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Supplement A: Proof of Theorem 1 from Section 3.3

We are interested in the variance of

S(t) =
d∑

k=1

1 (|Zk| ≥ t) ,

Z ∼ MVN (µ · Jd,Σ) ,

where the diagonal elements of Σ are all 1. The variance can be decomposed as

Var {S(t)} = dλ(1− λ) + 2
∑

1≤k<l≤d

{
Pr (|Zk|, |Zl| ≥ t)− λ2

}
,

λ = 1− {Φ (t− µ)− Φ(−t− µ)} .

The summation can be written as

2
∑

1≤k<l≤d

{
Pr (|Zk|, |Zl| ≥ t)− λ2

}
= 2

∑
1≤k<l≤d

Pr (Zk, Zl ≥ t)

+2
∑

1≤k<l≤d
Pr (Zk, Zl ≤ −t)

+2
∑

1≤k<l≤d
Pr (Zk ≥ t, Zl ≤ −t)

+2
∑

1≤k<l≤d
Pr (Zk ≤ −t, Zl ≥ t)

−d(d− 1)λ2.

Each of the four probabilities above can be reexpressed using the standard Mehler kernel for

the bivariate normal distribution. For example, the first probability is:

2
∑

1≤k<l≤d

Pr (Zk, Zl ≥ t)

= 2
∑

1≤k<l≤d

ˆ ∞
t

ˆ ∞
t

1

2π
√

1− ρ2k,l
exp

[
− 1

2(1− ρ2k,l)
{

(zk − µ)2 − 2ρk,l(zk − µ)(zl − µ) + (zl − µ)2
}]

dzkdzl,

= 2
∑

1≤k<l≤d

ˆ ∞
t

ˆ ∞
t

φ(zk − µ)φ(zl − µ)

∞∑
r=0

ρrk,l
r!
Hr(zk − µ)Hr(zl − µ)dzkdzl,

= 2
∑

1≤k<l≤d

{
Φ̄(t− µ)2 +

ˆ ∞
t

ˆ ∞
t

φ(zk − µ)φ(zl − µ)

∞∑
r=1

ρrk,l
r!
Hr(zk − µ)Hr(zl − µ)dzkdzl

}
,

= 2
∑

1≤k<l≤d

{
Φ̄(t− µ)2 + φ(t− µ)2

∞∑
r=1

ρrk,l
r!
Hr−1(t− µ)2

}
,
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= d(d− 1)Φ̄(t− µ)2 + 2φ(t− µ)2
∞∑
r=1

1

r!
Hr−1(t− µ)2

 ∑
1≤k<l≤d

ρrk,l

 ,

= d(d− 1)Φ̄(t− µ)2 + 2φ(t− µ)2
∞∑
r=1

1

r!
Hr−1(t− µ)2

(
d(d− 1)

2
ρ̄r
)
,

= d(d− 1)

{
Φ̄(t− µ)2 + φ(t− µ)2

∞∑
r=1

ρ̄r

r!
Hr−1(t− µ)2

}
,

ρ̄r =
2

d(d− 1)

∑
1≤k<l≤d

ρrk,l.

Here φ(x) represents the density function of N(0, 1) distribution and ρk,l is the (k, l) element

of Σ. We skip the similar derivation for the other three probabilities and give only the final

expressions:

2
∑

1≤k<l≤d

Pr (Zk, Zl ≤ −t) = d(d− 1)

{
Φ(−t− µ)2 + φ(−t− µ)2

∞∑
r=1

ρ̄r

r!
Hr−1(−t− µ)2

}
,

2
∑

1≤k<l≤d

Pr (Zk ≤ −t, Zl ≥ t) = d(d− 1)
{

Φ(−t− µ)Φ̄(t− µ)
}

−d(d− 1)

{
φ(−t− µ)φ(t− µ)

∞∑
r=1

ρ̄r

r!
Hr−1(−t− µ)Hr−1(t− µ)

}
,

= 2
∑

1≤k<l≤d

Pr (Zk ≥ t, Zl ≤ −t) .

