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Preface

This book contains material from a workshop directed toward life scientists with little to
no experience with statistical computing or bioinformatics. This will introduce both the
Linux/UNIX operating system and the R statistical computing environment, with a focus on
a biological application - analyzing RNA-seq data for differentially expressed genes. The first
half will introduce basic operation in a UNIX environment, and will cover the first steps in an
RNA-seq analysis including QC, alignment, and quantitation. The second half will introduce
the R statistical computing environment, and will cover differential gene expression analysis
using Bioconductor. At the end of the course or after reading through this book, you will:

1. Know how to provision your own computing resources using Amazon Web Services
Elastic Compute Cloud.

2. Be familiar with the UNIX shell, including nagivating the filesystem, creat-
ing/examining/removing files, getting help, and batch operations.

3. Know how to align and quantitate gene expression with RNA-seq data.
4. Become familiar with the R statistical computing environment, including data types,

variables, array manipulation, functions, data frames, data import/export, visualization,
and using packages.

5. Know what packages to use and what steps to take to analyze RNA-seq data for
differentially expressed genes.

This book is a PDF version of the online materials available at bioconnector.github.io. Please
see the online materials for instructions regarding how to create an Amazon Web Services
account and setting up software that will be used in this course. Be sure to stop or terminate
any running AWS instances when no longer in use.
This course is sponsored by the Claude Moore Health Sciences Library, and borrows some
materials from the Software Carpentry and Data Carpentry projects.
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Chapter 1

Introduction to the UNIX shell

Modified from lessons for Data Carpentry with original contributions from Tracy Teal, Paul
Wilson, Milad Fatenejad, Sasha Wood and Radhika Khetani.
Learn more:

• http://datacarpentry.org/
• http://software-carpentry.org/

Objectives

• What is the shell?
• How do you access it?
• Connecting to cloud computing resources
• How do you use it?
• Getting around the Unix file system
• looking at files
• manipulating files
• automating tasks
• What is it good for?
• Where are resources where I can learn more? (because the shell is awesome)

What is the shell?

The shell is a program that presents a command line interface which allows you to control
your computer using commands entered with a keyboard instead of controlling graphical user
interfaces (GUIs) with a mouse/keyboard combination.
Why should you care?
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• For 99% of bioinformatics tools, you have to use the shell (the command line). There is
no graphical interface.

• The shell gives you power. The command line gives you the power to do your work
more efficiently and more quickly. When you need to do things tens to hundreds of
times, knowing how to use the shell is transformative.

• You have to use the shell to connect to remote computers.

Automation

Have 10,000,000 files to rename, read in, analyze, and visualize? It’s easy to automate things
with the shell.
(image removed from PDF version)

How to access the shell

You access the shell through a program called a Terminal. We’re going to use a terminal to
connect to the shell of a remote computer. The terminal program is built-in on Mac and
Linux. For Windows, you’ll have to download a separate program called a terminal emulator
that will allow you to connect to remote computers.

Mac

On Mac the shell is available through Terminal:
Applications -> Utilities -> Terminal
Go ahead and drag the Terminal application to your Dock for easy access.

Windows

On Windows machines we’ll be using a terminal emulator called PuTTY.

More resources on the shell

Cheat sheets:

• http://fosswire.com/post/2007/08/unixlinux-command-cheat-sheet/

Web sites where you can see what the different components of a shell command are doing:

• explainshell.com
• commandlinefu.com
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Connecting to cloud computing resources

Cloud computing means different things to different people. There’s Software-as-a-Service
(Saas) like Gmail, Facebook, etc., that most people think of when they think of cloud
computing. Here, we’re strictly talking about Infrastructure-as-a-Service (IaaS). That is,
we’re using (or renting) computing infrastructure that we don’t own.
We’ll cover in class how to start and connect to an Amazon Web Services EC2 instance. It’s
essential that you stop or terminate any running AWS instances after you’re
done with them.

Shell basics

Get some data files to work with

We will spend most of our time learning about the basics of the shell by manipulating some
experimental data. If you aren’t using the virtual machine image you’ll need to download the
data for the tutorial. For this you’ll need internet access, because you’re going to get it off
the web.
Open the shell and type the commands:

cd
git clone https://github.com/bioconnector/workshops.git

This command will grab all of the data needed for this workshop. It’s using something called
git that’s used for version control, but we won’t talk about that here.
If you’re already using the machine image you might need to update things.

cd workshops
git pull
cd

Moving around and listing files

We’ll start out by moving around the file system and listing files. Today we’re going to go
through using the command line. These commands are in the README.md file and on your
handout (fixme).
Let’s go in to that directory we just downloaded:

cd workshops
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cd stands for ‘change directory’. A directory is the same thing as a folder. We just call folders
directories in the Linux/UNIX world. Here we just entered the workshops directory. If we
were doing this on a graphical shell we would have double-clicked on a little folder icon. It’s
the same idea.
In this directory, there should be some things we just downloaded. Let’s check. Type:

ls

ls stands for ‘list’ and it lists the contents of a directory. This woudld be what you would
see in the folder if you were doing this graphically on a desktop.
Blue things are directories, white things are files.
Now, let’s go look in the ‘data’ directory in the ‘shell’ lesson. It’s nested a few directories
deep. To get to it, let’s enter and list each directory like so:

cd lessons
ls
cd shell
ls
cd data
ls

In there, all mixed up together are regular files, directories, and an executable program. If
we want to know which is which, we can type:

ls -F

Things with a / after it is a directory.
Things with a * after them are programs.
It there’s nothing there it’s a regular file.
You can also use the command:

ls -l

to see whether items in a directory are files or directories. It gives a lot more information
too, such as the size of the file, who owns the file, etc.
So, we can see that we have several files, directories and a program. Great!
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Options

Most programs take additional options that control their exact behavior. For example, -F
and -l are options for ls. The ls program, like many programs, take a lot of options. But
how do we know what the options are to particular commands?
Most commonly used shell programs have a manual. Let’s open the manual page for ls.
You can access the manual using the man program.

man ls

Space key goes forward
Or use the arrow keys to scroll up and down.
When you are done reading, just hit q to quit.
Programs that are run from the shell can get extremely complicated. To see an example, open
up the manual page for the find program. No one can possibly learn all of these arguments,
of course. So you will probably find yourself referring back to the manual page frequently.

The Unix directory file structure (a.k.a. where am I?)

As you’ve already just seen, you can move around in different directories or folders at the
command line.
When you’re working with bioinformatics programs, you’re working with your data and it’s
key to be able to have that data in the right place and make sure the program has access to
the data. Many of the problems people run in to with command line bioinformatics programs
is not having the data in the place the program expects it to be.
Let’s draw out what we just did, and some of the other files and folders we could have clicked
on.
This is called a hierarchical file system structure, like an upside down tree with root (/) at
the base that looks like this.
(image removed from PDF version)
That (/) at the base is often also called the ‘top’ level.
When you are working at your computer or log in to a remote computer, you are on one of
the branches of that tree, your home directory: /home/username.
If we type cd by itself:

cd

This puts you in your home directory. That’s /home/username
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EXERCISE

• Using cd and ls, go in to the ‘workshops/shell/data’ directory and list its contents.
• How many files, how many directories and how many programs are there?

