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Abstract

This thesis describes experimental and theoretical work and technology development directed towards
the next generation of X-ray astronomical instrumentation. A great heritage exists of instruments
which are sensitive to X-rays which operate on board space based observatories. The next generation
of such telescopes will take advantage of the rapid technology advancement of the last four decades
to more accurately observe the universe and give greater insight into the objects within it, how they

formed and how they will evolve.

Chapters 2 and 3 describe the investigation of extremely high speed microchannel plate detectors
capable of counting individual photons with a timing accuracy of a few tens of picoseconds (1 ps =
10712 s) at extremely high spatial resolution. Although many early X-ray astronomical instruments
were based on MCP detectors, it is only recent manufacturing improvements which have enabled the
production of such small pore diameters, enabling the unparalleled temporal and spatial resolution.
Prospects for future application exist in fields as diverse as X-ray and ultraviolet astronomy and the

life sciences.

Chapters 4 and 5 report the testing of Microchannel plates as low mass X-ray optics where the
development of square pore geometries has made true imaging MCP telescopes possible. Two flight
programs are identified as areas where such optics will provide tangible scientific benefits: These are
BepiColombo, a European mission to the planet Mercury which will contain the first ever imaging
X-ray telescope on a planetary science mission and Lobster-1SS, a wide field of view telescope for
X-ray astronomy which will provide coverage of, almost, the whole sky every 90 minute orbit. Testing
reported herein finds that the manufacturing techniques are maturing to a point where they can exceed

the < 5 arcmin resolution required for these missions.

Chapters 6 and 7 comprise a description of a completely novel X-ray polarimeter. For the past three
decades, little or no progress has been made in the field of X-ray astrophysical polarimetry owing to
the lack of suitable instrumentation, this is despite intense scientific interest in such measurements.
A very simple optical design for a polarimeter is made possible using highly ordered materials which
exhibit dichroism at fixed, narrow energy bands, for the first time allowing simultaneous measurement

of ALL astronomically pertinent observables.

The areas of science influenced by these three areas of instrument development are shown to be very
broad, including; astrophysics and cosmology, planetary science, life sciences, nano-science and even

fundamental chemistry.
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Chapter 1

Introduction

X-ray astronomy is now a mature science. The “accidental” discovery of cosmic X-ray emission
(Giacconi et al., 1962) marked the beginning of a discipline which has provided new insights into the
universe we live in and the objects within it. In particular, observing X-ray emission from celestial
sources has allowed astronomers to probe the most exotic and energetic processes in the cosmos.
These include: accretion power (the loss of gravitational energy as matter falls onto a compact object
in an accretion disk, leading to intense heating of the disk to millions of degrees Kelvin), electrons
accelerating in strong magnetic fields at speeds approaching the speed of light, and the afterglow from
gamma ray bursts which are thought to be the birth of black holes by the collision of neutron stars

or the collapse of supermassive systems.

X-ray astronomy began in the 1960s with sounding rocket experiments carrying Geiger counters above
the atmosphere to look for high energy photons. Although Friedman et al. (1951) had observed the
first example of X-ray emission from a celestial object (the sun), it was not until the 1960s that extra-
solar X-ray emission was confirmed. Giacconi et al. (1962) reported a sounding rocket experiment,

designed to detect the fluorescence X-rays from the surface of the moon. These were expected to
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be induced by the impact of the solar wind on the lunar regolith. However, the experiment “failed”
owing to a very high measurement background. This was shown to have a cosmic origin and was
interpreted as a diffuse background radiation with a discrete source (or sources) superimposed on it.
The discrete source was later resolved and found to be in the constellation Scorpio and was named Sco-
X1, confirming the existence of extra-solar X-ray sources. Subsequent increases in optic performance
have allowed much of this diffuse background to be resolved into known point sources. However, there

is still a diffuse, unresolved component to cosmic X-ray emission.

It was not until the U.S. Apollo moon program in the late 1960s and 70’s that Giacconi’s lunar X-
ray fluorescence measurements became possible (Adler & Trombka, 1977). This is because of the
low signal from the moon and high sky background. The first X-ray image of the moon taken from
Earth orbit was acquired by the ROSAT Position Sensitive Proportional Counter (PSPC) (Figure
1.1) and demonstrates the rather poor statistical discrimination between the sky background and
fluorescence from the lunar surface, despite the significantly improved instruments onboard ROSAT
(when compared to the early sounding rockets). Chapters 4 and 5 describe a new kind of X-ray optic

which could enable the same observations to be made of the surface of the planet Mercury.

X-ray astronomy has remained the predominant observational probe of extreme astrophysical envi-
ronments for over 40 years. Since the early rocket borne experiments, it has developed at a fast pace,
enabled largely by the rapid improvements in instrumentation designed for such observations. Yet
despite the major breakthroughs in X-ray astronomy in recent years, many fundamental questions re-
main unanswered. As we approach the second decade of the new millennium, several new and exciting

missions are planned which will further our understanding of the X-ray universe.

