
exascaleproject.org

What All Codes Should Do:
Overview of Best Practices in HPC
Software Development
ATPESC 2019

Katherine Riley

Director of Science, Argonne Leadership Computing Facility
Argonne National Laboratory

Q Center, St. Charles, IL (USA)
August 8, 2019

2 ATPESC 2019, July 28 – August 9, 2019

License, citation, and acknowledgments

License and Citation
• This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).

• Requested citation: Katherine Riley, What All Codes Should Do: Overview of Best Practices in HPC
Software Development, in Better Scientific Software Tutorial, Argonne Training Program on Extreme-Scale
Computing (ATPESC), St. Charles, IL, 2019. DOI: 10.6084/m9.figshare.9272813.

Acknowledgements
• This work was supported by the U.S. Department of Energy Office of Science, Office of Advanced Scientific

Computing Research (ASCR), and by the Exascale Computing Project (17-SC-20-SC), a collaborative effort
of the U.S. Department of Energy Office of Science and the National Nuclear Security Administration.

• This work was performed in part at the Argonne National Laboratory, which is managed by UChicago
Argonne, LLC for the U.S. Department of Energy under Contract No. DE-AC02-06CH11357

https://creativecommons.org/licenses/by-sa/4.0
https://doi.org/10.6084/m9.figshare.9272813

Good Scientific Process Requires Good Software Practices

Good Software Practices Will Increase Science Productivity

4 ATPESC 2019, July 28 – August 9, 2019

5 ATPESC 2019, July 28 – August 9, 2019

6 ATPESC 2019, July 28 – August 9, 2019

rt

8 ATPESC 2019, July 28 – August 9, 2019

Mitigate Risk But It Is Never Zero

• Quick and dirty development of particle capability in code
• Error in tracking particles resulted in duplicated tags from round-off
• Had to develop post-processing tools to correctly identify trajectories

– 6 months to process results

FLASH had a software process in place. It was tested regularly. This was one
instance when the full process could not be applied because of time constraints.

• Short notice availability of one of the biggest
machines of it’s time
– < 1month to get ready, run was 1.5 weeks

9 ATPESC 2019, July 28 – August 9, 2019

Objectives of the Session

• To bring knowledge of useful software engineering practices to
HPC scientific code developers
– Not to prescribe any set of practices as must use

• Be informative about practices that have worked for some projects
• Emphasis on adoption of practices that help productivity rather than put

unsustainable burden
• Customization as needed – based on information made available

Your code will live longer than you expect.
Prepare for this.

Your science campaigns have real costs.
Think of the consequences.

10 ATPESC 2019, July 28 – August 9, 2019

Agenda
Time Module Topic Speaker

9:30am-10:15am 01 Objectives, Motivation, & Overview Katherine Riley, ANL

10:15am-10:45am Break

10:45am-11:30am 02 Requirements & Test-Driven Development Jared O’Neal, ANL
11:30am-12:30pm 03 Software Design & Testing Anshu Dubey, ANL

12:30pm-1:30pm Lunch

1:30pm-2:15pm 04 Licensing James Willenbring, SNL

2:15pm-3:15pm 05 Agile Methodologies & Useful GitHub Tools James Willenbring, SNL

3:15pm-3:45pm Break

3:45pm-4:15pm 06 Git Workflows Jared O’Neal, ANL

4:15pm-4:55pm 07 Code Coverage & Continuous Integration Jared O’Neal, ANL

4:55pm-5:30pm 08 Software Refactoring & Documentation Anshu Dubey, ANL

11 ATPESC 2019, July 28 – August 9, 2019

Heroic Programming

Usually a pejorative term, is used to describe the expenditure of huge
amounts of (coding) effort by talented people to overcome shortcomings
in process, project management, scheduling, architecture or any other
shortfalls in the execution of a software development project in order to
complete it. Heroic Programming is often the only course of action left
when poor planning, insufficient funds, and impractical schedules leave a
project stranded and unlikely to complete successfully.
From http://c2.com/cgi/wiki?HeroicProgramming

Science teams often resemble heroic programming
Many do not see anything wrong with that approach

http://c2.com/cgi/wiki?HeroicProgramming

12 ATPESC 2019, July 28 – August 9, 2019

What is wrong with heroic programming
Scientific results that could be obtained with heroic programming have run
their course, because:

It is not possible for a single person to take on all these roles

Better scientific
understanding

Different roles
and responsibilities

More complex
software

Math model

Numerics

Verification

Performance

More Complex
Computers

13 ATPESC 2019, July 28 – August 9, 2019

In Extreme-Scale science
• Codes aiming for higher fidelity modeling

– More complex codes, simulations and analysis
– More moving parts that need to interoperate
– Variety of expertise needed – the only tractable development model is

through separation of concerns
– It is more difficult to work on the same software in different roles

without a software engineering process

• Onset of higher platform heterogeneity
– Requirements are unfolding, not known a priori
– The only safeguard is investing in flexible design and robust software

engineering process

14 ATPESC 2019, July 28 – August 9, 2019

In Extreme-Scale science
• Codes aiming for higher fidelity modeling

– More complex codes, simulations and analysis
– More moving parts that need to interoperate
– Variety of expertise needed – the only tractable development model is

through separation of concerns
– It is more difficult to work on the same software in different roles

without a software engineering process

• Onset of higher platform heterogeneity
– Requirements are unfolding, not known a priori
– The only safeguard is investing in flexible design and robust software

engineering process

Supercomputers change fast
Especially Now

15 ATPESC 2019, July 28 – August 9, 2019

Technical Debt

Accretion leads to unmanageable software
• Increases cost of maintenance
• Parts of software may become unusable over time
• Inadequately verified software produces questionable results
• Increases ramp-on time for new developers
• Reduces software and science productivity due to technical debt

Consequence of Choices
Quick and dirty collects interest which means more effort required to add features.

