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Abstract

Supplementary information for the companion manuscript Selection Corrected
Statistical Inference for Region Detection with High-throughput Assays. The sup-
plementary includes a section on the accelerated sampling algorithm, proofs for the
lemmas, and additional information about the simulation and the data experiments.
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1 Accelerated sampling

Recall that we parameterize the truncated multivariate normal (TMN) family with a single

mean parameter θ that linearly determines the mean vector. The distributions correspond-

ing to different values of θ form a single parameter exponential family; this implies that

importance weighting can efficiently convert a sample from fθ0 into a sample from fθ1 . We

detail here the algorithm, with notations following Owen (2013). This an expansion of the

ideas described in the appendix of Fithian et al. (2014).
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1.1 Importance sampling for the truncated multivariate normal

Suppose we have a Monte Carlo sample z1, ...zN ∼ fθ0 and we would like to estimate of

E[g(Z)] for Z ∼ fθ1 . Then the importance sampling estimate of Eθ1 [g(Z)] is

Êθ1 [g(Z)] =
∑

wi(zi)g(zi)

where

wi ∝
fθ1(zi)

fθ0(zi)
,

∑
wi = 1.

The importance estimator is unbiased. With a careful choice of θ0 it may enjoy lower

variance per sample-size compared to Monte Carlo estimates from fθ1 . Nevertheless, for

our application the primary gain is the ability to invert tests for numerous values of θ using

a single sample.

The exponential tilting principle (Siegmund, 1976) recognizes that for single-parameter

exponential families, the importance weights w1, ..., wn can be calculated without explicitly

calculating the normalizing constant for the destination density fθ1 . We develop here the

explicit form for the TMN densities parameterized by a linear mean shift.

The TMN density for a region of size b− a+ 3 is written in full as:

fθ;s = fZ |Aa:b;θ,s,Σ(z) =
exp{(z− µ(θ))′Σ−1(z− µ(θ))}∫

Aa:b
exp{(u− µ(θ))′Σ−1(u− µ(θ))}du

1(z ∈ Aa:b), (1)

with the mean vector parameterized linearly in θ

µ(θ) = µ0 + θ · s. (2)

In order to accommodate the external constraints (Section 4 of the main paper), we

have

µ0 = (Zobs
a−1, 0, 0, ..., 0, Z

obs
b+1)
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and a profile s such as s = 1
a−b+1

(0, 1, 1, ..., 1, 0).

We can expand this density to exponential family form:

fZ |Aa:b;Σ(z; θ) = exp
{
zΣ−1µ(θ) + h(z)− g(θ)

}
1Aa:b

(z),

= exp
{
zΣ−1µ0 + θzΣ−1s + h(z)− g(θ)

}
1Aa:b(z)

where h(z) = −1
2
(zΣ−1z) does not depend on θ, and g(θ) = −1

2
µ(θ)′Σ−1µ(θ)−

∫
Aa:b

φ(u, µ(θ),Σ)du

is the normalizing constant. Therefore, the likelihood ratio for an example z ∈ Aa:b depends

on the covariance-corrected shape

fθ1
fθ0

(z) = w̃i(z) = dθ0θ1 exp {(θ1 − θ0)z′s̃} , s̃ = Σ−1s

where the factor dθ0θ1 = exp{g(θ0) − g(θ1)} does not depend on z. Instead of computing

dθ0θ1 the weights for a given Monte Carlo sample w̃1(z1), ..., w̃n(zn) can be normalized

wi(zi) =
w̃i(zi)∑n
j=1 w̃j(zj)

=
exp {(θ1 − θ0)z′is̃}∑
j exp

{
(θ1 − θ0)z′j s̃

}
to meet both conditions of empirical importance sampling weights.

