Supporting Information

for

Effect of nonmagnetic ion deficiency on magnetic structure: Density functional study of $Sr_2MnO_2Cu_2$ - xTe_2 , $Sr_2MO_2Cu_2Te_2$ (M = Co, Mn), and the oxide-hydrides Sr_2VO_3H , $Sr_3V_2O_5H_2$ and $SrVO_2H$

Hyun-Joo Koo^{a,*} and Myung-Hwan Whangbo^{b,c,d,*}

^a Department of Chemistry and Research institute for Basic Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea

^b Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA

^c State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter (FJIRSM), Chinese Academy of Sciences (CAS), Fuzhou, China, 350002

^d State Key Laboratory of Crystal Materials, Shandong University, Jinan, China, 250100

[1] Evaluation of the magnetic anisotropies by DFT+U+SOC calculations

To evaluate the magnetic anisotropy of a V³⁺ ion in the oxide-hydrides, we substitute nonmagnetic Ga³⁺ ions for all V³⁺ ions except for one in a unit cell so as to isolate one VO₄H₂ embedded in the oxide-hydrides and then carry out DFT+U+SOC calculations for the cases of ||z and \perp z spin orientations of the V³⁺ ion. A similar method was used to evaluate the magnetic anisotropy of the M²⁺ ion of Sr₂MO₂Cu₂Te₂ (M = Co, Mn) by replacing all M²⁺ ions except for one with nonmagnetic Zn²⁺ ions to isolate one MO₄Te₂ octahedron embedded in the solid. In each MnO₂Te₂ layer of Sr₂MnO₂Cu_{1.5}Te₂ with 10 % breathing-mode Mn-O bond contraction, each supercell has two Mn²⁺ and two Mn³⁺ ions. To isolate one MnO₄Te₂ octahedron containing a Mn²⁺ ion per supercell, we replace the remaining Mn²⁺ ion with Zn²⁺ and two Mn³⁺ ions with Ga³⁺. Similarly, to isolate one MnO₄Te₂ octahedron containing a Mn³⁺ ion per supercell, we replace the remaining Mn³⁺ ion with Ga³⁺ and two Mn²⁺ ions with Zn²⁺.

[2] Supplementary tables

Table S1. The geometrical parameters associated with the exchange paths, where the distance are in Angstrom and the angles are in degrees.

(a) Sr₂VO₃H

	VV	V-L (L = H, O)	\angle V-L-V (L = H, O)
J_1	3.6601	1.8300	180.0
J ₂	3.8853	1.9426	180.0

(b) Sr₃V₂O₅H₂

	VV	V-L (L = H, O)	\angle V-L-V (L = H, O)
J_1	3.6584	1.8307	175.4
J_2	3.9114	1.9559	178.3
J ₂ ,	3.8706	1.9353	180.0

(c) SrVO₂H

	VV	V-L (L = H, O)	\angle V-L-V (L = H, O)
J ₁	3.6671	1.8335	180.0
J ₂	3.9331	1.9665	180.0

(d) CoO₂Te₂ layers of Sr₂CoO₂Cu₂Te₂

	CoCo	Co-O	∠Co-O-Co
J_1	4.1523	2.0761	180.0
	CoCo	00	∠Co-00
J_2	5.8722	2.9361	135.0

(e) MnO_2Te_2 layers of $Sr_2MnO_2Cu_2Te_2$

	MnMn	Mn-O	∠Mn-O-Mn
J ₁	4.1700	2.0850	180.0
	MnMn	00	∠Mn-O…O
J ₂	5.8972	2.9486	135.0

Table S2. Expressions of the ordered spin states in terms of the spin exchanges

(a) Sr₂VO₃H

	J_1S^2	J_2S^2
E _{FM}	+8	+8
E _{AF1}	-8	-8
E _{AF2}	-8	+8

(b) Sr₃V₂O₅H₂

	J_1S^2	J_2S^2	J'_2S^2
E _{FM}	+16	+16	+8
E _{AF1}	-16	-16	+8
E _{AF2}	-16	+16	+8
E _{AF3}	+16	+16	-8

(c) SrVO₂H

	J_1S^2	J_2S^2
E _{FM}	+8	+16
E _{AF1}	-8	+16
E _{AF2}	-8	-16

(d) MoO_2Te_2 layers of $Sr_2MO_2Cu_2Te_2$ (M = Co, Mn) and $Sr_2MnO_2Cu_{1.5}Te_2$

