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A Tables of Data Description and Prior Influence

Tables 3 and 4 give summaries of the data used in Sections 4.1, 4.2 & 4.3.

Lines (Sources) He-like OVII H-like OVIII He-like Ne IX H-like Ne X

Spectrum 21.805Å 18.969Å 13.447Å 12.135Å

Telescopes Chandra XMM-Newton Suzaku Swift

Detectors (Instruments) HETG, ACIS-S RGS, EPIC-MOS, EPIC-pn XIS XRT

Table 3: Summary of E0102 data. The first table gives the sources for two data sets, Highly

ionized Oxygen and Neon. The second table gives instruments for both data sets.
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Observatory XMM-Newton European Photon Imaging Cameras (EPIC)

Detectors (Instruments) EPIC-pn (pn), EPIC-MOS (MOS1 & MOS2)

Data Acronym 2XMM XCAL

Energy Band Hard Medium Soft Hard Medium Soft

Energy (keV) 2.5-10.0 1.5-2.5 0.5-1.5 2.5-10.0 1.5-2.5 0.5-1.5

No. Sources 41 41 42 94 103 108

Table 4: Summary of 2XMM data and XCAL data. The number of instruments is N = 3 (pn,

MOS1, MOS2) and the number of sources (M) is given in the last row for the six data sets, three

from different energy bands of 2XMM data and XCAL data respectively.

B Details of Fitting the Log-Normal Model

The following three MCMC algorithms are used for our posterior sampling.

1. Standard Gibbs Sampler: iterates the following three sets of conditional distributions,

all easily derived from (2.5):

(a) Conditioning on G and σ2, sample Bi independently for i = 1, . . . , N from

N
(
bi/τ

2
i +

∑
j∈Ji(yij + 0.5σ2

i −Gj)/σ
2
i

1/τ 2
i +

∑
j∈Ji 1/σ2

i

,
1

1/τ 2
i +

∑
j∈Ji 1/σ2

i

)
.

(b) Conditioning on B and σ2, sample Gj independently for 1 ≤ j ≤M from

N
(∑

i∈Ij(yij + 0.5σ2
i −Bi)/σ

2
i∑

i∈Ij 1/σ2
i

,
1∑

i∈Ij 1/σ2
i

)
.

(c) Conditioning on B and G, sample σ2
i independently for i = 1, . . . , N from

σ
−|Ji|−2−2α
i exp

{
−1

2

∑
j∈Ji(yij −Bi −Gj)

2 + 2β

σ2
i

− |Ji|σ
2
i

8

}
via the Metropolis-Hastings algorithm using a simple random walk proposal (Gaussian

proposal) on the log-scale, i.e., log(σ2
i ).

2. Block Gibbs Sampler: same as above except replace the two conditional steps (1a) and

(1b) by a joint draw of {B,G} from (N+M)-dimensional Gaussian with mean Ω(σ2)−1γ(σ2)

and covariance matrix Ω(σ2)−1; see (2.7) and (2.8) in Section 2.2.
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Instrument Oxygen Neon

τ = 0.025 τ = 0.05 τ = 0.025 τ = 0.05

RGS1 0.570 0.205 0.063 0.016

MOS1 0.279 0.077 0.075 0.019

MOS2 0.355 0.065 0.077 0.017

pn 0.250 0.041 0.620 0.218

ACIS-S3 0.218 0.040 0.270 0.088

ACIS-I3 0.906 0.640 0.099 0.026

HETG 0.648 0.341 0.129 0.034

XIS0 0.180 0.051 0.069 0.018

XIS1 0.298 0.078 0.071 0.019

XIS2 0.463 0.140 0.063 0.016

XIS3 0.772 0.364 0.062 0.018

XRT-WT 0.726 0.278 0.154 0.026

XRT-PC 0.934 0.235 0.906 0.017

Table 5: Proportion of prior influence, as defined by 1−Wi (of (2.11)), for E0102 data in Section 4.1.

