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The Supporting Information contains the following information and figures. 

1. Description of the derivations of equations used for model fitting in this study. 

2. TGA curve of M-SiO2 nanoparticles (Figure S1) 

3. FTIR spectrum of M-SiO2 nanoparticles (Figure S2) 

4. TGA curve of PMMA/M-SiO2 nanocomposites (Figure S3) 

5. SAXS profile with minimum q down to 0.0024 Å-1 of PMMA/M-SiO2 

nanocomposites (Figure S4) 

6. SAXS profiles of PMMA/M-SiO2 nanocomposites prepared at different 

polymerization temperatures (Figure S5) 

7. 3D TEM images of PMMA/M-SiO2 nanocomposites prepared at different AIBN 

concentrations (Figure S6) 

8. GPC curves of neat PMMA polymerized at different AIBN concentrations 

(Figure S7) 

9. Fits of SAXS profiles of PMMA/M-SiO2 nanocomposites prepared at different 

AIBN concentrations (Figure S8) 
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Equations Used for Model Fitting in this Study.42 

The differential scattering cross section 𝑑𝑑Σ(𝑞𝑞)/𝑑𝑑Ω for primary spherical SiO2 

nanoparticles distributed over an infinitely larger PMMA matrix is given by the 

Zernike-Prins (ZP) equation,43 

𝑑𝑑Σ(𝑞𝑞)
𝑑𝑑Ω

= 𝑃𝑃(𝑞𝑞)𝑆𝑆(𝑞𝑞)         (1) 

where 𝑃𝑃(𝑞𝑞) is the spherical form factor of the SiO2 nanoparticles, 𝑆𝑆(𝑞𝑞) is the ZP 

structure factor given by 

𝑆𝑆(𝑞𝑞) = 𝑁𝑁 �1 + 𝑛𝑛 ∫ 𝑔𝑔(𝑟𝑟) sin𝑞𝑞𝑞𝑞
𝑞𝑞𝑞𝑞

4𝜋𝜋𝑟𝑟2𝑑𝑑𝑟𝑟∞
0 �          (2) 

where 𝑁𝑁 is the total number of the SiO2 nanoparticles in the infinitely large PMMA 

space, 𝑛𝑛 = 𝑁𝑁/𝑉𝑉𝑖𝑖𝑞𝑞 with 𝑉𝑉𝑖𝑖𝑞𝑞 being the irradiated volume with the incident beam, and 

𝑔𝑔(𝑟𝑟) is the radial distribution function of the SiO2 nanoparticles. Since 𝑔𝑔(𝑟𝑟) − 1 =

ℎ(𝑟𝑟), where ℎ(𝑟𝑟) is the total correlation function,44 eq (2) can be rewritten as 

𝑆𝑆(𝑞𝑞) = 𝑁𝑁[𝜋𝜋3𝑛𝑛𝑛𝑛(𝑞𝑞) + 𝑆𝑆𝑍𝑍𝑍𝑍(𝑞𝑞)]          (3) 

and 

𝑆𝑆𝑍𝑍𝑍𝑍(𝑞𝑞) = 1 + 𝑛𝑛 ∫ ℎ(𝑟𝑟) sin𝑞𝑞𝑞𝑞
𝑞𝑞𝑞𝑞

4𝜋𝜋𝑟𝑟2𝑑𝑑𝑟𝑟∞
0          (4) 

where 𝑛𝑛(𝑞𝑞) is the Dirac’s delta function. ℎ(𝑟𝑟) can be further expressed in terms of 

the direct correlation function 𝐶𝐶(𝑟𝑟)  via the Ornstein-Zernike (OZ) equation,44 

ℎ(𝑟𝑟) = 𝐶𝐶(𝑟𝑟) + 𝑛𝑛𝐶𝐶(𝑟𝑟) ∗ ℎ(𝑟𝑟), and its Fourier transform gives 

ℎ(𝑞𝑞) = 𝐶𝐶(𝑞𝑞) + 𝑛𝑛𝐶𝐶(𝑞𝑞) ℎ(𝑞𝑞)         (5) 
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where 

