URPP

Evolution in Action

On the analysis of multi-sample multi-condition replicated single-cell RNA-seq datasets

Mark D. Robinson

Statistical Bioinformatics Group, IMLS@UZH+SIB

@markrobinsonca
https://robinsonlabuzh.github.io/

Helena Crowell

Overview

- Single cell RNA-seq data (scRNA-seq)
- A typical scRNA-seq pipeline
- Some comparisons of methods: clustering, "simple" differential expression
- Definitions: Cell type and cell state
- Multi-sample differential expression: differential state analysis
- Some things not in the preprint

Bulk vs single-cell RNA-sequencing

Cell sorting, tissue

 dissociationRNA extraction, preparation of cDNA, cell barcoding, UMIs (scRNA-seq only)

Introduction to Single-Cell RNA Sequencing
Thale Kristin Olsen ${ }^{1}$ and Ninib Baryawno ${ }^{1}$

Single cell isolation

Childhood Cancer Research Unit, Department of Women's and Children's Health,
Karolinska Institutet, Stockholm, Sweden

Platforms

Note: tradeoff between number of cells and depth per cell

Applications

Revealing the vectors of cellular identity with single-cell genomics

Continuous phenotypes
Regulatory \qquad Pro-inflammatory \square

Unidirectional temporal progression

Computational Tools

RESEARCH ARTICLE
Exploring the single-cell RNA-seq analysis landscape with the scRNA-tools database

Luke Zappia ${ }^{1,2}$, Belinda Phipson ${ }^{1}$, Alicia Oshlack ${ }^{1,2 *}$

1 Bioinformatics, Murdoch Children's Research Institute, Melbourne, Victoria, Australia, 2 School of Biosciences, Faculty of Science, University of Melbourne, Melbourne, Victoria, Australia

scRNA-seq pipeline

A couple early goals: find clusters, identify genes that distinguish clusters ("cell type") .. perhaps via dimension reduction

Gene expression matrix

Clustering methods

 methods for single-cell RNA-seq data [version 2; referees: 2 approved]Angelo Duò ${ }^{1,2}$, Mark D. Robinson (10) 1,2, Charlotte Son
${ }^{1}$ IInstitute of Molecular Life Sciences, University of Zurich, Zurich, 8057, Switzerland ${ }^{2}$ SIB Swiss Institute of Bioinformatics, Zurich, 8057, Switzerland

Across various datasets (platforms), what methods work well?

| Method | Description | Reference |
| :--- | :--- | :--- | :--- |
| ascend (v0.5.0) | PCA dimension reduction (dim=30) and iterative hierarchical clustering | 36 |
| CIDR (v0.1.5) | PCA dimension reduction based on zero-imputed similarities, followed by hierarchical clustering | 37 |
| FlowSOM (v1.12.0) | PCA dimension reduction (dim=30) followed by self-organizing maps ($5 \times 5,8 \times 8$ or 15×15 grid,
 depending on the number of cells in the data set) and hierarchical consensus meta-clustering to
 merge clusters | 38 |
| monocle (v2.8.0) | t-SNE dimension reduction (initial PCA dim=50, t-SNE dim=3) followed by density-based clustering | 25,39 |
| PCAHC | PCA dimension reduction (dim=30) and hierarchical clustering with Ward.D2 linkage | 33,40 |
| PCAKmeans | PCA dimension reduction (dim=30) and K-means clustering with 25 random starts | 33,41 |
| pcaReduce (v1.0) | PCA dimension reduction (dim=30) and k-means clustering through an iterative process.
 Stepwise merging of clusters by joint probabilities and reducing the number of dimensions by PC
 with lowest variance. Repeated 100 times followed consensus clustering using the clue package | 42 |
| RaceID2 (March
 2017 version) | K-medoids clustering based on Pearson correlation dissimilarities | 43 |
| RtsneKmeans | t-SNE dimension reduction (initial PCA dim=50, t-SNE dim=3, perplexity=30) and K-means
 clustering with 25 random starts | $34,41,44$ |
| SAFE (v2.1.0) | Ensemble clustering using SC3, CIDR, Seurat and t-SNE + Kmeans | 45 |
| SC3 (v1.8.0) | PCA dimension reduction or Laplacian graph. K-means clustering on different dimensions.
 Hierarchical clustering on consensus matrix obtained by K-means | 46 |
| SC3svm (v1.8.0) | Using SC3 to derive the clusters for half of the cells, then using a support vector machine (SVM)
 to classify the rest | 46,47 |
| Seurat (v2.3.1) | Dimension reduction by PCA (dim=30) followed by nearest neighbor graph clustering | 17 |
| TSCAN (v1.18.0) | PCA dimension reduction followed by model-based clustering | 48 |