Where am I?

Let’s also check to see where we are. Sometimes when we’re wandering around in the file
system, it’s easy to lose track of where we are and get lost.
If you want to know what directory you’re currently in, type:

pwd

This stands for ‘print working directory’. That’s the directory you’re currently working in,
and it’s “printed” to the screen.
What if we want to move back up and out of the data directory? To go ‘back up a level’ we
need to use ..

cd ..

Now do ls and pwd. See now that we went back up in to the ‘shell’ directory. .. means “the
directory above,” or “the parent directory.”

EXERCISE
Let’s go on a file hunt. Move around in the “shell/data/hidden” directory and try to find the
file “youfoundit.txt.”
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Examining the contents of other directories

By default, the ls commands lists the contents of the working directory (i.e. the directory you
are in). You can always find the directory you are in using the pwd command. However, you
can also give ls the names of other directories to view. Navigate to the home directory if you
are not already there using cd by itself, then ls the contents of the “workshops/lessons/shell”
directory:

cd
ls workshops/lessons/shell

This listed the contents of workshops/lessons/shell without navigating there.
The cd command works the same way. Try entering:

cd
ls workshops/lessons/shell/data/hidden

and you will jump directly to hidden without having to go through the intermediate directo-
ries.

EXERCISE
Try finding the ‘anotherfile.txt’ file without changing directories.

HUGE Shortcut: Tab Completion

Navigate to the home directory. Typing out directory names can waste a lot of time. When
you start typing out the name of a file or directory, then hit the tab key, the UNIX shell will
try to fill in the rest of the directory name. For example, enter:

cd
cd w<tab>

The shell will fill in the rest of the directory name for “workshops”. Now go to
workshops/lessons/rnaseq-1day/data

cd
cd wo<tab>le<tab>rna<tab>da<tab>
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Now type ls uvb and hit tab twice.

ls uvb<tab><tab>

When you hit the first tab, nothing happens. The reason is that there are multiple directories
in the home directory which start with uvb. Thus, the shell does not know which one to fill
in. When you hit tab again, the shell will list the possible choices.
Tab completion can also fill in the names of programs. For example, enter e<tab><tab>. You
will see the name of every program that starts with an e. One of those is echo. If you enter
ec<tab> you will see that tab completion works.

Full vs. Relative Paths

The cd command takes an argument which is the directory name. Directories can be specified
using either a relative path or a full path. The directories on the computer are arranged into
a hierarchy. The full path tells you where a directory is in that hierarchy. Navigate to the
home directory. Now, enter the pwd command and you should see:

/home/username

which is the full name of your home directory. This tells you that you are in a directory called
username, which sits inside a directory called home which sits inside the very top directory in
the hierarchy. The very top of the hierarchy is a directory called / which is usually referred to
as the root directory. So, to summarize: username is a directory in home which is a directory
in /.
Now enter the following command:

cd /home/bioinfo/workshops/lessons/shell/data/hidden

This jumps to hidden. Now go back to the home directory (cd). We saw earlier that the
command:

cd workshops/lessons/shell/data/hidden

had the same effect - it took us to the hidden directory. But, instead of specifying the full
path, we specified a relative path. In other words, we specified the path relative to our current
directory. A full path always starts with a /. A relative path does not.
A relative path is like getting directions from someone on the street. They tell you to “go
right at the Stop sign, and then turn left on Main Street”. That works great if you’re standing
there together, but not so well if you’re trying to tell someone how to get there from another
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country. A full path is like GPS coordinates. It tells you exactly where something is no
matter where you are right now.
You can usually use either a full path or a relative path depending on what is most convenient.
If we are in the home directory, it is more convenient to just enter the relative path since it
involves less typing.
Over time, it will become easier for you to keep a mental note of the structure of the directories
that you are using and how to quickly navigate them.

EXERCISE

• List the contents of the /bin directory. Do you see anything familiar in there?

Saving time with shortcuts and wild cards

Shortcuts

There are some shortcuts which you should know about. Dealing with the home directory is
very common. In the shell the tilde character, ~, is a shortcut for your home directory.

ls ~

Try it even when you’re not in your home directory:

cd
cd workshops

Then enter the command:

ls ~

This prints the contents of your home directory, without you having to type the full path.
The shortcut .. always refers to the directory above your current directory.

ls ..

prints the contents of the /home/username/. You can chain these together, so:
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ls ../../

prints the contents of /home/. Finally, the special directory . always refers to your current
directory. So, ls, ls ., and ls ././././. all do the same thing, they print the contents of
the current directory. This may seem like a useless shortcut right now, but we’ll see when it
is needed in a little while.
To summarize, while you are in the workshops directory, the commands ls ~, ls ../, and
ls /home/bioinfo all do exactly the same thing.

Our data set: FASTQ files

In this example we’re going to use some RNA-seq data that we’ll actually analyze later on.
The data come from RNA-seq done on skin cells treated with ultraviolet light versus controls
(paper; data).
We did sequencing, and what we have here are just reads that came from a 100 MB region
on chromosome 4. We want to be able to look at these files and do some things with them.

Wild cards

Navigate to the workshops/lessons/rnaseq-1day/data directory from your home. This
directory contains our FASTQ files and some other ones we’ll need for analyses. If we type
ls, we will see that there are several files in there. Some of the end with .fastq.gz. These are
compressed fastq files.
The * character is a shortcut for “everything”. Thus, if you enter ls *, you will see all of the
contents of a given directory.

ls *fastq.gz

This lists every file that ends with a fastq.gz. This command:

ls /usr/bin/*.sh

Lists every file in /usr/bin that ends in the characters .sh.
If we wanted to list just the controls or just the uvb-treated samples, we could do this:

ls ctl*
ls uvb*
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So how does this actually work? Well. . . when the shell sees a word that contains the *
character, it automatically looks for filenames that match the given pattern. In this case, it
identified 3 such files. Then, it replaced the ctl* with the list of files, separated by spaces.
Because we’ll use these files later, let’s go ahead and extract or uncompress these files. To
compres a text file we would use gzip. To extract, we’ll use gunzip. Let’s extract all the
files that end in .gz. This will extract both the fastq files and the counts.txt file as well:

gunzip *.gz

Now, time for some more practice with wildcards.

EXERCISE
Do each of the following using a single ls command without navigating to a different directory.
- List all of the files in /bin that start with the letter ‘c - List all of the files in /bin that
contain the letter ’a’ - List all of the files in /bin that end with the letter ‘o’

Command History

You can easily access previous commands. Hit the up arrow. Hit it again. You can step
backwards through your command history. The down arrow takes your forwards in the
command history.
Control-C will cancel the command you are writing, and give you a fresh prompt.
You can also review your recent commands with the history command to see a numbered
list of commands you’ve run.

history

You can reuse one of these commands directly by referring to the number of that command.
If your history looked like this:

259 ls *
260 ls /usr/bin/*.sh
261 ls ctl*

then you could repeat command #260 by simply entering:
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!260

EXERCISE
Find the line number in your history for the last exercise (listing files in /bin) and reissue
that command.