	J_1S^2	J_2S^2
E _{FM}	+8	+8

E _{AF1}	-8	+8
E _{AF2}	0	-8

Table S3. Relative energies (meV per formula unit) of the ordered spin states calculated by DFT+U calculations

	$U^{\rm eff} = 3 {\rm eV}$	$U^{\rm eff} = 4 {\rm eV}$
E _{FM}	101	83
E _{AF1}	0	0
E _{AF2}	87	72

(a) Sr₂VO₃H

(b) Sr₃V₂O₅H₂

	$U^{\rm eff} = 3 {\rm eV}$	$U^{\rm eff} = 4 {\rm eV}$
E _{FM}	185	153
E _{AF1}	0	0
E _{AF2}	165	136
E _{AF3}	91	75

(c) SrVO₂H

	$U^{\rm eff} = 3 {\rm eV}$	$U^{\rm eff} = 4 {\rm eV}$
E _{FM}	162	134
E _{AF1}	155	128
E _{AF2}	0	0

(d) MO_2Te_2 layers of $Sr_2MO_2Cu_2Te_2$ (M = Co, Mn) and $Sr_2MnO_2Cu_{1.5}Te_2$

M = Co	M = Mn
--------	--------

	$U^{\rm eff} = 3 {\rm eV}$	$U^{\rm eff} = 4 {\rm eV}$	$U^{\rm eff} = 5 \rm eV$	$U^{\rm eff} = 3 {\rm eV}$	$U^{\rm eff} = 4 {\rm eV}$	$U^{\rm eff} = 5 {\rm eV}$
E _{FM}	96	76	60	39 (0) ^a	32 (0) ^a	24 (0) ^a
E _{AF1}	0	0	0	0 (202)	0 (203)	0 (195)
E _{AF2}	40	32	25	17 (83)	12 (91)	8 (97)

^a The numbers in the parentheses refer to $Sr_2MnCu_{1.5}Te_2O_2$, and those outside the parentheses to

 $Sr_2MnCu_{1.5}Te_2O_2.$

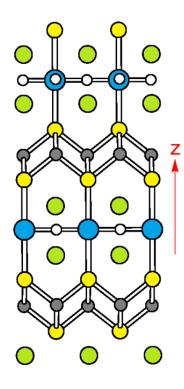


Figure S1. Projection view of the crystal structure of stoichiometric $Sr_2MO_2Cu_2Te_2$ (M = Co, Mn) along the a-direction, where Sr = green sphere, M = blue sphere, O = white sphere, Te = yellow sphere, and Cu = grey sphere.

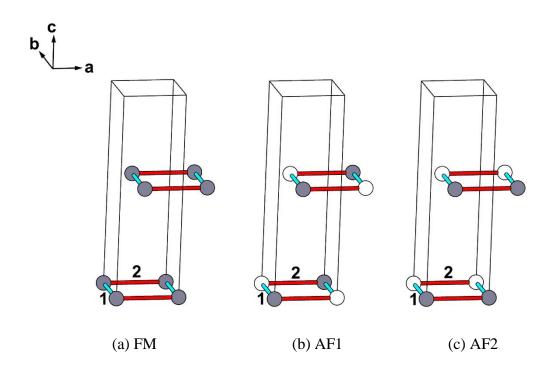
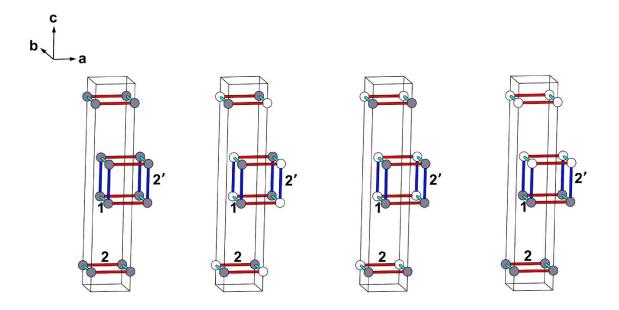



Figure S2. Three ordered spin states used to carry out the energy mapping analysis for Sr_2VO_3H , where the filled and empty spheres represent the up-spin and down-spin V^{3+} sites, respectively.