So in total we have

2
∑

1≤k<l≤d

{
Pr (|Zk|, |Zl| ≥ t)− λ2

}
= d(d− 1)

{
Φ̄(t− µ)2 + φ(t− µ)2

∞∑
r=1

ρ̄r

r!
Hr−1(t− µ)2

}

+d(d− 1)

{
Φ(−t− µ)2 + φ(−t− µ)2

∞∑
r=1

ρ̄r

r!
Hr−1(−t− µ)2

}
+2d(d− 1)

{
Φ(−t− µ)Φ̄(t− µ)

}
−2d(d− 1)

{
φ(−t− µ)φ(t− µ)

∞∑
r=1

ρ̄r

r!
Hr−1(−t− µ)Hr−1(t− µ)

}
−d(d− 1)

{
Φ̄ (t− µ) + Φ(−t− µ)

}2
,

= d(d− 1)

{
φ(t− µ)2

∞∑
r=1

ρ̄r

r!
Hr−1(t− µ)2

}

+d(d− 1)

{
φ(−t− µ)2

∞∑
r=1

ρ̄r

r!
Hr−1(−t− µ)2

}

−2d(d− 1)

{
φ(−t− µ)φ(t− µ)

∞∑
r=1

ρ̄r

r!
Hr−1(−t− µ)Hr−1(t− µ)

}
.

Put it all back together for the result given in the theorem.
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Supplement B: Exact p-value calculation using equation
(5) from Section 3.4.

We are interested in calculating the probability

Pr (Gd ≥ g) = 1− Pr
{
∀j = 1, 2, ..., d : |Z|(j) ≤ bj

∣∣∣∣Z ∼MVN(0,Σ)
}
.

Using the law of total probability, our quantity of interest is

Pr
{
∀j = 1, 2, ..., d : |Z|(j) ≤ bj

∣∣∣∣Z ∼MVN(0,Σ)
}

=
∑
a∈A

Pr
{
∀j = 1, 2, ..., d : |Z|(j) ≤ bj, |Z|(j) = |Zaj |

∣∣∣∣Z ∼MVN(0,Σ)
}
,

where a = (a1, a2, ..., ad) and A is the set of all d! possible permutations of the integers from

1 to d. Thus the p-value can be expressed as

Pr (Gd ≥ g)

= 1−
∑
a∈A

Pr
{

0 ≤ |Za1| ≤ b1, |Za1| ≤ |Za2| ≤ b2, ...., |Zad−1
| ≤ |Zad| ≤ bd

∣∣∣∣Z ∼MVN(0,Σ)
}
.

At this point it is apparent that we will need some sort of distribution function for Y =

(Y1, Y2, ..., Yd) = (|Z1|, |Z2|, ..., |Zd|), where Y is the result of applying the absolute value

operator on every element of Z. Y is also known as the multivariate half-normal distribution.

If Z ∼MVN(0,Σ), then the probability density function of Y can be written as

fY(y) =
∑
s∈S

(2π)−
d
2 |Σs|−

1
2 exp

{
−1

2
yTΣ−1s y

}
, (S.1)

S = {(δ1, ..., δd) : δj = ±1∀j = 1, 2, ..., d} ,

Λs = {diag (s)},

Σs = ΛsΣΛs.

Note that there are 2d elements in S. With the use of (S.1), the p-value can be expressed as

a d-dimensional integral:

Pr (G ≥ g) = 1−
∑
a∈A

∑
s∈S

ˆ b1

0

ˆ b2

Y1

...

ˆ bd

Yd−1

(2π)−
d
2 |Σ(a)

s |−
1
2 exp

{
−1

2
yT

(
Σ(a)

s

)−1
y
}
dYd...dY1.

(S.2)
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By the use of Σ(a)
s we mean the variance matrix that is permuted to account for the ordering

a. It can be defined as:

Σ(a)
s = ΛsP

(a)ΣP(a)TΛs,

P(a) =


eT
a1

eT
a2

.

.
eT
ad

 ,

where ej denotes the d × 1 vector with a 1 in the jth position and 0 everywhere else.

Although equation (S.2) appears to be calculable through many calls to a multivariate normal

distribution solver, the lower bounds are functions of variables in the integration, which is

not a feature supported by many statistical computing packages. To put the expression into

a form more accessible for computation, we can reinterpret the d-dimensional integral:

ˆ b1

0

ˆ b2

Y1

...