3. Hamiltonian Monte Carlo (HMC): samples the entire vector θ = {Bi, Gj, σ
2
i } through

the non-U-turn HMC sampler (Hoffman and Gelman, 2014), implemented with the STAN

package. Here we give a brief description of HMC; see Neal (2011) for more details. Let

π(θ) denote the (unnormalized) joint posterior θ, as given by (2.5). Define potential energy

as U(θ) = − log π(θ) and kinetic energy as k(p) = p>M−1p, where M is a symmet-

ric positive-definite matrix, thus the total energy is H(θ,p) = U(θ) + k(p). We can obtain

samples of π(θ) by sampling from the target density exp[−H(θ,p)] ∝ π(θ) exp(−p>M−1p),

which is essentially a data-augmentation technique (Tanner and Wong, 1987). By defining

the potential energy and kinetic energy, we can propose MCMC moves according to the

Hamiltonian dynamics, which explores the parameter space more efficiently by taking bigger

and less correlated moves, as opposed to random walk Metropolis-Hastings or a Gibbs sam-

pler. In practice, we use the leapfrog move to approximate the Hamiltonian dynamics. Due
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Data Name τi = 0.025 τi = 0.05

pn mos1 mos2 pn mos1 mos2

hard band 2XMM 0.093 0.075 0.082 0.025 0.020 0.022

medium band 2XMM 0.250 0.216 0.222 0.076 0.065 0.067

soft band 2XMM 0.093 0.075 0.069 0.025 0.020 0.018

hard band XCAL 0.010 0.019 0.031 0.003 0.005 0.008

medium band XCAL 0.023 0.016 0.028 0.006 0.004 0.007

soft band XCAL 0.021 0.011 0.007 0.005 0.003 0.002

Table 6: Proportion of prior influence for data used in the analysis in Sections 4.2 and 4.3.

to the energy-preserving property of Hamiltonian dynamics, the acceptance rate of the re-

sulting HMC is approximately 1. It is not exactly 1 because we use the (discretized) leapfrog

moves to approximate (continuous) Hamiltonian dynamics. The tuning parameters of the

HMC algorithm include the covariance matrix M, the leapfrog step size ε, and the number

of leapfrog steps L. These are all self-tuned in the STAN package.

We compare the performance of these three algorithms using auto-correlation plots of the

posterior samples and the effective sample size, in both the simulated and real data examples.

Not surprisingly, the Gibbs sampler converges very slowly relative to the other two algorithms.

We are able to cross check our results by comparing the samples obtained with the block Gibbs

sampler and HMC – they give practically the same posterior distributions.

C Proprieties of the Posterior Distribution

C.1 Propriety of Posterior

Theorem 1. Under the prior specifications for {Bi, Gj, σ
2
i : 1 ≤ i ≤ N, 1 ≤ j ≤ M} given in

(2.4), the posterior is proper if each source is measured by at least one instrument, i.e., |Ij| ≥ 1

for all 1 ≤ j ≤M .

Proof. We prove the propriety of the posterior by first integrating out the Gj first, then the Bi,
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and finally the σ2
i . By (2.5), p(B,G,σ2|D, τ 2) is proportional to

N∏
i=1

σ
−|Ji|−2−2α
i exp

−1

2

M∑
j=1

∑
i∈Ij

σ−2
i (y′ij −Bi −Gj)

2 −
N∑
i=1

[
(bi −Bi)

2

2τ 2
i

+
β

σ2
i

] . (C.1)

Now for each 1 ≤ j ≤M , if we define a random index I on Ij such that Pr(I = i) ∝ σ−2
i , then∑

i∈Ij σ
−2
i (y′ij −Bi −Gj)

2∑
i∈Ij σ

−2
i

= E
[
y′Ij −BI −Gj

]2 ≥ [E(y′Ij −BI)−Gj

]2
. (C.2)

Therefore, the first term in the exponential part of (C.1) is less than −0.5
(∑

i∈Ij σ
−2
i

)
(Gj−Cj)2,

where Cj = E(y′Ij −BI) is free of Gj. The property of Normal density (for Gj) then yields

∫
p(B,G,σ2|D, τ 2) dG ≤ C∗

N∏
i=1

σ
−|Ji|−2−2α
i

M∏
j=1

∑
i∈Ij

σ−2
i

−1/2

exp

{
−

N∑
i=1

[
(bi −Bi)

