1970s, reaching a peak of 27% in August 1975, before

a gradual disin�ation during the 1980s and 1990s.

The sample period we applied in this chapter is from 1957-2007. Within this

period, the Bretton Wood system broke down (1970-1971), and Sterling departed from

the Exchange Rate Mechanism (1992). Also, there were two oil crises (1973-1975 and

12At the moment, in the UK under the in�ation targeting policy, the target range for in�ation
actually is de�ned in terms of the RPIX, which is the RPI excluding the mortage payments.
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1979-1980). The UK experienced high rates of in�ation with a low output between

the early 1960�s and the mid 1980�s. This phenomenon is also known as the �Great

In�ation�or the �Great Stag�ation�. After 2003, the in�ation rate in the UK is low

and stable while the economy is growing at a satisfactory rate. Over the last four

decades, the UK not only had an anguished history of disin�ation, but also the UK

is one of the pioneering countries that has applied in�ation targeting and made the

central bank independent13. Moreover, the UK has richer data resources than many

other countries. Therefore, it is sensible that learning from the historical experiences

of the UK would help policy makers avoid similar episodes in the future. Next, we

summarize the �ndings based on the UK�s experience in the literature.

Hendry (2001) models the long run UK in�ation rate from 1875 to 1991. He

proposes an �eclectic model�, in which a great number of economic variables a¤ect

in�ation jointly.

Using purely statistical models, the underlying process of the UK in�ation is well

documented. Kapetanios (2004) proposes the factor model to forecast the core in�a-

tion rate based on the evidence of using a large disaggregated price index data set.

Henry and Shields (2004) modelled the UK in�ation rates as a two-regime threshold

unit root process. They found that shocks to in�ation are highly persistent in one

regime but have �nite lives in the other. Relevant literature also includes the analysis

of the variations of the in�ation. Baillie et al. (1996) applied a so-called autore-

gressive fractionally integrated moving average-generalized auto-regressive conditional

heteroscedasticity (ARIFMA-GARCH) model to �t the monthly CPI in�ation and the

in�ation uncertainties. They found that in the UK, there is strong evidence of a joint

feedback between the conditional mean and variance of in�ation, which support the

Friedman (1977) hypothesis. Kontonikas (2002) also applied the GARCH model to

evaluate the in�ation and in�ation uncertainties for a long run UK data. His results

indicate a positive relationship between past in�ation and current uncertainty.

13Actually, the new framework for monetary policy commenced in 1992, following the UK leaving
the Exchange Rate Mechanism. This new framework includes an explicit target of in�ation and in-
creasing transparency in the Bank of England. However, the Bank of England was made independent
only after the Bank of England Act (1998) in a sense that the Bank of England has the power to set
interest rates. See the following link for details. http://en.wikipedia.org/wiki/Bank_of_England
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4.5.1 Estimation with a SB Model Speci�cation

After a short review regarding the UK in�ation rate, we �t the data series with a

sample size of 201 into the simplest �rst order SB model:

yt = (a+ b"t�1) yt�1 + "t

where "t � i:i:d:fN (0; �
2
"). Table (4.9) provides the Bayesian MCMC estimation

results from 12; 000 iterations with the �rst 2; 000 draws discarded with a loose prior

of a. The chain converges according to the CD value and NSE value. Table (4.10)

provides the estimation results from the classical MLE method.

From Tables (4.9) and Table (4.10), the estimates using the Bayesian MCMC

method under a loose prior of a do not deviate a lot from the results using the clas-

sical method. Similar results have been shown under the controlled setting using the

simulated series (see section 4.4.2).

Fig (4-10) plots the actual draws from the chain, the correlograms and the his-

tograms of a, b, and �2". From Fig (4-10), posterior distribution of a can be �tted with

a truncated normal distribution. The posterior mean of a is below but very close to

unity. The posterior of b shows that b has large probabilities of being around 0:04.

The posterior of �2" can be �tted with an Inverse-Gamma distribution, which has high

densities around 1:5. According to the correlograms, we consider the proposed MCMC

to be e¢ cient that approximates the target distribution well and extra iterations will

not be necessary.

Both results from the Bayesian MCMC approach and the classical MLE approach

indicate that a is near to unity and a bilinearity term b exists. This non-zero b would

indicate that the in�ation series has a very long memory such that all the past shocks

have impacts on the current in�ation status.

4.5.2 Model Selections Using the SB Model and the RW

model

This section will demonstrate that, in a real settings, the classical method of hypothesis

�testing� and the Bayesian method of model �comparing� may arrive at di¤erent

answers. Firstly, we carried out the conventional ADF test and the PP test with the

UK in�ation series. Then we �t the data with a RWmodel and a �rst order SB model.

Finally, we calculate the log marginal likelihoods and compare these two models in

the Bayesian context.
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Table 4.10: Classical Approach: Estimates of SB with Quarterly UK In�ation Rates

ClassicalEstimates
parameter Mean st:error t� value Max: lg likelihood

a 0:9808 0:0163 60:0119 �309:7733
b 0:0483 0:002 22:7849 s.e. of err: 1.13
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Figure 4-10: Chains Plots of a, b, and �2", Corresponding Correlograms and Histograms

Table 4.11: ADF and PP Tests with the Quarterly UK In�ation Rates

ADF Phillips-Perron
cons cons&trend none cons cons&trend none

test statistic �1:8336 �1:9250 �1:2188 �2:4979 �2:5939 �1:5403
critical value
1% �3:4416 �3:9742 �2:5690 �3:4413 �3:9738 �2:5689
5% �2:8664 �3:4177 �1:9414 �2:8663 �3:4175 �1:9414
10% �2:5694 �3:1313 �1:6163 �2:5693 �3:1312 �1:6163
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Figure 4-11: log Marginal Likelihood of RW with UK In�ation Rates

Table (4.11) provides the unit root test results using the conventional ADF test

and the PP test. The null hypothesis of a unit root in the data series is neither

rejected by the conventional ADF test nor the PP test. From the classical perspective,

nonstationarity exists in the underlying process of the data series.

Following the exact same model comparison procedure as that in the controlled

settings (see section 4.4.3), we calculate the log marginal likelihood by �tting the

RW model and the SB model with the data series. Fig (4-11) plots the log marginal

likelihood of the RW model with a prior of �2" � f�1�"
�
�"; �"

�
, where both �" and �"

vary from 0:01 to 20.

From Fig (4-11), the log marginal likelihood is maximized at �336:4855 when
�" = 20 and �" = 0:03. A prior of �

2
" � f�1� (20; 0:03) indicates a high density around

1:5, as plotted in Fig (4-13). With elicited prior in section 4.2.2, where �" = 2 and

�
"
= 0:1, the log marginal likelihood will be �339:2917. To illustrate how the change

of �" a¤ect the log marginal likelihood with the RW model, we plot the prior densities

with �
"
�xed as 0:1 and �" varies from 1 to 20 in Fig (4-12).

From Fig (4-12 and 4-13), the value of �" a¤ects the scale of the prior density.

Large values of �", such as 20, limits the probability of �
2
" being larger than 1:5.

Therefore, we have to select a prior �2" � f�1�"
�
�"; �"

�
, which represents a prior belief

that �2" could be a value larger than 5. Clearly, �" can be chosen as 1 or 2 to satisfy

our requirement. Then, we provide the log marginal likelihood with the RW model

under di¤erent combinations of �" and �" in Table (4.12).

Using the Gelfand-Dey method with a prior of �2" � f�1�" (2; 0:1), using the trun-

cated tails at 1%, 2% and 3%, the log Marginal Likelihood is provided in Table (4.13).

From the log Bayes factors, the SB model is more favoured over the RWmodel. Under
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Table 4.12: log Marginal Likelihood with RW under Di¤erent Priors: Quaterly UK
In�ation Rates

�"= 10
�" 20 15 10 5 1
lgMLRW �382:2503 �379:3839 �375:3501 �368:4812 �352:8854

�"= 0:5
�" 10 8 6 4 2
lgMLRW �359:5055 �353:3608 �347:7455 �342:8623 �339:1732
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Table 4.13: log Marginal Likelihood of SB and lgBF Compared with RW: UKQaurterly
In�ation Rates

pp: 0:01 0:02 0:03
lgMLSB �257:5976 �256:4027 �255:4636
Comparing with RW at the lgMLmax �339:2917
logBF 81: 694 82: 889 83: 828

the real settings with an application of the quarterly UK in�ation rates, the conven-

tional ADF test and the PP test fail to reject the null hypothesis of a unit root in the

data series. However, the Bayes factors could quantify the uncertainties via comparing

models�probabilities of the entertained models.

4.6 Conclusion

In this chapter, we focus on a bilinear model, which can represent most well-behaved

nonlinearities. A simple �rst order bilinear model, the SB model is investigated in the

Bayesian context. As the SB model allows for the shocks in the system to a¤ect the

persistence in the underlying process, we agree that the SB model could be applied

with the macroeconomic series, such as the in�ation rates, to model their underlying

processes. Because the data series generated from the SB DGP are RW-like processes,

the conventional ADF and the PP tests may not be able to distinguish the SB process

from a RW process. Therefore, testing results from the ADF and the PP test could

potentially provide very misleading inference, and the misinterpretation of the bilinear

term b may induce severe distorted forecasts.

The contributions of this chapter are as follows:

First, motivated by Brunner and Hess (1995) regarding the potential problems

in estimating the bilinear model with the classical MLE, we developed an e¢ cient

MCMC sampling algorithm to estimate the Stationary Bilinear model in a Bayesian

context. When the moment restrictions are volatile, such as when a is near the unity,

the classical MLE using the NR-SA algorithm performs equally well as the Bayesian

MCMC method under a loose prior of a. When the sample size increases from 20

to 200, the estimation e¢ ciencies from both approaches are increased. Choosing a

tight prior of a using the Bayesian MCMC to estimate can gain huge improvements

in the estimation accuracy with all corresponding sample sizes, when the stationary

condition is violated. When the data sample is under 100, if the series is a RW-like

process from a simple visual inspection, we could apply the SB model with a tight
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prior to model the series�underlying process. Practitioners should pay more attention

when eliciting the priors. In practice, using simulations may shed light on the prior

elicitations.

Second, the classical ADF test and the PP test must be applied with caution when

the process is a RW-like process, e.g. the SB process, because these classical tests tend

to mistake the SB process with a nonstationary unit root process. As a consequence,

the misinterpreting in the bilinear term b may lead to incorrect inference about the

conditional heteroscedasticity and distorted forecasts. In this chapter, we employed

the Gelfand-Dey method to evaluating the log marginal likelihood of the SB model,

which enables the practitioners to compare amongst the RW model, the SB model or

any other entertained models where the marginal likelihood calculation is available,

conditional on the available data information.

Finally, we revisit the quarterly UK headline in�ation rates via �tting the SB model

and the RW model with the data. Estimation results show that the UK in�ation rate

is highly persistent, and the past shocks play an important role in forming the current

in�ation because of a non-zero bilinear term. While the unit root is not rejected

with the conventional ADF and the PP test in the classical framework, the SB model

receives a higher model probability when compared with the RWmodel in the Bayesian

framework.

For future studies, we may extend this simple �rst order SB model in Equation (4.1)

by incorporating the structure breaks and changing volatilities. The new extended

model will be as follows:

yt = (ak + bk"t�1) yt�1 + "t (4.16)

where "t � i:i:d:fN (0; �
2
k) and k = 1; 2. Since the forecast of yt from the extended

model will be E (yt) = (ak + bk"t�1) yt�1, if there is a break, or changes in the distur-

bance property, the extended model may have more resilience and be more adjustable

to accommodating breaks.

Appendix 4.A Recursive Derivation of SB Model�s

Likelihood

The �rst order SB model is

yt = (a+ b"t�1) yt�1 + "t
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where t = 2; � � � ; n, and "1 = 0. If y = (y1; � � � ; yn)0 and " = ("1; � � � ; "n)0

y2 = (a+ b"1) y1 + "2

when t = n, n � 3
yn = ayn�1 + byn�1"n�1 + "n

then we have

"n�1 = yn�1 � ayn�2 � byn�2"n�2

and

"n�2 = yn�2 � ayn�3 � byn�3"n�3

If we take the substitute equations recursively

yn = ayn�1 + byn�1 (yn�1 � ayn�2 � byn�2"n�2) + "n
= ayn�1 + byn�1yn�1 � abyn�1yn�2 � b2yn�1yn�2"n�2 + "n
= ayn�1 + byn�1yn�1 � abyn�1yn�2 � b2yn�1yn�2 (yn�2 � ayn�3 � byn�3"n�3) + "n
= ayn�1 + byn�1yn�1 � abyn�1yn�2 � b2yn�1yn�2yn�2 + ab2yn�1yn�2yn�3

+b3yn�1yn�2yn�3"n�3 + "n (4.17)

where the last expanded form with "2 is

(�1)n�1
�
bn�2yn�1yn�2 � � � y2"2

�
= (�1)n�1

�
bn�2yn�1yn�2 � � � y2 (y2 � ay1 � b"1y1)

�
= (�1)n�1bn�2yn�1 � � � y2y2 + a (�b)n�2 yn�1yn�2 � � � y1 � (�1)nbn�1yn�1yn�2 � � � y1"1

Since "1 = 0, Equation (4.17) can be generalized for t = 3; � � � ; n as

yt = a
t�1X
i=1

�
(�b)i�1

i

�
j=1
yt�j

�
+

t�2X
i=1

�
(�1)i+1 biyt�i

i

�
j=1
yt�j

�
+ "t

If we denote

f1 (t; b) =

t�1X
i=1

�
(�b)i�1

i

�
j=1
yt�j

�

f2 (t; b) =
t�2X
i=1

�
(�1)i+1 biyt�i

i

�
j=1
yt�j

�
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thus t = 3; � � � ; n
yt = af1 (t; b) + f2 (t; b) + "t

and for t = 2, f2 (t; b) = 0

yt = af1 (t; b) + "t

Hence, we have the likelihood function as the following:

p (yja; b; h") =
h
N�1
2

"

(2�)
N�1
2

exp

(
�h"
2

NX
t=2

[yt � af1 (t; b)� f2(t; b)]2
)

Derivation of Posterior Conditionals

According to the likelihood and speci�ed prior densities (see details in section 4.2.1),

the full joint posterior can be derived as the following:
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1. Derivation of the Posterior Conditionals of a
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then
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2. Derivation of the Posterior Conditionals for h"

According to Equation (4.18)
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Appendix 4.B Joint Prior density at Posterior Draws

Using the Gelfand-Dey method, joint prior densities p (a; b; h") are evaluated at pos-

terior draws p
�
a;b;�2"

�
at a(g)�; b(g)�; h(g)�" where g = 1; :::G. Given the joint prior

densities, the joint prior evaluated at each posterior draw can be simpli�ed as the

following:
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Appendix 4.C Working with Transformed Data

If the data is transformed, the prior selections should be modi�ed. The original model

is as the following:

yt = (a+ b"t�1) yt�1 + "t

where "t � (0; �2").
Because the data we are analyzing is the UK�s in�ation rates, the data measured

on percentage should be at most 0:3, which indicates the monthly in�ation rates (price

level comparing to the same month in the last year) is not exceeding 30%. Then, we

transform the data by dividing the data with s, where s = 100:

yt
s
= (a+ b"t�1)

yt�1
s
+
"t
s
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Thereby, the prior for �2�" will be changed to f�1�"�
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Similar for h", with transformed data, the prior of h" � f�"
�
�"; �"

�
has to be changed

to h�" � f�"�
�
��"; �
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�
. Since h�" = g (h") = Sh", we have �

�
" = �" and �

�
"
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"
:

The transformations are linear in this chapter. For nonlinear transformations in

the data, refer to Box and Tiao (1992).
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Chapter 5

Model Uncertainties and
Forecasting: with an Application to
In�ation

5.1 Introduction

This chapter focuses on forecasting the UK�s in�ation rate from a univariate statistical

time series modelling perspective. Since the in�ation targeting regime was introduced

in the 1990s, in�ation has become �lower, less volatile and less persistent�(Cogley,

2005) compared with that in the 1970s. In this sense, the in�ation rate has been

considered to have become easier to forecast. However, Watson and Stock (2007)

stress that in�ation has become harder to forecast because the forecasts from standard

multivariate models, such as the backwards-looking Phillips curve, do not improve

over a univariate model. This point was originally made by Atkeson and Ohanian

(2001), who found the in�ation rate forecasts from the non-accelerating in�ation rate

of unemployment (NAIRU) models were inferior to the forecast from a naive model1.

Following Atkeson and Ohanian�s argument, Watson and Stock (2007) investigated

the postwar U.S. quarterly in�ation rate. Strikingly, they found that it is di¢ cult

for multivariate forecasts to improve on forecasts made using some univariate models,

1In Atkeson and Ohanian (2001), pt denotes the level of the price index in month t, �t denotes
monthly in�ation as measured by 1200 [log (pt)� log (pt�1)], and �12t denotes in�ation over a 12-
month period as measured by 100 [log (pt)� log (pt�12)]. The naive forecast of in�ation is given
by

Et
�
�12t+12 � �12t

�
= 0:
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such as the trend-cycle model or integrated moving average model with time-varying

parameters. Hence, in the spirit of Watson and Stock (2007), we propose a group of

nonlinear forecasting models, the GSTUR model and the SB model, for a univariate

U.K. in�ation series.

Besides making inference from the proposed nonlinear univariate forecasting mod-

els, we also compare the one-step ahead out of sample forecasts from a pool of nonlinear

and linear models to that from a benchmark model, the RW model.

After comparing and evaluating the forecasts from univariate statistical forecasting

models, we reach the point of forecast uncertainties. As pointed out by Hendry and

Ericsson (2001, pp.12), �in practice, forecast uncertainty depends upon what is being

forecast, the model used for forecasting, the actual economic process, the current avail-

able information and the forecast horizon�. According to Clements and Hendry (1998,

chapter 7.3, Table 7.1) and Ericsson (in Hendry and Ericsson, 2001, chapter 5), the

forecast system is described as an open system, where the model-based forecast errors

are normally induced from the following �ve sources: (1) future changes in the underly-

ing structure of the economy; (2) mis-speci�cation of models; (3) mis-measurement of

the data in the base period from which forecasting begins; (4) inaccuracies in the esti-

mates of the model�s parameters, and (5) the cumulation of future errors (or �shocks�)

to the economy.

The 1st source is often recognized as unpredictable future structural breaks or shifts

in the underlying economy. This source normally brings a forecast failure to statis-

tical forecasting models (Hendry and Ericsson, 2001, pp.188). In Hendry (in Hendry

and Ericsson, 2001, chapter 2, pp.20), the forecast failure is de�ned as �a signi�cant

deterioration in forecast performance relative to the anticipated outcome�. In regards

to forecasting in�ation, �shifts in monetary policy rules alter the fundamentals that

drive in�ation and therefore also alter its dynamic properties�(Cogley, 2005). In this

sense, it is very hard to forecast in�ation due to the inherent nonstationarity in the

economic system. Questions, such as what kind of economic model is more resilient

to breaks, are raised naturally. Analogous to the 1st source of forecast uncertainty,

the 2nd and the 3rd sources of forecast uncertainties make the future even more un-

predictable. The �rst three sources of forecast uncertainties are categorized as things

that �we do not know what we do not know�(see Hendry and Ericsson, 2001, chapter

2). Whereas, the 4th and the 5th sources of forecast uncertainties are categorized as

things that �we do know what we do not know�, therefore, are �predictable�and the

uncertainties can be quanti�ed. For instance, given a forecasting model, the parameter

uncertainties and possible outcomes arising from the shocks, can be presented with
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a density forecast. In this regard, by providing point forecasts and density forecasts

using the forecasting models, we focus on quantifying forecast uncertainties that arise

from the 4th and the 5th sources. To assess the forecasts, or in other words to measure

how uncertain the model-based forecasts are, in this chapter we also focus on the point

forecast and density forecast evaluations. The point forecasts will be evaluated using

the mean squared forecast errors (MSFE) and the density forecasts will be evaluated

with the probability integral transforms (PIT).