Examining Files

We now know how to switch directories, run programs, and look at the contents of directories,
but how do we look at the contents of files?
The easiest way to examine a file is to print out all of the contents using the program cat.
Enter the following command:

cat ctl1.fastq

This prints out the contents of the ctl1.fastq file.

EXERCISE

• Print out the contents of the workshops/lessons/rnaseq-1day/data/coldata.csv
file. What does this file contain?

• Without changing directories, use one short command to print the contents of all of
the files in the ~/workshops/posts/ directory.

Make sure we’re in the right place for the next set of the lessons. We want to be in the rnaseq
data directory (workshops/lessons/rnaseq-1day/data). Check if you’re there with pwd
and if not navigate there. One way to do that would be

cd ~/workshops/lessons/rnaseq-1day/data

cat is a terrific program, but when the file is really big, it can be annoying to use.
The program, less, is useful when files are big and you want to be able to scroll through
them.
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less ctl1.fastq

less opens the file, and lets you navigate through it. The commands are identical to the
man program.
Some commands in less
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Key Action

space go forward
b go backwards
g go to the beginning
G go to the end
q quit

less also gives you a way of searching through files. Just hit the “/” key to begin a search.
Enter the name of the word you would like to search for and hit enter. It will jump to the
next location where that word is found. Try searching ctl1.fasta for the the sequence
“GATTACA”. If you hit “/” then “enter”, less will just repeat the previous search. less
searches from the current location and works its way forward. If you are at the end of the
file and search for “GATTACA”, less will not find it. You need to go to the beginning of
the file with the g key in less, and start the search from there.
Remember, the man program actually uses less internally and therefore uses the same
commands, so you can search documentation using “/” as well!
There’s another way that we can look at files, and in this case, just look at part of them.
This can be particularly useful if we just want to see the beginning or end of the file, or see
how it’s formatted.
The commands head and tail let you look at the beginning and end of a file respectively.

head ctl1.fastq
tail ctl1.fastq

The -n option to either of these commands can be used to print the first or last n lines of a
file. If we want to see the first read in the file, try this:

head -n 4 ctl1.fastq
tail -n 4 ctl1.fastq

Searching files

We showed a little how to search within a file using less.
We can search within files without even opening them, using grep. Grep is a command-line
utility for searching plain-text data sets for lines matching a string or regular expression.
Let’s find all the lines in ctl1.fastq that contain the sequence motif “GATTACA.”

grep GATTACA ctl1.fastq
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We get back just the sequence line, but what if we wanted all four lines, the whole part of
that FASTQ sequence, back instead.

grep -B 1 -A 2 GATTACA ctl1.fastq

The -A flag stands for “after match” so it’s returning the line that matches plus the two after
it. The -B flag returns that number of lines before the match, so that’s returning the fastq
header.

EXERCISE
Search for the sequence ‘GATTTTTACA’ (GATTACA with 5 T’s instead of 2) in ctl1.fastq
file and in the output have the sequence name. The output should look like this:

@SRR1145047.5880759
AAGCTAAAAAAAAAATGGATGTTTCAGTTAAATGTTTTAAAGAGGTACAGATTTTTACAAGGACATAATATAAG

Next, search for that sequence in all the FASTQ files.

Redirection & Pipes

We’re excited we have all these sequences that we care about that we just got from the
FASTQ files. Perhaps that was some really important motif that is going to help us answer
some important question. But all those sequences just went whizzing by with grep. How can
we capture them?
We can do that with something called “redirection”. The idea is that we’re redirecting the
output to the terminal (all the stuff that went whizzing by) to something else. In this case,
we want to write it to a file, so that we can look at it later.
We do this with: >.
Let’s try it out and put all the sequences that contain ‘GATTACA’ from all the files in to
another file called “gattaca-reads.txt”.

grep GATTACA *.fastq > gattaca-reads.txt

The prompt should sit there a little bit, and then it should look like nothing happened. But
type ls. You should have a new file called “gattaca-reads.txt”. Take a look at it and see if it
has what you think it should.
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ls
less gattaca-reads.txt

There’s another useful redirection command that we’re going to show, and that’s called the
pipe: |. It’s probably not a key on your keyboard you use very much. What | does is take
the output that scrolling by on the terminal and then can run it through another command.
When it was all whizzing by before, we wished we could just slow it down and look at it, like
we can with less. Well it turns out that we can! We pipe the grep command through less

The pipe ‘|’ takes the output of the first thing and then puts it in to the second part

grep GATTACA *.fastq | less

Now we can use the arrows to scroll up and down and use q to get out.
There’s another command called wc. wc stands forword count. It counts the number of lines
or characters. So, we can use it to count the number of lines we’re getting back from our
grep command. And that will tell us how many sequences we’re finding with that motif
across all the files.

grep GATTACA *.fastq | wc

That tells us the number of lines, words and characters in the file. If we just want the number
of lines, we can use the -l flag for lines.

grep GATTACA *.fastq | wc -l

You could have piped the output to a file like you did the first time and ran wc on that file:

wc gattaca-reads.txt

But using the pipe you didn’t need to create the intermediate file. Pipes are really powerful
for stringing together these different commands, so you can do whatever you need to do.
The philosophy behind these command line programs is that none of them really do anything
all that impressive. BUT when you start chaining them together, you can do some really
powerful things really efficiently. If you want to be proficient at using the shell, you must
learn to become proficient with the pipe and redirection operators.
For example, draw a cow saying the largest word in the english language that contains the
word “purple”:
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# Read in the system's dictionary.
cat /usr/share/dict/words
# grep for "purple"
cat /usr/share/dict/words | grep purple
# count letters in each word
cat /usr/share/dict/words | grep purple | awk '{print length($1), $1}'
# numeric sort
cat /usr/share/dict/words | grep purple | awk '{print length($1), $1}' | sort -n
# take the last line
cat /usr/share/dict/words | grep purple | awk '{print length($1), $1}' | sort -n | tail -n 1
# cut out the second field (-f 2) if the file were delimited by a space (-d " ")
cat /usr/share/dict/words | grep purple | awk '{print length($1), $1}' | sort -n | tail -n 1 | cut -d " " -f 2
# make the cow say it
cat /usr/share/dict/words | grep purple | awk '{print length($1), $1}' | sort -n | tail -n 1 | cut -d " " -f 2 | cowsay

This program piped together 7 UNIX programs (cat, grep, awk, sort, tail, cut, cowsay),
each of which does a very small job on its own, and strung them together to do something
pretty powerful (as silly as it may be).

