University of Nottingham

UK | CHINA | MALAYSIA

High Throughput Mathematical Modelling with the SyncroPatch

Nanion User Meeting 2019

Gary Mirams School of Mathematical Sciences University of Nottingham

How do you describe ion current kinetics?

Describing Ion Current Kinetics

- Conventionally
- 518

University of Nottingham

A. L. HODGKIN AND A. F. HUXLEY

movement of a negatively charged particle which blocks the flow of sodium ions when it reaches the inside of the membrane. This is encouraging, but it must be mentioned that a physical theory of this kind does not lead to satisfactory functions for α_h and β_h without further *ad hoc* assumptions.

Controversially?Conventionally!

MEMBRANE CURRENT IN NERVE

$$\begin{aligned} \alpha_n &= 0.01 \ (V+10) \middle/ \left(\exp \frac{V+10}{10} - 1 \right) \\ \beta_n &= 0.125 \ \exp (V/80), \\ \alpha_m &= 0.1 \ (V+25) \middle/ \left(\exp \frac{V+25}{10} - 1 \right), \\ \beta_m &= 4 \ \exp (V/18), \\ \alpha_h &= 0.07 \ \exp (V/20), \\ \beta_h &= 1 \middle/ \left(\exp \frac{V+30}{10} + 1 \right). \end{aligned}$$

High throughput model building

High-information protocols

University of Nottingham

activation rate k_1 deactivation rate k_2 $k_1 = p_1 \exp(p_2 V)$, $k_3 = p_5 \exp(p_6 V)$, inactivation rate k_3 $k_2 = p_3 \exp(-p_4 V)$, $k_4 = p_7 \exp(-p_8 V)$. recovery rate k_4

Applied in SyncroPatch 384PE to CHO cells stably expressing hERG1a at 25C

Fitting four conductances to an action potential recording

University of

An example of protocols recorded in a single well

University of Nottingham

Lei et al., Biophysical Journal, 117 (online ahead of print)

Because we fit directly to the trace, it needs to be really accurate...

University of

Nottingham

- So we introduce more strict QC
- Still left N=124 good wells out of 384 at room temp.

(slightly lower numbers at higher temps, but still tens)

TABLE 1A Summary of the Fully Automated Quality ControlCriteria for the Staircase Protocol, QC1–QC6

QC Name	Criterion Description		
QC1.Rseal	Check R_{seal} within [0.1, 1000] G Ω .		
QC1.Cm	Check C _m within [1, 100] pF.		
QC1.Rseries	Check R_{series} within [1, 25] M Ω .		
QC2.raw	Check raw trace recording SNR is over 25 (SNR defined as var(trace)/var(noise)).		
QC2.subtracted	Check subtracted trace $SNR > 25$.		
QC3.raw	Check 2 sweeps of raw trace recording are similar by comparing the RMSD of the two sweeps < mean(RMSD to zero of the two sweeps) × 0.2.		
QC3.E4031	Check 2 sweeps of E-4031 trace recording are similar (same comparison as QC3.raw).		
QC3.subtracted	Check 2 sweeps of subtracted trace recording are similar (same comparison as QC3.raw).		
QC4	Check R_{seal} , C_m , R_{series} , respectively, before and after E-4031 change (defined as std/mean) < 0.5.		
QC5.staircase	Check the maximum current during the second half of the staircase changes by at least 75% of the raw trace after E-4031 addition.		
QC5.1.staircase	Check RMSD to zero of staircase protocol changes by at least 50% of the raw trace after E-4031 addition.		
QC6.subtracted	Check the first step up to $+40 \text{ mV}$, before the staircase, in the subtracted trace is bigger than $-2 \times$ estimated noise level.		
QC6.1.subtracted	Check the first + 40 mV during the staircase, with the same criterion as QC6.subtracted.		
QC6.2.subtracted	Check the second + 40 mV during the staircase, with the same criterion as QC6.subtracted.		

RMSD, root mean-square difference; SNR, signal-to-noise ratio; std, standard deviation; var, variance.

Temperature dependence

Figure S9. Fitting of Generalised Eyring equation and Q_{10} equation to the mean distribution μ inferred using the simplified psuedo-MwG (orange violin plot). The obtained Generalised Eyring fits are shown as green fan charts with the first three standard deviations in green; the obtained Q_{10} fits are shown in red. The fitted parameters for the Generalised Eyring and Q_{10} equations are shown in the bottom right tables, one set for each k_i , i = 1, 2, 3, 4. For comparison to typical Q_{10} values in literature, where Q_{10} values are usually assumed to be around 2 to 3, we show the parameters prediction using $Q_{10} \in [2,3]$ as the grey shaded region.

SEE CHON'S POSTER IN COFFEE ROOM!

University of Nottingham

The Reversal Ramp and Variability

The "Reversal Ramp"

Ü

University of

Nottingham

University of Nottingham UKI CHINA | MALAYSIA Sources of variability

- We saw a fair bit of variation in recordings and subsequent parameters in the models
- The ramp hinted this is due to slightly different patch artefacts / imperfect compensations and leak subtraction in each well.
- We can include artefacts in a larger mathematical model of what the amplifier does, to get consensus kinetics across all wells.
- Even better fits and predictions when we do this (not shown!).

Nonlinear leak

Our measurements at Roche (Lei et al. 2019)

University of

Nottingham

CHINA | MALAYSIA

Monique, Adam & Jamie's measurements (Victor Chang, Sydney)

Post E-4031 (hERG blocker)

Victor Chang measurements

Ours at Roche

University of Nottingham

CHINA | MALAYSIA

University of Nottingham UK I CHINA I MALAYSIA Manual patch experiment

Ü

University of Nottingham UK I CHINA I MALAYSIA Definitely not endogenous currents!

Silicone experiments (in manual patch)

Victor Chang Measurements (with cell, after hERG block)

Definitely not endogenous currents! Nottingham

Silicone manual leak experiments

University of

And if you swap pipette and bath solutions!

So it must be the seal enhancer solution...

Swapped pipette and bath solutions

University of Nottingham

Wash out bath and replace with manual solution (No F⁻)

- Chon Lok Lei
- Michael Clerx, David Gavaghan, Kylie Beattie, Ross Johnstone, Sanmitra Ghosh – Oxford
- Jules Hancox, Dario Melgari Bristol.
- Liudmila Polonchuk, Ken Wang Hoffman-LaRoche.
- John Walmsley, Simon Preston, Theo Kypraios Nottingham
- Remi Bardenet Lille
- Yi Cui, Jim Louttit, Jim Harvey, Khuram Chaudary GlaxoSmithKline
- Teun de Boer, Alan Fabbri UMC Utrecht
- Monique Windley, Adam Hill & Jamie Vandenberg Victor Chang Cardiac Research Institute, Sydney

Biotechnology and Biological Sciences Research Council

Engineering and

Physical Sciences

Research Council

Fellow

Sol	utione
	uliona

	Ca ²⁺ External (mM)	F ⁻ Internal (mM)
Our Study (Roche)	2.05	100
Ng et al. hERG variants (Victor Chang)	2	110
Kang et al. K _v 2.1 variants (NorthWestern)	2	60