The 2nd source is identi�ed as uncertainties in model speci�cations. To reduce the

forecast uncertainty that is induced by the 2nd source, a common practice is to combine

the forecasts. Combining forecasts has become very popular in the last four decades

since the seminal paper by Granger and Bates (1969). Clemen (1989) addresses the

point of �forecast accuracy can be substantially improved through the combination

of multiple individual forecasts�. However, with empirical applications, there is a

repeat �nding in the literature that simple combination outperforms sophisticated

combination methods. This �nding is a well known �forecast combination puzzle�

(Stock and Watson, 2004). Also, in Clemen (1989), �simple combination methods

often work reasonably well relative to more complex combinations�. In the Bayesian

framework, Bayesian model averaging (BMA) provides �a conceptually elegant means�

(Mitchell and Hall, 2007), which accounts for the model uncertainties. Therefore, it is

worth evaluating whether a simple averaging is the best combining method compared

to BMA. In this chapter, we focus on forecast combinations and see if the BMA

approach outperforms the Simple Averaging (SA) approach.

The 3rd source may also bring forecast failure. Watson and Stock (2007) found sig-

ni�cant changes in in�ation dynamics that �the variance of permanent disturbances to

in�ation has changed considerably over time, and (the variance) today is at historically

low levels�. With applications to the U.K. quarterly in�ation rate, the introduction

of an in�ation targeting regime brings an obvious change in monetary policy. Hence,

�it is not clear that past experience is a good guide to this [in�ation forecast]...and,

in turn, [this] probably implies that the error variance... overstate the current un-

certainty associated with the in�ation rate � (see Poulizac et al. 1996). Taking the

National Institute of Economic and Social Research (NIESR)�s in�ation forecast for

example, NIESR over-estimated the degree of uncertainty associated with its point

forecast for the period 1994-2002 (Hall and Mitchell, 2004). Not surprisingly, Mitchell

(2005) found a break in the unconditional variance of NIESR�s forecast errors around

1993-94. Based on the lesson from NIESR�s forecast failure, Hall and Mitchell (2007)

propose that historical forecast errors should be monitored regularly by testing struc-
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tural breaks at an unknown point, such that a period of history which is informative

about the future can be selected for forecasting. In this regard, considering possible

mis-measurement of the data in the base period, we carried out the one-step ahead

out of sample forecast for 2004Q3-07Q1 using two samples: a period 1957 Q1 to 07Q1

and a later period after the independence of the Bank of England 1999 Q4 to 07Q1.

We would like to address the following question, which was also asked in Chat�eld

(1988): should we simply ignore part of the past data whenever it becomes irrelevant

for forecasting purposes?

In summary, the following questions shall be answered in this chapter: Within our

selected model space, which statistical model is better in forecasting? Explicitly, are

the nonlinear GSTUR model and the Stationary Bilinear (SB) model able to capture

the complicated dynamics in the underlying process of in�ation, and outperform the

simple linear stationary AR(p) models and the Random Walk (RW) model? How do

we evaluate the density forecast and point forecast? An immediate question is, how

should we combine the forecasts? Compared to a simple averaging, does Bayesian

model averaging o¤er a better solution for combining forecasts? The �nal question

is, when a break occurs in the data sample, which base period should we choose to

forecast? Shall we stick to the long historical data set, or alternatively, shall we give

up part of the past data set, which is seemingly less relevant to forecasting the future?

Bearing in mind of the �ve main sources that induce the forecast uncertainties,

this chapter is organized as follows: Section 2 reviews the forecast methodologies,

which include constructing density forecast, combining forecasts and evaluating point

and density forecast. Section 3 then presents the statistical forecasting models. With

an application to the UK in�ation rates data series, section 4 illustrates the forecast

results based on the forecasting models. The forecasts are constructed and evaluated

in various ways considering the �ve main sources inducing the forecast uncertainties.

Concluding comments are made in Section 5.

5.2 Forecasting Methodologies

Since forecasting in a Bayesian framework and a Bayesian approach to reducing model

uncertainties via BMA have already been reviewed in Chapter 2, in this section, we

focus on �rst the methodologies of constructing and combining forecast in section 5.2.1

and section 5.2.2, then the methods to evaluate point and density forecasts in section

5.2.3. In particular, we focus on reviewing the density forecast and its importance in

section 5.2.1
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5.2.1 Constructing Forecasts

In the literature, the methodologies of constructing point forecast, interval forecast

(Hansen 2006, Chat�eld 1993, Christo¤ersen and Peter 1998) have been well estab-

lished. Although point and interval forecast meet the basic needs from most pro-

fessional forecasters, people became more interested in more explicit descriptions of

forecast uncertainties. The conventional point forecasts associated with a standard er-

ror are no longer satisfactory. Density forecast has gained a lot of attention in recent

years (Diebold et al., 1997) because density forecast can serve the above requirement of

explicitly quanti�ed forecast uncertainties. For instance, in �nancial risk management,

a density forecast can be utilized when people are more interested in the probability

of the realized data exceeding a certain level.

�A density forecast of the realization of a random variable at some future

time is an estimate of the probability distribution of the possible future

values of that variable.�� Tay and Wallis (2000).

Because the density forecast provides a complete description of the uncertainties of

forecast variables, all forecast users can make optimal decisions. Compared with the

point forecast, the density forecast has obvious advantages to help forecast users mak-

ing decisions, when we take the forecast users�loss function into consideration. If the

loss function is symmetric, the optimal point forecast is the conditional mean. How-

ever, if the loss function is asymmetric, the point forecast based on the conditional

mean will be a sub-optimal choice (Christo¤ersen and Diebold, 1997). However, a

density forecast could serve the purpose of providing a probability distribution of all

possible outcomes base on the available information. Density forecast has been widely

applied in the �elds of �nance and risk management, as well as in the �elds of macro-

economic forecasting. Especially in the last decade, the density forecast has been

advanced because of the recent development in Markov Chain Monte Carlo (MCMC),

see Gelman (1995) and Diebold et al. (1997). In a Bayesian framework, to obtain

density forecasts is straight forward. As long as the posterior simulator is available,

model-based density forecasts can be obtained without extra cost via MCMC simula-

tions.

Tay and Wallis (2000) review the importance and usage of density forecast in

macroeconomics and �nance. We provide a summary here. In macroeconomics, den-

sity forecasts are applied to assist central banks to set monetary policy. Taking the

in�ation density forecast provided by the Bank of England for example, the judgement

from the Monetary Policy Committee (MPC) of their views of the balance of risks on
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the upside and downside of the in�ation forecast are all re�ected in the �fan chart�2.

In quantitative �nance, the main focuses are applying density forecast for risk assess-

ments based on forecast users�loss functions, in particular, providing density forecasts

of future portfolio values and to tracking certain aspects of the densities (see Diebold

et al. 1998). Since it is important to provide accurate and complete probability state-

ments, density forecast, particularly the volatility density forecast and its evaluation

have gained remarkable attention. In �nance, the most commonly applied forecasting

models are ARCH and GARCH models.

To construct a density forecast, numerical simulation methods are applied in most

cases. MCMC in the Bayesian framework provides a good solution for simulating

forecast distributions. The analytic approach to constructing a density forecast will

only be available if standard distributions are used (Tay and Wallis, 2000).

After the forecast densities are constructed, it is very important to present as many

features of the forecast density as we can to serve the di¤erent needs of all forecast

users. Some forecast users might be interested in asymmetries and excess kurtosis,

while some forecast users might be interested in some particular high forecast density

intervals, or quantiles of the forecast distribution. Therefore, the best way to present

a density forecast is by plotting the whole forecast distribution.

To illustrate how density forecasts should be presented, we take the Bank of Eng-

land�s in�ation density forecast as an example. With an in�ation targeting regime, the

objective policy is sometimes expressed as a target range for in�ation, whereupon the

fan charts are used to report the forecast probability that the future outcome will fall

in the target range (Tay and Wallis 2000). In the summary of Britton et al. (1998),

the fan charts provided by the Bank of England could be understood in three ways:

(1) The �nal calibration of the distribution represents the Monetary Policy Commit-

tee�s (MPC) subjective judgements. (2) The central projection of in�ation, which is

known as the mode of the statistical forecast distribution, represents the most likely

outcome based on current knowledge and judgement. The degree of uncertainty can

be measured with variance, which is known as the degree of dispersion in the forecast

distribution. Also, the degrees of uncertainty are used to re�ect how likely it is that

future events will di¤er from the central projection. (3) Third, the degree of skewness

in the density forecast distribution exhibits the MPC�s view of the balance of risks

on the upside and downside of the forecast. When the risk is unbalanced around the

central projection, the mean forecast will di¤er from the mode and the forecast distri-

2The plots of the denstiy forecast provided by the Bank of England are also known as the �fan
charts�.
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bution will be asymmetric. If a forecast distribution is positively skewed, the balance

of risks will be on the upside, where the mean is higher than the median and the mode.

In the Bank of England�s report, the degree of skewness is illustrated by the di¤erence

between the mean and the mode of a forecast distribution.

In conclusion, to present a density forecast e¢ ciently and make it available for all

forecast users, the summary statistics including the mean, mode, median, degree of

skewness and variance of a forecast distributions are very important. In this chapter,

we plot the one-step ahead forecast distributions to illustrate the model-based forecast

densities.

5.2.2 Combining Forecasts

In the forecasting framework, combining forecasts may improve the forecast accuracy.

See the seminal paper of Bates and Granger (1969). Also, in Newbold and Granger

(1974), they �nd that regardless of the combination method employed, a small im-

provement in forecast accuracy results from the addition of a third forecast. The

importance of combining forecasts has been brie�y reviewed in chapter 2.5. In this

section, we provide a detailed review of issues related to forecast combinations, in par-

ticular the Bayesian Model Averaging (BMA), with a focus on the density forecasts.

We provide, �rst, a literature review of combining forecasts and, second, two types

of methods to combine the forecasts: the Simple Averaging (SA) and the BMA. The

algorithms of these two combining methods are provided at the end of this section.

As pointed out by Tay and Wallis (2000), �while a density forecast provides a

representation of the uncertainty in a point forecast, its own uncertainty should also

be acknowledged and quanti�ed�. In a model-based forecasting framework, combining

forecasts may provide a solution to reducing the forecast errors that are induced by

the model uncertainties. Intensive literature reviews of combining forecast methodolo-

gies can be found in Bates and Granger (1969), Clements and Hendry (1998, chap10,

pp.228-231), Clemen (1989) and de Menezes et al. (2000). Some non-standard fore-

cast combination methods can be found in Gupta and Wilton (1987) and Li et al.

(2001). Clemen (1989) provides a systematic review of combining forecasts and an

annotated bibliography of the combining forecast literature. In particular, de Menezes

et al. (2000) provide reviews of practical guidelines for the use of combined fore-

casts and di¤erent combining methods. In a focus of density forecast combination, a

comprehensive literature review can be found in Hall and Mitchell (2007). For empir-

ical applications, examples can be found in Stock and Watson (2004), where simple

combination forecasts, discounted MSFE forecasts, shrinkage forecasts, factor model
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forecasts and time varying parameter (TVP) combination forecasts were used. Also,

Min and Zellner (1993) applied various Bayesian pooling techniques and non-Bayesian

forecast combining techniques to forecast 18 countries growth rates.

In a summary of the literature and using the surveys from de Menezes et al. (2000),

there are many well established methods to combine model-based forecasts. The most

common idea of combination is giving combination weights to di¤erent forecasts, and

the forecasts are then combined via a linear weighing vector. The conventional forecast

combination methods are listed as follows:

1. Optimal Combining and Optimal Adaptive Combining assuming independence:

In these two combining methods, a linear weights vector is constructed by min-

imizing the variance-covariance matrix of the combined forecast errors. Since

the minimization requires the variance-covariance matrix of the combined fore-

cast errors to be properly estimated, the Optimal Combining (OC) approach is

not appropriate in practice because the covariance matrix of forecast errors is

often non-stationary. The Optimal Adaptive Combining (OAC) approach as-

sumes forecast errors from individual modes are independent and the estimate

of the variance-covariance matrix of the combined forecast errors is restricted to

be diagonal, comprising just the individual forecast error variances. This OAC

method tries to overcome the problem caused by the non-stationary covariance.

For details of the variance-covariance approach, refer to Clements and Hendry

(1998, pp.229, chap10.2.2).

2. Regression based approach: The regression method is proposed by Granger and

Ramanathan (1984), in which the individual forecasts are used as regressors

and the weights are obtained via an Ordinary Least Squares (OLS) regression.

This approach, is supported by Guerard (1987) and Holmen (1987). However,

the approach is not appealed in Clemen (1986), Holden and Peel (1986) and

Lobo (1991), who provide empirical evidence favouring the optimal combining

approach over the regression based approach. For details of the regression based

approach, refer to Clements and Hendry (1998, pp.229, chap10.2.1).

3. Simple Averaging (Clemen and Winkler, 1986): A Simple Averaging (SA) ap-

proach to combining forecasts is to simply take the arithmetic average of individ-

ual forecasts. The simple averaging has �the virtues of impartiality, robustness

and a good track-record in economic and business forecasting�(de Menezes et

al., 2000). The SA method has been favoured in the forecast combination lit-

erature, because the SA works so well that the SA performs the best or nearly
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the best compared with other sophisticated combination methods (see Clemen,

1989 and de Menezes et al., 2000). In some instances, Palm and Zellner (1992)

propose to use equal weights instead of using complicated weights to combine

forecasts. Some possible explanations of why a SA works well can be found in

Holden and Peel (1986). They point out that the weights to combine are po-

tentially unstable, which are often due to the unsystematic changes over time in

the variance-covariance matrix of the individual forecast errors. �Under these

circumstances, a simple average, although having non-optimal weights, may still

give rise to better results than time-varying weights�(de Menezes et al., 2000).

4. Bayesian approaches: Bayesian approaches to combination have been proposed

by Morris (1977). Hoeting et al. (1999) provide a detailed introduction of BMA.

In a very early paper, Bunn (1985) provides an �outperformance�approach to

combine the forecasts, which is a linear combination method with a Bayesian

approach. In the outperformance method, the combination weights of each indi-

vidual forecast can be assessed and revised in a Bayesian manner. The weights

are constructed as the probabilities that each individual forecasting model will

perform the best on the next occasion, where the probabilities are evaluated

based on the models�performances in the past. When data is sparse, the ex-

perts judgment will be taken into account to construct the combination weights.

5. Other approaches, such as combining with changing weights can be found in

Deutsch et al. (1994). In a recent paper of Li et al. (2001), a quasi-Bayes

method (Faria and Souza, 1995) is applied to combine forecast densities.

To sum up, Bunn (1985) found an overall robustness of OAC assuming indepen-

dence, outperformance and quasi-Bayes probabilities approaches. In Clemen and Win-

kler (1986), a simple averaging and the Bayesian approach to combination perform

well. The success of simple averaging approach has been a mystery in the forecast

combination literature. de Menezes (2000) points out, �the simple methods did much

better during and immediately after structural changes, however, overall, the advan-

tage of simple averaging approach is not very clear�. In this chapter, we focus on

comparing a Bayesian approach to combining forecasts based on model probabilities

and a simple averaging to combination by taking the arithmetic average of each indi-

vidual forecasts. The algorithms of BMA and SA are introduced as follows:

Algorithm 1: Forecast Combination: BMA and SA
Since the predictive distributions of each individual forecasting model can be ob-

tained via simulations, these distributions then can be averaged to provide a combined
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forecast density. The combined forecast density via BMA p (yt+1 j Ft) is:

p (yt+1 j Ft) =
kX
i=1

p (yt+1 j Ft;Mi) Pr (Mi j Ft)

where p (yt+1 j Ft;Mi) is the forecast density of modelMi, and Pr (Mi j Ft) is the model
probability of Mi calculated as:

Pr (Mi j Ft) =
p (Ft jMi) p (Mi)
kP
j=1

p (Ft jMj) p (Mj)

(5.1)

where p (Mi) is the prior model probability of model Mi. If we are interested in

combining k models and presume all the models of interest are equal likely, p (Mi) =

p (Mj) for any j 6= i, Equation (5.1) will become

Pr (Mi j Ft) =
p (Ft jMi)
kP
j=1

p (Ft jMj)

where p (Ft jMj) is the marginal likelihood of model Mj : j = 1; � � � ; k.
Since the forecast distributions of each individual forecasting model is presented

as a histogram plot of random samples from the forecast density p (yt+1 j Ft;Mi), the

BMA can be achieved via combining the forecast histograms according to the model

probabilities Pr (Mj j Ft) : j = 1; � � � ; k.
For instance, in a histogram plot of forecast distribution Mj, if we have 40 bins,

denoted as r, within a range of the minimum value 0 and the maximum value 4, the

bin density Binjr , denoted as Pr (Binjr j Ft;Mj) will be the portion of forecast draws

that fall within the bin.

If we want to obtain N samples to construct a combined forecast distribution,

according to the bin probabilities Pr (Binjr j Ft;Mj) : r = 1; � � � ; 40 in modelMj with

a model probability Pr (Mj j Ft) of Mj, Nr : r = 1; � � � ; 40 number of draws should be
uniformly sampled from Binjr : r = 1; � � � ; 40 in the forecast histogram of model Mj:

Nr = N Pr (Binjr j Ft;Mj) Pr (Mj j Ft)

For SA, all the models are treated as being equally likely and equal numbers of random

forecast draws are taken from the constituent forecasting models�histograms. The

combining algorithms for BMA and SA are as follows:
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1. To construct a combined forecast distribution, we would like to obtainN forecast

samples in total from the constituent forecasts, by setting the number of bins in

all histograms as 40: r = 1; � � � ; 40.

2. With a group of constituent forecasting models Mj : j = 1; � � � ; k, using the de-
veloped posterior simulators, we can get n one-step ahead out of sample forecast

samples of yt+1 from modelMj according to the forecast density p (yt+1 j Ft;Mj).

We call these n sample Sj : y
(1)
j;t+1; y

(2)
j;t+1; � � � ; y

(n)
j;t+1. If we denote the number of

samples that fall in bin Binjr as xj;r : r = 1; � � � ; 40, the probabilities of Binjr
in the forecast histogram with respect to model Mj will be xj;r=n:

Pr (Binjr j Ft;Mj) =
xj;r
n

3. Combining the forecasts:

(a) BMA: With the obtained marginal likelihood p (Ft jMj) of Mj : j =

1; � � � ; k, model probabilities Pr (Mj j Ft) : j = 1; � � � ; k are given by the
following:

Pr (Mj j Ft) =
p (Ft jMj)
kP
i=1

p (Ft jMi)

To construct a combined forecast with a BMA approach, we can uniformly

sample N Pr (Mj j Ft) Pr (Binjr j Ft;Mi) number of forecasts according to

each model of interest for j = 1; � � � ; k and each individual model�s forecast
histograms with bins r = 1; � � � ; 40, where N is the total number of forecast

samples in the combined forecast distribution.

(b) SA: An SA method is to construct the combined density by considering

all models are equally weighted, where Pr (Mi j Ft) = Pr (Mj j Ft) for any
i and j in the model space. In this instance, we can uniformly take N=k

samples from the forecast histogram of Mj : j = 1; � � � ; k to construct the
combined forecast distribution.

4. Parameter estimates and other quantities of interest of the combined forecast

can be obtained straightforward in the above manner. For example, the BMA

estimate of parameter �, b�BMA is

b�BMA =

kX
j=1

b�j Pr (Mj j Ft)
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where b�j denotes the posterior mean of model Mj. For details, please refer to

Hoeting et al. (1999).

If the model space contains many models, model selection using the marginal like-

lihood is not feasible. A better model selection and forecast combination procedure

should be developed. In the literature, using the predictive likelihood for model aver-

aging has been proposed. We can take this into account for future research.