_____________
< unimpurpled >

-------------
\ ^__^
\ (oo)\_______

(__)\ )\/\
||----w |
|| ||

Creating, moving, copying, and removing

Now we can move around in the file structure, look at files, search files, redirect. But what if
we want to do normal things like copy files or move them around or get rid of them. Sure, if
we had a desktop, we could do most of these things without the command line, but what fun
would that be?! Besides it’s usually faster to do it at the command line, or you’ll be on a
remote server like Amazon where you won’t have another option.
The coldata.csv file tells us which sample names are which treatment (in this example the
filenames are pretty informative, but when they come off the sequencer usually they won’t
be). This is a really important file, so we want to make a copy so we don’t lose it.
Lets copy the file using the cp command. The cp command backs up the file. Navigate to
the rnaseq-1day/data directory and enter:

cp coldata.csv coldata.csv-backup
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Now coldata.csv-backup has been created as a copy of coldata.csv.
Let’s make a backup directory where we can put this file.
The mkdir command is used to make a directory. Just enter mkdir followed by a space, then
the directory name.

mkdir backup

We can now move our backed up file in to this directory. We can move files around using the
command mv. Enter this command:

mv coldata.csv-backup backup

This moves coldata.csv-backup into the directory backup/ or the full path would be
~/workshops/lessons/rnaseq-1day/data/backup/coldata.csv-backup

The mv command is also how you rename files. Since this file is important, let’s rename it:

ls
mv coldata.csv coldata-IMPORTANT.csv
ls

Now let’s delete the backup copy:

ls
ls backup
rm backup/coldata.csv-backup
ls
ls backup

The rm file removes the file. Be careful with this command. It doesn’t just nicely put the
files in the Trash. They’re really gone.

EXERCISE
Do the following:

1. Rename the coldata-IMPORTANT.csv file back to coldata.csv.
2. Create a new directory in the rnaseq-1day directory called new.
3. Then, copy the coldata.csv file into new
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By default, rm, will NOT delete directories. You can tell rm to delete a directory and
everything in it recursively using the -r option. Let’s delete that new directory we just made.
Enter the following command:

rm -r new

Be careful with this.

Writing files

We’ve been able to do a lot of work with files that already exist, but what if we want to
write our own files. Obviously, we’re not going to type in a FASTA file, but there are a lot of
reasons we’ll want to edit a file.
To write in files, we’re going to use the program nano. We’re going to create a file that
contains the favorite grep command so you can remember it for later. We’ll name this file
‘awesome.sh’.

nano awesome.sh

Enter the following into the file:

grep -B 1 -A 2 GATTACA *.fastq

At the bottom of nano, you see the “ˆX Exit”. That means that we use Ctrl-X to exit. Type
Ctrl-X. It will ask if you want to save it. Type y for yes. Then it asks if you want that file
name. Hit ‘Enter’.
Now you’ve written a file. You can take a look at it with less or cat, or open it up again and
edit it.

EXERCISE
Open ‘awesome.sh’ and add “echo AWESOME!” (no quotes) after the grep command and
save the file.
We’re going to come back and use this file in just a bit.
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Running programs

Commands like ls, rm, echo, and cd are just ordinary programs on the computer. A program
is just a file that you can execute. The program which tells you the location of a particular
program. For example:

which pwd

Will return “/bin/pwd”. Thus, we can see that pwd is a program that sits inside of the /bin
directory. Now enter:

which find

You will see that find is a program that sits inside of the/usr/bin directory.
So . . . when we enter a program name, like ls, and hit enter, how does the shell know where
to look for that program? How does it know to run /bin/ls when we enter ls. The answer
is that when we enter a program name and hit enter, there are a few standard places that
the shell automatically looks. If it can’t find the program in any of those places, it will print
an error saying “command not found”. Enter the command:

echo $PATH

This will print out the value of the PATH environment variable. Notice that a list of directories,
separated by colon characters, is listed. These are the places the shell looks for programs to
run. If your program is not in this list, then an error is printed. The shell ONLY checks in
the places listed in the PATH environment variable.
Remember that file where we wrote our favorite grep command in there? Since we like it so
much, we might want to run it again, or even all the time. Instead of writing it out every
time, we can just run it as a script. Let’s try to run that script:

awesome.sh

You should get an error saying that awesome.sh cannot be found. That is because the
directory ~/workshops/lessons/rnaseq-1day/data is not in thePATH. You can try again
to run the awesome.sh program by entering:

./awesome.sh

Alas, we get -bash: ./awesome.sh: Permission denied. This is because we haven’t
told the computer that it’s a program that can be executed. To do that we have to make
it ‘executable’. We do this by changing its mode. The command for that is chmod - change
mode. We’re going to change the mode of this file, so that it’s executable and the computer
knows it’s OK to run it as a program.
To run a program, you have to set the right permissions, make it executable rather than just
a text file.
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chmod +x awesome.sh
ls -l

Now we can run the program

./awesome.sh

Now you should have seen some output, and of course, it’s AWESOME! Congratulations,
you just created your first shell script!

EXERCISE

1. In the data directory, use nano to write a script called quickpeek.sh that:

• Runs head on all the fastq files in the current directory
• Runs wc on all the fastq files
• echos “Done!” when finished.

2. Make the program executable.
3. Run the program.

Simple parallel computing with find and parallel

We’ve learned how to do a few things already using wildcards. For instance, we extracted all
the fastq files with

gunzip *.fastq

which the shell interpreted the same as:

gunzip ctl1.fastq ctl2.fastq ctl3.fastq uvb1.fastq uvb2.fastq uvb3.fastq

But what if we wanted to do something more complicated on lots of files, and do it in
parallel across multiple processors? For example, what if we wanted to pull out all the
reads containing the “GATTACA” motif from each file independently and write those all to
separate files for each read?
We can’t just do something like:
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grep GATTACA *.fastq > gattacareads.txt

Because that would write one big file with all the GATTACA reads from all the files smashed
together. What we want to do is something like this:

grep GATTACA ctl1.fastq > ctl1.fastq.gattaca.txt
grep GATTACA ctl2.fastq > ctl2.fastq.gattaca.txt
grep GATTACA ctl3.fastq > ctl3.fastq.gattaca.txt
grep GATTACA uvb1.fastq > uvb1.fastq.gattaca.txt
grep GATTACA uvb2.fastq > uvb2.fastq.gattaca.txt
grep GATTACA uvb3.fastq > uvb3.fastq.gattaca.txt

Now, for one, that’s a lot of typing. What if you had 100 fastq files you wanted to do this
with? And secondly, while this is example data and things run pretty quickly, what if each
of these files were 10s of gigabytes, having millions of reads in each? Each grep command
would take a few minutes to run. But most modern computers have multiple processors or
cores in them, and we should be able to take advantage of that and send out each of those
processes to a separate core to be done in parallel.

find

The UNIX find command is a simple program can be used to find files based on arbitrary
criteria. Go back up to the parent rnaseq-1day directory, and type this command:

find .

That prints out all the files and directories, and everything in those directories, recursively.
Let’s print out only files with the -type f option:

find . -type f

Now, let’s limit the search to find only fastq files with the -name option. Here, we just pass
in quotes the pattern to match. Here it’s anything that ends with .fastq.

find . -name "*.fastq"

That will find anything ending in .fastq living in any directory down from where we are
currently standing on the filesystem.
Now, what if we wanted to actually do something with those files? There are a few ways to
do this, but one we’re going to use today involves using a program called parallel. If you
run the find command and pipe the output of find into parallel, you can run arbitrary
commands on the input files you found. Let’s do a --dry-run so parallel will only show
us what would have been run. Let’s run a fake example:
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#first find the files
find . -name "*.fastq"
# then pipe to parallel with dry run
find . -name "*.fastq" | parallel --dry-run "dowhatever {}"

dowhatever ./data/ctl1.fastq
dowhatever ./data/ctl2.fastq
dowhatever ./data/ctl3.fastq
dowhatever ./data/uvb1.fastq
dowhatever ./data/uvb2.fastq
dowhatever ./data/uvb3.fastq

• First, we’re running the same find command as before. Remember, this prints out
the path for all the fastq files it found, with the path relative to where we ran the find
command.