ℎ(𝑞𝑞) ≡ ∫ ℎ(𝑟𝑟) sin𝑞𝑞𝑞𝑞
𝑞𝑞𝑞𝑞

4𝜋𝜋𝑟𝑟2𝑑𝑑𝑟𝑟∞
0          (6) 

𝐶𝐶(𝑞𝑞) ≡ ∫ 𝐶𝐶(𝑟𝑟) sin𝑞𝑞𝑞𝑞
𝑞𝑞𝑞𝑞

4𝜋𝜋𝑟𝑟2𝑑𝑑𝑟𝑟∞
0          (7) 

Thus, substituting eq (5) into eq (4) leads to 

𝑆𝑆𝑍𝑍𝑍𝑍(𝑞𝑞) = 1
1−𝑛𝑛𝑛𝑛(𝑞𝑞)

         (8) 

In the case of the hard-sphere potential with the Percus-Yevick (PY) closure 

(hard-sphere model) for the polydisperse SiO2 nanoparticles:42 

Considering the scattering theory based on the Percus-Yevick (PY) equation 

given by45 

𝐶𝐶(𝑟𝑟) = 𝑔𝑔(𝑟𝑟){1 − exp [𝑢𝑢(𝑟𝑟)/𝑘𝑘𝐵𝐵𝑇𝑇]}         (9) 

where 𝑢𝑢(𝑟𝑟) is the potential energy for the interparticle interaction and 𝑘𝑘𝐵𝐵 is the 

Boltzmann constant, the relationship among 𝐶𝐶(𝑟𝑟), 𝑔𝑔(𝑟𝑟) and 𝑢𝑢(𝑟𝑟) in eq (9) can be 

applied for computing the hard-core repulsive potential between SiO2 nanoparticles. 

The analytical solution for 𝐶𝐶(𝑟𝑟) has been solved by Wertheim,46 leading to 𝑢𝑢(𝑟𝑟) 

given by 

𝑢𝑢(𝑟𝑟) = �
+∞,         for 𝑟𝑟 < 2𝑅𝑅p
0,              for 𝑟𝑟 ≥ 2𝑅𝑅p

         (10) 

where 𝑅𝑅p is the effective radius of the sphere (which hereafter denotes the effective 

radius of the SiO2 nanoparticles). The result for 𝐶𝐶(𝑟𝑟) is given by 

𝐶𝐶(𝑟𝑟) = �−(𝛼𝛼 + 𝛽𝛽𝛽𝛽 + 𝛾𝛾𝛽𝛽3)/(1 − 𝜙𝜙)4,         for 𝛽𝛽 ≤ 1
0,                                                          for 𝛽𝛽 > 1

         (11) 
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where 𝛽𝛽 ≡ 𝑟𝑟/(2𝑅𝑅p)  denotes the reduced distance and 𝜙𝜙 ≡ 𝑛𝑛(4𝜋𝜋𝑅𝑅p
3/3)  is the 

effective volume fraction. The coefficients 𝛼𝛼, 𝛽𝛽 and 𝛾𝛾 are given by (1 + 2𝜙𝜙)2, 

−6𝜙𝜙 �(1 + �𝜙𝜙
2
�)�

2
 and (1

2
)𝜙𝜙(1 + 2𝜙𝜙)2, respectively. The Fourier transform of 𝐶𝐶(𝑟𝑟) 

gives 𝐶𝐶(𝑞𝑞) which is evaluated to give 𝑆𝑆𝑍𝑍𝑍𝑍(𝑞𝑞) in eq (8),47 thus leading to 

𝑆𝑆𝑍𝑍𝑍𝑍(𝑞𝑞) = [1 − 𝑛𝑛𝐶𝐶(𝑞𝑞)]−1 = {1 + 24𝜙𝜙[𝐺𝐺(𝐴𝐴)/𝐴𝐴]}−1        (12) 

where 

        𝐺𝐺(𝐴𝐴) =   
𝛼𝛼
𝐴𝐴2

(sin𝐴𝐴 − 𝐴𝐴 cos𝐴𝐴) +
𝛽𝛽
𝐴𝐴3

[2𝐴𝐴 sin𝐴𝐴 + (2 − 𝐴𝐴2) cos𝐴𝐴 − 2]                       