5.2.3 Evaluating Forecasts

This section introduces the methodologies of point and density forecast evaluations,

which will be applied to both the forecasts from each individual forecasting model and

the combined forecasts.

We begin by introducing some notation:eyt+i denotes the i step ahead forecast at time t and the available information set is
denoted as It. Normally, we use the sequence data history up to time t, denoted as Ft,

as a representative of It. Because eyt+i will be a¤ected by unpredictable future events,
or stochastic shocks in the economy system, eyt+i is considered as a random variable

following a forecast distribution, denoted as Ft;i (y). Conditional on the available

information set, the conditional forecast distribution Ft;i (y j It) is:

Ft;i (y j It) = prob (eyt+i � y j It)
where prob (eyt+i � y j It) denotes the probability of eyt+i being no greater than y given
the information available at time t. The corresponding predictive probability density

function then is denoted as ft;i (y j It), where:

ft;i (y j It) dy = prob (y � eyt+i � y + dy j It)
Finally, we denote yt+i as the realized data at the future time t + i. In this chapter,

we focus on the one-step ahead out of sample forecast, where i = 1 in this instance.

How to evaluate the point forecast has been well established in the forecasting lit-

erature. For point forecast evaluations, interested readers are redirected to the survey

by Wallis (1995), Diebold and Lopez (1996). Surveys of density forecast evaluations

can be found in Clements and Smith (2002), Tay and Wallis (2000). Empirical applica-

tions of density forecast with its evaluation can be found in both macroeconomics and

�nance, see Diebold et al. (1998) and Diebold et al.(1999). Other forecast evaluations,

such as the evaluation of the interval forecast can be found in Chat�eld (1993) and
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Christo¤ersen (1998). Given the review in the literature, we choose standard methods

to evaluate both the point and the density forecasts.

Point Forecast Evaluation: MSFE
For more details of point forecast evaluation, see Granger (2001, in Hendry and Er-

icsson 2001, pp.97-98) and Clements and Hendry (1998, chap3 pp.54-56). We provide

a summary here. Formally, the point forecast is obtained by minimizing the forecast

users�loss functions C (�). Therefore, the one-step ahead out of sample point forecast
are obtained via minimizing the following:

mineyt+1
R1
�1C (eyt+1 � y) ft;1 (y j It) dy

However, minimizing the above integral directly is di¢ cult. Based on an assumption

of symmetric C (�) 3, the one-step ahead point forecast will be just the conditional
mean of the predictive probability density function ft;i (y j It) for linear econometric
models, e.g. the stationary AR(p) model and the Random Walk (RW) model. For

nonlinear econometric models, such as the Generalized Stochastic Unit Root (GSTUR)

model and the Stationary Bilinear (SB) model, the one-step ahead point forecast can

be obtained via simulated forecast densities. Details of how to get the one-step ahead

point forecast will be addressed with respect to each individual forecasting model in

section 5.3.

In this chapter, we apply a conventional method, the Mean Square Forecast Errors

(MSFE), to evaluate the point forecast accuracy. Imagine we carried out the one-step

ahead forecast for eyt+1 when the available information set is It, the point forecast under
a symmetric loss function is denoted as byt+1. At time t+1, when the information set is
updated to It+1 and the realized yt+1 is observed, the forecast error for the �rst point

forecast can be calculated as:

et+1 j It = (byt+1 � yt+1) j It
3As summarized in Svensson (2002) footnote 7,

(under the assumption of a linear model of the transmission mechanism) a quadratic
loss function corresponds to a mean forecast, an �absolute deviation� loss function
corresponds to a median forecast, an �all or nothing� loss function (a so-called Dirac
delta function) corresponds to a mode forecast, and a �zone of indi¤erence�loss function
corresponds a condition of equality of the probability densities of the forecast at the
edges of the zone.

Svensson believes �a majority of an informed and competent MPC would quickly see the advantages
of a quadratic loss function and the corresponding mean forecast�.
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If we generate a number of � forecasts, the MSFE is calculated as a mean of the sum

squared forecast errors:

MSFE =
1

�

�X
i=1

�
et+i j It+i�1

�2
The smaller the MSFE is, the better the econometric model does in terms of point

forecast given a condition that the loss function C (�) is symmetric.
Density Forecast Evaluations: PIT
Di¤erent approaches to evaluate the density forecast have been investigated in the

literature. In Wallis (2003), a approach of using the chi-squared tests is proposed

with an application of the Bank of England�s fan charts. West (1996) focuses on the

e¤ect of parameter estimation error on the evaluation procedure. West�s approach

requires a long time series of predictions and realizations. Mitchell and Hall (2004)

applied the Kullback-Leibler information criterion (KLIC) to evaluate density forecast

with an application to Bank of England fan charts. The combined density is obtained

using the KLIC weights. Comparison of these di¤erent approaches to evaluate density

forecast is a subject of future research.

In this chapter, following the methodologies stated in Clements and Smith(2002),

density forecasting can be evaluated using the Probability Integral Transforms (PIT).

Diebold et al. (1999) evaluate a bivariate forecasting model with an application of high

frequency returns on foreign exchange, by extending the univariate density forecast in

Diebold et al. (1998) to a multivariate case. Clements and Smith (2000) extended the

density forecast evaluation method in Diebold et al. (1998) and compared among the

nonlinear (self-exciting threshold autoregressive models they considered) and linear

forecasting models. The PIT approach is not only applicable to model-based density

forecasts, but also is operational for subjective (survey-based) density forecasts. For

instance, Clements (2006) uses PIT to evaluate the survey of professional forecasters

(SPF) probability distribution of in�ation and output growth.

The key idea of evaluating the density forecast is that if the density forecast per-

forms well, the cumulated probability up to the realized data should be Identically

Independent and Uniformly distributed. This lies in the fact that �if a sequence of

realizations corresponds to i.i.d. draws from a �xed density, then the PIT of the real-

izations with respect to the density are i:i:d: fU(0; 1)�(Diebold et al., 1998). Tay and

Wallis (2000) addressed �deviations from uniform i.i.d. (in PIT) will indicate that the

forecasts have failed to capture some aspect of the underlying data generating process,

and serial correlation in the PIT sequence would indicate poorly modelled dynamics,
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whereas non-uniformity may indicate improper distributional assumptions, or poorly

captured dynamics or both�. Diebold et al.(1998) point out that a density forecast

that coincides with the data generating process will be optimal in terms of minimizing

expected loss whatever users�loss functions. Therefore, this is an advantage of using

the PIT approach to testing whether the forecast density closely corresponds to the

actual density because we could simply omit the e¤ects of various loss functions. The

PIT can also be applied to evaluate multi-step-ahead density forecast, see Diebold et

al. (1998).

To evaluate the density forecast, we �rstly calculate the PIT from the forecasted

samples. Then, a Kolmogorov-Smirnov (KS) test is applied to test if the PIT are

i:i:d:fU(0; 1) distributed. The calculation of the PIT can be found in Diebold et al.

(1998). Suppose we have a one-step ahead forecast series with � periods and the

forecast densities for yt+1 at t is denoted as p (eyt+1), the PIT zt+1 of realized yt+1 with
respect to p (eyt+1) is given by:

zt+1 =

Z yt+1

�1
p (u) du = P (yt+1)

where P (yt+1) is the forecast probability of eyt+1 not exceeding the realized value yt+1.
In other words, p (eyt+1) is the forecast density and zt is simply the corresponding
cumulative density function (c.d.f.) evaluated at the realized value yt+1. Thus, zt
should be within an interval zt 2 [0; 1].
According to Diebold et al.(1998), Diebold et al. (1999) and Clements (2006),

suppose the unobservable and unknown true forecasting density is denoted as f (eyt+1),
if the forecast density p (�) equals the true forecast density f (�), then for zt 2 [0; 1],
qt (zt) calculated as:

qt+1 (zt+1) = f
�
P�1 (zt+1)

� ����@P�1 (zt+1)@zt+1

����
=

f
�
P�1

�
zt+1
��

p
�
P�1

�
zt+1
�� :

qt+1 (zt+1) equals to 1. Note that qt+1 (zt+1) is simply the density of fU (0; 1). Therefore,

the evaluation of whether the forecast density p (�) equals to the true forecast density
f (�) becomes a test of qt+1 (zt+1) being the density of fU (0; 1). Equivalently, we can
just test if the PIT series Z = fzt+i;8i = 1; � � � ; �g from � recursive forecasts follows

an independent identically distributed uniform distribution (i:i:d:fU (0; 1)). If the �

samples of Z are i:i:d:fU (0; 1), the density forecast p (�) would be a good representation
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of the true underlying forecast density f (�).
Suppose we have a simulated forecast density p (eyt+1) with ey(g)t+1 : g = 1; � � � ; S1,

and the forecast histogram of eyt+1 can be plotted using the simulated forecast samples.
Suppose the realized value of yt+1 at time t+1 is 4:5, the c.d.f. evaluated at 4 denoted

as Pr (eyt+1 < 4) is 0:4, and the bins are de�ned with unity intervals, where the bin
probability on the interval [4; 5), denoted as Pr [eyt+1 2 [4; 5)], is 0:1 according to the
forecast histogram. Then the PIT zt+1, where zt+1 = Pr (eyt+1 < 4:5) can be calculated
as follows:

Pr (eyt+1 < 4:5) = Pr (eyt+1 < 4) + 4:5� 4
5� 4 Pr [eyt+1 2 [4; 5)]

= 0:4 + 0:5� 0:1 = 0:45

Various single and joint tests for fU(0; 1)/fN(0; 1) and i.i.d. can be found in

Clements and Smith (2000), Clements (2004), Hall and Mitchell (2004), such as KS

test, Doornik-Hansen test for fU(0; 1)/fN(0; 1), Ljung-Box tests and Lagrange multi-

plier (LM) tests for i.i.d., Berkowitz LR test for both fU(0; 1)/fN(0; 1) and i.i.d. In

this chapter, we follow the methods in Clements and Smith (2000) and apply the KS

test to test fU(0; 1)/fN(0; 1) of the PIT series, Z.

To test if Z is fU(0; 1), we �rstly take the inverse c.d.f. transformation of Z to

get Z� (Z� � F�1N (Z)). Then, the test of Z being fU(0; 1) becomes a test of Z�

being fN (0; 1), where the KS test can be applied. The Matlab (2007a) comprises a

KS test, in which the null hypothesis for the KS test is that Z� � fN (0; 1) and the

alternative hypothesis is that Z� � fN (0; 1). If the KS test output is 1, we can reject
the hypothesis at the 5% signi�cance levels that Z� has a standard normal distribution.

If the KS test output is 0, we cannot reject the null hypothesis that Z� � fN (0; 1).

Because the forecasting period � in this chapter is only 10, the forecast sample size of

Z is therefore as small as 10. The inference from the testing results should be made

with caution because the KS test power is low subjecting to the small sample size.

To test the i.i.d. in Z, we follow the suggestion in Diebold et al. (1998) via a

visualization of the PIT by plotting the correlograms of the Z on the level and its

higher powers, which are calculated as
�
Z � Z

�
,
�
Z � Z

�2
,
�
Z � Z

�3
and

�
Z � Z

�4 4.
To sum up, with the methodologies reviewed in section 5.2.1, 5.2.2 and 5.2.3, this

chapter, �rst, constructs density forecasts and point forecasts using the entertained

statistical models, then the forecasts are combined using both the SA and the BMA

methods. . Finally, the forecast densities, both the density from the constituent

4Z is the mean of the PIT series Z.
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forecasting models and the combined densities, are evaluated with the PIT approach.

Correlograms of the PIT on the level and its higher powers are plotted along with the

forecast distributions, as well as the realized values.

5.3 Forecasting Models

In this section, the speci�ed statistical forecasting models are presented. Compared to

the classical forecasting approach, one distinctive advantage of applying the Bayesian

approach to forecasting is that the forecast distributions can be created simultaneously

as soon as the estimations were completed. Especially, when the exact forecast density

is hard to achieve analytically, with a Bayesian approach, a forecast distribution could

be simulated from a large number of random draws. The forecast procedure with an

entertained model can be described as follows: First, in each repetition of the sampling,

a vector of random draws can be obtained from the joint posterior densities. Then, a

forecast can be generated based on the random posterior samples. Finally, when the

posterior sampling iterations are completed, the forecast distributions, as well as the

posterior distributions, are obtained.

Koop (2003, pp.73) provides details of how to achieve the density forecasts with a

use of random draws from the posterior simulators. If � denotes a vector that consists

of all the parameters of interest in model Mj, with the posterior samplers developed

in chapter 3 and 4, we can get a random draw �(i) from the posterior conditionals

p (� jMj; Ft), where Ft = (y1; � � � ; yt)0 denotes a series of historical observations up
to t. With MCMC, a one-step ahead forecast of y(i)t+1 can be obtained from model

Mj and density p
�
y
(i)
t+1 jMj; Ft; �

(i)
�
. When the iteration number i is increased to S,

where the chain converge, posterior samples of � : �(1); � � � ; �(S) and forecast samples
of Yt+1 =

�
y
(1)
t+1; y

(2)
t+1; � � � ; y

(S)
t+1

�0
can be obtained immediately. Then, the histogram of

Yt+1 can be plotted as an approximation of the forecast distribution, from where the

high forecast density intervals, e.g. 90% density intervals, can be extrapolated. We

can choose the mode as the point forecast, which can be evaluated with the MSFE.

When the forecast distribution is symmetric, we can also use the mean of the forecast

distribution as the point forecast. Because the forecast distribution is constructed from

the random posterior draws, the stochastic uncertainty induced by the unobserved

errors or shocks, and the parameter uncertainties induced by the parametric models

are already accounted for.

Next, we provide the forecasting models�speci�cations. The model space consists of

a number of purely statistical linear models and some non-standard nonlinear models.
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The forecast algorithms with respect to each individual model will be introduced. To

determine the optimal lag length in the stationary AR(p) model, we performed a pre-

selection with a use of the Eviews outputs according to the Akaike information criterion

(AIC). Then, in order to compare the stationary AR(p) models with nonlinear models,

we estimate the selected stationary AR(p) models with MCMC sampling algorithms

in a Bayesian context.

The reason we have chosen the RW model is that Atkeson and Ohanian (2001)

argue that the likelihood of accurately predicting a change in in�ation using model

in�ation forecasting models is no better than a coin �ip. Also, in Fisher et al. (2002),

a question such as �why does in�ation behave like a martingale over some periods

while at other times it does not�has been asked. Therefore, we include the simplest

RW model as a benchmark for model comparison purposes.

GSTUR Forecasting models

�t+1 = yt+1 � � (t+ 1)� 
 (5.2)

�t+1 = exp(�t+1)�t +
lP
i=1

�i4 �t�i+1 + "t+1 (5.3)

�t+1 = �0 +
pP
j=1

�i�t�j+1 + �t+1 (5.4)

where "t+1 � i:i:d:N(0; �2") and �t+1 � i:i:d:N
�
0; �2�

�
. The deterministic terms are the

intercept 
 and time trend �. The density forecast using the GSTUR model can be

achieved using: either (a) an algorithm using the posterior draws, or (b) an algorithm

using the Auxiliary Particle Filter. Let�s denote � =
�
�; �2�; �

2
";
;�

�0
, then:

Algorithm 1.a: GSTUR Density Forecast Using Posterior Draws
With the posterior simulator developed in chapter 3, according to the GSTUR

forecasting model in Equation (5.2, 5.3 and 5.4)

1. i = 1, run GSTUR posterior simulator. See chapter 3 for details regarding the

sampling of �(i). The �rst S0 draws are to be discarded.

2. i = i+ 1when i > S0, we can have the following with �
(i) according to Equation

(5.4):

�
(i)
t+1 j �it+1; �(i) � fN

�
�
(i)
0 + �

(i)
j �

i
t+1; �

2(i)
�

�
;

where �it+1 =
�
�
(i)
t ; � � � ; �

(i)
t�p+1

�0
denotes the lagged vector of �(i)t+1. According
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to Equation (5.3):

�
(i)
t+1 j Ft; �

(i)
t+1; �

(i) � fN
�
exp(�

(i)
t+1)�t +

lP
i=1

�
(i)
i 4 �t�i+1; �2(i)"

�
;

Then, according to Equation (5.2),

y
(i)
t+1 = �

(i)
t+1 + �

(i) (t+ 1) + 
(i)

A forecast sample y(i)t+1 then is a valid sample from p
�
y
(i)
t+1 jMGSTUR; Ft; �

(i)
�
.

3. Do step 2 until i = S, where S denotes the total number of draws. Keep the last

S1 draws5, the conditional mean of the forecast distribution then will be

byt+1 = 1

S1

S1X
i=1

y
(i)
t+1

The mode and the median of the simulated forecast distribution can also be

calculated from the forecast draws.

Algorithm 1.b: GSTUR Density Forecast Using APF

1. First, obtain the estimates of the parameters from the posterior simulator, de-

noted as b�, and initialize the starting values of �2 as a M � p of zeros ma-
trix to facilitate the Auxiliary Particle Filter �(g)2 =

�
�
(g)
1 ; � � � ; �

(g)
2�p

�
, where

g = 1; � � � ;M

2. n = 2 and Fn = (y1; y2)
0, using the APF described in chapter 3, we can have

a M � 1 vector of �(g)2 as a random sample from p
�
�
(g)
2 jF2;�

(g)
2 ;
b��. Then,

we stack the �(g)2 onto its lagged matrix �
(g)
2 to obtain a M � p matrix �(g)3 .

Hence, with stacking �(g)t onto �(g)t , we can always have an updated lag matrix

�
(g)
t+1 =

�
�
(g)
t ; � � � ; �

(g)
t�p+1

�
to forecast �(g)t+1.

3. n = n + 1, until n = t. Then, we have samples of
�
�
(g)
2 jF2;�

(g)
2 ;
b��,

� � � ,
�
�
(g)
t jFt;�

(g)
t ;b��.

4. According to Equation (5.2, 5.3 and 5.4),

�
(g)
t+1 j Ft;�

(g)
t+1;

b� � fN �b�0 + b�j�(g)t+1; b�2��
5S = S0 + S1
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�
(g)
t+1 j Ft; �

(g)
t+1;

b� � fN �exp(�(g)t+1)�t + lP
i=1

b�i4 �t�i+1; b�2"�
y
(g)
t+1 j Ft; �

(g)
t+1;

b� = �(g)t+1 + b� (t+ 1) + b

The conditional mean of the forecast distribution byt+1 will then be:

byt+1 = 1

M

MX
g=1

y
(g)
t+1

where the stochastic uncertainties in the measurement equation �2" are already taken

into account.

Stationary Bilinear Forecasting model

yt+1 = (a+ b"t) yt + "t+1

where "t+1 � i:i:d:fN (0; �2"). Calculate recursively,

yt+1 = af1 (t� 1; b) + f2(t� 1; b) + "t+1 (5.5)

where

f1 (t� 1; b) =
tX
i=1

�
(�b)i�1

i

�
j=1
yt�j+1

�

f2(t� 1; b) =
t�1X
i=1

�
(�1)i+1 biyt�i+1

i

�
j=1
yt�j+1

�
In the forecast SB model, a tight prior of a � fN (0:9; 0:12) is selected.
Algorithm 2: SB model Density Forecast

1. i = 1, initialize a(i); b(i); �2(i)"

2. i = i + 1, sample
�
a(i); b(i); �

2(i)
"

�
from p (a; b; �2" j y) until i > S0, since "

(i)
t can

be calculated recursively as the following:

"
(i)
t = yt � a(i)f1

�
t� 1; b(i)

�
� f2

�
t� 1; b(i)

�
according to Equation (5.5), the one-step ahead forecast is then:

y
(i)
t+1 j Ft; a(i); b(i) � fN

��
a(i) + b(i)"it

�
� yt; �2(i)"

�
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3. Do step 2 repeatedly until i = S. If we denote S1 = S � S0, the conditional
mean of the forecast distribution byt+1 will be

byt+1 = 1

S1

S1X
i=1

y
(i)
t+1

and the S1 � 1 vector of y(i)t+1 : i = 1; � � � ; S1 constructs a simulated forecast
distribution.

