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Abstract

This supplement contains technical details on the distributional properties of the
adaptive estimator as defined in the main paper “Data-adaptive estimation of time-
varying spectral densities”. Using the setting of empirical spectral processes (e.g.
Dahlhaus and Polonik 2009, Dahlhaus 2009), we conclude that asymptotic proper-
ties of the nonadaptive estimator carry over to the adaptive estimator under local
homogeneity.
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1 Asymptotic properties of f̃ (k)(u, λ)

The objective of this supplement is to provide some intuition on the distributional properties

of the estimator

f̃ (k)(ur, λi) = 1
Ñ(k)(r,i)

∑
(s,j)∈∈B(k)(r,i)

W̃
(k)
r,i (s, j) JT

(
us, λj

)
(1)

with the adapted kernel weights

W̃
(k)
r,i (s, j) = Kf

(λi−λj
b
(k)
f

)
Kt

(
us−ur
b
(k)
t

)
P

(k)
r,i (s, j), (2)

where Ñ (k)(r, i) =
∑

s,j W̃
(k)
r,i (s, j) and B(k)(r, i) = {(s, j) : |us− ur| < b

(k)
t,T , |λj − λi| < b

(k)
f,T }

for k = 0, . . . , kmax and where

P̃
(k)
r,i (s, j) = KP

((
f̂ (k−1)(ur, λi), f̂

(k−1)(us, λj)
))
.

We start with some necessary background on empirical spectral processes (e.g. Dahlhaus

and Polonik 2009, Dahlhaus 2009). Generally, the empirical spectral process for arbitrary

index functions φ is defined by

ET (φ) =
√
T

∫ π

−π

(
FT (φ)− F (φ)

)
,

where

F (φ) =

∫ 1

0

∫ π

−π
φ(u, λ) f(u, λ) du dλ

is the generalized spectral measure and

FT (φ) = 1
T

T∑
t=1

∫ π

−π
φ
(
t
T
, λ
)
JT ( t

T
, λ) dλ

denotes the corresponding empirical spectral measure. For particular classes of index func-

tions independent of T , a functional central limit theorem has been proved (Dahlhaus and

Polonik 2009, Theorem 2.11). Additionally, for index functions depending on T a central
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limit theorem has been derived (Dahlhaus 2009, Theorem 3.2).

Many localized statistics for non-stationary time series can be written in terms of the

empirical spectral measure. In particular, we obtain the continuous version of the non-

adaptive time-varying spectral estimator

f̂T (u, λ) =
1

C

∑
s,j

Kf

(
λ− λj
bf,T

)
Kt

(
u− s/T
bt,T

)
JT
(
s
T
, λj
)
, (3)

where λj = πj
T

for j = 1 − T, . . . , T denote the Fourier frequencies and C =
∑

s,jKf

(
(λ −

λj)/bf,T
)
Kt

(
(u− s/T )/bt,T

)
, by considering index functions

φ
(T )
u,λ(v, µ) = 1

bt,T bf,T
Kt

(
u−v
bt,T

)
Kf

(
λ−µ
bf,T

)
. (4)

Since the index functions depend on T , asymptotic normality of the estimator FT (φ
(T )
u,λ) and

its discretized version (3) follows from Theorem 3.2 and Example 4.1 of Dahlhaus (2009)

under the following additional conditions.

Assumption 1.1.

(i) The time-varying spectral density f(u, λ) is twice differentiable in u and λ with

uniformly bounded derivatives.

(ii) The bandwidths satisfy bt,T , bf,T → 0 and bt,T bf,TT � log(T )2 as T →∞,

(iii) The kernels Kt and Kf are of bounded variation with compact support. Moreover,∫
xKt(x) dx = 0 and

∫
Kt(x) dx = 1 and analogously for Kf.

In particular, we find that

bt,T bf,T var
(
ET (φ

(T )
u,λ)
)
→ 2π f 2(u, λ)κt κf.

Furthermore, estimators at different points in the time-frequency plane are asymptotically

independent.