The main speed-up in tilting arises from the ability to use a single sample from fθ0 to

identify the acceptance region for any θ. This is particularly useful because our method for

estimating confidence intervals requires building many individual tests for a dense grid of θ

values. The main computational load comes from sampling the TMN under the constraint;

tilting allows us to perform this task only once, for a convenient value θ0, and to extract

all tests from this sample.
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Figure 1: Example of how to extract confidence intervals from a reference density. We generate

a sample from a reference density (and mean parameter θ) for which the observed statistic tobs =

0.358 (red vertical line) is in the bulk of the distribution. The sample can then be tilted - reweighed

- to generate other distributions within the same parametric family. The tilted distribution giving

the lower bound of the confidence interval is plotted in the center. This is the most left-tilted

distribution for which P (T > tobs) ≥ α/2. The distribution for the upper-bound is plotted on the

right.
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1.2 Estimating p-values, quantile functions and intervals

Estimating the p-value

For an observe value tobs, the one-sided p-value is defined as

p-value = Pθ=0[t(Z) ≥ tobs]. (3)

To estimate the p-value from a sample of z1, ..., zN ∼ fθ0 , we tilt the sample for θ1 = 0,

and plug in Equation (3)

̂p-value =
∑
i

exp{−θ0z
′
is̃}∑n

j=1 exp{−θ0z′j s̃}
1(t(Z) ≥ tobs).

Computing an interval

The interval is constructed by inverting a family of tests for a grid of parameters {θm}m=1.

For a pre-specified θ0 and sample z1, ..., zN ∼ fθ0 , we can explicitly construct two sided

1− α level tests for each value θi by estimating the quantile functions

q̂α/2;θm = argmaxq{q ∈ R :
∑

i:t(zi)>q

exp{(θm − θ0)z′is̃}∑n
j=1 exp{(θm − θ0)z′j s̃}

≤ α/2},

q̂1−α/2;θm = argminq{q ∈ R :
∑

i:t(zi)>q

exp{(θm − θ0)z′is̃}∑n
j=1 exp{(θm − θ0)z′j s̃}

≥ 1− α/2}.

The two sided test for θ = θm is therefore:

φ
(2)
θm,α

(Z) = 1(t(Z) ∈ [q̂α/2;θm , q̂α/2;θm ]),

and the 1 − α confidence interval can be constructed as the interval that includes only

non-rejected θm’s:

I1−α(Z) = range({θm : φ
(2)
θm,α

(Z) = 1}).
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Note that the estimates of quantiles might not be monotone in θm. Lemmas 1 and 2

of Section 4.2.1 of the main paper discuss conditions that assure that the true quantile

functions are monotone in θm. However, even under these conditions, the observed ones

might not be. The reason is that for a specific sample {z1, ..., zN} the statistic t(z) and the

weight z′s̃ may not produce same ranking. They coincide exactly under the conditions of

Lemma 1, when t(z) = z′Σ−1s is the sufficient statistic.

1.3 Additional considerations

Choosing θ0

Heuristically, we prefer a θ0 for which tobs is a likely outcome, with enough samples on both

sides of tobs. In the extreme case, to identify any p-value in (0, 1) via tilting requires that

0 ≤ P̂θ0(t(Z) > tobs) ≤ 1, meaning we have at least one sample at each side of tobs. The

variance of an importance sample is
∑
w2
i (fi−E[fi])

2 (Owen, 2013, ch 9, pg 9), so a more

equal distribution of weights would lead to better variances., a likely choice for θ0 would

often mean the selection criterion is not very strong, so that the samplers for θ0 would be

relatively efficient.

For choosing θ0 under a truncation at c, one candidate choice is to use the unbiased

estimator if there were no selection θ0 = tobs. We require the empirical 0.2 < p̂θ0 < 0.8.

If this value fails, we run a linear search for θ0 values between tobs and 0 until we find

a successful value. Due to selection against small values of Z, tobs is an upward biased

estimator of θ; when variances are small, the sampler might need a better starting point

for θ0, so multiple starting points can be explored.
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Samplers

Samplers for the truncated multivariate normal distribution are an area of active research,

with new software available constantly. Examples available in the R environment include

rejection samplers, Gibbs samplers (Geweke, 1991) and Hamiltonian (Pakman and Panin-

ski, 2014) samplers. We use a Gibbs sampler that with an exponential approximation for

extreme values.

2 Proof of Theorem 2

Theorem 2

Let Z ∼MVN(Θ,Σ), where Θa:b = θ̄ ·s for a pre-specified profile vector s and an unknown

mean parameter θ̄. A confidence interval for θ̄ is estimated if Aa:b occurs.