Stationary AR(p) Forecasting models
The AR(p) model we consider as stationary, where the inverse of characteristic

roots all lie outside the unit circle. See Appendix 5.A for details of the calculation

issues involved with the stationary AR(p) models, which include the model estimation

and marginal likelihood calculation. The forecasting model is:

yt+1 = �0 +
pP
i=1

�iyt�i+1 + "t+1 (5.6)

where "t+1 � i:i:d:fN (0; �2"). With di¤erent choices of p, a group of stationary AR(p)
models are selected. For simplicity, in this thesis, the AR(p) models we investigated

are referred to as stationary AR(p) models and denoted as AR(p) hereafter.

Algorithm 3: Forecast with Stationary AR(p) models

1. i = 1, give starting values to �(i) =
�
�
(i)
0 ; � � � ; �

(i)
p

�0
1 (A), where 1 (A) is the

indicator function where the stationary condition is satis�ed.

2. i = i + 1, sample �(i) and �2(i)" until i > S0. Then according to Equation (5.6),

we have forecast sample y(i)t+1 from a normal forecast density:

y
(i)
t+1 j Ft; �(i) � fN

 
�0 +

pX
j=1

yt�j+1�j; �
2(i)
"

!

3. Repeat step 2 until i = S. If we denote S1 = S � S0, the conditional mean of
the forecast distribution will be then:

byt+1 = 1

S1

S1X
i=1

y
(i)
t+1

One issue that emerges here is how to select the lag length p. We can either run the

Gibbs sampler for the AR(p) models with di¤erent values of p and select those with
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the highest model probabilities, or we could estimate a group of AR(p) models with

a standard econometric analysis software, e.g. Eviews, and carry out a pre-selecting

procedure according to the Akaike information criterion (AIC) and/or the Schwarz

information criterion (SIC). This pre-selection then may help us to predetermine with

what length of lags that an AR(p) model could possibly receive the highest model

probability. Thus, for the purpose of combining density forecasts in later sections, a

group of AR(p) models are �rstly selected according to AIC using the results from

Eviews, then marginal likelihoods of these selected AR(p) models are analyzed using

an analytical integration method.

Forecast Random Walk model

yt+1 = yt + "t+1

where "t+1 � i:i:d:fN (0; �2"). The estimate of �2" can be obtained by a simple Ordinary
Least Square (OLS) method. The one-step ahead point forecast of byt+1, conditional
mean of the forecast distribution, will just be yt and the conditional forecast density

is:

yt+1 j Ft � fN
�
yt; �

2
"

�
The forecast distribution can be simulated using the above density. Based on the RW

forecasting model, the forecast variation is due to the stochastic uncertainties, which

come from the variations of the error disturbance �2". The marginal likelihood of the

RW model can be obtained analytically. See Appendix A for detailed derivation.

5.4 Forecasting the U.K. Quarterly In�ation Rate

The importance of in�ation modelling has been introduced in chapter 4.1.1. In the

UK, the annual rate of in�ation is targeted at 2% based on the Consumer Price Index

(CPI). Given the fact that the UK experienced a period of high in�ation throughout the

1970�s, history looks quite di¤erent from today and possibly the future. As Hendry

points out (in Hendry and Ericsson 2001, pp.41), �the main problem confronting

successful economic forecasting appears to be the inherent nonstationarity of economic

data�, a question is raised naturally: when we make a forecast, should we forecast from

a system with a poor historical record or should we exclude the information that looks

�irrelevant�according to our professional judgement and perception. More explicitly

speaking, with respect to econometric univariate time series forecasting, to forecast
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the UK�s in�ation rates nowadays, is it appropriate simply ignoring the data before

the in�ation target regime was introduced? To answer this question, we carried out

recursive one-step-ahead out of sample forecasts for 2004Q3-07Q1 using two di¤erent

samples of data: a period from 1957 Q1 to 2007Q1 with all available data included,

and a later period after the independence of the Bank of England, from 1999 Q4 to

07Q1. Because the size of the small sample is only 30, we only provide 10 forecasts

given this constraint..

With respect to these two di¤erent samples, a group of Generalised Stochastic Unit

Root (GSTUR) models, a Stationary Bilinear (SB) model, a Random Walk (RW)

model and a group of stationary AR(p) models are �rstly �tted to the data and a

BDS test is applied to test for dependence in the data series. Then, one-step ahead

density forecasts using each individual model are obtained via simulations alongside

with plots of the forecast distributions. And then, both the simple averaging approach

and the Bayesian Model Averaging approach are applied to combining the forecasts.

Finally, point forecasts are evaluated using Mean Squared Forecast Errors (MSFE)

and density forecasts are evaluated using the Probability Integral Transforms (PIT).

Someone may aruge that multi-step ahead forecast might be more interesting. In

Hendry and Clements (2003), �forecast accuracy should decline as the forecast horizon

increases because more innovation errors accrue and predictability falls�. For this

reason, we only focus on one-step ahead forecast in this thesis.

5.4.1 Data and Methodologies

Fig (5-1) plots the Quarterly UK RPI In�ation series from 1957 Q1 to 2007 Q1. The

UK experienced very high in�ation in the 1970�s and 1980�s (see Chapter 4 for reviews).

The in�ation rates were controlled to vary within a small range after the introduction

of in�ation targeting regime in 1990s. The �rst three fourths of samples and the last

quarter of samples in the data series behave quite di¤erently in terms of the mean and

variance.

Across all entertained forecasting models, a common prior is chosen for parameter

�2" � f�1�"

�
�"; �"

�
, where �" = 1 and �

"
= 0:2. Before using the Bayesian methods

for stationary AR (p) models, the Akaike Information Criteria (AIC)6 embedded in

Eviews 6 is applied to pre-determine the appropriate length of the distributed lag. The

in�ation is regressed on its own lags up to 8 quarters, and an AR(7) model is selected

with the smallest AIC for the period 1957Q1-2007Q1. Likewise, an AR (5) model

6See Judge et.al. (1985, pp. 242-247) of other Criteria methods for model selections.
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Figure 5-1: Plot of UK in�ation series: 1957 Q1- 2007 Q1

is selected for the sample period 1999Q4-2007Q1. Since AR(4) model is commonly

applied for in�ation modelling and examples can be found in Watson and Stock (2007)

and Atkeson and Ohanian (2001), we also include a stationary AR(4) model as a model

of interest for empirical applications using both the full range of and a sub-sample of

data, where the small sample consists of the last 30 observations.

5.4.2 Application with Full Sample: 1957 Q1-2007Q1

BDS test

To motive our applications of the proposed nonlinear models, we executed a BDS test

to investigate how well the model �ts the data before constructing a one-step ahead

out of sample forecast.

The BDS test is designed to test for time based dependence in a series (Broock et

al. 1996). The testing hypothesis are constructed as follows:

H0 : a time series sample comes from a data generating process that is identically

independent distributed (i.i.d.)

H1 : not speci�ed (a variety of alternatives, e.g. linear dependence, non-linear

dependence, or chaos).

In practice, the BDS test is applied to test for residuals i.i.d. In other words, by

�tting a model (M1) to the data observations and obtain a residual series, we remove

a deterministic structure M1 from the system. The failure of the residual series to

pass the BDS test may indicate some unspeci�ed serial dependence, which cannot be

removed by the deterministic structure M1.

Table (5.1) provides the BDS test results using the full sample of data with 201
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Table 5.1: BDS Ttest Using the Full Sample

m=2 m=3 m=4 m=5
BDS-stat P-value BDS-stat P-value BDS-stat P-value BDS-stat P-value

GSC0 .046144 0.000 .078472 0.000 .103235 0.000 .123907 0.000
GSCT0 .045907 0.000 .078682 0.000 .103801 0.000 .124351 0.000
GS0 .043522 0.000 .074289 0.000 .096235 0.000 .115533 0.000
GST0 .044224 0.000 .074919 0.000 .097112 0.000 .116718 0.000
GSC1 .027257 .0001 .054054 0.000 .078525 0.000 .103392 0.000
GSCT1 .026876 .0001 .052850 0.000 .078087 0.000 .103848 0.000
GS1 .025503 .0002 .052146 0.000 .074528 0.000 .097461 0.000
GST1 .025484 .0001 .051559 0.000 .074781 0.000 .098408 0.000
GSC4 .038792 0.000 .072671 0.000 .099772 0.000 .120475 0.000
GSCT4 .039425 0.000 .074025 0.000 .102814 0.000 .124252 0.000
GS4 .033664 0.000 .068579 0.000 .096372 0.000 .115566 0.000
GS4T .033889 0.000 .065289 0.000 .089961 0.000 .108835 0.000
GSC5 .039593 0.000 .073206 0.000 .098648 0.000 .115006 0.000
GSCT5 .039766 0.000 .073679 0.000 .099133 0.000 .115336 0.000
GS5 .032502 0.000 .068268 0.000 .094887 0.000 .110804 0.000
GST5 .032641 0.000 .064483 0.000 .087494 0.000 .103101 0.000
GSC7 .027008 0.000 .062663 0.000 .086686 0.000 .100439 0.000
GSCT7 .031947 0.000 .069055 0.000 .094315 0.000 .108160 0.000
GS7 .032393 0.000 .069564 0.000 .095733 0.000 .110186 0.000
GST7 .027116 0.000 .065359 0.000 .091859 0.000 .106564 0.000
SB .076227 0.000 .131664 0.000 .168129 0.000 .193713 0.000
RW .054431 0.000 .093802 0.000 .120774 0.000 .142111 0.000
AR(7) .040234 0.000 .083968 0.000 .116450 0.000 .134158 0.000
AR(4) .037636 0.000 .072989 0.000 .104475 0.000 .129539 0.000

observations. The dimensionm in the BDS test varies from 2 to 5. The models selected

are: 1. GSTUR class models with di¤erent speci�cations in drift 
, deterministic time

trend �, and di¤erent lag length l, 2. Stationary Bilinear model, 3. Random Walk

model, 4. stationary AR (7) and stationary AR(4) model.

From Table (5.1), after various deterministic structures are removed, the BDS test

strongly rejects the hypothesis that the residuals are independent. This indicates the

underlying process of in�ation has complicated dynamics, which could not be fully

captured by any of the above proposed models. Therefore, questions of nonlinear

dynamics in in�ation series, such as structural breaks, time varying cycles, are open

for further research.
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Results from Constituent forecasting models

In this section, we construct density forecast for 24 models, which are GSTUR with

constant, GSTUR with trend, GSTUR with constant and trend, and GSTUR without

constant or trend at lag length of 0,1,4,5,7 respectively, SB model, RW model, and

stationary AR(p) model with p selected as 4 and 7, respectively. The density forecasts

are represented graphically as a set of prediction intervals covering 10, 20,..., 90 percent

of the probability distribution, of lighter shades for the outer bands. Equivalently the

boundaries of the bands are the 5th, 10th,...,95th percentiles. Each pair of band covers

10% of the forecast distribution. If the risk is unbalanced, the same color bands are not

of equal width, which represents unequal probability intervals. The central projection

is the deepest blue since it associates with the mode of the forecast distribution. For

unbalanced risks, the mean and median may not be in the deepest blue band. With

multiple-step ahead forecast, the forecast intervals �fan out�as the forecast horizon

increases. In this chapter, since we focus the one-step ahead forecast only, the fan out

e¤ects are not so signi�cant.

We present the descriptive statistics of the forecast distributions in tables, which

include the mean, mode, median, variance, 95% percentile of the forecast distributions.

Also, conditional on available information at time t, It, the marginal likelihoods of the

speci�ed models are presented. With lag length �xed at 7, forecast results of GSTUR

with constant, GSTUR with trend, GSTUR with constant and trend, GSTUR without

constant or trend are provided in Table (5.2, 5.3,5.4 and 5.5). Also in the text, we

present the forecast results of stationary AR(7), stationary AR(4), RW and SB model

in Table (5.6, 5.7, 5.8 and 5.9). Forecast results from other 16 di¤erently speci�ed

GSTUR class of models are presented in Appendix 5.B.

Table (5.10) presents the MSFE for all entertained models. Selected with lag length

at 7, comparing amongst the GSTUR class of models, a model with a constant receives

the highest marginal likelihood and provides the best point forecast with the smallest

MSFE according to Table (5.10).

The evaluation of density forecast, using a KS test testing whether the PITs from

the forecast density follows U(0,1)/N(0,1), is presented in Table (5.11). The values

of 0 indicate that the null hypothesis of Z, the PITs are U(0,1) distributed, cannot

be rejected by the KS test, while the values of 1 indicate that the uniformity in Z is

rejected. According to Table (5.11), PITs from the forecast GSTUR models with a

trend, forecast GSTUR models with constant and trend could not pass the KS test.

The uniformity of the PITs are rejected in GSTUR models with T and CT. It worth

mentioning that KS test has low power with small sample sizes. However, in this case,
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Table 5.2: Full Sample: Forecast of In�ation Rates with GSTUR p=1 lag=7, with
Cons

Density forecast 95% percentile
TrueV mean mode median var 2.5% 97.5% ML

04Q4 3.41 3.4473 3.4641 3.4678 2.3629 0.3503 6.4170 -352.3575
05Q1 3.17 3.6497 3.4105 3.6404 2.3106 0.6555 6.5878 -353.0102
05Q2 3.01 3.0566 2.9506 3.0788 2.3005 0.0463 6.0156 -354.2753
05Q3 2.77 2.8924 3.1352 2.9094 2.2411 -0.1031 5.8153 -354.7319
05Q4 2.38 2.7027 2.6055 2.7053 2.2093 -0.2603 5.6205 -355.5625
06Q1 2.39 2.4528 2.1412 2.4615 2.3062 -0.5945 5.3539 -355.3517
06Q2 2.93 2.5122 2.4391 2.5308 2.2691 -0.4665 5.4442 -356.4967
06Q3 3.44 3.2976 3.4792 3.3287 2.2441 0.3076 6.1903 -357.4588
06Q4 3.99 3.8949 3.8879 3.8882 2.2007 1.0022 6.8075 -358.1957
07Q1 4.55 4.2758 4.1319 4.2646 2.1512 1.4102 7.1587 -359.5171

Table 5.3: Full Sample:Forecast of In�ation Rates GSTUR p=1 lag=7, with Trend

Density forecast 95% percentile
TrueV mean mode median var 2.5% 97.5% ML

04Q4 3.41 3.4579 3.7104 3.4859 5.0357 -0.9718 7.8211 -353.1912
05Q1 3.17 3.6604 4.3045 3.6745 4.8655 -0.7848 7.9603 -353.3196
05Q2 3.01 3.0333 3.0516 3.0747 4.8347 -1.3921 7.3122 -354.7268
05Q3 2.77 2.9140 2.3840 2.9129 4.9697 -1.4481 7.2283 -355.2979
05Q4 2.38 2.6934 2.1711 2.7160 4.8236 -1.7071 6.9173 -355.7200
06Q1 2.39 2.4618 3.2145 2.5098 4.7927 -1.9426 6.7368 -357.0372
06Q2 2.93 2.4877 2.2645 2.5214 4.8843 -1.9635 6.7197 -356.9981
06Q3 3.44 3.3093 3.3314 3.3162 4.7115 -0.8873 7.4957 -358.2469
06Q4 3.99 3.9386 4.2814 3.9692 4.6509 -0.3474 8.1169 -359.1952
07Q1 4.55 4.2630 4.1427 4.2527 4.6849 -0.0208 8.5130 -359.5879
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Table 5.4: Full Sample:Forecast of In�ation Rates GSTUR p=1 lag=7, with Cons and
Trend

Density forecast 95% percentile
TrueV mean mode median var 2.5% 97.5% ML

04Q4 3.41 3.3710 3.0160 3.3726 5.1045 -1.0801 7.7927 -371.5125
05Q1 3.17 3.5712 3.3444 3.5603 4.8717 -0.7559 7.9076 -371.6482
05Q2 3.01 2.9770 2.9319 2.9936 5.0968 -1.5731 7.3929 -373.0897
05Q3 2.77 2.8352 2.6938 2.8375 4.8633 -1.5448 7.2819 -373.7779
05Q4 2.38 2.6127 2.7139 2.6177 4.8633 -1.7980 6.9545 -374.3405
06Q1 2.39 2.3813 2.6158 2.3939 4.8722 -1.9687 6.8146 -375.0120
06Q2 2.93 2.4049 2.5049 2.4214 4.6854 -1.8906 6.6591 -376.3249
06Q3 3.44 3.2422 3.1517 3.2371 4.6031 -0.9151 7.4469 -376.6760
06Q4 3.99 3.8293 3.2524 3.8079 4.7046 -0.4466 8.1211 -377.4532
07Q1 4.55 4.1903 3.7276 4.1493 4.8626 -0.1740 8.5739 -377.6779

Table 5.5: Full Sample:Forecast of In�ation Rates GSTUR p=1 lag=7, with NO CT

Density forecast 95% percentile
TrueV mean mode median var 2.5% 97.5% ML

04Q4 3.41 3.3019 3.2785 3.2873 1.3394 1.0434 5.6003 -371.6062
05Q1 3.17 3.5136 3.4988 3.5027 1.3256 1.2888 5.7846 -372.8042
05Q2 3.01 2.9127 2.9394 2.9143 1.3573 0.6187 5.1845 -373.9598
05Q3 2.77 2.7799 2.8126 2.7943 1.3070 0.5191 5.0124 -374.0565
05Q4 2.38 2.5471 2.7391 2.5524 1.3011 0.2777 4.7503 -374.9762
06Q1 2.39 2.3026 2.3909 2.2996 1.2759 0.0885 4.5290 -376.0596
06Q2 2.93 2.3468 2.3034 2.3451 1.2611 0.1315 4.5934 -376.5732
06Q3 3.44 3.2019 2.9417 3.2035 1.2965 0.9976 5.4668 -377.4902
06Q4 3.99 3.8128 3.7586 3.8165 1.3260 1.5399 6.0955 -378.3621
07Q1 4.55 4.1529 4.2001 4.1578 1.4009 1.8331 6.4591 -379.0650
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Table 5.6: Full Sample:Forecast of In�ation Rates with AR(7)

Density forecast 95% percentile
TrueV mean mode median var 2.5% 97.5% MLint

04Q4 3.41 3.5188 3.4519 3.5203 1.2499 1.2858 5.7163 -286.9884
05Q1 3.17 3.6757 3.2703 3.6714 1.2104 1.5426 5.8484 -287.9693
05Q2 3.01 3.1282 3.3185 3.1270 1.2155 0.9724 5.2735 -289.0666
05Q3 2.77 2.9431 3.1763 2.9455 1.2574 0.7450 5.1688 -290.0434
05Q4 2.38 2.8081 2.5642 2.8035 1.2384 0.6207 4.9820 -291.0267
06Q1 2.39 2.5114 2.4669 2.5139 1.2001 0.2992 4.6453 -292.0586
06Q2 2.93 2.5605 2.3672 2.5590 1.1947 0.4282 4.7107 -293.0298
06Q3 3.44 3.3807 3.0365 3.3769 1.2002 1.2277 5.5048 -294.0569
06Q4 3.99 3.9430 3.7040 3.9436 1.1763 1.7919 6.0549 -295.0184
07Q1 4.55 4.3197 4.3623 4.3236 1.1661 2.1782 6.4364 -295.9765

Table 5.7: Full Sample:Forecast of In�ation Rates with AR(4)