• Next, we’re calling the parallel program with the --dry-run option. This tells
parallel to not actually run anything, but to just tell us what it would do.

• Next, we have the stuff we want to run in parallel inside the quotes.
• The open/closed curly braces {} is a special placeholder for parallel, which assumes

the values of whatever was passed in on the pipe. In this example, each of the fastq
files found by find will take the place of {} wherever it’s found.

Let’s try one for real. Let’s get the word count of all the fastq files in parallel.

# First find the files
find . -name "*.fastq"

# Next do a dry-run to see what would be run
find . -name "*.fastq" | parallel --dry-run "wc {}"

# Finally, run the commands in parallel
find . -name "*.fastq" | parallel "wc {}"

What if we wanted to do something like search for a particular nucleotide sequence like
“GATTACA” inside of each file, pull out those sequences, and write those to a separate results
file for each input?

# First find the files
find . -name "*.fastq"

# Next do a dry-run to see what would be run
find . -name "*.fastq" | parallel --dry-run "grep GATTACA {} > {}.gattaca.txt"

# Finally, run the commands in parallel
find . -name "*.fastq" | parallel "grep GATTACA {} > {}.gattaca.txt"
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When you do the dry run, you’ll get something like that looks like this:

grep GATTACA ./data/ctl1.fastq > ./data/ctl1.fastq.gattaca.txt
grep GATTACA ./data/ctl2.fastq > ./data/ctl2.fastq.gattaca.txt
grep GATTACA ./data/ctl3.fastq > ./data/ctl3.fastq.gattaca.txt
grep GATTACA ./data/uvb1.fastq > ./data/uvb1.fastq.gattaca.txt
grep GATTACA ./data/uvb2.fastq > ./data/uvb2.fastq.gattaca.txt
grep GATTACA ./data/uvb3.fastq > ./data/uvb3.fastq.gattaca.txt

These are the commands that would be run in parallel if you didn’t use the --dry-run flag.
Now, if we go back and re-run that command without the --dry-run flag.

EXERCISE

1. cd into the data directory and take a look at what files were created.
2. Open up one of the new files with less and use the / key to search for the “GATTACA”

motif. Does it actually occur on every line?
3. Use rm to delete all the files ending with .gattaca.txt.

Installing software

There are a few different ways to install software. We’re using an Ubuntu Linux distribution,
and Ubuntu has a very nice software package management system called apt. You can read
more about it at the online documentation. For what we’ll do later on we’ll need java, which
isn’t installed by default. If we try running which java, we’ll see nothing is returned. If we
try running java, Ubuntu will suggest a packages that we might try downloading to get java
enabled. We’ll want the default Java Runtime Environment. To install software we need to
temporarily elevate our permissions to the level of the “super user”. We do this temporarily
by prefacing any command we want to run as super user with the command sudo. Let’s
install Java.

which java
java
sudo apt-get install default-jre
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Where can I learn more about the shell?

• Software Carpentry tutorial - The Unix shell
• The shell handout - Command Reference
• explainshell.com
• http://tldp.org/HOWTO/Bash-Prog-Intro-HOWTO.html
• http://stackoverflow.com/
• Google - if you don’t know how to do something, try Googling it. Other people have

probably had the same question.
• Learn by doing. There’s no real other way to learn this than by trying it out. Write

your next paper in nano, open pdfs from the command line, automate something you
don’t really need to automate or actually do.
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Chapter 2

RNA-seq: reads to counts

back to course contents
In this section of the workshop we will start with raw RNA-seq reads and do everything that
we need to do to get a count matrix - a table or “spreadsheet” in a single file containing
the the number of reads mapping to each gene for each sample. This count matrix is the
input into R for differential gene expression analysis. A count matrix is a table in a single
file with a row for every gene and a column for every sample. Celli,j will contain the number
of genes mapping to the ith gene for the jth sample. For example, in the table below, 865
reads mapped to GeneB for sample ctl2.

ctl1 ctl2 ctl3 uvb1 uvb2 uvb3

GeneA 33 54 10 12 50 49
GeneB 255 865 864 5446 2664 4665
GeneC 0 0 1 2 3 15

Objectives

• Quality assessment for raw sequencing read
• Quality control to trim low-quality sequence data from the ends of reads
• Align reads to the genome for all samples
• Count the number of reads mapping to each gene for each sample

Data management

First, let’s extract the fastq files if we haven’t done so already:
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cd workshops/lessons/rnaseq-1day/data
ls -l
gunzip *.fastq.gz
ls -l

Quality control

Quality assessment

Next, let’s run some quality control analysis. Google search “FastQC” to find the FastQC
package from Simon Andrews. It’s a program that pretty much everyone uses for QC analysis
that can be run at the command line on a batch of FASTQ files.
You’ll also need java to run it (sudo apt-get install default-jre).
First let’s get some help on FastQC. Most bioinformatics programs have a -h or --help
option that gives you some very basic documentation on how to run it. These aren’t the
same as built-in UNIX man pages. For more in-depth documentation you need to read the
paper or visit the tool’s website to download a manual. For instance, take a look at the
online FastQC documentation and look specifically at the differences between good Illumina
data and bad Illumina data.

fastqc -h
fastqc *.fastq --threads 4 --outdir .

Open up your SFTP client and enter your IP address and credentials. Transfer this data over
to your computer to view it. You’ll see how the last 5 bases of each read is pretty terrible
quality, so let’s trim those reads.

Trimming: one sample

Google “FASTX Toolkit” to find Greg Hannon’s FASTX-Toolkit software. This lets you do
lots of things for manipulating FASTQ and FASTA files. We’re just going to use a feature
to trim the end of the reads. You can see which tool you need by looking at the online
documentation.
First, let’s run fastx_trimmer to get some help.

fastx_trimmer -h

It tells us we can use the -t option followed by a number to trim that number of nucleotides
off the end of the read. It tells us that the default way to use the program is to feed data off
the STDIN, which is UNIX-speak for piping in data. It’s default output is the STDOUT, which
is UNIX-speak for “printing” the data to the screen. Let’s see what that means:
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head -n 8 ctl1.fastq
head -n 8 ctl1.fastq | fastx_trimmer -t 5