Data set	Sequencing protocol	cells	\# features	Median total counts per cell	Median \# features per cell	\# subpopulations	Description	Ref.
Koh	SMARTer	531	48,981	1,390,268	14,277	9	FACS purified H 7 human embryonic stem cells in different differention stages	24
KohTCC	SMARTer	531	811,938	1,391,012	66,086	9	FACS purified H 7 human embryonic stem cells in different differention stages	24
Kumar	SMARTer	246	45,159	1,687,810	26,146	3	Mouse embryonic stem cells, cultured with different inhibition factors	23
KumarTCC	SMARTer	263	803,405	717,438	63,566	3	Mouse embryonic stem cells, cultured with different inhibition factors	23
SimKumar4easy	-	500	43,606	1,769,155	29,979	4	Simulation using different proportions of differentially expressed genes	29
SimKumar4hard	-	499	43,638	1,766,843	30,094	4	Simulation using different proportions of differentially expressed genes	29
SimKumar8hard	-	499	43,601	1,769,174	30,068	8	Simulation using different proportions of differentially expressed genes	29
Trapnell	SMARTer	222	41,111	1,925,259	13,809	3	Human skeletal muscle myoblast cells, differention induced by low-serum medium	25
TrapnelITCC	SMARTer	227	684,953	1,819,294	66,864	3	Human skeletal muscle myoblast cells, differention induced by low-serum medium	25
Zhengmix4eq	10xGenomics GemCode	3,994	15,568	1,215	487	4	Mixtures of FACS purified peripheral blood mononuclear cells	5
Zhengmix4uneq	10xGenomics GemCode	6,498	16,443	1,145	485	4	Mixtures of FACS purified peripheral blood mononuclear cells	5
Zhengmix8eq	10xGenomics GemCode	3,994	15,716	1,298	523	8	Mixtures of FACS purified peripheral blood mononuclear cells	5

Reference datasets

RESEARCH ARTICLE

REVISED A systematic performance evaluation of clustering methods for single-cell RNA-seq data [version 2; referees: 2 approved]
Angelo Duò ${ }^{1,2}$, Mark D. Robinson (iD) 1,2, Charlotte Soneson (Di) 1,2
nstiture of Molecular Life Sciences, University of Zurich, Zurich, 8057 , Switzerland
${ }^{2}$ SIB Swiss Institute of Biointormatics, Zurich, 8057, Switzerland

research article

REVISED A systematic performance evaluation of clustering
methods for single-cell RNA-seq data [version 2; referees: 2
approved]
Angelo Duò ${ }^{1,2}$, Mark D. Robinson (10) 1,2, Charlotte Soneson (ib 1,2
1 Institute of Molecular Lite Sciences. University of Uurich, Zurich, 8057, Switzerland
${ }_{2}$ Sis swiss
Institue of Bio

Figure 2. (A) Normalized run times, using RtsneKmeans as the reference method, across all data set instances and number of clusters. (B) Run time versus performance (ARI) for a subset of data sets and filterings, for the true number of clusters.

Similarly, how well do differential expression methods work?

Using labels from independent truth (time point, fluoresence)

Bias, robustness and scalability in single-cell differential expression analysis

conquer - reprocessed data analysis read public scRNA-seq datasets

- http://imlspenticton.uzh.ch:3838/conquer/
- Currently 40 data sets, both full-length and UMI-based protocols

Charlotte
Soneson
scRNA-seq "simple" differential expression: Evaluated methods

- 36 approaches to differential gene expression (19 different packages/ tests, multiple settings)

BPSC D3E MAST
monocle
NODES
scDD
SCDE
Seurat
DEsingle

DESeq2
edgeR-LRT
edgeR-QLF
limma-trend
voom-limma

Code and data are available on GitHub:

Punchline

Several methods work well, including a mix of single-cell-specific and bulk methods
t-test and Wilcoxon perform surprisingly well
"we found that bulk RNA-seq analysis methods do not generally perform worse than those developed specifically for scRNA-seq"

Criteria

Beyond the punchline

Many more details! >30 Supplementary Figures
http://imlspenticton.uzh.ch:3838/scrnaseq_de_evaluation/

Relative run times

P-value distributions (under null)

Supplementary Figure 14: Representative p-value histograms for all methods returning nominal p-values applied to one of the scRNA-seq null dataset instances, after gene prefiltering retaining only genes with an estimated expression exceeding 1 TPM in more than 25% of the cells.