Density forecast 95% percentile
TrueV mean mode median var 2.5% 97.5% MLint

04Q4 3.41 3.4166 3.4363 3.4025 1.4371 1.1142 5.8125 -305.3242
05Q1 3.17 3.6858 3.5281 3.6762 1.4582 1.3080 6.0254 -306.3953
05Q2 3.01 3.1957 3.3044 3.1850 1.3854 0.9364 5.5151 -307.5587
05Q3 2.77 3.0309 2.9023 3.0136 1.3824 0.7251 5.2970 -308.6347
05Q4 2.38 2.7902 2.7060 2.7832 1.4129 0.4920 5.1520 -309.7232
06Q1 2.39 2.3623 2.2889 2.3628 1.4466 -0.0301 4.7678 -310.8564
06Q2 2.93 2.5427 2.4940 2.5376 1.4036 0.2687 4.8632 -311.9160
06Q3 3.44 3.3500 3.2491 3.3509 1.3609 1.0885 5.6476 -313.0278
06Q4 3.99 3.8104 3.7363 3.7985 1.4301 1.4856 6.1941 -314.0855
07Q1 4.55 4.3287 4.5431 4.3424 1.3795 2.0294 6.5985 -315.1494

Table 5.8: Full Sample:Forecast of In�ation Rates with RW

Density forecast 95% percentile
TrueV mean mode median var 2.5% 97.5% MLint

04Q4 3.41 3.0622 3.1431 3.0621 1.7639 0.4768 5.6970 -326.3807
05Q1 3.17 3.3812 3.2015 3.3809 1.7659 0.7460 5.9757 -327.6197
05Q2 3.01 3.1427 3.0835 3.1522 1.7383 0.5364 5.7155 -328.8455
05Q3 2.77 2.9569 3.3010 2.9656 1.7503 0.3468 5.5289 -330.0599
05Q4 2.38 2.7248 2.9000 2.7137 1.7352 0.1650 5.2896 -331.2808
06Q1 2.39 2.3576 2.4409 2.3599 1.6912 -0.1798 4.9368 -332.5264
06Q2 2.93 2.3538 2.1036 2.3551 1.7082 -0.1845 4.9080 -333.7261
06Q3 3.44 2.9042 3.0401 2.8988 1.7034 0.3594 5.4745 -335.0075
06Q4 3.99 3.4046 3.4777 3.4000 1.7146 0.8560 5.9740 -336.2780
07Q1 4.55 3.9267 3.7495 3.9250 1.6873 1.4048 6.4646 -337.5590
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Table 5.9: Full Sample:Forecast of In�ation Rates with SB

Density forecast 95% percentile
TrueV mean mode median var 2.5% 97.5% ML

04Q4 3.41 3.0554 3.2458 3.0821 1.4361 0.6854 5.3396 -247.5789
05Q1 3.17 3.3573 3.5173 3.3725 1.4668 0.9813 5.7190 -249.5266
05Q2 3.01 3.0634 3.0549 3.0685 1.4379 0.6958 5.3498 -249.5073
05Q3 2.77 2.9570 2.8864 2.9680 1.4495 0.6104 5.2664 -250.8939
05Q4 2.38 2.6919 2.2472 2.6782 1.4172 0.3350 5.0894 -251.8722
06Q1 2.39 2.2746 2.0813 2.2584 1.4262 -0.0725 4.6025 -253.4594
06Q2 2.93 2.3653 2.5430 2.3493 1.4176 0.0626 4.7416 -253.0735
06Q3 3.44 2.9243 2.9951 2.9467 1.3828 0.6101 5.2073 -254.0916
06Q4 3.99 3.4462 3.2617 3.4476 1.3347 1.1538 5.6786 -255.2687
07Q1 4.55 3.9843 3.8889 3.9912 1.4148 1.6927 6.3588 -256.5976

Table 5.10: Full Sample: MSFE of Statistical Forecasting Models
GSC:l = 0 l = 1 l = 4 l = 5 l = 7 SB
0.1331 0.0706 0.058 0.0618 0.0578 0.1528
GST:l = 0 l = 1 l = 4 l = 5 l = 7 RW
0.1302 0.0746 0.0553 0.0609 0.0605 0.1535
GSCT:l = 0 l = 1 l = 4 l = 5 l = 7 AR(4)
0.1386 0.0792 0.0636 0.0627 0.0629 0.0779
GSnoCT:l = 0 l = 1 l = 4 l = 5 l = 7 AR(7)
0.1539 0.0863 0.0683 0.073 0.0692 0.0694
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we should not worry because still reject the null given the small sample size.

Table 5.11: Full Sample: KS Test for PIT i.i.d.U

GSC:l = 0 l = 1 l = 4 l = 5 l = 7 SB

0 0 0 0 0 0

GST:l = 0 l = 1 l = 4 l = 5 l = 7 RW

1 1 1 1 1 0

GSCT:l = 0 l = 1 l = 4 l = 5 l = 7 AR(4)

1 1 1 1 1 0

GSnoCT:l = 0 l = 1 l = 4 l = 5 l = 7 AR(7)

0 0 0 0 0 0

In the text, the density forecast plots of GSTUR with constant and lag length of

7, GSTUR with trend and lag length of 7, stationary AR(7), RW, and SB model are

presented. Other results are shown in Appendix 5.B.

According to Clements (2004), we can simply plot the correlograms in the sample

of fzt � zg, z = n�1
Pn

t=1 zt and of powers of this series
n
(zt � z)i

o
: i = 2; 3; 4 to

test independence (i.i.d.) in Z on both levels and in higher moments. Correlograms of

PITs and its higher powers, together with a scatter plot of the PITs are presented on

the side of the density forecast plots. Forecast density plots of other 19 models can be

found in Appendix 5.B. All the forecast densities are evaluated via the PIT approach

with a KS test, correlogram plots and scatter plots.

According to Figures 5.d(2) and 5.e(2), the PITs from RW and SB exhibit strong

serial correlations, while the PITs from the selected GSTUR model with a constant,

GSTUR model with a trend and the stationary AR(7) model exhibit smaller serial

correlations on the levels and higher moments. Thus, serial correlation in the PIT

sequence indicates that the in�ation dynamics may not be well represented by the RW

and SB models.

Once again, because the forecast sample is small, the independency of zt using the

correlograms should be inferenced with caution.
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Fig 5.a(1) GSTUR p=1 l=7 with Cons
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Fig 5.a(1) Correlogram of PITs and

higher powers GSTUR p=1 l=7 with

Cons
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Fig 5.b(1) GSTUR p=1 l=7 with Trend
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Fig 5.b(2) Correlogram of PITs and

higher powers GSTUR p=1 l=7 with T
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Fig 5.c(1) Stationary AR(7)
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Fig 5.c(2) Correlogram of PITs and

higher powers Stationary AR(7)
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Fig 5.d(1) RW model
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Fig 5.d(2) Correlogram of PITs and

higher powers RW
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Fig 5.e(1) SB model
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Fig 5.e(2) Correlogram of PITs and

higher powers SB model

From Figure 5.a(1) and Figure 5.b(1), a GSTUR model with trend generates larger

forecast variances than a model with a constant. From the forecast results using

the GSTUR with a constant and trend, the point forecast accuracy is not improved

over the simpler models, such as the GSTUR without constant or trend. Moreover,

the forecast variances from the GSTUR models with constant and trend are 3 times

larger than those from GSTUR models with only a constant. The large forecast

variances may be due to the over parameterization in the GSTUR model when both

the constant and trend parameters are included. With the same lag length, GSTUR

models with a constant and a trend receive lower marginal likelihoods compared with

other speci�cations in the constant and trend. Therefore, model probabilities of models

speci�ed with a deterministic trend and a constant are very low. Therefore, it is not

appropriate to include models speci�ed with a constant and trend in the forecast

averaging.

Across the 10 forecast periods, although the SB model receives the highest marginal

likelihood among all 24 entertained models, the point forecast results from the SB

model is not satisfactory based on MSFE value. With respect to the point forecast

plots, the performances of the SB and the RW forecasting models are similar see

Figure 5.d(1) and 5.e(1). This forecast similarity between the SB and RW forecasting

models may be due to the tight prior of a we elicited in the SB, which compels the SB

dynamics to exhibit like a RW process. Under the elicitation of tight priors, the SB

model is not as resilient as the GSTUR model.

The stationary AR(7) receives the highest marginal likelihood compared with a

stationary AR(4) and RW model. Also, the AR(7) provides the smallest value of

MSFE. Comparing between the AR(7) and GSTUR models with lag length at 7, the
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Table 5.12: Full Sample: Simple Averaging Density Forecasts

Density forecast 95% percentile
TrueV mean mode median var 2.5% 97.5%

04Q4 3.41 3.5188 3.4519 3.5203 1.2499 1.2858 5.7163
05Q1 3.17 3.6757 3.2703 3.6714 1.2104 1.5426 5.8484
05Q2 3.01 3.1282 3.3185 3.1270 1.2155 0.9724 5.2735
05Q3 2.77 2.9431 3.1763 2.9455 1.2574 0.7450 5.1688
05Q4 2.38 2.8081 2.5642 2.8035 1.2384 0.6207 4.9820
06Q1 2.39 2.5114 2.4669 2.5139 1.2001 0.2992 4.6453
06Q2 2.93 2.5605 2.3672 2.5590 1.1947 0.4282 4.7107
06Q3 3.44 3.3807 3.0365 3.3769 1.2002 1.2277 5.5048
06Q4 3.99 3.9430 3.7040 3.9436 1.1763 1.7919 6.0549
07Q1 4.55 4.3197 4.3623 4.3236 1.1661 2.1782 6.4364

GSTUR class of models improved over the AR(7) model in terms of better accuracy

of point forecasts (refer to Table 5.10).

Combining Forecasts

With BMA methodology to combine forecasts, the SB model dominates the com-

bined forecast density because the SB model obtains the highest marginal likelihood

throughout the 10 forecast periods. However, the combined density does not improve

upon individual forecasting models due to the poor forecasting performance of the SB

model.

We then focus on the simple averaging method to combine forecasts. To do a simple

averaging, we �rstly selected the forecast densities with PITs passed both the KS test

and the i.i.d. evaluation, and also providing the smallest MSFE. The six models we

have chosen to combine are GSTUR model with constant only, lag length with 4 and

7, GSTUR model without constant or trend, lag length with 4 and 7, the stationary

AR(4) and stationary AR(7).
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Fig 5.f(1) SA of Forecast Density Plot
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Fig 5.f(2) Corr Plots of PIT from Averaged

Forecast Density

Figure 5.f(1) plots the combined forecast density with a simple averaging method

and Figure 5.f(2) plots the correlograms of the PIT series and higher moments from

the combined density. According to the KS test results, the U(0,1) of PIT is not

rejected and there is no strong serial correlation in the PITs. The MSFE of combined

points forecast using the combined density is 0.705, which slightly outperformed the

stationary AR(4) model. In this case, combining the proposed 6 models could not

provide a better point forecast. This may be due to the fact that the constituent

forecasting models follow similar structures and could not be disentangled from the

other models. The identi�cation problems may result in low point forecast accuracies

when we combine the forecasting models.
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5.4.3 Application with Small Sample: 1999 Q4-07Q1

Figure (5-2) plots the estimated stochastic roots by �tting the in�ation data series with

a GSTUR model without a constant or trend, with a lag length selected at 7. The � on
Figure (5-2) shows the roots jump above one corresponding to the in�ation rate data

series. The pattern of the stochastic roots before 1993 looks very di¤erent from that

after 1993. Before 1993, the stochastic roots jump above one frequently. However, the

roots stayed below unity after 1993. The result from estimating a GSTUR model with

an application of the UK in�ation provides good evidence of a changing persistence

in the in�ation underlying process, which is consistent with Watson and Stock (2007):

�the variance of permanent disturbances to in�ation has changed considerably over

time�. Also, on the plot of the estimated roots, a clear break in 1991 can be ob-

served. Therefore, we are motivated to apply the GSTUR class models, the SB model,

RW and the stationary AR(p) models to forecast a period from 2004 Q4 to 2007Q1

using a small sample after the independence of Bank of England, in addressing the

following questions: Does linear AR(p) models produce better point forecast than the

complicated nonlinear GSTUR models when the data looks linear? Instead of using

the full sample, if we apply the same statistical forecasting models to a small sample

to forecasting the same period, from 2004 Q4 to 2007Q1, does a linear AR(p) model

outperform other speci�ed forecasting models? The small sample data period is from

1999Q4 to 2007Q1 with a sample size of 30. In this time period, in�ation targeting

policy was implemented and the in�ation rate stayed below 6%.

The �rst out-of-sample forecasting sample, the forecast of the in�ation rates in

2004 Q4, is obtained based on a period from 1999 Q4 to 2004 Q3, with a sample size

of 20. The one-step ahead forecasting is carried out repeatedly 10 times with a rolling

window to achieve 10 forecasts for the period 2004 Q4 to 2007Q1.

Before using the Bayesian methods for stationary AR (p) models, we used Eviews

6.0 for AR(p) model�s estimation. Then, a stationary AR(5) is selected according to

the smallest AIC. We also include a stationary AR(4) model as a model of interest.

In summary, the entertained models are GSTUR class models without a constant or

trend at lag length of 0,1,4, and 5, SB model, RW model, stationary AR(5) and AR(4)

model. In the SB model, a tight prior of the parameter a � fN (1; 0:12) is elicited.

BDS test

With the small samples, we adopt the bootstrapped p-values. Bootstrapping the BDS

test gives better size properties but does not a¤ect the size-adjusted power of a test.
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Figure 5-2: Simulated Roots Using the GSTUR model with No Constant or Trend
with lag length at 7

The number of repetitions in the Bootstrapping is chosen as 1; 000.

From Table (5.13), removing both the GSTUR and AR(p)7 structures from the

series may provide i.i.d. residuals according to the bootstrapped p-values. However,

removing the SB and RW structures, dependences still exist in the residuals, where the

null hypothesis of i.i.d. in the residual series is rejected according to the bootstrapped

p-values. The BDS test results indicate that both the GSTUR class models and the

AR(p) models could well represent the underlying process of the UK in�ation.

7In this case, the deterministic structures are GSTUR without constant or trend with lag length
speci�ed at 0,1,4 and 5. The p is selected as 4 and 5 in the stationary AR(p) model.

Table 5.13: Small Sample: BDS Test

m=2 m=3 m=4 m=5
BDS-stat P-value BDS-stat P-value BDS-stat P-value BDS-stat P-value

GS0 .032327 .1238 .042988 .1822 .048184 .2020 .077338 .0876
GS1 .002192 .7000 .012339 .5360 .015155 .5400 .008842 .6080
GS4 -.018759 .5480 -.003520 .8280 -.012236 .9080 -.003557 .7120
GS5 -.034167 .2400 -.052850 .3800 -.041583 .6200 -.104655 .0800
SB .043056 .0320 .050776 .0880 .060102 .0920 .087916 .0160
RW .052420 .0000 .061796 .0000 .074011 .0000 .091968 .0000
AR(5) -.004739 .8600 -.000620 .7400 -.011370 .9000 -.061940 .2400
AR(4) .002222 .7400 -.009325 .9760 -.019780 .8800 -.076605 .1960
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Table 5.14: Forecast of In�ation Rates in Small Sample GSTUR p=1 lag=4 with NO
CT

Density forecast 95% percentile
TrueV mean mode median var 2.5% 97.5% ML

04Q4 3.41 3.2421 3.2512 2.9327 9.8394 -1.0104 9.3728 -57.6152
05Q1 3.17 3.5453 3.4519 3.2298 11.5308 -0.7222 9.3931 -59.1707
05Q2 3.01 2.8288 2.2086 2.6251 5.3872 -1.0143 7.8445 -59.7249
05Q3 2.77 2.5340 2.2455 2.3474 5.3090 -1.0860 7.1594 -60.9709
05Q4 2.38 2.3056 1.5037 2.1885 4.0578 -1.0392 6.4187 -61.9506
06Q1 2.39 2.0845 1.5565 1.9986 3.2559 -1.1018 5.7060 -63.0631
06Q2 2.93 2.2427 1.8924 2.1438 2.7698 -0.7267 5.7828 -63.4988
06Q3 3.44 3.1293 3.0842 3.0280 3.3382 -0.0801 6.9634 -64.4533
06Q4 3.99 3.7835 2.9821 3.6232 3.9126 0.5318 7.8785 -65.5945
07Q1 4.55 4.2063 3.6027 4.0548 4.0159 0.8269 8.7411 -66.8588

Table 5.15: Forecast of In�ation Rates in Small Sample AR(5)

Density forecast 95% percentile
TrueV mean mode median var 2.5% 97.5% MLint

04Q4 3.41 2.8917 3.0426 2.8998 1.2886 0.6047 5.1305 -26.3114
05Q1 3.17 3.1886 3.3225 3.1980 1.2263 0.9690 5.3196 -27.0599
05Q2 3.01 2.9519 2.8729 2.9520 1.1407 0.8079 5.0341 -27.7352
05Q3 2.77 2.7230 2.6637 2.7140 1.0728 0.6631 4.8170 -28.3648
05Q4 2.38 2.5430 2.3091 2.5397 1.0189 0.5537 4.5665 -28.9798
06Q1 2.39 2.2864 2.1462 2.2769 0.9585 0.3299 4.2261 -29.5957
06Q2 2.93 2.3120 2.4004 2.3273 0.9206 0.4143 4.1865 -30.1831
06Q3 3.44 2.8706 2.8437 2.8759 0.9475 0.9269 4.7720 -31.0986
06Q4 3.99 3.3989 3.5266 3.4158 0.9496 1.4353 5.3284 -31.8517
07Q1 4.55 3.8215 3.7729 3.8438 0.9172 1.8920 5.6708 -32.5340

Forecast Results

Following exact the same forecast constructing and forecast evaluating procedures in

section 5.4.2, the descriptive statistics and plots of the forecast densities are provided.

Density forecasts are evaluated using the PIT approach and point forecasts are evalu-

ated using the MSFE. Forecasting results from other models of interest can be found

in Appendix 5.B.

Tables (5.14, 5.15, 5.16, 5.17) provide descriptive statistics of the forecast distribu-

tions using the GSTUR forecasting model without a constant or trend at lag 4, AR(5)

forecasting model, SB and RW forecasting model.