(a) FM	(b) AF1	(c) AF2	(d) AF3
(u) I IVI	(0) 1 11 1	(\mathbf{U}) \mathbf{I} \mathbf{I} \mathbf{I}	(u) I II J

Figure S3. Four ordered spin states used to carry out the energy mapping analysis for $Sr_3V_2O_5H_2$, where the filled and empty spheres represent the up-spin and down-spin V³⁺ sites, respectively.

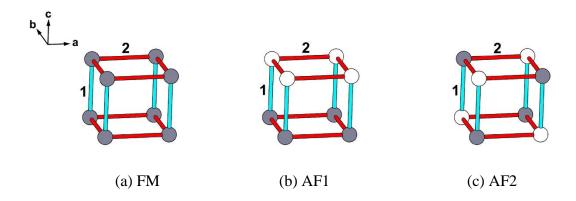
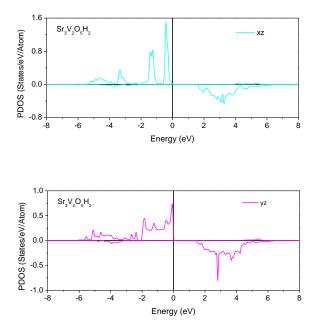



Figure S4. Three ordered spin states used to carry out the energy mapping analysis for $SrVO_2H$, where the filled and empty spheres represent the up-spin and down-spin V^{3+} sites, respectively.

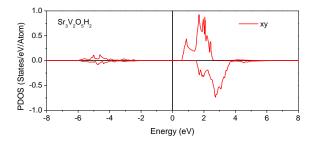


Figure S5. PDOS plots calculated for the d_{xz} , d_{yz} , d_{xy} states of $Sr_3V_2O_5H_2$ obtained by DFT+U calculations with $U^{eff} = 3 \text{ eV}$.

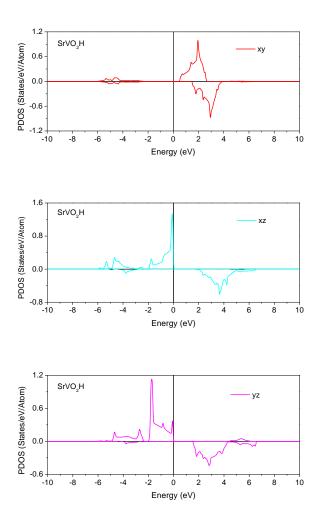


Figure S6. PDOS plots calculated for the d_{xz} , d_{yz} , d_{xy} states of SrVO₂H obtained by DFT+U calculations with $U^{\text{eff}} = 3 \text{ eV}$.

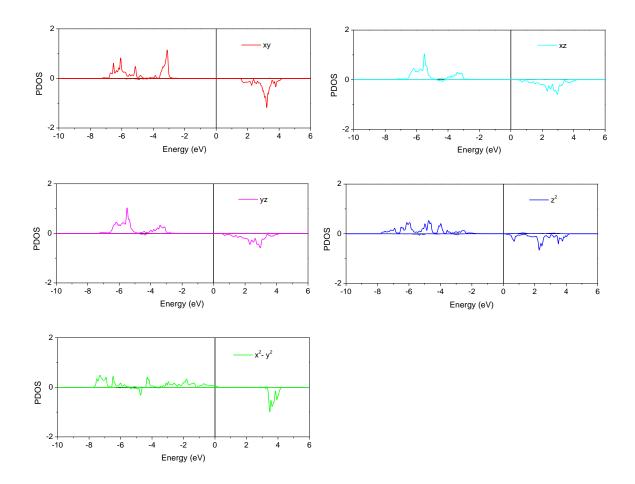


Figure S7. PDOS plots calculated for the d-states of $Sr_2MnCu_2Te_2O_2$ by DFT+U calculations using $U^{eff} = 4 \text{ eV}.$