2

2τ 2
i

+
β

σ2
i

]}

where C∗ is a constant that depends only on D,τ 2. Integrating out B then gives∫ ∫
p(B,G,σ2|D, τ 2) dG dB ≤ C∗∗

N∏
i=1

σ
−|Ji|−2−2α
i

M∏
j=1

∑
i∈Ij

σ−2
i

−1/2

exp

{
−

N∑
i=1

β

σ2
i

}
(C.3)

where C∗∗ is a constant that depends only on D,τ 2. Since Ij is non-empty, it is meaningful to

invoke the well-known harmonic-geometric mean inequality to obtain that

M∏
j=1

∑
i∈Ij

σ−2
i

−1/2

≤
M∏
j=1

|Ij|−1/2

∏
i∈Ij

σi

1/|Ij |

≤
N∏
i=1

σ
∑

j∈Ji
|Ij |−1

i . (C.4)

Inequalities (C.3) and (C.4) together imply that the unnormalized p(σ2|D, τ 2) is dominated above

by a constant times
∏N

i=1 pi(σ
2
i ), where pi(x) is the density of the inverse Gamma distribution with

shape parameter αi = α+ [|Ji|−
∑

j∈Ji |Ij|
−1]/2 and scale parameter β. Because |Ij| ≥ 1, we have

αi ≥ α. Hence as long as the hyperparameter α > 0, which is always chosen to be so, pi is a

proper density. Consequently, p(σ2|D, τ 2) is a proper density after renormalization.

C.2 Identifiability

When τ 2
i is large, the likelihood information for estimating Bi (i.e., from cij) dominates the prior

information (i.e., from bi). In the extreme case of τ 2
i =∞, the model is not identifiable because for
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fixed variances, {Bi, Gj} and {Bi+δ,Gj−δ} yield the same posterior densities for {B,G} for any

constant δ. Let λmax and λmin be the maximum and minimum eigenvalues of Ω(σ2), as defined

in Section 2.2. Taking u = (1N ,1M)> and v = (1N ,−1M)>, the condition number of Ω(σ2) is

λmax

λmin

≥ u>Ω(σ2) u

v>Ω(σ2) v
= 1 +

4
∑N

i=1 |Ji|σ
−2
i∑N

i=1 τ
−2
i

, (C.5)

where 1n denotes an n× 1 vector of ones. As a consequence, when {τ 2
i } are generally larger than

{σ2
i }, the ratio in (C.5) can be large, and the posterior contours, determined by Ω, are elongated

in one direction and narrow in another. This provides a guideline that {τ 2
i } should not be set too

large relative to {σ2
i } in practice, because large {τ 2

i } can lead to near model non-identifiability and

consequently more costly computation. A computationally cheaper way of dealing with possible

model non-identifiability is to set one of the {Bi} equal to a fixed value, which is equivalent to

setting the corresponding τi = 0. We experiment with this computationally cheap strategy in

our empirical evaluations, and find that it does not alter the results in substantive ways, but the

resulting estimators for the Effective Areas are relative to some (arbitrarily) chosen values instead

of in absolute terms/magnitudes.

D Derivation of Conditional Covariance Matrix

In this section, we give detailed derivations of Ω−1(σ2) when all instruments measure all sources. In

this case, Wi defined in (2.11) becomesWi =
Mσ−2

i

Mσ−2
i +τ−2

i

, 1 ≤ i ≤ N . Define σ̃2 =
(
N−1

∑N
i=1 σ

−2
i

)−1

.

Let A be the (N + M) × (N + M) diagonal matrix with diagonal elements equal to those of

Ω(σ2). Let U be an (N + M) × 2 matrix such that Ui,1 = σ−2
i , Ui,2 = 0 for i = 1, . . . , N , and

Uj+N,1 = 0, Uj+N,2 = 1 for j = 1, . . . ,M . Let C be a 2×2 matrix such that Ci,j = Ii 6=j (i, j = 1, 2).

