Parameters	Sham (n=6)	4 h BUO (n=6)	P value
	Mean \pm SE	Mean \pm SE	
Urea (mmol/L)	8.1 ± 0.2	14.4 ± 0.4	<i>P</i> < 0.01
Creatinine (µmol/L)	15.5 ± 1.2	68.3 ± 3.5	<i>P</i> < 0.01
Na (mmol/L)	139.3 ± 0.7	137.1 ± 0.8	P = 0.07
K (mmol/L)	5.0 ± 0.2	6.2 ± 0.2	<i>P</i> < 0.01
Urine osmolality	$\underline{1662.7\pm33.7}$	552.7 ± 14.1	<i>P</i> < 0.001
(mOsm/kg.H2O)			
Urine volume	1.37 ± 0.1	N/A	
(ml/kg/h)			

Supplemental Table 1. Biochemical values from plasma and urine samples of sham-operated controls and 4 h BUO rats.

Supplemental Table 2. Analysis of percent reduction of AQP2 and pS256-AQP2 band intensity

from BUO rats compared to controls

AQP2 band intensity		BUO Total AQP2 band intensity/	
BUO	Control	Average of control band intensity	
4.74	7.25	0.38	
7.58	9.54	0.61	
9.85	14.60	0.79	
5.99	12.63	0.48	
4.66	12.45	0.37	
8.52	15.85	0.68	
9.06	14.88	0.73	
Average	12.46	0.58	
Total AQP2 reduction (%)		42.2	

pS256-AQP2 band intensity		BUO pS256-AQP2 band intensity/
BUO	Control	Average of control band intensity
6.25	16.81	0.50

4.71	14.88	0.37
4.19	14.17	0.33
3.90	11.89	0.31
1.95	10.16	0.16
4.24	8.01	0.34
4.85	11.96	0.39
Average	12.56	0.34
pS256 AQP2 reduction (%)		65.8

	BUO pS256/Total	Log2(pS256/total)	
	0.86	-0.22	0
	0.65	-0.62	0
	0.58	-0.79	0
	0.54	-0.89	0
	0.27	-1.89	0
	0.58	-0.78	0
	0.67	-0.58	0
Average	0.59		
SD	0.18		
T-test	0.001		

BUO-induced reduction of total AQP2 and pS256-AQP2 by 42.2% and 65.8%, respectively (P< 0.001).

Supplemental Table 3. Urine osmolality of sham-operated controls and BUO rats.

Duration of	Sham (n=7)	BUO (n=7)	P value
experiments	Urine osmolality	Urine osmolality	
1 I	2	2	
	(mOsm/kg, H ₂ O)	(mOsm/kg, H ₂ O)	
		(
	(Mean + SE)	(Mean + SE)	
	()	(,	
10-hour	1615.4 + 39.5	382.3 ± 6.6	<i>P</i> < 0.001
10 110 11	<u>101011 20000</u>		1 (0)001
24-hour	1592 7 + 32 8	292 1 + 5 8	<i>P</i> < 0.001
2 . 11001		272.1 ± 3.0	1 < 0.001

Duration of	Urine output
experiments	(ml/kg/hour)
	(Mean \pm SE)
4-hour sham (n=7)	1.37 ± 0.10
10-hour sham (n=7)	1.95 ± 0.13
24-hour sham (n=7)	1.83 ± 0.15

Supplemental Table 4. Urine volume of sham-operated controls.

Supplemental Figure 1. Estimated half-lives of downregulated proteins.

A distribution of the estimated half-lives of the downregulated proteins (based on mouse collecting duct protein half-lives from Sandoval *et al.*).

Supplemental Figure 2. Co-localization of cell-cell adhesion proteins with autophagy markers in the inner medulla collecting duct of BUO rats.

The inner medulla sections of sham (S) (n=3) and BUO (n=3) were triple-labelled against AQP2 (red), Lamp1 (pink), and proteins representative of cell-cell adherens junctions (Itgb1, ERM (green)). Scatter plots demonstrate the degree of co-localization between Itgb1 and Lamp1 (Pearson correlation coefficient, r^2 =0.89, *P* < 0.05), as well as ERM and Lamp1 (r^2 =0.90, *P* < 0.05).

Supplemental Figure 3. Immunoblotting and immunofluorescent study of inner medulla from the BUO rats and sham for UT-A1.

(A). Densitometry analysis revealed no significant change in UT-A1 in IMCD in 4 h BUO (\Box) (+, n=6) compared with sham (**•**) (-, n=6) (P > 0.05, unpaired *t*-tests). B) The inner medulla sections of sham (S) (n=3) and 4 h BUO (n=3) were triple-labelled against AQP2 (red), Lamp1 (pink), urea transporter A1 (UT-A1). Colocalization of urea transporter A1 with AQP2 and lysosomal protein (Lamp1) was observed in the inner medulla collecting duct of 4 h BUO rats. Insets demonstrate a magnified view of the areas where significant colocalizations were observed as a group of puncta which were not seen in control sections. Scale bar = 4 µm. A representative scatter plots demonstrate the high degree of colocalization between UT-A1 and Lamp1 (Pearson correlation coefficient, r^2 =0.76, P < 0.05) in IMCD of a rat with 4 h BUO.