Figures 5.g(1), 5.h(1), 5.i(1), and 5.j(1) plot the forecast densities from GSTUR
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Table 5.16: Forecast of In�ation Rates in Small Sample with a SB model

Density forecast 95% percentile
TrueV mean mode median var 2.5% 97.5% ML

04Q4 3.41 2.7606 2.8833 2.7940 0.9999 0.7232 4.6580 -7.9684
05Q1 3.17 3.0524 2.7180 3.0582 0.9736 1.0459 4.9509 -5.1959
05Q2 3.01 2.8861 3.1170 2.9252 0.8763 0.9804 4.6837 -3.7164
05Q3 2.77 2.7520 2.7208 2.7695 0.8425 0.8488 4.5753 -5.5237
05Q4 2.38 2.5149 2.4170 2.5204 0.7712 0.6960 4.2294 -1.5991
06Q1 2.39 2.1779 2.2308 2.1956 0.7328 0.4291 3.8687 0.3904
06Q2 2.93 2.1565 2.4331 2.1681 0.7118 0.4495 3.7897 1.0419
06Q3 3.44 2.6354 2.5173 2.6422 0.7672 0.8195 4.2967 2.1717
06Q4 3.99 3.0546 3.3315 3.0959 0.8084 1.2142 4.7280 1.5427
07Q1 4.55 3.5592 3.6924 3.5886 0.8063 1.7013 5.2522 3.2170

Table 5.17: Forecast of In�ation Rates in Small Sample with a RW Model

Density forecast 95% percentile
TrueV mean mode median var 2.5% 97.5% ML

04Q4 3.41 3.1451 3.2226 3.1420 0.2371 2.2008 4.1109 -22.5721
05Q1 3.17 3.4810 3.5361 3.4828 0.2271 2.5568 4.4162 -23.3848
05Q2 3.01 3.2054 3.3324 3.2045 0.2224 2.2774 4.1262 -24.1493
05Q3 2.77 3.0373 3.0795 3.0407 0.2121 2.1385 3.9318 -24.8684
05Q4 2.38 2.7842 2.7233 2.7796 0.2071 1.8956 3.6782 -25.5950
06Q1 2.39 2.3743 2.3500 2.3750 0.2057 1.4912 3.2556 -26.3884
06Q2 2.93 2.3840 2.3264 2.3798 0.1905 1.5343 3.2477 -27.0319
06Q3 3.44 2.9398 2.9109 2.9399 0.2021 2.0505 3.8161 -27.9311
06Q4 3.99 3.4850 3.4733 3.4821 0.1999 2.6054 4.3591 -28.7960
07Q1 4.55 4.0753 4.0877 4.0747 0.2003 3.2104 4.9480 -29.6969
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without constant or trend lag 5, stationary AR(5), SB, and RW forecasting models over

10 forecast period, and Figures 5.g(2), 5.h(2), 5.i(2), and 5.j(2) plot the correlograms

of the PITs on the levels and higher powers from the forecast densities accordingly.
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Figure 5.g(1): Small Sample with GSTUR

no CT, lag=5
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Figure 5.g(2): Correlogram of PITs from

GSTURnoCT lag5
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Figure 5.h(1): Small sample Stationary

AR(5)
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Figure 5.h(2): Correlogram of PITs from

stationary AR(5)
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Figure 5.i(1): Small sample SB
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Figure 5.i(2): Correlogram of PITs from SB
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Figure 5.j(2): Small sample RW
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Table 5.18: Small Sample: KS Test for PIT i.i.d.U

SB GSnoCT:l = 0 GSnoCT:l = 1 GSnoCT:l = 4
1 1 1 1
GSnoCT:l = 5 RW AR(4) AR(5)
1 0 1 1

Table 5.19: Small Sample: MSFE of Statistical Forecasting Models

SB GSnoCT:l = 0 GSnoCT:l = 1 GSnoCT:l = 4
0.389 0.133 0.1021 0.0987
GSnoCT:l = 5 RW AR(4) AR(5)
0.1268 0.1335 0.2199 0.1879
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Figure 5.j(2): Correlogram of PITs from RW

Table (5.18) presents the KS test results from selected models, and indicates the

null hypothesis that U(0,1)/N(0,1) cannot be rejected by the KS test. Table (5.19)

presents the MSFE from the forecasting models.

According to Table (5.19), a GSTUR without a constant or trend, with lag length

selected at 4 provides the best point forecast with the smallest value of MSFE amongst

all selected models. Although the data series exhibit linearity, the nonlinear GSTUR

model could still provide a better point forecast than a stationary linear AR(5) model.

This indicates that the GSTUR model we proposed could capture the underlying

dynamics of in�ation not only when the data exhibits nonlinearity, but also when the

data series exhibit linearity. However, using the small sample does not improve on the

point forecast accuracy if we compare between Table (5.10) and Table (5.19).

According to the results from the KS test, the null hypothesis is not rejected only

in the PITs from the RW forecast density. Looking at Figures 5.g(2), 5.h(2), 5.i(2),
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Table 5.20: Small Sample: Simple Averaging Density Forecasts

Density forecast 95% percentile
TrueV mean mode median var 2.5% 97.5%

04Q4 3.41 2.8917 3.0426 2.8998 1.2886 0.6047 5.1305
05Q1 3.17 3.1886 3.3225 3.1980 1.2263 0.9690 5.3196
05Q2 3.01 2.9519 2.8729 2.9520 1.1407 0.8079 5.0341
05Q3 2.77 2.7230 2.6637 2.7140 1.0728 0.6631 4.8170
05Q4 2.38 2.5430 2.3091 2.5397 1.0189 0.5537 4.5665
06Q1 2.39 2.2864 2.1462 2.2769 0.9585 0.3299 4.2261
06Q2 2.93 2.3120 2.4004 2.3273 0.9206 0.4143 4.1865
06Q3 3.44 2.8706 2.8437 2.8759 0.9475 0.9269 4.7720
06Q4 3.99 3.3989 3.5266 3.4158 0.9496 1.4353 5.3284
07Q1 4.55 3.8215 3.7729 3.8438 0.9172 1.8920 5.6708

and 5.j(2), PITs and higher moments from the GSTUR model display smaller serial

correlations. Because the sample size of PITs is as small as 10, conclusive decisions

are not made.

Across the GSTUR class of models, a model with lag length 4 provides the best

point forecast according to Table (5.19). If we look into Figure 5.g(2) and Table

(5.14), the variance of the forecast distribution is very large in the �rst 2-3 forecast

periods. The big variances indicate big forecast uncertainties. However, after the

size of sample increases, the variances of the one-step ahead out of sample forecast

distributions decrease. Thus, the big forecast uncertainty may be due to the small size

of the sample. Compared to results in Appendix, Table for full sample, forecasting

in�ation rate using GSTUR with noCT, lag=4, where the same model speci�cation

was applied to a larger sample, the forecast variances are much smaller.

According to Table (5.16), the SB does not improve on other entertained models,

although it receives the highest marginal likelihood throughout the 10 forecast periods.

Hence, it may not be appropriate to include the SB model as a constituent forecasting

model when combine the forecast via the simple averaging approach.

Forecast Combinations

Performing BMA, because the SB model is the most favoured model according to its

marginal likelihoods, the combined forecast density will be dominated by the forecast

density of the SB model. Although only RW passed the KS test, for simple averag-

ing, we choose four models, which are GSTUR without constant or trend, lag length

speci�ed as 1, 4 and 5, and a stationary AR(5) model.

192



Table (5.20) presents the descriptive statistics of the combined density via a simple

averaging approach. The MSFE over the 10 forecast periods is 0.1708, which is slightly

smaller than the MSFE from the stationary AR(5) model.
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Figure 5.k(1): Combined Density Plot
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Figure 5.k(2): Correlogram of PITs from

Combined Density

According to the KS test, the U(0,1)/N(0,1) in the PITs from the combined den-

sity cannot be rejected. The combined density provides very good point forecast from

2005Q1 to 2006Q1. However, after 2006Q2, the combine density exhibits larger fore-

cast errors and the point forecasts are similar to those from a RW forecasting model.

In this case, a simple averaging over the four selected models do not improve upon a

GSTUR model without constant or trend, with a lag length at 4.

The GSTUR model performs well with both full sample and small sample, and the

results are consistent.

From a visual inspection, the full sample of data appears to have more compli-
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cated dynamics. Therefore, we expect the proposed GSTUR model to produce better

in-sample-�t and better out-of-sample forecast using the full sample. From the out-

of-sample point forecast results using the full sample, the GSTUR model indeed out-

performs other constituent models in the model space (see the Mean Square Forecast

Errors from Table 5.10 on pp.152).

Then, we used a small sample of data (starting from 1999Q4) and applied the same

models to forecast the same period (2004:Q4-2007:Q1). From a visual inspection, we

may expect the simple linear models to produce better forecast because the small

sample has less dynamics and we excluded the possible structural breaks in 1997 by

expressly selecting the data period after 1999Q4. By using the Mean Squared Forecast

Errors (MSFE), the GSTUR still outperforms the linear AR model and RW model in

point forecasting. However, if we look at Figure 5.g(1) and Figure 5.h(1), the forecast

density for 2004Q4, the GSTUR noCT forecast density has a much larger forecast

error variance than that from the AR(5).

Therefore, if the data appears to be linear and has less dynamics, the GSTUR

model may produce smaller MSFE. However, the forecast density may have a large

variance because the data is not rich enough for the GSTUR model. The data will be

over�tted by a GSTUR model. If one is more interested in the forecast densities, the

linear models might be a better choice with the small sample.

5.5 Concluding Remarks

In this chapter, a completed toolbox to calculate substantive quantities, such as model-

based point and density forecast, is made available for empirical practice. With the

MCMC methods developed in chapter 3 and 4, the density forecasts using statisti-

cal forecasting GSTUR and SB models are achieved without extra costs. The point

forecasts accuracy are evaluated with Mean Square Forecast Errors and the density

forecasts are evaluated with an approach of Probability Integral Transform. Regarding

the issues of combining forecasts, we compared a Simple Averaging approach with a

Bayesian Model Averaging approach.

Amongst the selected statistical forecasting models in a small model space (24 en-

tertained models), the GSTUR class models are better in providing the point forecasts.

Regardless of the size of the samples and the analyzed data period, the GSTUR model

outperforms the SB model, stationary AR(p) model and RW model in terms of point

forecast. Hence, the nonlinear GSTUR models are not only resilient in respect to the

shifts or shocks in the economic system, but are also able to capture the dynamics in
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the underlying process of in�ation. In this sense, we propose modelling the in�ation

dynamics using a GSTUR process as it may be able to accommodate breaks in the

structure and the changing persistence. Compared with a benchmark RW model, the

GSTUR model could provide better point forecasts of in�ation.

The combined forecast improves over the linear stationary AR(p) forecasting model.

However, the values of MSFE from the combined point forecasts are not smaller than

those from a GSTUR model with a constant, using both the BMA and SA approaches.

The reason for the unsuccessful combined forecast may be due to identi�cation prob-

lems in the forecasting model space. A simple averaging method is superior to a BMA

method in the forecast combinations.

A GSTUR model without a constant or trend could detect a signi�cant shift in the

persistence. We forecasted the same period from 2004Q4 to 2007Q1 using both the

full size of sample and a small size of sample. The GSTUR outperforms the stationary

AR(p) models in both cases. If we focus on applying the GSTUR model, simply

abandoning part of the data may induce big forecast uncertainties, even though the

dynamics of the underlying process might have changed. Therefore, in practice, we

may start o¤ using the full sample of data. Then, compare the forecast results from

those using a small sample.

In the Bank of England�s forecasting procedure, all shocks have to identi�ed,

the changes in the variables have to be veri�ed and di¤erent forecasting model are

reweighted based on the MPC�s judgement. Therefore, the fan charts provided by the

Bank of England are not only model-based forecast, but also are adjusted according

to the MPC�s judgement. One question for future research will be, does the Bank of

England�s fan chart provide enough creditability? More explicitly, should these pro-

fessional judgements in the MPC be fully trusted, or should more statistical methods

be explored to provide forecasts, or should we compromise ourselves by combining the

professional�s forecasts with the econometric forecasts? Similar questions have been

asked in Dowd (2007), Clements (2004) and Cogley et al.(2005). For future research,

I will investigate forecasts and evaluate forecasts based on pure statistical models and

compare the forecast results with the Bank of England�s fan charts.

Appendix 5.A Calculation Issues with AR(p)Model

This Appendix includes the model estimation and marginal likelihood evaluation in

the context of a stationary AR(p) model. For more details, refer to Chib (1993).
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5.A.1 The Stationary AR(p) Model

yt is assumed to follow a stationary AR(p) process:

yt = �0 + �1yt�1 + � � �+ �pyt�p + "t (5.7)

or can be written as

� (z) yt = �0 + "t

where "t � i:i:d:fN (0; �2") and � (z) = 1��1z�� � ���pzp is a polynomial of order p in
the lag operator. To avoid complicates relating to the treatment of initial values, we

focus on a stationary AR(p) process and (y1; � � � ; yp)0 are treated as the initial values.
If the series is nonstationary or near so, the treatments of initial values become very

important and subtle (see Bauwens, Lubrano and Richard 1999, pp.170-182). Once

the AR(p) process is stationary, the treatment of initial conditions will be of less

importance. Hence, the characteristic roots of the equation:

an � �1an�1 � � � � � �p = 0

all lie within the unit circle. And the characteristic roots of the inverse characteristic

equation � (z):

1� �1z � � � � � �pzp = 0

, should all lie outside of the unit circle8 to meet the stationary condition. The values

of z are the reciprocals of the values of a. We denote Z as a region that kzjk > 1 and
Pr (Z : kzjk > 1) is simpli�ed as Pr (Z). Thus, we assume the prior

p
�
�0; � � � ; �p; �2"

�
=

p

�
i=0
p
�
�ij�2"

�
p
�
�2"
�

is with a Normal-Inverse Gamma form. If we denote � =
�
�0; � � � ; �p

�0
, the form of the

prior suggests that the conditional distribution of � given �2" should be a multivariate

Normal, truncated to the stationary region:

p
�
� j �2"

�
/ fMN

�
�
�
; �2"V �

�
1 (kzjk > 1)

where 1 (A) is the indicator function for the event A, and the marginal distribution for

�2" is an Inverse-Gamma distribution with the form f
�1
�"

�
�"; �"

�
, where �" determines

8In other words, greater than one in absolute values.
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the shape of the prior and �
"
determines the scale of the prior. Also, we could assume

the prior of �, p (�) is independent on the prior of �2", p (�
2
"). Then the variance

covariance matrix in the prior p (�) can be expressed as V �.

5.A.2 Model Estimation

Estimating a AR (p) model can also be found in Koop, Poirier and Tobias (2007,

chap17). As the initial values are �xed, with a sample of size N , we denote Y =

(yp+1; � � � ; yn�1; yn)0, � =
�
�0; � � � ; �p

�
and

X =

2664
1 yp � � � y1
...

...

1 yT�1 � � � yT�p

3775
The likelihood function is:

p
�
y j �; �2"

�
=

1

(2��2")
N�p
2

exp

�
� 1

2�2"
(Y �X�)0 (Y �X�)

�
A joint prior is as follows:

p
�
�; �2"

�
/

���2"V ����1=2
(2�)

1
2

exp

�
� 1

2�2"

�
�� �

�

�0
V �1�

�
�� �

�

��

�1 (kzjk > 1)
Pr (Z1)

� 1

��"
"
� (�") (�

2
")
�"+1

exp

 
� 1

�
"
�2"

!

Therefore, the marginal prior for �2" will be with an Inverse-Gamma form

p
�
�2"
�
/ 1

��"
"
� (�") (�

2
")
�"+1

exp

 
� 1

�
"
�2"

!

and the conditional prior p (� j �2") will be:

p
�
� j �2"

�
/
���2"V ����1=2
(2�)

1
2

exp

�
� 1

2�2"

�
�� �

�

�0
V �1�

�
�� �

�

��
� 1 (kzjk > 1)

Pr (Z1)

, in which the normalizing constant Pr (Z1) is considered to make the prior proper9.

9When p = 1, with a univariate normal prior, the normalizing constant will be the c.d.f. within

the unit circle �
�
1; �

�
; V �

�
��

�
�1; �

�
; V �

�
. This normalizing constant makes the truncated prior
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Then, according to the Bayes rules, the posterior

p
�
�; �2" j y
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/ p
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The posterior conditionals for � is straightforward to derive, which is a truncated

multivariate Normal including the normalizing constant:

p
�
� j y; �2"

�
/ fMN

�
��; V �

�
1 (kzjk > 1)

1

Pr (Z2)

where

V � =
�
V �1� +X 0X

��1
�� = V �

�
V �1� �� +X

0Y
�

As the posterior p (� j y; �2") is with a truncated form, sampling can be achieved
by taking draws from the untruncated distribution, then simply discard the draws

which fall outside the stationary region. The integrating constant also can be calcu-

lated through the posterior simulation (Koop, 2003, pp.135). Pr (Z2) is simply the

proportion of draws that are retained at every pass through the Gibbs sampler. The

number of rejected draws are calculated before an acceptable one is found, thus the

total number of draws is the number of rejected draws plus one. Hence, Pr (Z2) can

be approximated by one over the total number of draws.

The posterior conditional for �2":

integrates up to 1, then, proper. When p > 1, with a multivariate normal prior, the integrating
constant should be evaluated via simulations.
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5.A.3 The Marginal likelihood Evaluation

To approximate the marginal likelihood, we apply the numerical integration method

via the MCMC outputs. The conventional Gelfand-Dey method can be implemented

and the algorithm is listed as the following:

According E
h

f(�)
p(�jMj)p(yj�;Mj)

j y;Mj

i
= 1

p(yjMj)
, use the posterior draws of ��; �2�"

1. obtain b� andcP , estimates of E (� j y;Mj) and var (� j y;Mj) obtained from the

posterior simulator. The truncated region is

b� = �� : �� � b��0dX�1 �
� � b�� � �21�p (k)�

2. f (�) be the multivariate Normal density truncated to the region b�;
f (�) =

1

p (2�)
k
2

����dX����� 1
2

exp

�
�1
2

�
� � b��0dX�1 �

� � b��� 1�� 2 b��
if �� is within b�, f (�) = f (��), otherwise 0
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where Pr (Z) can be evaluated by simulating � from the prior fMN

�
�
�
; V �

�
and cal-

culating the proportion of draws from the prior are retained. The likelihood function

evaluated at ��; �2�" are calculated as the following:

p
�
y j ��; �2�"

�
=

1

(2��2�" )
N�p
2

exp

�
� 1

2�2�"
(Y �X��)0 (Y �X��)
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Appendix 5.B Forecast Results from Models of in-

terest

5.B.1 Full Sample

Density Forecast Result Tables

Full Sample: Forecast of In�ation Rates GSTUR with p=1, lag=0, with Constant

Density forecast 95% percentile

TrueV mean mode median var 2.5% 97.5% ML

04Q4 3.41 3.1416 3.0931 3.1466 3.1069 -0.3694 6.5619 -348.8857

05Q1 3.17 3.4494 3.6887 3.4476 3.1081 0.0095 6.9417 -349.9585

05Q2 3.01 3.2326 3.1062 3.2277 3.1210 -0.2201 6.7378 -350.8349

05Q3 2.77 3.0661 3.3494 3.0868 3.0873 -0.4714 6.4582 -352.0960

05Q4 2.38 2.8195 3.0822 2.8413 3.0579 -0.6264 6.1673 -352.6958

06Q1 2.39 2.4513 2.2568 2.4459 3.0486 -0.9999 5.8325 -353.9378

06Q2 2.93 2.4616 2.9798 2.4726 3.1161 -1.0210 5.8869 -354.2599

06Q3 3.44 2.9847 2.4275 2.9992 3.0790 -0.5340 6.4082 -356.1762

06Q4 3.99 3.4772 3.6528 3.4689 3.0142 0.0096 6.9520 -356.8188

07Q1 4.55 4.0109 4.0818 4.0050 3.0120 0.5090 7.4001 -357.6725
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Full Sample:Forecast In�ation Rates GSTUR with p=1, lag=0 with Trend

Density forecast 95% percentile

TrueV mean mode median var 2.5% 97.5% ML

04Q4 3.41 3.1927 2.6195 3.2035 6.3291 -1.8986 8.1137 -348.5880

05Q1 3.17 3.4739 3.5152 3.4792 6.4699 -1.5652 8.5183 -349.7647

05Q2 3.01 3.2459 2.8321 3.2487 6.3051 -1.7270 8.1479 -350.2897

05Q3 2.77 3.0897 2.4782 3.1020 6.4268 -2.0293 7.9807 -351.2280

05Q4 2.38 2.8643 3.1963 2.9056 6.3320 -2.2041 7.8283 -352.0063

06Q1 2.39 2.4495 2.2349 2.4290 6.2749 -2.5489 7.3705 -353.1747

06Q2 2.93 2.4513 2.5815 2.4753 6.4102 -2.6578 7.4518 -354.9464

06Q3 3.44 3.0136 2.9060 3.0265 6.3879 -1.9772 7.9925 -355.7706

06Q4 3.99 3.5001 2.7491 3.4935 5.8777 -1.2791 8.2438 -356.1319

07Q1 4.55 4.0547 4.4979 4.0482 6.0959 -0.8758 8.8955 -357.3092

Full Sample: Forecast of In�ation Rates GSTUR p=1, lag=0 with Cons and Trend

Density forecast 95% percentile

TrueV mean mode median var 2.5% 97.5% MLint

04Q4 3.41 3.1276 3.1192 3.0910 6.7827 -2.0966 8.2492 -367.6159

05Q1 3.17 3.4174 2.8601 3.3946 6.7468 -1.7146 8.4842 -368.4840

05Q2 3.01 3.1794 3.8001 3.2160 6.5116 -1.8572 8.1637 -369.4559

05Q3 2.77 3.0216 2.4982 3.0254 6.7716 -2.1709 8.2006 -370.0992

05Q4 2.38 2.7725 3.0494 2.7775 6.8604 -2.4524 7.9665 -371.6082

06Q1 2.39 2.4082 2.4187 2.4002 6.5073 -2.5918 7.3563 -372.1059

06Q2 2.93 2.4263 2.1830 2.4010 6.4584 -2.5352 7.4265 -373.4161

06Q3 3.44 2.9365 3.3094 2.9451 6.5761 -2.1579 7.9423 -374.9165

06Q4 3.99 3.4445 3.8689 3.4756 6.4759 -1.7347 8.4724 -375.8846

07Q1 4.55 3.9732 4.1671 3.9832 6.3893 -1.0754 8.9924 -376.6038
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Full Sample: Forecast of In�ation Rates GSTUR p=1, lag=0 with NO CT