 + 𝛾𝛾
𝐴𝐴5

{−𝐴𝐴4 cos𝐴𝐴 + 4[(3𝐴𝐴2 − 6) cos𝐴𝐴 + (𝐴𝐴3 − 6𝐴𝐴) sin𝐴𝐴 + 6]} 

𝐴𝐴 = 2𝑞𝑞𝑅𝑅p      (13) 

The combination of eq (1), eq (3), eq (11), eq (12), and eq (13) is the so-called 

hard-sphere model considering the hard-core potential with the PY closure. 

The spherical form factor of the SiO2 nanoparticle can be given by 

𝑃𝑃(𝑞𝑞) = ∆𝜌𝜌2𝑉𝑉p
2Φ2(𝑞𝑞𝑅𝑅p)        (14) 

and 

Φ(𝑞𝑞𝑅𝑅p) = 3(sin𝑞𝑞𝑅𝑅p−𝑞𝑞𝑅𝑅p cos𝑞𝑞𝑅𝑅p)
(𝑞𝑞𝑅𝑅p)3

        (15) 

where ∆𝜌𝜌 is the electron density difference between the SiO2 nanoparticle and the 

PMMA matrix phase and 𝑉𝑉p = 4𝜋𝜋𝑅𝑅p
3

3
. From eq (1), eq (3), eq (11), eq (12), eq (13), eq 

(14), and eq (15), 

𝑑𝑑Σ(𝑞𝑞)
𝑑𝑑Ω

= 𝑛𝑛∆𝜌𝜌2𝑉𝑉p
2Φ2(𝑞𝑞𝑅𝑅p)𝑆𝑆𝑍𝑍𝑍𝑍(𝑞𝑞)        (16) 
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Now considering the effect of the polydispersity on 𝑑𝑑Σ(𝑞𝑞)
𝑑𝑑Ω

 in eq (16), it is 

rewritten by 

𝑑𝑑Σ(𝑞𝑞)
𝑑𝑑Ω

= 𝑛𝑛∆𝜌𝜌2〈𝑉𝑉p
2Φ2(𝑞𝑞;𝑅𝑅p)𝑆𝑆𝑍𝑍𝑍𝑍�𝑞𝑞;𝑅𝑅p�〉        (17) 

where < > denotes the average with respect to the distribution of 𝑅𝑅p and 𝑆𝑆𝑍𝑍𝑍𝑍�𝑞𝑞;𝑅𝑅p� 

depends on the size distribution of 𝑅𝑅P through the radial distribution function of the 

nanoparticles. Here, the “average structure factor approximation”48 is adopted to 

introduce 𝑆𝑆𝑍𝑍𝑍𝑍�𝑞𝑞;𝑅𝑅p,av� representing the ZP structure factor for the monodisperse 

sphere having the average size 𝑅𝑅p,av, therefore, eq (17) can be rewritten as 

𝑑𝑑Σ(𝑞𝑞)
𝑑𝑑Ω

= 𝑛𝑛∆𝜌𝜌2〈𝑉𝑉p
2Φ2(𝑞𝑞;𝑅𝑅p)〉𝑆𝑆𝑍𝑍𝑍𝑍�𝑞𝑞;𝑅𝑅p,av�        (18) 

and 

〈𝑉𝑉p
2Φ2(𝑞𝑞;𝑅𝑅p)〉 = ∫ 𝑃𝑃N(𝑅𝑅p)(4𝜋𝜋𝑅𝑅p

3

3
)2Φ2(𝑞𝑞;𝑅𝑅p)∞

0 𝑑𝑑𝑅𝑅p        (19) 