Theme: meta-research

We're very excited to be launching a special issue on benchmarking of bioinformatic tools, together with the guest editors @markrobinsonca and @olgavitek. For further information, see this link: biomedcentral.com/collections/be ...

Essential guidelines for computational method benchmarking

Lukas M. Weber ${ }^{1,2}$, Wouter Saelens ${ }^{3,4}$, Robrecht Cannoodt ${ }^{3,4}$, Charlotte Soneson ${ }^{1,2,8}$, Alexander Hapfelmeier ${ }^{5}$, Paul P. Gardner ${ }^{6}$, Anne-Laure Boulesteix ${ }^{7}$, Yvan Saeys ${ }^{3,4^{*}}$ and Mark D. Robinson ${ }^{1,2^{*}}$ (D)

One critical aspect: making reference datasets available so that new methods can be tested.

[^0]
scRNA-seq pipeline

Revealing the vectors of cellular identity with single-cell genomics

Allon Wagner ${ }^{1}$, Aviv Regev ${ }^{2,3,5}$ \& Nir Yosef ${ }^{1,4,5}$

Box 1 The many facets of a cell's identity

We define a cell's identity as the outcome of the instantaneous intersection of all factors that affect it. We refer to the more permanent aspects in a cell's identity as its type (e.g., a hepatocyte typically cannot turn into a neuron) and to the more transient elements as its state. Cell types are often organized in a hierarchical

Type: more permanent State: more transient

Perspective
Defining cell types and states with single-cell genomics

Cole Trapnell

Department of Genome Sciences, University of Washington, Seattle, Washington 98105, USA

HYPOTHESIS

A periodic table of cell types

Bo Xia ${ }^{1}$ and Itai Yanai ${ }^{1,2, *}$
"We view a cell state as a secondary module operating in addition to the general cell type regulatory program."

SPOTLIGHT

The evolving concept of cell identity in the single cell era

Samantha A. Morris ${ }^{1,2,3, *}$
"how can we be confident that a novel transcriptional signature represents a new cell type rather than a known cell type in an unrecognized state?

Two types of differential expression: marker gene DE, differential state analysis

repeat for each population ..

After "Cell Type Prediction" / "Clustering", various ways to view the inference problem

Multi-sample Multi-condition Multi-population

Limited "off-the-shelf" options for comparison of distributions

- What is the null distribution? -> all distributions are the same.
- k-sample Anderson-Darling test (Scholz and Stephens, 1987)
- functional data analysis?

Some precedent, but different contexts

Batch effects and the effective design of single-cell gene expression studies

 Jonathan E. Burnett ${ }^{1}$, Jonathan K. Pritchard ${ }^{3}{ }^{3,5}$ \& Yoav Gilad ${ }^{1,7}$

Overcoming confounding plate effects in differential expression analyses of single-cell RNA-seq data

Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 ORE, UK
aaron.lun@cruk.cam.ac.uk
JOHN C. MARIONI
Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
EMBL European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK and Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
marioni@ebi.ac.uk
"A solution is proposed whereby counts are summed from all cells in each plate and the count sums for all plates are used in the DE analysis."

Simulation: multi-sample, multisubpopulation, multi-condition

idea adapted from Korthauer et al., 2016

	Both, Differential modality \& component means
METHOD OpenAccess	
A statistical approach for identifying differential distributions in single-cell RNA-seq experiments Keegan D. Korthauer ${ }^{1,2}$, Li-Fang Chu ${ }^{3}$, Michael A. Newton ${ }^{4,5}$, Yuan Li ${ }^{5}$, James Thomson ${ }^{3,6, /}$, Ron Stewart ${ }^{3}$ and Christina Kendziorskits.	