Define

l(Z) = sup

{
θl : t(Z) > sup

θ<θl

{q1−α(θ)}
}
, u(Z) = inf

{
θu : t(Z) < inf

θ>θu
{qα(θ)}

}
, (4)

For a Monte Carlo sample z1, ..., zN , let l(N)(Z) = l(z1, ..., zN) and u(N)(Z) = u(z1, ..., zN)

be consistent estimators of l(Z) and u(Z).

Then the selective coverage of the interval I(N)(Z) = (l(Z)(N), u(Z)(N)) converges to at

least 1− 2 · α

lim
N→∞

P
(
θ̄ ∈ I(N)(Z) |Aa:b

)
≥ 1− 2 · α

Proof

For any θ,

limN→∞P (θ ∈ [l(Z)(N), u(Z)(N)] |Aa:b) = P (θ ∈ [l(Z), u(Z)] |Aa:b),
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because the density of {t(Z)| |Aa:b} is bounded and l(Z)(N) → l(Z), u(Z)(N) → u(Z).

Next, note that based on the definition of u(Z), qα(θ) > t(Z) for any θ > u(Z). In

particular, for the true parameter θ̄, the event θ̄ > u(Z) means that qα(θ̄) > t(Z). Since

qα(θ̄) is the α quantile of selective distribution t(Z) |Aa:b,

P
(
t(Z) < qα(θ̄) |Aa:b

)
≤ α,

so

P (θ̄ > u(Z) |Aa:b) < α.

A similar argument can be used to bound the probability of the event θ̄ < l(Z).

3 Proofs for the lemmas in Sections 3 and 4

Lemma 1

Let Z ∼ MVN(Θ,Σ) and Z ′ ∈ Ra−b+3 ∼ MVN(Θ′,Σ′), with Θ′ = Θa−1:b+1 and Σ′ =

Σa−1:b+1. Then

{Z|A(a,b,+)}a−1:b+1
d
= {Z ′|A(2,a−b+2,+)}.

Proof

We need to show that {Z|A(a,b,+)} restricted to the coordinates a − 1, ..., b + 1 is a trun-

cated multinormal vector with the shifted parameters Θ′,Σ′ and truncations according to

A(2,a−b+2,+). Letting φD(z,Θ,Σ) be the D-dimensional MVN density, rewrite the condi-

tional density {Z|A(a,b,+)} as

fZ|A(z) =
φD(z,Θ,Σ)∫

A(a,b,+)
φD(u,Θ,Σ)du

1(z ∈ A(a,b,+)).
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The density of interest is therefore:

f{Z|A}a−1:b+1
(za−1:b+1) =

∫ ∞
−∞

...

∫ ∞
−∞

[
φD(z,Θ,Σ)∫

A(a,b,+)
φD(u,Θ,Σ)du

1(z ∈ A(a,b,+))

]
dz1...dza−2dzb+2...dzD

=
1(za−1:b+1 ∈ A(2,b−a+2,+))∫

A(a,b,+)
φD(u,Θ,Σ)du

∫ ∞
−∞

...

∫ ∞
−∞

[φD(z,Θ,Σ)] dz1...dza−2dzb+2...dzD

=
1(za−1:b+1 ∈ A(2,b−a+2,+))∫

A(a,b,+)
φD(u,Θ,Σ)du

φb−a+3(za−1:b+1,Θa−1:b+1,Σa−1:b+1)

=
1(za−1:b+1 ∈ A(2,b−a+2,+))∫

A(a,b,+)
φD(u,Θ,Σ)du

φb−a+3(za−1:b+1,Θ
′,Σ′)

Furthermore, note that∫
A(a,b,+)

φD(u,Θ,Σ)du

=

∫ c

−∞

∫ ∞
c

...

∫ c

−∞

[∫ ∞
−∞

...

∫ ∞
−∞

φD(z,Θ,Σ)

d
z1...dza−2dzb+2...dzD

]
dza−1dza...dzb+1

=

∫ c

−∞

∫ ∞
c

...