𝑅𝑅p,av
3 ≡ ∫ 𝑃𝑃N(𝑅𝑅p)∞

0 𝑅𝑅p
3𝑑𝑑𝑅𝑅p        (20) 

where 𝑃𝑃N(𝑅𝑅p)  is the normalized distribution function for the number of the 

nanoparticles with 𝑅𝑅p  radius. It is assumed that 𝑃𝑃N(𝑅𝑅p)  is given by Schultz 

distribution as49 

𝑃𝑃N�𝑅𝑅p� = (𝑍𝑍 + 1)𝑍𝑍+1( 𝑅𝑅p

〈𝑅𝑅p〉
)𝑍𝑍 �

exp [−(𝑍𝑍+1)(
𝑅𝑅p
〈𝑅𝑅p〉

)]

〈𝑅𝑅p〉𝛤𝛤(𝑍𝑍+1)
�        (21) 

where 〈𝑅𝑅p〉 is the number-average radius of the nanoparticles, 𝑍𝑍 = � 1
𝑍𝑍p
2� − 1 is the 

polydispersity of the nanoparticles, 𝑃𝑃p = 𝜎𝜎p

〈𝑅𝑅p〉
 with 𝜎𝜎p

2  being the variance of the 

distribution, and 𝛤𝛤(𝑍𝑍) is the gamma function. 
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As derived above, the hard-sphere potential with the PY closure (i.e., the 

hard-sphere model) for the scattering from polydisperse SiO2 nanoparticles is given 

by eqs (17) to (21). These equations were used to carry out the model fitting for the 

SAXS profile of the PMMA/M-SiO2 nanocomoposite prepared at 0.01 wt% AIBN, as 

can be seen in Figure 6 and Figure S8. 

In the case of the screened Coulomb potential with the Mean Spherical 

Approximation (MSA) closure for the polydisperse SiO2 nanoparticles: 

However, when considering the scattering theory based on the Mean Spherical 

Approximation (MSA) equation given by50 

�
𝐶𝐶(𝑟𝑟) = −𝛽𝛽𝑢𝑢(𝑟𝑟),    for  𝑟𝑟 > 2𝑅𝑅p       
ℎ(𝑟𝑟) = −1,             for  𝑟𝑟 < 2𝑅𝑅p            (22) 

where 𝑢𝑢(𝑟𝑟) is the Coulomb interaction potential given by 

𝑢𝑢(𝑟𝑟) = 𝜋𝜋𝜀𝜀0𝜀𝜀(2𝑅𝑅p)2Ψ02
exp [−κ(𝑞𝑞−2𝑅𝑅p)]

𝑞𝑞
         (23) 

and 

Ψ0 = 𝑧𝑧
𝜋𝜋𝜀𝜀0𝜀𝜀[2+𝜅𝜅(2𝑅𝑅p)]

         (24) 

where 𝜀𝜀0 is the permittivity of free vacuum, 𝜀𝜀 is the dielectric constant, Ψ0 is the 

macroion surface interaction potential, κ is the Debye-Hückel inverse screening 

length, and 𝑧𝑧 is the charge number of the nanoparticle. The Debye-Hückel inverse 

screening length is expressed as 

𝜅𝜅 = (𝑒𝑒
2𝑧𝑧𝑛𝑛
𝑘𝑘𝐵𝐵𝑇𝑇

)
1
2        (25) 
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where 𝑒𝑒 is the electron charge and 𝑧𝑧𝑒𝑒 is the charge on the nanoparticle surface. 

Besides, the contact potential for  𝑟𝑟 = 2𝑅𝑅p is given by 

γ′ exp�−𝜅𝜅�2𝑅𝑅p�� = 𝜋𝜋𝜀𝜀0𝜀𝜀Ψ0
2

𝑘𝑘𝐵𝐵𝑇𝑇
        (26) 

The relationship among 𝐶𝐶(𝑟𝑟), ℎ(𝑟𝑟) and 𝑢𝑢(𝑟𝑟) in eq (22) can be applied for 

computing the screened Coulomb potential between SiO2 nanoparticles. On the basis 

of the MSA closure given by eq (22), the analytical solution for 𝐶𝐶(𝑟𝑟) has been 

solved,50 leading to 

𝐶𝐶(𝑟𝑟) = �
𝐴𝐴′ + 𝐵𝐵′𝛽𝛽 + 1

2
𝐴𝐴′𝜙𝜙𝛽𝛽3 + 𝑛𝑛′sinh [𝜅𝜅�2𝑅𝑅p�𝑠𝑠]