Flexibility of simulation

- knobs for: sample size, \# of cells, changes in abundance, subpopulationspecific state changes
- batch effects?

countsimQC: comparing simulated and real data

pseudobulk-level dispersionmean relationships

Aggregation works well, mixed models work well. DB especially difficult to detect

FDR

AD = Anderson-Darling $\mathrm{MM}=$ mixed models
edgeR.sum(counts) edgeR.sum(scalecpm) limma-voom.sum(counts) limma-trend.mean(logcounts) limma-trend.mean(vstresiduals)

MM-dream MM-nbinom MM-vst scDD.logcounts scDD.vstresiduals

Pick your data to model wisely

simulated log-fold-change

Current rating

$\mathrm{PB}=$ pseudobulk
AD = Anderson-Darling
$\mathrm{MM}=$ mixed models

Application to LPS dataset: clustering + annotation subpopulations

Data from:
4 mice treated with vehicle 4 mice treated with LPS
frontal cortex
single nuclei RNA-seq (10x)
usual preprocessing: filtering, doublet removal, Seurat integration, clustering

Application to LPS dataset: subpopulation-level visualization

Data from:

4 mice treated with vehicle 4 mice treated with LPS

Each dot is one subpopulation/ sample combination

Application to LPS dataset: go back to cell-level response (discovery based on pseudobulk)

Application to LPS dataset: look at genes (genesets) changing \{within specific, common across\} subpopulations

LPS dataset: interplay of cell type and cell state

- Oligodendrocytes
- OPC

CPE cells

- WT

A couple things you can't read in the preprint

- Maybe relationships between cells are important $->$ use a tree of such relations to guide the inference of differential expression
- Can we do better by looking at full distributions instead of aggregating?

Motivation: can we use the tree information and perform differential inferences across resolutions?

group

- healthy
- CN
scale_count
- 8

6
4
2

0

Cell_cluster

- normal
- CN

Give more space to orange branch; The visualization is on the leaf level (blue points)
aggFDR compares favourably across scenarios and sample sizes

For single cell: generate tree from clustering of type genes, use aggFDR to report data-dependent resolution of differential states

Analyses across resolutions

(here: microRNA relationships and corresponding gene expression, but could be cells)

Differential state from full distributions (no aggregation)

Idea: shuffle cells from multiple samples to generate a permutation test, compare some summary measure of the distribution

Differential state from full distributions (no aggregation)

Permutation testing shows big gains over aggregation for DB.
Comparable performance for DE, DM, DP.

Comments

- multi-sample multi-condition multi-subpopulation datasets $->$ in silico sorting + differential state analysis
- Aggregation (e.g., pseudobulk counts) works well, is fast, flexible and modular
- software: https://github.com/HelenaLC/muscat, aggFDR, ..
- Are we getting deep enough (per cell, per subpopulation)? -> power differs by cell type
- Interplay between definition of type and state: discretization, but at what resolution? $->$ data-driven aggregation along tree
- Should we fit separate models for each subpopulation (what we do now) or one model over all subpopulations?
- How to best use batch correction methods, cell type assignment methods
- Extensions to trajectories?

Dheeraj Maholtra Daniela Calini

Swiss Institute of Bioinformatics

FNCNF

Fonds national suisse

URPP Evolution in Action: From Genomes to Ecosystems

Chan
 Zuckerberg Initiative

Preprint

http://bit.ly/2K4jKzK or Google: "crowell biorxiv muscat"

On the discovery of population-specific state transitions from multi-sample multi-condition single-cell RNA sequencing data

Helena L. Crowell ${ }^{1,2}$, Charlotte Soneson ${ }^{1,2,3,{ }^{*}}$, Pierre-Luc Germain ${ }^{1,4, *}$, Daniela Calini ${ }^{5}$, Ludovic Collin ${ }^{5}$, Catarina Raposo ${ }^{5}$, Dheeraj Malhotra ${ }^{5}$, and Mark D. Robinson ${ }^{1,2}$
${ }^{1}$ Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
${ }^{2}$ SIB Swiss Institute of Bioinformatics, Zurich, Switzerland
${ }^{3}$ Present address: Friedrich Miescher Institute for Biomedical Research and SIB Swiss Institute of Bioinformatics, Basel, Switzerland
${ }^{4}$ D-HEST Institute for Neuroscience, Swiss Federal Institute of Technology, Zurich, Switzerland
${ }^{5}$ F. Hoffmann-La Roche Ltd, Pharma Research and Early Development, Neuroscience,
Ophthalmology and Rare Diseases, Roche Innovation Center Basel, Basel, Switzerland

* These authors contributed equally.

[^0]: 8:16 AM - 5 Mar 2019