Then Ω(σ2) = A+UCU>. By the Woodbury matrix identity, we have

Ω−1(σ2) = A−1 −A−1U
(
C +U>A−1U

)−1
U>A−1, (D.1)

where A−1 is a diagonal matrix with diagonal elements({
Wiσ

2
i /M

}
1≤i≤N ,

{
σ̃2/N

}
1≤j≤M

)
.
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Therefore, we can derive the inverse of 2× 2 matrix C +U>A−1U as

(
C +U>A−1U

)−1
=

 ∑N
i=1Wiσ

−2
i

M
1

1 M
N
σ̃2

−1

= −
∑N

i=1 σ
−2
i∑N

i=1Wiτ
−2
i

 M2σ̃2

N
−M

−M
∑N

i=1 Wiσ
−2
i

 .

Further, let W be the N × 1 column vector with ith element Wi, then we have

A−1U =

 W /M 0N×1

0M×1 σ̃2/N 1M×1

 .

Consequently, A−1U
(
C +U>A−1U

)−1
U>A−1 is equal to

−

(
N∑
i=1

τ−2
i Wi

)−1
 WW> −W 11×M

−1M×1W
> [N−1σ̃2]

∑N
i=1 Wiσ

−2
i 1M×M

 .

Finally, we arrive at the closed-form expression for Ω−1(σ2):

(
Ω−1(σ2)

)
i,i

=
1

Mσ−2
i + τ−2

i

{
1 +

Mσ−2
i Wi∑N

u=1 τ
−2
u Wu

}
,

(
Ω−1(σ2)

)
i,j+N

=
(
Ω−1(σ2)

)
j+N,i

= −Wi

(
N∑
u=1

τ−2
u Wu

)−1

,

(
Ω−1(σ2)

)
j+N,j+N

=

(
N∑
u=1

σ−2
u

)−1{
1 +

∑N
i=1 Wi σ

−2
i∑N

u=1Wu τ−2
u

}
.

E Likelihood Method

E.1 MLEs and Their Asymptotic Variances

Note that the variance-covariance matrix of the MLEs {B̂, Ĝ} is in fact Ω−1(σ2) as defined

in (2.8). Therefore, we have the following proposition.

Proposition 1. If all detectors measure all objects, i.e., Ji = {1, . . . ,M}, Ij = {1, . . . , N} and

{σ2
i , τ

2
i } are known constants, then the variances of {B̂i}, {Ĝj} are given by

Var(Ĝj) =

[
N∑
i=1

σ−2
i

]−1

SG, Var(B̂i) =
[
Mσ−2

i + τ−2
i

]−1 S(i)
B , (E.1)
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where the inflation factors SG, {S(i)
B } are given by

SG = 1 +

∑N
i=1 σ

−2
i Wi∑N

i=1 τ
−2
i Wi

, S(i)
B = 1 +

Mσ−2
i Wi∑N

u=1 τ
−2
u Wu

.

Moreover, we have Cov(B̂i, Ĝj) = −Wi

[∑N
k=1 τ

−2
k Wk

]−1

.

Remark 1. Under the additive model, Bi and Gj are negatively correlated for all i, j. The asymp-

totic variances of B̂i and Ĝj can be written as

Var(Ĝj) = Var(G̃j)SG, Var(B̂i) = Var(B̃i)S(i)
B ,

where Var(G̃j) =
[∑N

i=1 σ
−2
i

]−1

is the inverse precision, i.e., asymptotic covariance, of Ĝj when

the Bi are known constants; Var(B̃i) = [Mσ−2
i + τ−2

i ]−1 is the inverse precision, i.e., asymptotic

covariance, of B̂i when the Gj are known constants. The inflation factors SG and S(i)
B adjust for

the fact that none of the Bi or the Gj are known.

Proposition 1 directly yields the following asymptotic results as N,M →∞.

Corollary 1. If {σi/τi} are uniformly bounded from below and above by finite positive constants,

and
∑N

i=1 σ
−2
i /N converges to a positive constant as N →∞, then for all i, j, as N,M →∞,

Var(Ĝj) = O(N−1), Var(B̂i) = O(N−1 +M−1), Cov(B̂i, Ĝj) = −O(N−1).

Specifically, when τ = τ1 = · · · = τN and σ = σ1 = · · · = σN , (E.1) simplifies to

Var(Ĝj) =
σ2

N
, Var(B̂i) =

1

Mσ−2 + τ−2

(
1 +

Mσ−2

Nτ−2

)
, Cov(B̂i, Ĝj) = −τ

2

N
.