∫ c

−∞
φb−a+3(za−1:b+1,Θ

′,Σ′)dza−1dza...dzb+1

=

∫
A(2,b−a+2,+)

φb−a+3(za−1:b+1,Θ
′,Σ′)dza−1:b+1

Lemma 2

Let gΘ(θ;s) := gΘ(θ) denote the family densities for t(Z) with a scale single parameter θ.

Then

1. gΘ(θ;sΣ) is a monotone likelihood ratio family

2. E[t(Z)] is an increasing function of θ

3. The confidence set for θ obtained by inverting two sided tests is an interval.
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Proof

We recall the exponential family form of fΘ(θ;sΣ):

fZ | A[a,b];Σ(z; θ) = exp {zΣ−1µ(θ) + h(z)− g(θ)} 1A(z), (5)

= exp {zΣ−1(θΣ(1, ..., 1) + h(z)− g(θ)} 1A(z) (6)

= exp {θz(1, ..., 1) + h(z)− g(θ)} 1A(z) (7)

where h(z) = −1
2
(zΣ−1z) does not depend on θ, and g(θ) = −1

2
µ(θ)′Σ−1µ(θ)−

∫
A
φ(u, µ(θ),Σ)du

is the normalizing constant.

Next note that the density in gΘ(x) for a particular value corresponds to integrating

over the intersection of the hyper-plane
∑
Z = z with the conditional set A. Within this

hyperplane, the value of the statistic is fixed z′(1, ..., 1) = x so

gθ(x) =

∫
Ax

exp{h(z)} exp {θx− g(θ)} dz.

Because the expression exp {θx− g(θ)} is fixed within Ax, it can be moved outside the

integral. Defining

H(x) =

∫
Ax

exp{h(z)}dz,

we get the exponential family structure in

gθ(x) = H(x) exp {θx− g(θ)} .

Therefore, the likelihood ratio for a value t(z) = x can be written as

gθ2(x)

gθ1(x)

=
H(x) exp {θ2x− g(θ2)}
H(x) exp {θ1x− g(θ1)}

= exp{(θ2 − θ1)x− g(θ2)− g(θ1)},

a strictly increasing function of x.
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Lemma 3

We use results from Rinott and Scarsini (2006) for multivariate Normal distribution to

identify the following conditions on Σ and s:

1. Σ−1 is an M-matrix, meaning all off-diagonal elements are non-positive. (In particu-

lar, Σ must be non-negative).

2. s lies in the cone CΣ of non-negative linear combinations of columns of Σ

CΣ = {µ ∈ Rd : µ′Σ−1 ≥ 0} = {µ ∈ Rd : there exists a ≥ 0 s.t. µ = a′Σ}.

Note that for Σ = I, any non-negative profile would be in CΣ (indeed, we see that all

profiles produce a monotone curve for an iid covariance, see Figure 5 bottom-left in the

main paper). The condition is sufficient, but not necessary; even if Σ is not an M-matrix,

there might still be specific (profile,statistic) pairs for which monotonicity will hold, as

discussed in Lemma 1. However, there will be no profile for which any statistic will be

monotone.

Let gΘ(θ);s be the family of densities of t(Z)|A parametrized by θ, where Z ∼ N(θ ·s,Σ).

If Σ−1 is an M-matrix, and the profile s can be written as a non-negative sum of columns

of Σ, then gΘ(θ;s) is a monotone likelihood ratio family.

Proof

Consider random vectors Z and Z ′ where Z ∼ N(θ · s,Σ) and Z ′ ∼ N(θ′ · s,Σ) for some

θ′ > θ. The lemma identifies a sufficient condition for Z ′|A being stochastically larger (≥st)

than Z|A. Stochastic ordering implies that for any positive functional φ, E[φ(Z ′)|A] ≥

E[φ(Z)|A], and in particular for a positive statistic t(), E[t(Z ′)|A] ≥ E[t(Z)|A] and the

quantile functions of t(Z)|A are similarly ordered.
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The key to the proof is moving from an ordering of Z and Z ′ into an ordering of the

conditional vectors [Z|A] and [Z ′|A], (interpreted as [Z|Z ∈ A] and [Z ′|Z ′ ∈ A]). For

rectangular sets A, the stronger notion of ordering total positivity is maintained through

the conditioning. We review here the main results of Rinott and Scarsini (2006); proofs

and an extended discussion of the cited properties are found there.