16 ATPESC 2019, July 28 – August 9, 2019

• "... it seems likely that significant software contributions to existing
scientific software projects are not likely to be rewarded through the
traditional reputation economy of science. Together these factors provide
a reason to expect the over-production of independent scientific software
packages, and the underproduction of collaborative projects in which later
academics build on the work of earlier ones."

• Howison & Herbsleb (2011)

17 ATPESC 2019, July 28 – August 9, 2019

Challenges Developing a Scientific Application

Technical
• All parts of the cycle can be under

research
• Requirements change throughout the

lifecycle as knowledge grows
• Verification complicated by floating

point representation
• Real world is messy, so is the

software

Sociological
• Competing priorities and incentives
• Limited resources
• Perception of overhead without

benefit
• Need for interdisciplinary interactions

18 ATPESC 2019, July 28 – August 9, 2019

Customizations For Science Applications

• Testing does not follow specific methods as understood by the
software engineering research community
– The extent and granularity reflective of project priorities and team size
– Larger teams have more formalization

• Lifecycle of science compare to lifecycle of development
• Development model

– Mostly ad-hoc, some are close to agile model, but none follows it
explicitly

– Much more responsive to the needs of the lifecycle

19 ATPESC 2019, July 28 – August 9, 2019

Lifecycle of Scientific Application • Modeling
– Approximations
– Discretizations
– Numerics

• Convergence
• Stability

• Implementation
– Verification

• Expected behavior
– Validation

• Experiment/observation
Numerical*solvers*

Valida0on*

Physical*World*

Equa0ons*

Difference*
equa0ons*Implementa0on*

Model*

Discre0ze*

Verify*accuracy*
stability

Model**
fidelity*

Model**
fidelity*

20 ATPESC 2019, July 28 – August 9, 2019

Software productivity cycle

http://www.orau.gov/swproductivity2014/SoftwareProductivityWorkshopReport2014.pdf

21 ATPESC 2019, July 28 – August 9, 2019

Software Process Best Practices

Baseline
• Invest in extensible code design
• Use version control and automated

testing
• Institute a rigorous verification and

validation regime
• Define coding and testing standards
• Clear and well defined policies for

– Auditing and maintenance
– Distribution and contribution
– Documentation

Desirable
• Provenance and reproducibility
• Lifecycle management
• Open development and frequent

releases

22 ATPESC 2019, July 28 – August 9, 2019

A Useful Resource

https://ideas-productivity.org/resources/howtos/

• ‘What Is’ docs: 2-page characterizations of important topics
for SW projects in computational science & engineering
(CSE)

• ‘How To’ docs: brief sketch of best practices
– Emphasis on ``bite-sized'' topics enables CSE software teams to

consider improvements at a small but impactful scale
• We welcome feedback from the community to help make

these documents more useful

https://ideas-productivity.org/resources/howtos/

23 ATPESC 2019, July 28 – August 9, 2019

Other resources
http://www.software.ac.uk/

http://software-carpentry.org/

http://flash.uchicago.edu/cc2012/

http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1001745

http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=4375255

http://www.orau.gov/swproductivity2014/SoftwareProductivityWorkshopReport2014.pdf

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6171147

http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1001745
http://flash.uchicago.edu/cc2012/
http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1001745
http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=4375255
http://www.orau.gov/swproductivity2014/SoftwareProductivityWorkshopReport2014.pdf
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6171147

24 ATPESC 2019, July 28 – August 9, 2019

Why Community Codes?

• Scientists can focus on developing for their algorithmic needs
• Infrastructural provided
• Graduate students do not start developing codes from scratch

– Look at the available public codes and converge on the ones that most meet
their needs

– Look at the effort of customization for their purposes
– Select the public code, and build upon it as they need

• Cannot absolve researcher of understanding components
– Just don’t have to develop each method
– Methods that are so well understood there is little research

25 ATPESC 2019, July 28 – August 9, 2019

Why Community Codes Continued

• Researchers can build upon work of others and get further faster,
instead of reinventing the wheel
– Code component re-use
– No need to become an expert in every numerical technique

• More reliable results because of more stress tested code
– Enough eyes looking at the code will find any errors faster
– New implementations take several years to iron out the bugs and deficiencies
– Different users use the code in different ways and stress it in different ways

• Open-source science results in more reproducible results
• Generally good for the credibility

26 ATPESC 2019, July 28 – August 9, 2019

Communities Do Use Community Codes

• Astrophysics, Molecular Dynamics, Chemistry, Climate, etc
• Community/open-source approach more common in areas which

need multi-physics and/or multi-scale
• A visionary sees the benefit of software re-use and releases the code
• Sophistication in modeling advances more rapidly in such

communities
• Others keep their software close for perceived competitive advantage

– Repeated re-invention of wheel
– General advancement of model fidelity slower

27 ATPESC 2019, July 28 – August 9, 2019

• Good software practices are needed for scientific
productivity

• Science at extreme-scales is complex and requires multiple
expertise

• Software process does need to address reality
• Open codes, community contribution, are powerful tools

exascaleproject.org

Questions