For the adaptive estimator in (1) similar asymptotic results cannot be derived easily

since the final smoothing kernel is iteratively defined and depends on the spectral esti-

mators in previous steps through penalization and the memory step. In the following,
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we therefore provide at least heuristic arguments that under homogeneity of the spectral

density penalization has a negligible effect and hence the estimator remains consistent and

asymptotically normal.

More precisely assume that f(u, λ) = f for all u and λ and define for fixed u ∈ [0, 1]

and λ ∈ [−π, π] the functions

ψα,β = φ
(T )
u+αbt,T ,λ+βbf,T

(5)

where φ
(T )
u,λ is defined as above. Then the family of index functions F0 = {ψα,β|α, β ∈

[−1, 1]} satisfies the conditions of Theorem 2.11 of Dahlhaus and Polonik (2009). Hence

the penalty statistic ∆(f̂ (k)(u, λ), f̂ (k)(u + αbt,T , µ + βbf,T )) asymptotically has that same

distribution as
bt,T bf,T

4π κf κt f2

(
E(ψ0,0)− E(ψα,β)

)2
, (6)

where E(ψ) is a Gaussian process with mean zero and covariances

bt,T bf,T cov
(
E(ψα,β), E(ψγ,δ)

)
= 2π f 2

∫ 1/2

−1/2

∫ π

−π
Kt(α− u)Kt(γ − u)Kf(β − λ)

×
[
Kf(δ − λ) +Kf(δ + λ)

]
du dλ+O(bf,T ).

The expression shows that under the assumption of homogeneity of the time-varying spec-

trum over the local neighborhood about the point (u, λ) the distribution of the penalty

statistic does not depend on the bandwidth or the sample size but through a term of order

O(bf,T ). Moreover, the strong positive correlation of the Gaussian process E(ψ) leads to

at most weak penalization towards the borders of the local neighborhood yielding a total

smoothing kernel that differs only slightly from the non-adaptive smoothing kernel. Finally,

since E(ψ0,0) and E(ψα,β) are positively correlated, the variance of their difference can be

bounded by 2 var
(
E(ψ0,0)

)
uniformly for all α, β ∈ [−1, 1], which justifies the use of the

χ2
1-distribution for determining the cut-off point of the penalty kernel.

We note that the same covariance structure can be derived from Theorem 3.2 of

Dahlhaus (2009) by considering the index functions φ
(T )
u+αbt,T ,λ+βbf,T

directly, that is, taking

their dependence on T into account in the asymptotics. However, the result is weaker inso-
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far it does not yield convergence over the whole local neighborhood defined by α, β ∈ [−1, 1]

simultaneously. Although the above arguments based on fixed index functions indicate that

this result could be strengthened, a derivation of a functional central limit theorem in this

setting is beyond the scope of this paper.

Summarizing we find that under the assumption of homogeneity penalization does only

modify the shape of the smoothing kernel even if applied iteratively multiple times but

will keep the rates approximately the same. In contrast, in case of a non-constant spectral

density, the penalty statistic depends quadratically on the difference in levels which leads to

more severe penalization as bandwidths in time and frequency direction increase. Accord-

ingly, the resulting smoothing kernel will have in general a smaller support corresponding

to a smaller bandwidth than the one actually imposed. Nevertheless, in the setting of

locally stationary processes this effect will disappear asymptotically since the level of local

homogeneity increases as long as the bandwidths used in the iteration satisfy the conditions

in Assumption 1.1. In other words, the adaptive estimator remains consistent with rate√
Tb

(kmax)
t,T b

(kmax)
f,T since its adaptiveness only shows in finite samples. This is even true when

the dynamics of the process exhibit structural breaks and thus should be described by a

piecewise locally stationary process. In that case, penalization will be strong in the local

neighborhood of a break leading to asymmetric smoothing kernels that seem to be cut off.

Again, since the local neighborhoods (in the rescaled time-frequency plane) are shrinking

for increasing sample size, the effect will disappear but for the points along the breaks

where the time-varying spectral density is not well-defined. Examples of such processes

with structural breaks are discussed in Section 4 of the main paper, where we illustrate the

final sample behavior of the adaptive estimator by simulations.
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