ˆ bd

Yd−1

(2π)−
d
2 |Σ(a)

s |−
1
2 exp

{
−1

2
yT
(
Σ(a)

s

)−1
y

}
dYd...dY1

= Pr
{

0 ≤ Y1 ≤ b1, Y1 ≤ Y2 ≤ b2, ..., Yd−1 ≤ Yd ≤ bd
∣∣∣∣Y ∼MVN

(
0,Σ(a)

s

)}
,

= Pr
{

0 ≤ Y1 ≤ b1, Y2 ≤ b2, ..., Yd ≤ bd, Y2 − Y1 ≥ 0, ..., Yd − Yd−1 ≥ 0

∣∣∣∣Y ∼MVN
(
0,Σ(a)

s

)}
.(S.3)

To be clear, equation (S.3) is meant to show how the integral of equation (S.2) can be viewed

as a simpler probability if we reinterpret Y as possessing a multivariate normal distribution

instead of its true multivariate half-normal distribution. Equation (S.3) is simpler because

the bounds are all constants, which is a form more amenable to most statistical software.

Our final step to simplify the quantity for computation is to introduce the vector T =

(T1, T2, ..., T2d−1) so that

Pr
{

0 ≤ Y1 ≤ b1, Y2 ≤ b2, ..., Yd ≤ bd, Y2 − Y1 ≥ 0, ..., Yd − Yd−1 ≥ 0

∣∣∣∣Y ∼MVN(0,Σ(a)
s )

}
= Pr

{
0 ≤ T1 ≤ b1, T2 ≤ b2, ..., Td ≤ bd, Td+1 ≥ 0, ..., T2d−1 ≥ 0

∣∣∣∣T ∼MVN
(
0(2d−1)×1,∆dΣ

(a)
s ∆T

d

)}
,

∆d =

(
Id×d
D

)
(2d−1)×d

,
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D =


−1 1

−1 1
. .
. .
−1 1


(d−1)×d

.

The final p-value is given by

Pr (Gd ≥ g) = 1−
∑
a∈A

∑
s∈S

Pr (L ≤ Ta,s ≤ U) , (S.4)

Ta,s ∼ MVN
(
0(2d−1)×1,∆dΣ

(a)
s ∆T

d

)
,

L = (0,−∞, ...,−∞︸ ︷︷ ︸
d−1

, 0, ..., 0︸ ︷︷ ︸
d−1

),

U = (b1, b2, ..., bd,∞, ...,∞︸ ︷︷ ︸
d−1

).

Equation (S.4) gives us the integral bounds as constants, at a cost of increasing the dimension

of the multivariate normal distribution of interest from d to 2d − 1. This final expression

can be used in any number of computing packages to produce the desired probability.

Supplement C: Accuracy of p-value calculation from Sec-
tion 3.4.

Here we examine the accuracy of the p-value calculation given in Section 3.4. In particular,

the following results are designed to complement and extend the Type I error simulation

reported in Table 1. Table 1 showed that the analytical GBJ p-value calculation protects

the size of the test under the null, and in this analysis we further demonstrate that the

analytical p-values are very close to p-values obtained through simulation.

We focus on the low LD FGFR2 region, the high LD FGFR2 region, and four genes of

varying size chosen at random from chromosome 5. For each of these regions separately, we

first carry out 106 simulations under the null (with the parameters used to construct Table

1) and find the observed value of the GBJ statistic that would correspond to the ten simu-

lated p-values (0.001, 0.002,..., 0.01). We then calculate the analytical p-value of each GBJ
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value taken from the above procedure and compare the difference between the analytical

and simulated p-values. For example, an observed GBJ statistic of 6.934065 corresponds to

the simulated p-value of 0.001 for the high LD FGFR2 region. Calculating the analytical

p-value of observing 6.934065 for this region produces p = 0.00099.

We then move further into the tail and repeat the analysis for the ten smaller p-values

(1 · 10−5, 2 · 10−5,..., 1 · 10−4). Full results are shown in Figures S1 and S2 below. We see

that generally the analytical p-values are very close to the simulated p-values, with some

differences possibly attributable to Monte Carlo error. The analytical p-values trend slightly

more conservative in Figure S1, which matches the results of Table 1, where the analytical

p-value calculation is slightly conservative at nominal levels α = 0.01 and α = 0.001.