𝑠𝑠
+ 𝐹𝐹′(cosh [𝜅𝜅�2𝑅𝑅p�𝑠𝑠]−1)

𝑠𝑠
,       for 𝛽𝛽 < 1

−𝛾𝛾′exp [−𝜅𝜅�2𝑅𝑅p�𝑠𝑠]
𝑠𝑠

,                                                                                  for 𝛽𝛽 > 1
  (27) 

where the expressions for the constants 𝐴𝐴′ , 𝐵𝐵′ , 𝐶𝐶′, and 𝐹𝐹′ are too lengthy to 

reproduce here but can be found in the original literature.50 The Fourier transform of 

𝐶𝐶(𝑟𝑟) gives 𝐶𝐶(𝑞𝑞) which is evaluated to give 𝑆𝑆𝑍𝑍𝑍𝑍(𝑞𝑞) in eq (8), thereby leading to 

𝑆𝑆𝑍𝑍𝑍𝑍(𝑞𝑞) = [1 − 𝑛𝑛𝐶𝐶(𝑞𝑞)]−1 = {1 − 24𝜙𝜙[𝐺𝐺′(𝐴𝐴)]}−1        (28) 

where 
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        𝐺𝐺′(𝐴𝐴) =   
𝐴𝐴′(sin𝐴𝐴 − 𝐴𝐴 cos𝐴𝐴)

𝐴𝐴3
+
𝐵𝐵′[(2

𝐴𝐴 − 𝐴𝐴) cos𝐴𝐴 + 2 sin𝐴𝐴 − 2
𝐴𝐴]

𝐴𝐴3

+
𝜙𝜙𝐴𝐴′[24

𝐴𝐴3 + 4 �1 − 6
𝐴𝐴2� sin𝐴𝐴 − 𝐴𝐴(1 − 12

𝐴𝐴2 + 24
𝐴𝐴4) cos𝐴𝐴]

2𝐴𝐴3

+
𝐶𝐶′�𝜅𝜅�2𝑅𝑅p� cosh�𝜅𝜅�2𝑅𝑅p�� sin𝐴𝐴 − 𝐴𝐴 sinh�𝜅𝜅�2𝑅𝑅p�� cos𝐴𝐴�

𝐴𝐴�𝐴𝐴2 + [𝜅𝜅�2𝑅𝑅p�]2�

+
𝐹𝐹′�𝜅𝜅�2𝑅𝑅p� sinh�𝜅𝜅�2𝑅𝑅p�� sin𝐴𝐴 − 𝐴𝐴 cosh�𝜅𝜅�2𝑅𝑅p�� cos𝐴𝐴 − 𝐴𝐴]�

𝐴𝐴�𝐴𝐴2 + [𝜅𝜅�2𝑅𝑅p�]2�

+
𝐹𝐹′(cos𝐴𝐴 − 1)

𝐴𝐴2

−
𝛾𝛾′�𝜅𝜅�2𝑅𝑅p� sin𝐴𝐴 + 𝐴𝐴 cos𝐴𝐴�exp [−𝜅𝜅�2𝑅𝑅p�]

𝐴𝐴�𝐴𝐴2 + [𝜅𝜅�2𝑅𝑅p�]2�
                       

𝐴𝐴 = 2𝑞𝑞𝑅𝑅p       (29) 

The combination of eq (1), eq (3), eq (27), eq (28), and eq (29) is the model 

considering the screened Coulomb potential with the MSA closure. 