Density forecast 95% percentile

TrueV mean mode median var 2.5% 97.5% ML

04Q4 3.41 3.0501 2.9367 3.0323 1.8942 0.3434 5.7931 -364.5002

05Q1 3.17 3.3504 3.4243 3.3507 1.9046 0.6376 6.0509 -365.6233

05Q2 3.01 3.1280 3.0123 3.1223 1.8522 0.4832 5.8181 -366.5946

05Q3 2.77 2.9979 3.3141 3.0251 1.8720 0.2663 5.6958 -368.0697

05Q4 2.38 2.7226 2.4062 2.7042 1.7809 0.1273 5.3689 -368.5695

06Q1 2.39 2.3582 2.2913 2.3581 1.7711 -0.2439 5.0075 -369.9566

06Q2 2.93 2.3449 2.7974 2.3463 1.7671 -0.2699 4.9268 -370.6569

06Q3 3.44 2.8977 2.8681 2.8964 1.7900 0.2911 5.4819 -371.9259

06Q4 3.99 3.3907 3.1326 3.3797 1.8285 0.7861 6.0477 -373.4739

07Q1 4.55 3.9575 3.7339 3.9612 1.8349 1.2657 6.6488 -374.1413

Full Sample: Forecast of In�ation Rates with GSTUR p=1, lag=1 with Cons

Density forecast 95% percentile

TrueV mean mode median var 2.5% 97.5% ML

04Q4 3.41 3.3669 3.5560 3.3946 2.6836 0.0856 6.5423 -330.3961

05Q1 3.17 3.5964 3.5657 3.6040 2.6262 0.3367 6.7344 -331.2558

05Q2 3.01 3.1234 3.3392 3.1450 2.6426 -0.1558 6.2874 -331.8223

05Q3 2.77 2.9939 2.9635 2.9889 2.6278 -0.2243 6.1696 -332.9836

05Q4 2.38 2.7416 2.5298 2.7395 2.6580 -0.5783 5.9106 -334.2732

06Q1 2.39 2.2863 2.4017 2.3100 2.5746 -0.9626 5.3849 -334.2490

06Q2 2.93 2.4755 2.2596 2.4746 2.6631 -0.7798 5.6097 -335.2896

06Q3 3.44 3.2526 3.2921 3.2649 2.6012 0.0319 6.4277 -336.0465

06Q4 3.99 3.7173 3.8278 3.7349 2.5192 0.5351 6.8185 -337.0761

07Q1 4.55 4.2820 4.0507 4.2768 2.4674 1.2522 7.3991 -338.3455
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Full Sample: Forecast of In�ation Rates with GSTUR p=1 lag=1, with Trend

Density forecast 95% percentile

TrueV mean mode median var 2.5% 97.5% ML

04Q4 3.41 3.3499 4.0268 3.3962 5.7172 -1.4091 7.9304 -332.5677

05Q1 3.17 3.6294 4.1553 3.6533 5.7366 -1.1031 8.3026 -333.2003

05Q2 3.01 3.1398 2.4870 3.1445 5.7159 -1.6746 7.8167 -334.6216

05Q3 2.77 3.0324 2.9776 3.0373 5.8150 -1.8067 7.7547 -334.7940

05Q4 2.38 2.7647 2.6680 2.7907 5.6339 -2.0253 7.4453 -335.9560

06Q1 2.39 2.2863 2.1702 2.3156 5.7425 -2.5429 6.9328 -337.1164

06Q2 2.93 2.4949 2.5094 2.5074 5.5695 -2.2781 7.0381 -338.0164

06Q3 3.44 3.2180 2.4571 3.2548 5.6572 -1.6172 7.7694 -338.7976

06Q4 3.99 3.7460 3.7939 3.7671 5.3429 -0.8484 8.1775 -339.5560

07Q1 4.55 4.2991 4.2544 4.3078 5.1882 -0.1805 8.7302 -340.3982

Full Sample: Forecast of In�ation Rates with GSTUR p=1 lag=1Cons and Trend

Density forecast 95% percentile

TrueV mean mode median var 2.5% 97.5% ML

04Q4 3.41 3.2733 3.9603 3.2780 5.6915 -1.2958 7.9910 -348.5737

05Q1 3.17 3.5399 2.8210 3.5050 6.0861 -1.3948 8.4454 -349.5522

05Q2 3.01 3.0597 2.5411 3.0370 5.9531 -1.7049 7.9535 -350.0263

05Q3 2.77 2.9538 2.4060 2.9583 5.7493 -1.7789 7.6593 -350.8430

05Q4 2.38 2.6905 2.6916 2.6508 5.6494 -2.0419 7.4461 -351.7856

06Q1 2.39 2.2374 2.6373 2.2368 5.7667 -2.4781 6.9478 -352.7526

06Q2 2.93 2.4133 2.4589 2.4236 5.7134 -2.4023 7.1238 -353.1802

06Q3 3.44 3.1741 2.5746 3.1564 5.6616 -1.5604 7.9037 -354.4472

06Q4 3.99 3.6678 3.8836 3.6768 5.4566 -0.9566 8.2881 -354.7396

07Q1 4.55 4.2056 4.1774 4.2188 5.5450 -0.4271 8.9093 -356.2698
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Full Sample: Forecast of In�ation Rates with GSTUR p=1 lag=1, with NO CT

Density forecast 95% percentile

TrueV mean mode median var 2.5% 97.5% ML

04Q4 3.41 3.1908 3.2993 3.1936 1.5972 0.6897 5.6739 -351.5333

05Q1 3.17 3.5252 3.6034 3.5288 1.6577 0.9901 6.0634 -352.5781

05Q2 3.01 3.0346 3.0961 3.0370 1.6341 0.5397 5.5223 -353.7911

05Q3 2.77 2.8855 3.0605 2.8898 1.5499 0.3933 5.3342 -354.1335

05Q4 2.38 2.6293 2.8118 2.6303 1.5575 0.2153 5.1142 -355.5657

06Q1 2.39 2.2126 1.9563 2.2064 1.5106 -0.2325 4.6522 -355.8802

06Q2 2.93 2.3599 2.3714 2.3584 1.5341 -0.0446 4.7808 -356.9000

06Q3 3.44 3.1359 3.3721 3.1456 1.5378 0.6795 5.5634 -357.9808

06Q4 3.99 3.6364 3.5904 3.6406 1.5863 1.1156 6.1068 -358.3212

07Q1 4.55 4.1965 4.3760 4.1928 1.6316 1.7010 6.7073 -359.5996

Full Sample: Forecast of In�ation Rates with GSTUR p=1 lag=4, with Cons

Density forecast 95% percentile

TrueV mean mode median var 2.5% 97.5% ML

04Q4 3.41 3.4246 3.5251 3.4444 2.4078 0.3558 6.4762 -337.1829

05Q1 3.17 3.6697 3.9774 3.6972 2.4498 0.5482 6.6826 -338.0330

05Q2 3.01 3.1411 3.0527 3.1462 2.3080 0.1702 6.0945 -338.9188

05Q3 2.77 2.9290 2.6508 2.9385 2.4217 -0.1156 5.9282 -340.4070

05Q4 2.38 2.6680 2.9666 2.6918 2.3496 -0.3979 5.5968 -339.9444

06Q1 2.39 2.3609 2.4662 2.3657 2.3942 -0.6685 5.3553 -341.1014

06Q2 2.93 2.5233 2.9071 2.5348 2.4249 -0.5743 5.5269 -342.0057

06Q3 3.44 3.2980 3.1658 3.3065 2.3239 0.2953 6.2502 -342.3122

06Q4 3.99 3.8661 4.0003 3.8750 2.2478 0.9167 6.8703 -343.9123

07Q1 4.55 4.3025 4.4270 4.3171 2.2155 1.3998 7.2242 -344.1763
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Full Sample: Forecast of In�ation Rates with GSTUR p=1 lag=4, with Trend

Density forecast 95% percentile

TrueV mean mode median var 2.5% 97.5% ML

04Q4 3.41 3.4484 3.1324 3.4454 5.1634 -1.1214 7.8862 -337.1736

05Q1 3.17 3.6843 3.4623 3.6897 5.0771 -0.7610 8.1274 -337.6904

05Q2 3.01 3.1441 3.1896 3.1395 5.1274 -1.3835 7.5986 -338.9712

05Q3 2.77 2.9371 3.0097 2.9655 4.9814 -1.5315 7.3231 -339.3407

05Q4 2.38 2.6471 2.8581 2.6315 4.9217 -1.7627 7.0215 -340.5639

06Q1 2.39 2.3742 2.5871 2.3785 4.8407 -2.0332 6.6634 -341.4422

06Q2 2.93 2.5329 3.0343 2.5824 4.8934 -1.8710 6.7830 -341.7596

06Q3 3.44 3.3101 3.1570 3.3281 4.8800 -1.1315 7.6321 -342.6748

06Q4 3.99 3.8847 4.0396 3.8921 4.8150 -0.4062 8.2071 -343.4323

07Q1 4.55 4.3520 4.1209 4.3551 4.6295 0.1378 8.5813 -344.6385

Full Sample: Forecast of In�ation Rates with GSTUR p=1 lag=4 Cons and Trend

Density forecast 95% percentile

TrueV mean mode median var 2.5% 97.5% ML

04Q4 3.41 3.3387 3.5310 3.3712 5.1230 -1.1690 7.8461 -355.9397

05Q1 3.17 3.6067 3.5636 3.6087 5.1585 -0.8171 8.0385 -356.6626

05Q2 3.01 3.0810 2.9086 3.0582 4.9850 -1.4217 7.4606 -357.9429

05Q3 2.77 2.8580 3.2228 2.8815 5.1411 -1.5600 7.4100 -358.6373

05Q4 2.38 2.5606 2.7945 2.5547 4.9680 -1.7963 6.9120 -359.0501

06Q1 2.39 2.3053 2.2460 2.3004 4.7988 -2.0436 6.5475 -359.3868

06Q2 2.93 2.4151 2.8898 2.4463 4.9657 -1.9798 6.7130 -360.9545

06Q3 3.44 3.1970 3.0150 3.2055 4.9833 -1.2910 7.5669 -361.2716

06Q4 3.99 3.8179 4.0617 3.8409 4.7372 -0.4550 8.1128 -363.4520

07Q1 4.55 4.2383 4.4040 4.2327 4.8757 -0.0533 8.6068 -362.5645

205



Full Sample: Forecast of In�ation Rates with GSTUR p=1 lag=4, with NO CT

Density forecast 95% percentile

TrueV mean mode median var 2.5% 97.5% ML

04Q4 3.41 3.2739 3.3030 3.2731 1.4501 0.9191 5.6326 -356.0343

05Q1 3.17 3.5239 3.7890 3.5342 1.4178 1.1737 5.8464 -355.9640

05Q2 3.01 3.0118 3.0118 3.0266 1.4353 0.6644 5.3598 -357.1306

05Q3 2.77 2.7696 2.5104 2.7528 1.3939 0.5035 5.1119 -357.8148

05Q4 2.38 2.4993 2.4977 2.5030 1.3949 0.1935 4.7981 -359.2610

06Q1 2.39 2.2635 2.2974 2.2701 1.3344 0.0002 4.4873 -359.7945

06Q2 2.93 2.3523 2.3984 2.3544 1.3059 0.1292 4.5840 -360.4440

06Q3 3.44 3.1735 3.1393 3.1828 1.3583 0.8705 5.4205 -361.4529

06Q4 3.99 3.7707 3.7833 3.7744 1.3976 1.4699 6.1166 -361.9854

07Q1 4.55 4.1975 4.1603 4.1798 1.3977 1.8751 6.5743 -362.5099

Full Sample: Forecast of In�ation Rates with AR(7)

MSFE Density forecast 95% percentile

0.0888 TrueV mean mode median var 2.5% 97.5%

04Q4 3.41 3.2505 3.0321 3.2268 1.4375 0.8791 5.7085

05Q1 3.17 3.4697 3.8320 3.4911 1.4231 1.1310 5.7062

05Q2 3.01 2.8932 2.4332 2.8821 1.4128 0.5309 5.2125

05Q3 2.77 2.7649 2.8632 2.7649 1.3696 0.4414 5.1134

05Q4 2.38 2.7267 2.8420 2.7258 1.3604 0.5030 5.0368

06Q1 2.39 2.2033 2.2349 2.2077 1.2934 -0.0355 4.4034

06Q2 2.93 2.3797 2.4818 2.3928 1.3069 0.1615 4.6252

06Q3 3.44 3.3137 3.4479 3.2975 1.3177 1.1724 5.5650

06Q4 3.99 3.6527 3.8045 3.6753 1.3879 1.2889 5.8975

07Q1 4.55 4.0400 3.7617 4.0215 1.3566 1.8189 6.3205
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Full Sample: Forecast of In�ation Rates with GSTUR p=1 lag=5, with Cons

Density forecast 95% percentile

TrueV mean mode median var 2.5% 97.5% ML

04Q4 3.41 3.4813 3.5531 3.4863 2.3044 0.5410 6.4918 -339.6490

05Q1 3.17 3.6422 4.1422 3.6691 2.2612 0.6364 6.5419 -340.3256

05Q2 3.01 3.0789 3.1601 3.0734 2.3020 0.0966 6.0231 -340.9300

05Q3 2.77 2.9213 2.7538 2.9264 2.2346 -0.0237 5.8693 -341.0559

05Q4 2.38 2.6972 2.6788 2.6929 2.3007 -0.2725 5.6798 -341.7964

06Q1 2.39 2.4515 2.7715 2.4814 2.2770 -0.5816 5.3848 -342.9015

06Q2 2.93 2.4788 2.8043 2.5006 2.2833 -0.5561 5.4502 -344.0708

06Q3 3.44 3.3530 3.6669 3.3649 2.2519 0.3855 6.2574 -344.4316

06Q4 3.99 3.8945 4.1122 3.9019 2.2426 0.9175 6.7979 -344.2936

07Q1 4.55 4.2346 4.2865 4.2489 2.1838 1.2899 7.0804 -345.8233

Full Sample: Forecast of In�ation Rates with GSTUR p=1 lag=5, with Trend

Density forecast 95% percentile

TrueV mean mode median var 2.5% 97.5% ML

04Q4 3.41 3.4998 3.6374 3.5271 4.9269 -0.8714 7.9112 -339.8521

05Q1 3.17 3.6778 3.3278 3.6908 4.6887 -0.6669 7.8451 -340.8652

05Q2 3.01 3.0902 2.5748 3.0830 4.7706 -1.1902 7.3598 -340.6408

05Q3 2.77 2.9100 3.1869 2.9463 4.8963 -1.5211 7.2481 -341.6210

05Q4 2.38 2.6934 3.0677 2.7191 4.8090 -1.6718 7.0057 -341.6060

06Q1 2.39 2.4564 2.3718 2.4649 4.7271 -1.9418 6.6744 -342.9425

06Q2 2.93 2.4992 2.3903 2.5234 4.7060 -1.8871 6.6501 -343.6233

06Q3 3.44 3.3599 3.2876 3.3802 4.6253 -0.8062 7.5389 -345.1264

06Q4 3.99 3.9141 3.8156 3.9235 4.6944 -0.4642 8.1708 -345.0832

07Q1 4.55 4.2712 4.3773 4.2606 4.7487 -0.0578 8.5673 -345.6120

207



Full Sample: Forecast of In�ation Rates with GSTUR p=1 lag=5 Cons and Trend

Density forecast 95% percentile

TrueV mean mode median var 2.5% 97.5% ML

04Q4 3.41 3.4139 3.7713 3.4329 4.9980 -0.9802 7.9123 -358.0779

05Q1 3.17 3.5588 3.5226 3.5648 4.9760 -0.7988 7.9624 -358.2893

05Q2 3.01 3.0094 2.7436 3.0005 5.1535 -1.4473 7.5002 -359.0244

05Q3 2.77 2.8574 2.6140 2.8344 4.9695 -1.5366 7.3444 -360.2748

05Q4 2.38 2.6334 3.0931 2.6309 4.9796 -1.8119 7.0807 -359.8108

06Q1 2.39 2.3657 2.0941 2.3618 4.6986 -1.9060 6.6364 -360.7820

06Q2 2.93 2.4074 2.2460 2.4018 4.8282 -1.8854 6.7862 -362.6678

06Q3 3.44 3.2782 2.8648 3.2900 4.7928 -1.0591 7.5846 -363.4120

06Q4 3.99 3.8376 4.2998 3.8625 4.6854 -0.5006 8.0811 -363.7807

07Q1 4.55 4.1715 3.8380 4.1679 4.7842 -0.0483 8.4909 -364.6154

Full Sample: Forecast of In�ation Rates with GSTUR p=1 lag=5, with NO CT

Density forecast 95% percentile

TrueV mean mode median var 2.5% 97.5% ML

04Q4 3.41 3.3353 3.4371 3.3351 1.3533 1.0895 5.6039 -358.1377

05Q1 3.17 3.5159 3.6377 3.5119 1.3742 1.2810 5.8329 -359.0214

05Q2 3.01 2.8951 3.0150 2.8914 1.3467 0.5930 5.1639 -359.7913

05Q3 2.77 2.7536 2.5226 2.7367 1.3262 0.4931 5.0391 -360.5057

05Q4 2.38 2.5437 2.4817 2.5450 1.2830 0.3271 4.8030 -361.4968

06Q1 2.39 2.3131 2.0932 2.3039 1.2507 0.1329 4.5144 -362.0681

06Q2 2.93 2.3314 2.4389 2.3315 1.2810 0.1523 4.6215 -362.8086

06Q3 3.44 3.2222 3.4040 3.2333 1.2790 0.9589 5.4293 -363.5650

06Q4 3.99 3.7728 3.6984 3.7672 1.3353 1.4984 6.0492 -363.9624

07Q1 4.55 4.1272 4.3988 4.1421 1.3552 1.8448 6.4750 -365.0569

Density Forecast Plots and PIT Evaluation

We provide the plots of the density forecast.
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Density Plot Using the Full Sample: GSTUR p=1 l=4 with Trend
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Density Plot Using the Full Sample: GSTUR p=1 l=7 with Cons and Trend
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5.B.2 Small Sample