We get some error about an invalid quality score value. Let’s learn a little bit about quality
scores. Google FASTQ format and click the Wikipedia article, and scroll down to the section
on quality. Next scroll down to encoding. Quality scores are encoded in a FASTQ file different
ways. You just have to know that this is quality score encoding is Sanger, or Phred+33.
There are other tools out there that can tell you what kind of quality score you have, and
convert between different quality score encodings. But Sanger/Phred+33 is the most common.
Unfortunately fastx_trimmer doesn’t seem to recognize this encoding. Let’s Google that
error message specifically. Google “fastx_trimmer invalid quality score value” and you’ll
arrive at a SEQAnswers thread that tells you the answer. (Look who provided that answer,
by the way, Simon Andrews, the author of FASTQC!). You can also go to the FASTX-Toolkit
homepage, and if you scroll down a bit, you’ll see that back in 2009 this was added as an
option, but it’s still not documented in the command line help.
I show you this because this is what doing bioinformatics is like in the real world. You think
you have the right tool for the job, you try to run it like the documentation says to run it,
and it doesn’t work. You Google around to try to find the solution to the problem or better
documentation. SEQAnswers is a great resource, and so is Biostars.
Let’s try that again:

head -n 8 ctl1.fastq
head -n 8 ctl1.fastq | fastx_trimmer -t 5 -Q33

Look at that! fastx_trimmer trimmed 5 bases off the end of two reads coming in from
a pipe and spit it back out to the screen. We could do this to the whole file if we did
something like cat ctl1.fastq | fastx_trimmer ... > trimmed_ctl1.fastq. Or we
could use the command line options to take input files and write output files.

fastx_trimmer -h
fastx_trimmer -Q33 -t 5 -i ctl1.fastq -o trimmed_ctl1.fastq

Let’s take a look at those files to make sure it worked right. Also, let’s do a word count as a
sanity check to make sure we didn’t lose any reads or anything.

head -n 4 ctl1.fastq trimmed_ctl1.fastq
wc ctl1.fastq trimmed_ctl1.fastq

EXERCISE
Run ls on the current directory. We need to clean things up before they get out of hand.
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• Remove the trimmed file you just created
• Make a directory called “QC”
• Move all the fastqc output directories and zip files into the QC directory (hint, you can

do this all with a wildcard and a single mv command)
• Use find ... | parallel ... to run wc on all the fastq files in parallel

Trimming: all samples in parallel

Let’s use GNU parallel to run these trimming jobs in parallel:

find *.fastq | parallel --dry-run "fastx_trimmer -t 5 -Q33 -i {} -o trimmed_{}"

Tip: * matches everything or nothing. If we wanted to look at the first few lines of one of
these files, we could do this:

head *ctl1.fastq

Which would print the first few lines of the trimmed and untrimmed version.
Let’s make a directory for all the untrimmed files:

mkdir untrimmed
mv ctl*.fastq uvb*.fastq untrimmed

Alignment

Building an index

For the sake of time and compute requirements I’ve extracted reads that originate from a
100MB region of chromosome 4. In reality, you would want to do this with the entire genome.
The first step here is to create an index.
Google “Ensembl FTP” to get to the FTP download page. Scroll down to the Human FASTA
sequences. Click that link and copy the link to download the FASTA sequence for chromsome
4. While we’re at it let’s go ahead and download the gene set annotation (GTF file). We’re
looking at chromosome 4.
This is what you would do if you were doing this on your own. But this can take a while so
I’ve already downloaded and extracted these two files for you. See ~/genomedata.
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wget ftp://ftp.ensembl.org/pub/release-77/fasta/homo_sapiens/dna/Homo_sapiens.GRCh38.dna.chromosome.4.fa.gz
wget ftp://ftp.ensembl.org/pub/release-77/gtf/homo_sapiens/Homo_sapiens.GRCh38.77.gtf.gz
gunzip Homo_sapiens*.gz

Or just move them from genomedata in the home directory:

ls -l ~/genomedata
mv ~/genomedata/* .

Now, let’s build an index. Tophat is a spliced aligner. It uses the Bowtie aligner under the
hood. To run Bowtie we have to first build an index using a utility that comes with Bowtie.
You only have to do this once each time you build a reference. First, let’s get a little help,
then get it started running while we talk about alignment and aligner indexes.

bowtie2-build -h
bowtie2-build chr4.fa chr4

Alignment with TopHat

Let’s try a small sample first. First, run tophat -h to get a little help. Let’s also look at the
TopHat documentation online.

tophat -h
head -n 40000 trimmed_ctl1.fastq > test10k.fastq
tophat --no-coverage-search -o test10k_tophat chr4 test10k.fastq

EXERCISE
First, look around at the results, then delete those files when you’re done:

• Go into the output directory that was just created.
• Look at the align_summary.txt file that was created (don’t try to cat the .bam

files in that directory!)
• When you’re done, remove the entire directory containing that test output, and remove

the test10k.fastq file you created.

Next, Using find and parallel --dry-run, try to construct the command that would run
all the samples through tophat in parallel. Using the -o option, make the output for each run
be a directory with _tophat appended to it. The command generated should look like this:
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tophat --no-coverage-search -o trimmed_ctl1.fastq_tophat chr4 trimmed_ctl1.fastq
tophat --no-coverage-search -o trimmed_ctl2.fastq_tophat chr4 trimmed_ctl2.fastq
tophat --no-coverage-search -o trimmed_ctl3.fastq_tophat chr4 trimmed_ctl3.fastq
tophat --no-coverage-search -o trimmed_uvb1.fastq_tophat chr4 trimmed_uvb1.fastq
tophat --no-coverage-search -o trimmed_uvb2.fastq_tophat chr4 trimmed_uvb2.fastq
tophat --no-coverage-search -o trimmed_uvb3.fastq_tophat chr4 trimmed_uvb3.fastq

But, don’t launch the jobs just yet

Now, before we launch those jobs, let’s take a look at the help for GNU parallel. We can
specify an upper limit to the number of jobs run in parallel using the -j option. Let’s only run
three jobs in parallel so we don’t crash our system. Tophat consumes quite a bit of memory,
and we only have 15GB available to us.

parallel -h
find trimmed_*.fastq | parallel -j 3 --dry-run "tophat --no-coverage-search -o {}_tophat chr4 {}"

EXERCISE

• When that’s done, from the main data directory, look at all the align_summary.txt
files with one command.

• Using grep, pull out the line that shows you the number of mapped reads.