Remark 2. The results above show that the asymptotic variances for {Bi} and {Gj} are not

‘exchangeable’ (i.e., switching B and G and correspondingly N and M), mainly for three reasons:

first, for each Bi we assign an informative prior N (bi, τ
2
i ) whereas for each Gj we assign a flat

prior on the real line; second, for each instrument i, besides Bi, we also need to estimate σ2
i ; last,

the measurement uncertainty depends only on the instrument but not on the sources (recall that

σ2
ij = σ2

i for all i, j).
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E.2 Goodness-of-fit

We now give a goodness-of-fit test statistic for the random-effect regression model. Under the

model (2.4), we have the following normalized residual sum of squares:

T (B,G) :=
N∑
i=1

(bi −Bi)
2

τ 2
i

+
N∑
i=1

M∑
j=1

(
y′ij −Bi −Gj

)2

σ2
i

. (E.2)

We see this sum of squares has two parts. The first part involves {bi} only, measuring how good

the prior means are relative to the prior variances {τi}. The second part depends on {yij} only,

and it will allow us to access how good the fitted B,G are relative to the sampling variances σ2.

Here we put them together as an overall model check, but one can certainly use them individually

if one wants to check the prior distribution and likelihood model separately.

Theorem 2. When the variances σ2
i , τ

2
i are known and we insert the MLEs of Bi and Gj into

(E.2), we obtain T (B̂, Ĝ) ∼ χ2
NM−M .

Proof. This conclusion regarding χ2 distribution follows from standard results on residual sum of

squares of linear regression with Gaussian error. To figure out the correct degrees of freedom, we

have (NM + N) independent observations in total, but with N + M parameters. Therefore, the

degrees of freedom for the residual sum of squares is NM −M .

With unknown variances we do not have a closed-form distribution of T as defined in for-

mula (E.2). Heuristically, we invoke the standard large-sample arguments and to continuously use

the χ2 approximation, but reduce the degrees of freedom to MN−M−N to count for the number

of estimated variance parameter {σ2
i }. The resulting p-values of the fitted data in Sections 4.2

and 4.3 are not significant.

F More Simulation Results Under Misspecified Models

In Simulations IV and V, we generate data as cij = λijXij, where Xij ∼ Poisson(AiFj), and inde-

pendently λij ∼ Uniform[0.8, 1.2] for Simulation IV and λij ∼ Uniform[0.4, 1.6] for Simulation V.

In Simulations VI and VII, we generate data from cij ∼ Poisson(λijAiFj), where the λij are ran-

domly generated from the uniform distribution on [0.8, 1.2]. The other parameters are set to be
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the same as in Simulation II except that β = 0.01 for these simulations. Simulations VI and VII

resemble the cases where the true model is Poisson and the estimation of Tij is volatile, whereas

Simulations IV and V resemble the cases that happen in practice, where the photon counts are

multiplied by an adjustment factor, such as T̂−1
ij , as with the data pre-processing step for the

XCAL data.

Figure 10 gives the results of Simulations IV and V. Figure 11 gives the results of Simulation VI

with smaller counts (Bi = 1 and Gj = 3) and VII with larger counts (Bi = 5 and Gj = 3) under

this scenario. It shows with large Poisson counts, controlling the uncertainty in the multiplicative

constant can possibly lead to reasonably good results. Thus, even with compounded model mis-

specification, the log-Normal model is able to provide reasonable, though not as precise, results,

as compared with the correctly-specified case. However, when the misspecified “known constant”

is highly variable, the fit result is not as satisfactory; plugging in a “guesstimated” σi in this case

can give disastrously optimistic but biased results.
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Figure 10: Simulations IV (rows 1 & 2) and V (rows 3 & 4). The gray shades are the posterior

distributions of {Bi}5
i=1 (rows 1 & 3) and {Gj}5

j=1 (rows 2 & 4) fitted with unknown variances.

The solid vertical black lines denote the true values. The black dashed density curves on top of

the histograms denote the true posterior densities of {Bi} and the {Gj} with ‘known’ variances

σ2
i = 0.12.
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Figure 11: Same as Figure 10 but with Simulations VI (rows 1 & 2) and VII (rows 3 & 4).
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