Supplementary Figure 1: Accuracy of analytical p-value calculation. For each region, we
find the observed GBJ statistics that would produce an empirical p-value of (0.001, 0.002,...,
0.01). We then calculate the analytical p-values of those observed GBJ statistics and plot
them against the simulation p-values. Solid line with no points is the x = y line.
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Supplementary Figure 2: Accuracy of analytical p-value calculation. For each region, we find
the observed GBJ statistics that would produce an empirical p-value of (1 · 10−5, 2 · 10−5,...,
1 ·10−4). We then calculate the analytical p-values of those observed GBJ statistics and plot
them against the simulation p-values. Solid line with no points is the x = y line.

Supplement D: Rejection region plots on p-value scale
from Section 4.

Here we reproduce the rejection region plots of Figure 1 on the p-value scale. At each integer

j on the x-axis, the y-axis gives the rejection boundary in terms of the jth smallest p-value.

Certain readers may prefer to interpret boundary differences in terms of orders of magnitude

on the p-value scale.
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20 SNPs, 50% correlated, α=0.01
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100 SNPs, 50% correlated, α=0.01
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20 SNPs, 75% correlated, α=0.01
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100 SNPs, 75% correlated, α=0.01
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Supplementary Figure 3: Rejection region of Berk-Jones, Generalized Berk-Jones, Higher
Criticism, and Generalized Higher Criticism tests, plotted according to the order statistics
of the p-values. At each point j on the x-axis, if the jth smallest p-value is less than the
boundary point for a specific test at j, then we would reject the null using that test at level
α = 0.01. The difference between BJ and GBJ becomes much more pronounced as both the
size of the set and the amount of correlation increase.

Supplement E: Complete simulation parameters from Sec-
tion 5.

Below we give the effect size of the causal SNPs for the simulations using SNPs with pre-

determined correlation structures:
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Supplementary Table 1: Effect sizes βj for each set of simulations in Figures 2 and 3. For a
given number of causal SNPs, all causal SNPs have the same effect size.

Correlation Number of Causal SNPs
ρ1 ρ2 ρ3 1 2 3 4 5 6 7 8 9 10
0.0 0.0 0.0 0.120 0.100 0.090 0.090 0.090 0.090 0.090 0.090 0.090 0.090
0.3 0.0 0.0 0.110 0.080 0.060 0.050 0.040 0.040 0.035 0.030 0.030 0.030
0.3 0.0 0.3 0.110 0.090 0.060 0.050 0.050 0.040 0.030 0.030 0.030 0.030
0.3 0.3 0.3 0.100 0.070 0.050 0.040 0.035 0.030 0.025 0.025 0.025 0.025

Next we give the effect size of the causal SNPs for simulations using HAPGEN2-generated

random blocks of 40 SNPs on chromosome 5:

Supplementary Table 2: Effect sizes βj for simulation with HAPGEN2-generated genotypes
using random blocks of 40 SNPs on chromosome 5 (Figure 4). For a given number of causal
SNPs, all causal SNPs have the same effect size.

Number of Causal SNPs
1 2 3 4 5 6 7 8

βj 0.15 0.14 0.12 0.11 0.11 0.10 0.10 0.10

Supplement F: Power benchmarks from Section 5.

Below we give the number of SNPs necessary to produce a power of at least 80% for a

constant effect size of βj = 0.1 when testing at α = 0.01:

Supplementary Table 3: Minimum number of SNPs necessary to produce a power of at least
80% for a constant effect size of βj = 0.1.

Correlation Test
ρ1 ρ2 ρ3 GBJ GHC minP SKAT OMNI
0.0 0.0 0.0 7 8 9 7 7
0.3 0.0 0.0 3 3 3 3 3
0.3 0.0 0.3 3 3 3 5 3
0.3 0.3 0.3 3 3 3 3 3
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Next we give the number of SNPs necessary to produce a power of at least 80% for a constant

effect size of βj = 0.15 when testing at α = 0.01:

Supplementary Table 4: Minimum number of SNPs necessary to produce a power of at least
80% for a constant effect size of βj = 0.15.