This thesis describes new technologies for X-ray astronomical instrumentation. It can be broken
down into three broad areas; high speed microchannel plate detectors, microchannel plate X-ray

optics and new instrumentation for X-ray polarimetry. These will be considered with reference to the
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ROSAT PSPC
The Moon
Jurie 291990

Figure 1.1: Image of the moon taken by the ROSAT PSPC, showing the fluorescence X-rays from the
sunlit side and no significant emission from the unilluminated side. The events present on the dark

side of the moon are attributed to geocoronal emission in the Earth’s atmosphere.



technology development, scientific drivers and possible application in a number of space and terrestrial

environments, while concentrating on their use in X-ray astronomy.

This chapter provides a broad overview of the science goals which motivate the work, introduces some
of the technology necessary to pursue these scientific objectives, and finally provides a plan of the

thesis.

1.1 Astrophysical X-ray generation

X-rays are high energy (~ 0.1 keV < E< 100 keV, 0.1A< X < 100A) electromagnetic photons. This
large energy range and the variation in the behaviour (reflection, absorption etc.) of the photons
within this range means that X-rays are further divided into “soft” (low energy) and “hard” (high
energy). These definitions are somewhat arbitrary and depend on the context of the discussion. In
this thesis, soft X-rays will be defined as those with energies below 10 keV, and hard X-rays those

photons with E > 10 keV. Any deviation from this convention will be explained in the text.

Many astrophysical processes can produce X-rays. These processes are often divided into two areas;

“thermal” and “non-thermal” emission, and are explained in detail below.

1.1.1 Thermal emission

The main example of thermal emission is black-body radiation, where a source emits a spectrum of
photons characteristic of its temperature. This spectrum is described by the Planck function (Equation
1.1), giving the proportion of the radiation emitted from a source of a given temperature as a function

of wavelength (or energy),



5 (1.1)

with I the emitted intensity of radiation as a function of wavelength, A (in metres) and temperature
(T, in Kelvin), h is Planck’s constant (6.63x1073* Js), k is Boltzmann’s constant (1.38x10723 J/K)
and c is the speed of light in a vacuum (3x10® m/s). Wein’s law relates the peak of the Planck

function to a given wavelength, such that:

Amaz = T (12)

N

where )., is the peak wavelength (in nanometres), b is Wein’s displacement constant (2.898x1072
nm K) and T is temperature (in Kelvin). Therefore, Equation 1.2 gives the wavelength at which
most photons are emitted from the source. For a thermal X-ray emission process, this wavelength is
in the X-ray regime, and the source emits a significant fraction of the radiation in the X-ray band.
Assuming the peak of the Planck function lies at an X-ray wavelength of 10 A, Wein’s law implies
a characteristic temperature of ~ 3 x 108 K. At these temperatures, thermal excitation of electrons
from atoms can lead to multiple ionisation of the matter in the source, meaning that thermal X-ray

sources often consist of highly ionised plasmas (explained in more detail in Section 2.4).

Another example of a thermal emission process is thermal bremsstrahlung radiation, where charged
particles (usually electrons) are slowed when they scatter off other charged particles such as atomic
nuclei. The Maxwell-Boltzmann distribution governs the velocities of the ions within a thermally

excited plasma, and can be stated as

( m )3/2 p2e—mv? /2T (1.3)



Figure 1.2: The shell picture of electron orbitals

where f (v) is the fraction of particles having velocity v, and m is the particle mass. The other
parameters are as defined in Equation 1.1. If we assume that the scattering is inelastic, the average
velocity distribution is constant on a macroscopic scale, but continual changes in the direction of
particles as they scatter off each other leads to the emission of X-ray radiation (here the cooling effect

implied by the radiation of energy as X-rays is considered negligible).

1.1.2 Non Thermal emission

X-ray fluorescence is an example of a non-thermal process. As a photon or charged particle impinges
on an atom, it deposits its energy and photo-ionises a core level electron. This creates an instability
in the electronic structure of the ionised target anode material and electrons fall from higher energy
electron orbitals (shells) into the lower energy states vacated by the ionised electron. The extra

energy is released as an X-ray photon whose energy is given by the difference in the atomic energy
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Figure 1.3: Typical theoretical X-ray spectrum from an electron bombardment source, including trans-
mission through an aluminised lexan filter to remove the low energy photons. The tube accelerating
voltage was assumed to be 2 kV. The Bremsstrahlung continuum is seen to be significantly lower

intensity than the L-shell fluorescence from the copper anode.

levels involved. K-shell emission occurs when the excited electron comes from the innermost electron
orbital (the K-shell) and an electron falls into the K-shell from the L- or M-shells, L-shell emission is
when an electron is emitted from the L-orbital and electrons fall from the M- or N-shells (Figure 1.2).
This process is used in the laboratory as a method for producing an approximately monochromatic
beam of X-rays in an electron bombardment source (see Section 4.3.2 and Figure 1.3). In addition to
this fluorescence line, a non-thermal Bremsstrahlung continuum will be present (Figure 1.3). This is

caused by electrons being slowed as they impinge on the metal anode.