Again, the combination of eq (1), eq (3), eq (14), eq (15), eq (27), eq (28), and eq 

(29) leads to eq (16). Let us also consider the effect of the polydispersity on 𝑑𝑑Σ(𝑞𝑞)
𝑑𝑑Ω

 in 

eq (16) and adopt the “average structure factor approximation”,48 thus leading to eq 

(18), eq (19), and eq (20) through eq (17). In addition, it is assumed that the 

normalized distribution function for the number of the nanoparticles is given by 

Schultz distribution in eq (21).49 

As derived above, the screened Coulomb potential with the MSA closure for the 

scattering from polydisperse SiO2 nanoparticles is given by eqs (17) to (21). These 

equations were used to carry out the model fitting for the SAXS profile of the aqueous 
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dispersion of 15.5 wt% SiO2 nanoparticles, as can be seen in Figure 2. 

Polydisperse spherical form factor: 

It is noted that the spherical form factor of the SiO2 nanoparticle can be given by 

eq (14) and eq (15). Let us consider the effect of the polydispersity on 𝑃𝑃(𝑞𝑞) in eq 

(14), it is rewritten by 

𝑃𝑃(𝑞𝑞) = ∆𝜌𝜌2〈𝑉𝑉p
2Φ2(𝑞𝑞;𝑅𝑅p)〉        (30) 

where ∆𝜌𝜌 is the electron density difference between the SiO2 nanoparticle and the 

aqueous solvent. Again, it is assumed that the normalized distribution function for the 

number of the nanoparticles is given by Schultz distribution in eq (21).49 Therefore, 

the polydisperse spherical form factor for the scattering from polydisperse SiO2 

nanoparticles is given by eq (30). This equation was used to carry out the model 

fitting for the SAXS profile of the aqueous dispersion of 0.1 wt% SiO2 nanoparticles, 

as can be seen in Figure 1. 

Polydisperse core-shell spherical form factor: 

The core-shell spherical form factor of the M-SiO2 nanoparticles can be given 

by51 

𝑃𝑃(𝑞𝑞) = 1
𝑉𝑉p+s

Φ2(𝑞𝑞𝑅𝑅p, 𝑞𝑞𝑅𝑅p+s)        (31) 

and 

Φ(𝑞𝑞𝑅𝑅p, 𝑞𝑞𝑅𝑅p+s) = 3𝑉𝑉p(𝜌𝜌p−𝜌𝜌s)𝑗𝑗1(𝑞𝑞𝑅𝑅p)
𝑞𝑞𝑅𝑅p

+ 3𝑉𝑉s(𝜌𝜌s−𝜌𝜌solv)𝑗𝑗2(𝑞𝑞𝑅𝑅p+s)
𝑞𝑞𝑅𝑅p+s

        (32) 
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𝑗𝑗1�𝑞𝑞𝑅𝑅p� = sin(𝑞𝑞𝑅𝑅p)−𝑞𝑞𝑅𝑅p cos(𝑞𝑞𝑅𝑅p)
(𝑞𝑞𝑅𝑅p)2

         (33) 

𝑗𝑗2�𝑞𝑞𝑅𝑅p+s� = sin(𝑞𝑞𝑅𝑅p+s)−𝑞𝑞𝑅𝑅p+s cos(𝑞𝑞𝑅𝑅p+s)
(𝑞𝑞𝑅𝑅p+s)2

         (34) 

where 𝑅𝑅p+s = 𝑅𝑅p + 𝑡𝑡s with 𝑡𝑡s being the MSMA shell thickness, 𝑉𝑉p+s = 4𝜋𝜋(𝑅𝑅p+s)3

3
, 

 𝑉𝑉s is the volume of the MSMA shell, (𝜌𝜌p − 𝜌𝜌s) is the electron density difference 

between the SiO2 nanoparticle and the MSMA silane, and (𝜌𝜌s − 𝜌𝜌solv) is the electron 

density difference between the MSMA silane and the MMA monomer. Let us consider 

the effect of the polydispersity on 𝑃𝑃(𝑞𝑞) in eq (31), and eq (31) is rewritten by 