• For multivariate densities f , g, the relation f �TP g (total positivity) implies that

h(x) := g(x)/f(x) is increasing in any coordinate-wise increase in x. [Lemma 2.2, a]

• If X �TP Y , then X is also stochastically greater than Y , implying E[φ(X)] ≤

E[φ(Y )]for any nondecreasing function φ [Proposition 2.4]. If X �TP X then X is

said to be multivariate total positive of order 2 or MTP2.

• For a rectangular set A, X �TP Y implies [X|X ∈ A] �TP [Y |Y ∈ A] [Theorem

2.5, a special condition of Remark 2.6 (i)] Note that conditioning by thresholding

individual coordinates would always result in a rectangular set A.

• A multivariate normal Z with an invertible covariance matrix Σ is MTP2 if and only

if Σ−1 is an M-matrix. [2.15]

• If for some µ ∈ Rd we have Z �TP Z + µ, then Z is MTP2. [Thm 3.2]

• For Z that is MTP2, we have Z �TP Z + µ iff µ ∈ CΣ [Thm 3.2]

Therefore, under the assumptions regarding Σ, Z is MTP − 2. Call µ = Z ′ − Z, then

µ = (θ′ − θ) · s so µ ∈ CΣ iff s ∈ CΣ. Therefore, the conditions suffice for Z �TP Z ′. This

further implies [Z|A] �TP [Z ′|A] and E[φ(Z)|A] ≤ E[φ(Z ′)|A].
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4 Simulation and Data Experiments

Details of the simulation and data experiments are described below.

4.1 Simulation Experiment 1

In the first set of experiments, we tested coverage probability of 1 − 2α = 0.9 confidence

intervals by repeatedly sampling the same set of variables, keeping only those data-vectors

for which all locations passed the selection threshold. We sample data vectors of length

D = 5, selecting for the positive region r = (2, 4,+) spanning the vector. Samples were

generated from the multivariate normal with mean region-heights of θ̄ = 0, 0.02, ..., 0.4. For

the true mean vector we used Θ = (θ1, θ̄, θ̄, θ̄, θ5) with θ1 = θ5 = 0, θ̄/2. Number of samples

per group was n1 = n2 = 4, 8, 16; increased sample size reduces the variance of Z and,

for unknown covariance, increases the accuracy of Σ̂. The data was generated using two

covariance matrices for the samples: a correlated Ccor and an uncorrelated Ciid,

Ccor =



0.04 0.02 0.006 0 0

0.02 0.04 0.016 0 0

0.006 0.016 0.03 0 0

0 0 0 0.04 0.01

0 0 0 0.01 0.03


, Ciid =



0.04 0 0 0 0

0 0.04 0 0 0

0 0 0.04 0 0

0 0 0 0.04 0

0 0 0 0 0.04


.

In both matrices, σ2 = 0.04 was chosen to reflect the average observed within-group vari-

ance in the DNA-methylation data.

The following results are based on a tilting algorithm using N = 12000 samples from

the reference distribution. The confidence interval estimation was repeated 1000 for each

value each combination of parameters. We repeated each experiment three times, using (a)
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the true covariance, (b) the sample covariance Σ̂, and (c) the inflated covariance Σ̂λ with

λ = 0.15. We used the profile su.

4.2 Simulation Experiment 2

In the second set of experiments, we verified coverage of the conditional estimator for

selected regions within a continuous non-stationary process. Data was generated in the

following way:

1. The (untransformed) mean process µA for group A was generated by sampling D=50

data points from an iid N(0, 1) process, and convolving with the 1-dimensional ker-

nel Kµ = (0.1, 0.2, 0.4, 0.2, 0.1). The mean difference process µδ was generated by

sampling iid N(0, σ2
δ ) and convolving with K1. The mean for group B µB = µA + µδ.