View the alignment

If time allows let’s look around with samtools Tview. Much better to do this with software
such as the Broad’s Integrative Genomics Viewer (IGV).

cd trimmed_ctl1.fastq_tophat/
samtools view accepted_hits.bam | less
samtools index accepted_hits.bam
samtools tview
samtools tview accepted_hits.bam ../chr4.fa
# ?
# g 4:82426400
# . to turn on off dot view
# n to turn on nt colors
# b to turn on base call qualities
# r to toggle read names
# space/backspace to move around
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Counting

Remember what we want to end up with is a table that gives us the number of reads mapping
to each gene for each sample.
All we have now is an alignment which tells us for each sample the genomic positions of
where each read aligned on the reference sequeunce. It doesn’t tell us anything about genes.
For that we’ll need a gene annotation, which tells us the genomic position of genes (more
specifically, exons). Then we can kind of intersect the two.

head chr4.gtf

There’s a tool called featureCounts that’s part of a larger package called subread that very
quickly goes through all your alignments for all your samples and counts which reads map to
exons in a supplied annotation file.
http://subread.sourceforge.net/
If you run featureCounts without any arguments, it gives you some help.
You’re required to give it an annotation file, an output file, and one ore more input files.
You might want to pay special attention to the -t and -g options. Here we want to count
all the reads mapping to any exon of a gene (-t exon), and summarize the counts for that
gene across all the exons that gene has (-g gene_name). Use less genes.gtf to look at the
annotation to see what the names of the meta-features are.
We can also use the -T option to specify that we want to run multiple threads to speed things
up.
Take a look at other options for dealing with paired-end data, strand-specific data, multi-
mapping reads, etc.

featureCounts -a chr4.gtf -o counts.txt -t exon -g gene_name -T 4 */accepted_hits.bam

After mapping is complete, take a look at the summary file produced. Open up cyberduck
and using SFTP, download the counts.txt file you just created. Finally, terminate the
AWS EC2 instance after you’ve downloaded all the data you need.

Resources

• Illumina iGenomes: Gene annotations and pre-computed indexes for a variety of
organisms.

• Bowtie2 Manual: http://bowtie-bio.sourceforge.net/bowtie2/manual.shtml
• Tophat2
• Tutorial: http://ccb.jhu.edu/software/tophat/tutorial.shtml
• Manual: http://ccb.jhu.edu/software/tophat/manual.shtml
• featureCounts tutorial: http://bioinf.wehi.edu.au/featureCounts/
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Chapter 3

Introduction to R

back to course contents
The first part of this workshop will demonstrate very basic functionality in R, including
functions, functions, vectors, creating variables, getting help, subsetting, data frames, plotting,
and reading/writing files.
Link to slides.
Link to R Cheat Sheet.

Before coming

{% include setup-r.md %}

RStudio

Let’s start by learning about RStudio. R is the underlying statistical computing environment,
but using R alone is no fun. RStudio is a graphical integrated development environment
that makes using R much easier.

• Panes in RStudio: I set up my window to have the editor in the top left, console top
right, environment/history on the bottom left, and plots/help on the bottom right.

• Code that you type into the console is code that R executes. From here forward we
will use the editor window to write a script that we can save to a file and run it again
whenever we want to. We usually give it a .R extension, but it’s just a plain text
file. If you want to send commands from your editor to the console, use CMD+Enter
(Ctrl+Enter on Windows).

• Anything after a # sign is a comment. Use them liberally to comment your code.
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Basic operations

R can be used as a glorified calculator. Try typing this in directly into the console. Make
sure you’re typing into into the editor, not the console, and save your script. Use the run
button, or press CMD+Enter (Ctrl+Enter on Windows).

2 + 2
5 * 4
2^3

R Knows order of operations and scientific notation.

2 + 3 * 4/(5 + 3) * 15/2^2 + 3 * 4^2
50000

However, to do useful and interesting things, we need to assign values to objects. To create
objects, we need to give it a name followed by the assignment operator <- and the value we
want to give it:

weight_kg <- 55

<- is the assignment operator. Assigns values on the right to objects on the left, it is like an
arrow that points from the value to the object. Mostly similar to = but not always. Learn to
use <- as it is good programming practice. Using = in place of <- can lead to issues down
the line.
Objects can be given any name such as x, current_temperature, or subject_id. You want
your object names to be explicit and not too long. They cannot start with a number (2x
is not valid but x2 is). R is case sensitive (e.g., weight_kg is different from Weight_kg).
There are some names that cannot be used because they represent the names of fundamental
functions in R (e.g., if, else, for, see here for a complete list). In general, even if it’s
allowed, it’s best to not use other function names, which we’ll get into shortly (e.g., c, T,
mean, data, df, weights). In doubt check the help to see if the name is already in use. It’s
also best to avoid dots (.) within a variable name as in my.dataset. It is also recommended
to use nouns for variable names, and verbs for function names.
When assigning a value to an object, R does not print anything. You can force to print the
value by typing the name:

weight_kg

Now that R has weight_kg in memory, we can do arithmetic with it. For instance, we may
want to convert this weight in pounds (weight in pounds is 2.2 times the weight in kg):
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2.2 * weight_kg

We can also change a variable’s value by assigning it a new one:

weight_kg <- 57.5
2.2 * weight_kg

This means that assigning a value to one variable does not change the values of other variables.
For example, let’s store the animal’s weight in pounds in a variable.

weight_lb <- 2.2 * weight_kg

and then change weight_kg to 100.

weight_kg <- 100

What do you think is the current content of the object weight_lb? 126.5 or 220?
You can see what objects (variables) are stored by viewing the Environment tab in Rstudio.
You can also use the ls() function. You can remove objects (variables) with the rm()
function. You can do this one at a time or remove several objects at once.

ls()
rm(weight_lb, weight_kg)
ls()
weight_lb # oops! you should get an error because weight_lb no longer exists!

EXERCISE
What are the values after each statement in the following?

mass <- 50 # mass?
age <- 30 # age?
mass <- mass * 2 # mass?
age <- age - 10 # age?
mass_index <- mass/age # massIndex?
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Functions

R has built-in functions.

# Notice that this is a comment. Anything behind a # is 'commented out' and
# is not run.
sqrt(144)
log(1000)

Get help by typing a question mark in front of the function’s name, or help(functionname):

help(log)
?log

Note syntax highlighting when typing this into the editor. Also note how we pass arguments
to functions. The base= part inside the parentheses is called an argument, and most functions
use arguments. Arguments modify the behavior of the function. Functions some input (e.g.,
some data, an object) and other options to change what the function will return, or how to
treat the data provided. Finally, see how you can next one function inside of another (here
taking the square root of the log-base-10 of 1000).

log(1000)
log(1000, base = 10)
log(1000, 10)
sqrt(log(1000, base = 10))

EXERCISE
See ?abs and calculate the square root of the log-base-10 of the absolute value of
-4*(2550-50). Answer should be 2.

Vectors and classes

Let’s create some numeric vectors. Vectors (aka “arrays” in Perl, “lists” in Python) are single
objects containing an ordered collection of elements. A simple vector is a numeric vector, a
single object containing several numbers. Here let’s display a few vectors. We can also do
vector arithmetic. When printing vectors to the screen that have lots of elements, notice that
the bracketed number in the gutter of the output is just a counter indexing the number of
elements in the vector.
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# Some simple numeric vectors:
1:5
6:10
1:5 + 6:10
1:100

We can also create arbitrary vectors with the c() function (short for “combine”).

c(1, 2, 5)
c(1:5, 11:15)

What if we wanted to create a vector from 2 to 10 by 2’s? What about 2 to 200 by 4’s? This
might be useful for setting up an experiment where every other sample is an experimental
group and every other is a control.

c(2, 4, 6, 8, 10)

# Get some help with the seq() function, then create a vector from 2 to 200
# by 2s. Notice how the seq() function works -- the `to` argument will
# never be exceeded.
help(seq)
seq(from = 2, to = 200, by = 4)

You can assign this vector of values to an object, just like you would for one item. For
example we can create a vector of animal weights:

weights <- c(50, 60, 65)
weights

A vector can also contain characters:

animals <- c("mouse", "rat", "dog")
animals

There are many functions that allow you to inspect the content of a vector. length() tells
you how many elements are in a particular vector:

length(weights)
length(animals)

class() indicates the class (the type of element) of an object:
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class(weights)
class(animals)

EXERCISE

• Use the c() function to create/assign a new object that combines the weights and
animals vectors into a single vector called combined.