Forecast in�ation Rates with Small Sample GSTUR p=1 lag=0 with NO CT

Density forecast 95% percentile

TrueV mean mode median var 2.5% 97.5% ML

04Q4 3.41 3.0545 2.4312 2.8395 4.3050 -0.2534 7.4363 -32.2040

05Q1 3.17 3.4689 2.7373 3.2527 4.5577 0.1402 8.0896 -33.0112

05Q2 3.01 3.0800 2.7271 2.9054 3.3845 0.0733 7.0762 -34.3422

05Q3 2.77 2.8763 2.4383 2.7519 3.0888 -0.0355 6.5654 -35.1625

05Q4 2.38 2.5942 2.4274 2.5035 2.2265 -0.0466 5.8155 -35.9450

06Q1 2.39 2.2150 1.8087 2.1324 1.8645 -0.2352 5.0949 -37.0182

06Q2 2.93 2.2965 2.2823 2.2208 1.8417 -0.0877 5.1528 -37.4900

06Q3 3.44 2.9102 2.9691 2.8036 2.4660 0.2433 6.2281 -38.6328

06Q4 3.99 3.4773 3.0456 3.3555 2.6262 0.6921 7.0780 -39.5946

07Q1 4.55 4.0922 3.9788 3.9288 3.0096 1.1377 8.0517 -40.5594

Forecast in�ation Rates with Small Sample GSTUR p=1 lag=1 with NO CT

Density forecast 95% percentile

TrueV mean mode median var 2.5% 97.5% ML

04Q4 3.41 3.1574 3.2501 2.9564 4.4825 -0.1808 7.7412 -38.2631

05Q1 3.17 3.5241 2.7048 3.2801 4.8258 0.1385 8.2304 -39.2315

05Q2 3.01 2.7856 2.7526 2.6089 3.7863 -0.2922 6.9902 -40.2030

05Q3 2.77 2.7391 2.1073 2.5979 2.9425 -0.1823 6.4681 -41.2633

05Q4 2.38 2.4579 2.3415 2.3482 2.7793 -0.3234 5.8461 -42.1774

06Q1 2.39 1.9733 1.8579 1.8997 1.9628 -0.5193 4.8897 -42.8431

06Q2 2.93 2.2401 2.0867 2.1827 1.9226 -0.2562 5.1257 -43.8280

06Q3 3.44 3.1443 2.9880 3.0372 2.5106 0.3641 6.5680 -45.0302

06Q4 3.99 3.6924 3.7626 3.5890 2.6398 0.8593 7.2489 -45.5372

07Q1 4.55 4.3245 3.9763 4.1569 3.0185 1.3652 8.1839 -46.6382
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Forecast in�ation Rates with Small Sample GSTUR p=1 lag=5 with NO CT

Density forecast 95% percentile

TrueV mean mode median var 2.5% 97.5% ML

04Q4 3.41 3.2561 5.1417 2.8468 21.3724 -1.5609 9.9720 -64.6217

05Q1 3.17 3.4125 2.0324 3.0389 10.8508 -1.1896 9.8626 -65.4927

05Q2 3.01 2.6349 0.4288 2.3428 18.3161 -1.9231 8.3540 -66.6004

05Q3 2.77 2.5214 4.8133 2.2770 11.6798 -1.5637 7.5988 -67.8078

05Q4 2.38 2.3147 1.3584 2.1516 5.7208 -1.4844 6.8658 -69.1216

06Q1 2.39 2.0780 3.1985 1.9806 4.6012 -1.3507 5.9576 -69.6748

06Q2 2.93 2.1083 1.9247 2.0030 3.2777 -1.1562 5.9027 -70.2495

06Q3 3.44 3.1216 3.0865 2.9927 4.0439 -0.4311 7.3652 -71.6289

06Q4 3.99 3.8087 3.3780 3.6593 4.4048 0.2230 8.2885 -72.4659

07Q1 4.55 4.1045 3.6833 3.8986 4.8095 0.5802 8.9850 -73.5496

Forecast in�ation Rates with Small Sample AR(4)

Density forecast 95% percentile

TrueV mean mode median var 2.5% 97.5% ML

04Q4 3.41 2.8463 2.8387 2.8489 1.1555 0.6969 4.9329 -25.6185

05Q1 3.17 3.1373 2.9423 3.1375 1.1492 0.9878 5.2432 -26.4645

05Q2 3.01 2.9034 2.7422 2.8998 1.0698 0.8638 4.9733 -27.1182

05Q3 2.77 2.7405 2.8613 2.7396 1.0026 0.7347 4.7427 -27.7514

05Q4 2.38 2.5256 2.5430 2.5195 0.9645 0.5869 4.4594 -28.3660

06Q1 2.39 2.2391 2.0545 2.2282 0.9026 0.3682 4.1263 -28.9833

06Q2 2.93 2.2923 2.3744 2.2961 0.8665 0.4766 4.1621 -29.5926

06Q3 3.44 2.8197 2.7332 2.8291 0.8792 0.9131 4.6301 -30.5750

06Q4 3.99 3.3100 3.2337 3.3318 0.8695 1.4330 5.1180 -31.4006

07Q1 4.55 3.7804 3.7858 3.7925 0.8622 1.8911 5.5541 -32.2413

Density Forecast Plots and PIT Evaluation

The following are the forecast density plots using small samples.
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Chapter 6

Conclusions

This chapter �rstly summarizes the work contained in this thesis. Our main �ndings

are then reviewed and some suggestions for future research are made.

6.1 A Summary

This thesis relates to two bodies of literature. The �rst is a focus on inference in two

nonlinear models, a generalization of Stochastic Unit Root (GSTUR) model and a

Stationary Bilinear (SB) model, with a Bayesian approach. The second is a focus on

forecasting in a Bayesian framework, in particular, density forecasting.

The main objective of this piece of research is to develop methods for Bayesian

inference in the GSTUR and SB models, which includes model estimation, model com-

parison amongst non-nested models and constructing model-based forecasting. Proce-

dures are developed, as by-products of this piece of research, to make the GSTUR and

SB models readily applicable in a univariate time series modelling �eld. We developed

three complete toolkits implemented in a Matlab environment. Software is prepared

and ready to be disseminated for practitioners who wish to apply macroeconomic time

series with a group of nonlinear models in the Bayesian framework. These toolkits in-

clude model estimation, model marginal likelihood calculation, forecasting and model

comparison amongst GSTUR, SB, RW and stationary AR(p) models. All procedures

and methodologies were intensively tested and validated on simulated data. Even with

little knowledge of Bayesian statistics, following the instructions provided, economic

practitioners could apply the GSTUR and SB models in a real setting.

One of the strengths of the toolkits we provide is that all the procedures are

integrated in a Bayesian framework. Taking the toolkit of GSTUR for example, not

only the high dimensional GSTUR model can be estimated, but also model marginal
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likelihood can be evaluated for the purpose of model comparison, and a forecast density

can be simulated with just a little extra cost on top of the estimation.

Compared with prior work in the study of GSTUR and SB models, the Markov

chain Monte Carlo (MCMC) methods we proposed can produce e¢ cient estimates

with smaller variance. The Bayesian framework provides coherent, uni�ed and opera-

tional approaches where no special techniques or principles are required for di¤erent

problems. In particular, the Bayesian approach has more obvious advantages when

the data is sparse (see chapter 2 for details). With the use of �model probabilities�,

comparing models amongst a pool of nonlinear and linear models is intuitively straight

forward, whereas it is di¢ cult to compare non-nested models in a classical framework.

Summarizations of each chapter are as follows:

In chapter 2, we provide the survey of Bayesian techniques at a high level of ab-

straction. We �rstly explain the di¤erence between Classical frequentist and Bayesian

philosophy in understanding probabilities. Then, with respect to econometric mod-

elling, we review the methodologies of model estimation, model comparison and model

forecasting in both Classical and Bayesian framework. The logic of Bayesian econo-

metrics reviewed in chapter 2 has provided a template for the organization of chapter

3, 4 and 5. To motivate the models we proposed, each chapter begins with an in-

troduction of some puzzles in macroeconomic time series modelling. Then, likelihood

functions, priors and derived posteriors are given. Computational methods for poste-

rior inference and model comparison are then illustrated in details. Finally, we validate

all methodologies on simulated data followed by applications in real settings.

In chapter 3, we extend a Stochastic Unit Root model to a Generalised STUR

(GSTUR) model. According to the template provided in chapter 2, we overcome the

estimation di¢ culty, and make applications to S&P 500 stock price data and U.K./U.S.

real exchange rate data. We propose Chib method with an Auxiliary Particle Filter

(APF) to obtain marginal likelihood when the entertained model is highly dimensional.

In chapter 4, we focus on a Stationary Bilinear model. Following the same pro-

cedure in chapter 3, we made Bayesian inference in the SB models and applied the

developed toolbox to the quarterly UK in�ation rates.

Finally, in chapter 5, we pool a group of nonlinear and linear models together

and evaluate their forecasting capacities in a real setting. We also look into the �eld

of combining forecasts, and compared the forecast results from a Bayesian Model

Averaging (BMA) approach and a Simple Averaging (SA) approach with the results

from individual forecasting models.
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6.2 Main Findings and Suggestions for Future Re-

search

This thesis sought answers in regard to both theoretical and empirical time series

modelling. Apart from summarizing the main �ndings, I conclude this thesis with

thoughts about directions for future research, and for promising applications.

In chapter 3, a GSTUR model is �tted to a macroeconomic time series and a

�nancial time series in a Bayesian context. We applied the Bayesian framework because

MCMC methods are good in dealing with high dimensional models. Bayes Factors in

dealing with non-nested model comparison and Bayesian simulation approaches in

dealing with density forecasts also show great promise. On reviewing the studies of

Nelson and Plosser�s data, we �nd that most of the debates have concerned whether

the Nelson and Plosser�s data series are trend-stationary or di¤erence-stationary. With

use of the Bayes Factors, we �nd strong evidence of a deterministic time trend when

the underlying properties are allowed to change. Also in chapter 3, the Purchasing

Power Parity theory is tested with an application of the UK/US long run real exchange

rates. We suggest that the �exible GSTUR model, which allows the persistence to be

changed at unknown times, may provide new insights in the PPP puzzle, and reconcile

the empirical �ndings of non-stationarity in the literature with economic theories.

In the GSTUR model, the coe¢ cient of the deterministic time trend is time-

invariant. It is possible that this coe¢ cient has varied at times due to the changes in

technology and legislations. In this regard, Bayesian inference in a more Generalised

STUR model is a promising area of research.

In chapter 4, by �tting a SB model and a RW model with the quarterly UK

in�ation data series, we �nd that a SB model better represents the underlying process

of in�ation according to the Bayes Factor.

Univariate in�ation forecasting is the subject of much ongoing research. Fore-

casting in�ation is di¢ cult, because the in�ation rate data is subject to a number of

complexities including structural breaks, non-linear e¤ects and measurement errors.

For more �exibility, we may therefore extend the simplest SB model:

yt = (a+ b"t�1) yt�1 + "t; (6.1)

where "t � i:i:d:fN (0; �2"), to a two-threshold bilinear (TB) model:

yt = (ak + bk"t�1) yt�1 + "t (6.2)
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where "t � i:i:d:fN
�
0; �2";k

�
and k = 1; 2. This extended TB model incorporates breaks

and allows for a change in volatilities, and hence, could be more adequate to serve the

purpose of near-term in�ation modelling compared with conventional linear forecasting

models. Forecasting risks due to unexpected systematic shocks and/or disruptions in

the underlying process of in�ation caused by the breaks can then be inferenced from

the extended TB model. Future research may focus on developing e¢ cient algorithms

to estimate a two-threshold bilinear model, and compare its forecasting capacity with

a Stochastic Volatility model. Moreover, a great deal of work can be done in testing

if the TB model encompasses other statistical forecasting models.

Chapter 4 also touches on the problem of sampling extreme values from the tails

of a univariate normal distribution and a Gamma distribution by approximating the

tail regions with an exponential distribution. We are inspired by the fact that in the

real world, extreme events happen, such as the �nancial crisis, but how to model these

extreme events is full of ambiguities. Thus, incorporating the extreme value theories

in the Bayesian framework seems like a promising �eld of research for the following

reasons: (1) The number of observations of the extreme events are relatively small.

Therefore, we may ask whether the frequentist framework is fully justi�ed when the

realized data is sparse. (2)The Bayesian framework provides good solutions to missing

data problems. However, there is a big question concerning how to construct our

prior belief in the tail regions without encountering the criticism of being �subjective�.

Motivated by these two reasons, further research may focus on modelling the behaviour

of the tail regions with applications to the �nancial time series data in a Bayesian

framework.

In chapter 5, we focus on one-step ahead out-of-sample forecasts, including point

forecast and density forecast. We �nd that GSTUR models with a constant provide

better point forecasts with applications of the quarterly UK in�ation rates (1957Q1-

2007Q1), and also provide smaller Mean Squared Forecast Errors (MSFE). Therefore,

we propose in�ation modelers to take the GSTUR model into consideration. In more

extensive analysis of statistical models�forecast capacities, we take the last 30 obser-

vations (1999Q4-2007Q1) as a subsample from the full data series. The GSTUR model

outperforms the stationary AR(p) model with lag length selected with AIC. However,

compared to forecasting models themselves, density forecasts using a small sample

have much larger variances than those using the full sample. Our explanation is that

simply abandoning part of the data may induce big forecast uncertainties, even though

the dynamics of the underlying process might have changed. Therefore, in practice,

we may start o¤using the full sample of data. Then, compare the forecast results from
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those using a small sample. It is worth mentioning that Hashem Pesaran also raise the

question as to the best sample period to use in estimation in his recent research (see

Assenmacher- Wesche and Pesaran 2008, Pesaran and Timmermann 2007, Pesaran et

al. 2006). His main solution is to estimate models with di¤erent observation windows

and then pooling the forecasts. He proposes this method based on the idea that �esti-

mation is more e¢ cient if all available data are used when the models are stable�and

�the occurrence of structural breaks might bias the forecasts�(Assenmacher-Wesche

and Pesaran, 2008). Taking the breaks and model instability problem into account, he

suggests to choose di¤erent sizes of observation windows to estimate, �starting from

a minimum window size to the largest permitted by the available data set, and then

average the forecasts across the windows� (Pesaran and Timmermann 2007). Since

there are only two observation window sizes in our case (201 and 30), we may adopt

Pesaran�s approach to nonlinear forecasting models in future research and compare this

�Averaging Window�forecasts with Bayesian Model Averaging approach to forecast

combination.

Considering the issues regarding model selection and combining forecasts using

Bayesian Model Averaging (BMA), only 24 models are considered in chapter 5, which

includes GSTUR class models, a �rst order SB model, stationary AR(p) models and a

RW model. Although the model comparison procedure using the marginal likelihood

is universal from any kind of competing models, the calculation of each entertained

model�s marginal likelihood consumes a lot of time. The choice of the model dimension

is then constrained by the computing resources. Clearly, a great deal of work is

needed to develop e¢ cient algorithms for comparing a large number of non-nested

models. Also, as suggested in Armstrong (1978), we may combine the forecasts from

econometric models with forecasts from other methods, such as forecasts from survey

data, and see if the combination could yield improvements in accuracy.

Also in chapter 5, we investigate the forecasting capacities of a group of competing

models and the main focuses are the GSTUR class models and a SB model. Since

we could neither tell what exactly the underlying process is whereby we have those

patterns of realizations, nor are we able to predict what exactly is going to happen in

the future1, the best we can do is to investigate some �exible models, which are more

resilient to the changes and are able to accommodate the properties of the conventional

linear and/or nonlinear time series models. Based on this motivation, further research

can be performed by looking into various nonlinear models and their generalizations

1The two main sources that cause forecast failures: (1) things we do not know that we do not
know, and (2) model uncertainties. Refer to chapter 5.1 for details.
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with applications to di¤erent data sets. This motivation then will lead to research into

evaluating the forecast capacities of the entertained nonlinear models under di¤erent

circumstances, such as applications in �nancial modelling with high frequency data,

and applications in macroeconomic modelling with low frequency data. One important

application will be forecasting the UK in�ation rate. With more sophisticated methods

and �exible models, predictive densities can be compared to the fan charts published

by the Bank of England. The results can then be compared with the �ndings in Cogley,

Morozov and Sargent (2008).

In summary, nonlinear time series modelling is an under-developed �eld in applied

Bayesian statistics. Not surprisingly, a wide variety of models and methods have not

been fully investigated yet. In this sense, signi�cant work in numerical analysis needs

to be devoted to understanding the properties of algorithms and developing statistical

software for econometric modelers. In general, future work contains generalising more

�exible GSTUR and SB models and applying them to macroeconomic data, such as

output gaps, unemployment rates and Business cycles.
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Appendix A

Marginal Likelihood with Random
Walk Model

The Random Walk (RW) model can be expressed as

yt = yt�1 + "t

where "t � fN
�
0; �2"

�
If we denote the error precision as h", where h" = ��2" and the prior chosen for p (�2")

follows an Inverse-Gamma distribution, where �2" � f�1�"
�
�"; �"

�
. The Inverse-Gamma

density can be expressed as:

p
�
�2"
�
=

1

��"
"
� (�") (�

2
")
�"+1

exp

(
� 1

�
"
�2"

)

If we denote �
�1
" = 1

�
"

+ 1
2

NP
t=2

(yt � yt�1)2, the marginal likelihood p (y jMRW ) then
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can be calculated as the following:

p(y j MRW ) =

Z
p(y j �2")p(�2")d�2"

=

Z
1

(2��2")
N�1
2

exp

8>><>>:�
NP
t=2

(yt � yt�1)2

2�2"

9>>=>>;
� 1

��"
"
� (�") (�

2
")
�"+1

exp

(
� 1

�
"
�2"

)
d�2"

=

Z
1

��"
"
� (�") (2�)

N�1
2 (�2")

N+2�"+1

2

exp

�
� 1

�"�
2
"

�
d�2"

=

Z
1

��"
"
� (�") (2�)

N�1
2

h
N+2�"+1

2
" exp

�
�h"
�"

�
d

�
1

h"

�
= � 1

��"
"
� (�") (2�)

N�1
2

R
h
N+2�"�3

2
" exp

�
�h"
�"

�
dh"

=
�
�"
" � (�")

��"
"
� (�") (2�)

N�1
2

where

�" = �" +
N � 1
2

and

�" =

"
1

�
"

+
1

2

NX
t=2

(yt � yt�1)2
#�1

Integrating out nuisance parameters has to be executed with caution as emphasized

by Box and Tiao (1992, pp.71). The values of �" and �" in p (�
2
") � f�1�"

�
�"; �"

�
determines the marginal likelihood value p(y). Thus, �" and �" have to be chosen

as appropriate values to re�ect the data information su¢ ciently. Choosing �" and

�
"
a �at prior arbitrarily may be inappropriate and, as a result, provide misleading

inference in the model selection stage.
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Appendix B

Probability Distributions

To clarify calculation issues involved with conjugate priors, we provide a summariza-

tion of some probability density functions. Zellner (1971, Appendix A) provides details

of the properties of various probability distributions, including mean, variance, skew-

ness and kurtosis. Bauwens et al. (1999) Appendix A provide good summaries in this

regard as well. More over, they also provide algorithms of how to generate random

numbers from a probability distribution in Appendix B. In this appendix, we follow

the Appendix 1 in Berger (1985), regroup the de�nitions of the distributions that are

intensively applied in this thesis.

Gamma Distribution: x � f� (�; �)

p (x) =
1

��� (�)
x��1 exp

�
�x
�

�
mean = ��

V ariance = ��2

Inverse Gamma Distribution: x � f�1� (�; �)

p (x) =
1

��� (�)x�+1
exp

�
� 1

x�

�
mean = 1=� (�� 1) if � > 1
V ariance = 1=�2 (�� 1)2 (�� 1) if � > 2
Note: 1=X � f� (�; �)
Multivariate t distribution:
p-variate t distribution with � degree of freedom, location vector � and scale matrix

� : p� p positive de�nite matrix, and
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p (x) =
� [(�+ p) =2]

(det�)1=2 (��)p=2 � (�=2)

�
1 +

1

�
(x� �)0��1 (x� �)

��(�+p)=2
mean = � if � > 1

Covariance = ��= (�� 2) if � > 2
Multivariate normal distribution:
matrix � : p� p positive de�nite matrix, and

p (x) =
1

(det�)1=2 (2�)p=2
exp

�
�:5 (x� �)0��1 (x� �)

	
mean = �

Covariance = �
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