2. For each sample we added noise εi = (εi1, ..., ε
i
50) by concatenating noise from two

correlation regimes:

• For (εi1, ..., ε
i
D/2), iid N(0, 1) samples were smoothed by convolving each vector

with Kε = (0.05, 0.1, 0.15, 0.4, 0.15, 0.1, 0.05). This resulted in correlated noise

with E[εij] = 0,Var[εij] = σ2
ε = ‖Kε‖2 = 0.23.

• For (εiD/2+1, ..., ε
i
D), iid noise was sampled from N(0, σ2

ε) with no smoothing.

3. Noise was added to each sample so that Y i = µA + 1(i ∈ B) · µδ + εi.

4. For the transformed data, each sample Y i was transformed coordinate-wise with the

logistic function logistic(y) = exp(y)
1+exp(y)

. For the transformed data, a population of

10000 samples was generated, and the mean vector and covariance matrix for each

group were estimated empirically from the samples.
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5. Subsamples n = 40, 20, 10, 5 were taken from each group.

Results for each condition was based on 10 different populations, each sampled 100 times.

4.3 Simulation Experiment 3

In the third set, we wanted to see how power increases as we sample regions of increasing

in length. We sampled vectors of length D = 5, 7, 9, 11, 13, 15, and selected for the region

r = (2, D − 1,+) We used a flat mean Θ = (0, θ̄, ..., θ̄, 0) with mean effects size θ̄ ranging

between 0 and 0.4. Covariances were block diagonal, with block sizes of 2 or 3 (as needed

to get size D). Variances (of individual samples) were set to σ2 = 0.04. Within the block

correlation was ρ = 0.2, and outside the block correlation was ρ = 0. Each parameter

combination was sampled 1000 times.

We ran our method with known covariance and a uniform profile. We compared this to

the pivot method described in Lee et al. (2016), as implemented in the selectiveInference

R package on CRAN (methods mypoly.pval.lee and mypoly.int.lee). We used α = 0.9 for

the intervals, and a one-sided α/2 test to determine rejection.

4.4 Data Experiment

On each dataset, we detected ROIs using a fixed threshold (c = 0.1) to produce a list of

candidate regions. For detection, we used the bumphunter (v1.10.0) package (Jaffe et al.,

2012). For each detected ROI, we produced a selective p-value and formed a 90% selective

confidence interval for mean between-group difference. The sample estimator of Σ was used

for inference. Regions whose intervals overlapped 0 were pruned and intervals readjusted

using (a) BH procedure to control FCR as discussed in Section 5 (main paper) or (b)

Bonferroni procedure to control family-wise probability of non-coverage. The samples were
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not smoothed or preprocessed. We did not allow regions to include sites separated by more

than 5000 bps. The analysis was implemented in R. The TMN distribution was sampled

using restrictMVN R package, and accelerated by tilting. For comparison, we produced

p-values for the same set of detected ROIs using the family-wise error correction using

permutations (Jaffe et al., 2012) as implemented in bumphunter. All candidate regions

were ranked by area, and compared to the strongest regions found in a null distribution

that assumes random assignment to groups (fweArea). The FWE corrected p-value was

set to the proportion of permuted datasets in which a superior region was found.

5 Data information
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Colon Samples Lung Samples

1 5775041068 R01C02 1 6929671086 R04C02

2 5775041068 R04C01 2 6285625064 R03C02

3 5775041068 R06C01 3 6285625087 R05C02

4 5775041068 R02C02 4 6285625087 R02C02

5 5775041068 R03C02 5 6285625087 R06C02

6 5775041068 R01C01 6 6285625099 R05C02

7 5775041068 R02C01 7 6285625099 R02C02

8 5775041068 R03C01 8 6285625090 R06C01

9 5775041068 R05C01 9 6285625087 R04C02

10 5775041088 R04C01 10 6929671122 R06C01

11 5775041084 R05C02 11 6285625090 R03C02

12 5775041065 R02C02 12 6285625090 R02C01

13 5775041088 R02C02 13 6264488083 R05C01

14 5775041065 R04C02 14 6285625090 R01C01

15 5775041007 R01C02 15 6285625099 R04C01

16 5775041084 R06C02 16 6285625064 R03C01

17 5775041084 R03C02 17 6285625099 R01C02

18 6285625095 R01C01

19 6285625090 R04C02
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