In a celestial context, excitation of a planetary surface by solar X-rays and solar wind particles leads

to an X-ray fluorescence spectrum characteristic of the surface composition (see Section 4.2).

Other non-thermal processes include cyclotron and synchrotron emission, where X-rays are emitted

owing to the acceleration of electrons in circular orbits within an intense magnetic field. These



processes will be considered further when the production of polarised X-rays is discussed in Chapter

1.1.3 Astrophysically significant observables

X-ray emission processes all manifest themselves in terms of “observable parameters.” To date the only
extensively used observables are spectroscopy, photometry, imaging and timing, which are described
below. They have provided extremely powerful diagnostics to constrain models proposed to explain

the emission from celestial sources.

Spectroscopy is the study of the fraction of photons seen from a source at different energies. This
can give information on the temperature, elemental composition, ionisation state and redshift
(therefore distance) of matter where the photons are created. Spectroscopy also provides the
only method of remotely measuring the magnetic field where the X-ray is emitted (at least in
the absence of polarimetry, more later). This is done by observing the Zeeman effect where
emission lines are split into discrete states by the presence of a magnetic field. In practice, it
is usually the inverse Zeeman effect that is observed, where a similar splitting is observed for
absorption edges (Kitchin, 1984). Therefore, emission and absorption features in the spectrum

give a wealth of information about the nature of the environment in which they are created.

Photometry is the study of the number of photons emitted in all energy bands from a source.
Spatially resolved photometry is often used, giving an image of the extended nature of a source
(see imaging bullet). The nature of the bright and dim regions allow discrimination between
different emission processes occurring at different positions in an extended source (e.g. supernova

remnants).

Imaging a key data product from X-ray observatories is given by images of the morphology of



extended objects. These images allow us to recognise structures like the shells of some supernova
remnants which give information about where the X-rays are created and the processes which

are causing their emission.

Timing allows study of the evolution of the emission from a source as a function of time. Almost all
X-ray sources exhibit variability at some temporal scale, a good example being X-ray pulsars.
Pulsars can be described as astronomical lighthouses as they emit beamed radiation which passes
into and out of our line of sight to the object as a function of time. The typically millisecond
interval between the reception of consecutive pulses is interpreted as the rotation period of the
source. If we observe pulsars for years or decades, pulsar spin periods are typically observed to be
decreasing very slowly due to energy lost through radiation. Therefore, on timescales of hundreds
to thousands of years the rate a pulsar spins at will change significantly, thus demonstrating the

broad array of characteristic timescales even in a single astrophysical source.

Independently, all four measurements are powerful diagnostics of the behaviour of matter within the
source, but by combining them, substantially more information is revealed. Consider an instrument
that can measure the intensity and energy of the incident photons as a function of position and time.
Such an instrument can record all three of these observables and give a much more comprehensive
picture of a source than any of them individually. An obvious example of such a device is a CCD
(described below), which can record the position (at an accuracy of approximately the pixel size of
the device), the measured energy of the photon (limited by the Fano factor!) and, finally, the time of

arrival of the photon (limited by the readout time or clocking frequency).

A number of unanswered questions exist in X-ray astronomy because of the degeneracy of predictions

from competing models of certain emission processes when constrained solely by these three observ-

IThis is a measure of the dispersion of the statistical distribution of the number of electron hole pairs created on
absorption of a photon with a given energy. For silicon detectors such as CCDs, this number is ~ 0.12 (Michette, A.,

1993).



ables. One example of this was the argument in the early 1970s as to whether the emission from the
Crab nebula was governed by a complex thermal spectrum, or by emission via a synchrotron process.
It was only with the direct measurement of polarisation of the X-rays that this degeneracy could be
broken. Unfortunately, to date this remains the only conclusive measurement of polarisation in an as-
trophysical X-ray source (Chapter 6). The implied difficulty of polarisation measurements is real and
means that the long-awaited addition of two new observable parameters (the degree (P) and direction
(0) of polarisation) released by X-ray polarimetry is yet to be achieved. This will be discussed further

in Section 1.5.3 and Chapters 6 and 7.

Measurements of these observables must be extremely well understood in terms of the instrument
characteristics in order to effectively constrain theories on astrophysical X-ray emission. Instrument
effects must be distinguished from those occurring in the target object where typically, several emission
processes will be occurring in any given source. Add to this the absorption of X-rays due to gas, dust,
plasmas etc. along the line of sight to the object and it becomes very difficult to disentangle all of
the processes which are occurring. Consequently, the instruments used to make these measurements
must be extremely well calibrated and characterised. They must also have high efficiency in order
to capture as much of the (intrinsically low) flux from celestial X-ray sources as possible. Therefore,
highly complex space based telescope systems are needed to generate useful data in X-ray astronomy.
Such observatories have existed for over 30 years, increasing in complexity over time but yielding new

diagnostic power with every new instrument.

1.2 Historical X-ray astrophysical observa