𝑃𝑃(𝑞𝑞) = 〈 1
𝑉𝑉p+s

Φ2(𝑞𝑞;𝑅𝑅p, 𝑞𝑞;𝑅𝑅p+s)〉        (35) 

where < > denotes the average with respect to the distribution of 𝑅𝑅p while 𝑡𝑡s is held 

constant. It is again assumed that the normalized distribution function for the number 

of the nanoparticles is given by Schultz distribution in eq (21).49 Consequently, the 

polydisperse core-shell spherical form factor for the scattering from polydisperse 

M-SiO2 nanoparticles is given by eq (35). This equation was used to carry out the 

model fitting for the SAXS profile of the MMA dispersion of 15.5 wt% M-SiO2 

nanoparticles, as can be seen in Figure 2. 
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Figure S1. TGA curve (conducted in an oxidative environment of air) of the M-SiO2 

nanoparticles (see the curve labelled by M-SiO2_after reflux), in which the weight 

percentage of the tethered MSMA silanes on each M-SiO2 nanoparticle was about 

27.9 wt% (= 97.189 wt%−70.108 wt%
97.189 wt%

× 100 wt%) and that of SiO2 was about 72.1 wt%. 
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Figure S2. FTIR spectrum of the M-SiO2 nanoparticles, in which “C=O (at 1720 

cm-1)”, “C=C (at 1635 cm-1)”, “CH2 (at 1453 cm-1)”, “CH3 (at 1453 and 1377 cm-1)” 

and “Si-O-C (at 1105 cm-1)” denote the signals of bands from the functional groups in 

[3-(methacryloyloxy)propyl]trimethoxysilane. 
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Figure S3. TGA curve (conducted in an oxidative environment of air) of the 

PMMA/M-SiO2 nanocomposite collected after the nanocomposite has been 

dehydrated at 100 oC for 3 h. The weight percentage of the residual SiO2 

nanoparticles was ca. 11 ~ 12 wt%. 
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Figure S4. SAXS profile (with the reliable qmin down to 0.0024 Å-1) of the 

PMMA/M-SiO2 nanocomposite collected after the precursor solution, i.e., 15.5 wt% 

M-SiO2 dispersed in MMA medium with 0.01 wt% AIBN initiator, has been 

pre-polymerized at 75 oC for 3 h followed by a polymerization at 100 oC for 3 h. 
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Figure S5. SAXS profiles of the PMMA/M-SiO2 nanocomposites collected after the 

precursor solution (i.e., 15.5 wt% M-SiO2 dispersed in MMA medium with 0.1 wt% 

AIBN) has been respectively pre-polymerized at the different prescribed temperatures 

for 3 h followed by a polymerization at 100 oC for 3 h. 

 
 
 
 
 
 
 



 17 

 

Figure S6. 3D TEM images of the nanoparticle dispersion in the PMMA/M-SiO2 

nanocomposites prepared at (a) 0.01 wt% AIBN and (b) 1.0 wt% AIBN, respectively. 

The SiO2 nanoparticles appear as the bright region in the image while PMMA matrix 

corresponds to the dark region. 
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Figure S7. GPC curves of the neat PMMA polymerized with the addition of (a) 0.01 

wt% AIBN (Mw = 1179 kg/mol, Mw/Mn = 2.52), (b) 0.1 wt% AIBN (Mw = 272 kg/mol, 

Mw/Mn = 1.76), and (c) 1.0 wt% AIBN (Mw = 73 kg/mol, Mw/Mn = 1.24) (solvent: 

tetrahydrofuran; temperature: 50 oC). 
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Figure S8. The fits of the SAXS profiles of the PMMA/M-SiO2 nanocomposites 

prepared at 0.01, 0.1 and 1.0 wt% AIBN by PY structure factor (the red solid curves) 

to resolve the repulsive interaction peak associated with the hard-sphere potential 

between M-SiO2 nanoparticles within the cluster. The q-2.7, q-0.9 or q-0.4 power law 

dependence of the scattering intensities in the low-q region for the nanocomposites 

prepared at 0.01, 0.1 and 1.0 wt% AIBN are represented by the blue dashed line, blue 

dashed dot line and blue solid line, respectively. 