Correlation Test
ρ1 ρ2 ρ3 GBJ GHC minP SKAT OMNI

1 0.0 0.0 0.0 3 2 2 3 2
2 0.3 0.0 0.0 2 2 2 2 2
3 0.3 0.0 0.3 2 2 2 3 2
4 0.3 0.3 0.3 2 2 2 2 2

Supplement G: Supplemental power simulations from Sec-
tion 6.

Here we present power simulations similar to Figure 4, except we keep the effect size constant

at βj = 0.1. We consider three different sample sizes, n = 1000, n = 2000, and n = 4000,

and we test at α = 3.34 × 10−6. When there are four causal SNPs, GBJ has power of

approximately 23%, 53%, and 74% at n = 1000, 2000, and 4000, respectively.
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40 SNPs on Chr5, All Data, 1000 subjects
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Supplementary Figure 4: Power simulation of Figure 4 except with constant effect size of
β = 0.1 and n = 1000.

40 SNPs on Chr5, All Data, 2000 subjects

1 3 5 7

0
0
.2

0
.4

0
.6

0
.8

1

P
o
w

e
r

Number of causal SNPs

GBJ

GHC

MinP

SKAT

OMNI

Supplementary Figure 5: Power simulation of Figure 4 except with constant effect size of
β = 0.1 and n = 2000.
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40 SNPs on Chr5, All Data, 4000 subjects
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Supplementary Figure 6: Power simulation of Figure 4 except with constant effect size of
β = 0.1 and n = 4000.

Supplement H: Empirical distributions of p-values in CGEMS
analysis from Section 6.

Here we use QQ-plots to show the empirical distribution of p-values for each test used in

the CGEMS analysis. The vast majority of p-values from all tests lie on the 45-degree line,

appearing to indicate that each method is indeed producing valid p-values distributed as

Uniform(0,1) random variables under the null. We also stratify the QQ-plots by the four

quartiles of gene size. The QQ-plot for the largest quartiles seems to show slightly more

signals in the tail across all methods. This behavior might be expected since large genes

contain more SNPs and are thus more likely to possess a significant SNP simply by chance.
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Supplementary Figure 7: QQ-plots showing empirical distribution of p-values across all genes
in CGEMS analysis.
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Supplementary Figure 8: QQ-plots showing empirical distribution of p-values stratified by
four quartiles of gene size in CGEMS analysis.
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Supplement I: Evaluation of summary statistic correlation
approximation in CGEMS analysis from Section 6.

In Section 2.2 we presented an estimate for the correlation structure of precomputed sum-

mary statistics. Below we present a small demonstration of the accuracy of this approach

using the CGEMS data. We estimate the correlation structure of the top ten genes in the

CGEMS analysis using both the individual-level data (as in Section 2.1) and also acting as

if the individual-level data were not available (as in Section 2.2). Specifically, in the second

approach we mimic a practical analysis of summary data by using reference genotypes from

the CEU population of the 1000 Genomes Project as well as the first three principal compo-

nents calculated from this data. Denote the two estimated correlation matrices by Σ̂CGEMS

and Σ̂1000G.

For a d × d matrix A = Σ̂CGEMS − Σ̂1000G with (i, j)th element aij, let the Frobenius

norm be given by ||A||F =
√∑

i,j a
2
ij and let the matrix `1 norm be given by ||A||L1 =

max1≤j≤d
∑d

i=1 |aij|. We report both norms as well as the median values of |aij| and aij

below. We also note that p-values calculated using the method of Section 2.2 differed from

those calculated using the full data by a median of only 3.15× 10−5 over these ten genes.

Supplementary Table 5: Difference between correlation matrices estimated with original
CGEMS data and those estimated using reference data from 1000 Genomes.

Gene Frobenius Matrix `1 Median |aij| Median aij
FGFR2 2.21 3.28 0.04 -0.01
CNGA3 1.96 3.19 0.04 0.01
PTCD3 0.59 0.82 0.03 0.01
POLR1A 1.96 3.55 0.05 0.02
ZNF263 0.03 0.02 0.00 0.00
VWA3B 2.13 3.04 0.03 0.00
TBK1 1.13 1.38 0.06 0.01
ABCA1 3.49 3.76 0.04 0.00
MMRN1 0.39 0.42 0.03 -0.00
TIGD7 0.08 0.08 0.01 -0.00
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