• What happened to the numeric values? Hint: What’s the class() of combined?
• Why do you think this happens?

The function str() provides an overview of the structure of an object and the elements it
contains. It is a really useful function when working with large and complex objects:

str(weights)
str(animals)

You can add elements to your vector simply by using the c() function:

weights
weights <- c(weights, 90) # adding at the end
weights <- c(30, weights) # adding at the beginning
weights

What happens here is that we take the original vector weights, and we are adding another
item first to the end of the other ones, and then another item at the beginning. We can do
this over and over again to build a vector or a dataset. When you’re programming this may
be useful to autoupdate results that we are collecting or calculating.
Certain functions operate only on certain classes of object. Here, weights is a numeric
vector. The built-in sum() function will operate on numeric objects, but not characters.

sum(weights)
sum(animals)

EXERCISE
Sum the integers 1 through 100 and 501 through 600 (e.g. 1+2+. . . +99+100+501+502+. . . +599+600)
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Slicing/indexing vectors

Let’s create a vector of 50 integers going from 101 to 150. We can access certain elements of
that vector by putting the element’s index(es) in square brackets. E.g., x[1] will return the
first element in vector x. Calling x[c(3,5)] will access the third and fifth elements. Calling
x[1:10] will return the first ten elements of x.
Special note: R indexes vectors starting at 1. This is different from many other languages,
including Perl and Python, which index starting from zero.

# Create the vector.
x <- 101:150

# Get the first element.
x[1]

# Get the 42nd element.
x[42]

# Get the 20th through the 25th elements.
x[20:25]

# If you try to access elements that don't exist, you'll return missing
# values. Missing values are represented as NA
x[45:55] #NA is missing value!

Data Frames

We use data frames to store heterogeneous tabular data in R: tabular, meaning that
individuals or observations are typically represented in rows, while variables or features are
represented as columns; heterogeneous, meaning that columns/features/variables can be
different classes (on variable, e.g. age, can be numeric, while another, e.g., cause of death,
can be text).
Later on we’ll read in data from a text file into a data frame object using one of the functions
read.table() for text files or read.csv() for comma-separated tables. But for now, let’s
use a built-in data frame called mtcars. This data was extracted from the 1974 Motor
Trend US magazine, and comprises fuel consumption and 10 aspects of automobile design
and performance for 32 automobiles (1973–74 models). We can load this built-in data with
data(mtcars). By the way, running data() without any arguments will list all the available
built-in datasets included with R.
Let’s load the data first. Type the name of the object itself (mtcars) to view the entire data
frame. Note: doing this with large data frames can cause you trouble.
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data(mtcars)
class(mtcars)
mtcars

Inspecting data.frame objects

There are several built-in functions that are useful for working with data frames.

• Content:
– head(): shows the first 6 rows
– tail(): shows the last 6 rows

• Size:
– dim(): returns a 2-element vector with the number of rows in the first element,

and the number of columns as the second element (the dimensions of the object)
– nrow(): returns the number of rows
– ncol(): returns the number of columns

• Summary:
– colnames() (or just names()): returns the column names
– rownames(): returns the row names
– str(): structure of the object and information about the class, length and content

of each column
– summary(): works differently depending on what kind of object you pass to it.

Passing a data frame to the summary() function prints out some summary statistics
about each column (min, max, median, mean, etc.)

head(mtcars)
tail(mtcars)
dim(mtcars)
nrow(mtcars)
ncol(mtcars)
colnames(mtcars)
rownames(mtcars)
str(mtcars)
summary(mtcars)

Accessing variables & subsetting data frames

We can access individual variables within a data frame using the $ operator, e.g.,
mydataframe$specificVariable. Let’s print out the number of cylinders for every car, and
calculate the average miles per gallon for ever car in the dataset (using the built-in mean()
function).
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# display the number of cylinders for each car.
mtcars$cyl
# first display MPG for all vehicles, then calculate the average.
mtcars$mpg
mean(mtcars$mpg)

We can also use the subset() function to return a subset of the data frame that meets a
specific condition.

1. The first argument is the data frame you want to subset, e.g. subset(mtcars....
2. The second argument is a condition you must satisfy, e.g. subset(mtcars, cyl==6).

If you want to satisfy all of multiple conditions, you can use the “and” operator, &.
The “or” operator | (the pipe character, usually shift-backslash) will return a subset
that meet any of the conditions.

• ==: Equal to
• !=: Not equal to
• >, >=: Greater than, greater than or equal to
• <, <=: Less than, less than or equal to

Try it out:

# Return only cars with 6 cylinder engines.
subset(mtcars, cyl == 6)
# Return only cars having more than 6 cylinders **and** an engine
# displacement volume less than 300cc.
subset(mtcars, cyl > 6 & disp < 300)
# Return only the cars that get at least 20 miles per gallon or have a
# displacement volume of less than 100cc.
subset(mtcars, mpg >= 20 | disp < 100)

Finally, take a look at the class of what’s returned by a subset() function. The subset()
function takes a data.frame and returns a data.frame. You can operate on this new data.frame
just as you would any other data.frame using the $ operator. E.g., print the MPG for all the
6 cylinder vehicles:

subset(mtcars, cyl == 6)$mpg

EXERCISE

1. Print out the part of the mtcars dataset only for cars that have greater than or equal
to 6 cylinders and get at least 15 miles per gallon.

2. What’s the mean engine displacement of these vehicles?
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with()

The with() function is particularly helpful. Let’s say you wanted to compute some (senseless)
value by computing the MPG times the number of cylinders divided by the car’s displacement.
You could access the dataset’s variables using the $ notation, or you could use with() to
temporarily attach the data frame, and call the variables directly, as if they were just vectors
hanging out in your workspace. The first argument to with() is the name of the data frame,
and the second argument is all the stuff you’d like to do with the particular features in that
data frame.
Try typing the following commands:

# Display the number of cylinders.
mtcars$cyl
with(mtcars, cyl)

# Compute the senseless value described above. Both return the same results.
mtcars$mpg * mtcars$cyl/mtcars$disp
with(mtcars, mpg * cyl/disp)

EXERCISE
Using the with() and subset() functions, compute the average value of the ratio of the
engine displacement (disp) divided by the engine’s horsepower (hp) for all the 8-cylinder
vehicles.

## [1] "Answer: 1.754801425962"

Plotting basics

Plotting a single numeric variable goes down the rows and plots a value on the y-axis for
each observation (index) in the data frame.

plot(mtcars$mpg)

This isn’t a very useful figure. More appropriate might be a histogram. We can try to let R
decide how many breaks to insert in the histogram, or we can set that manually. We can also
set the color of the bars.
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hist(mtcars$mpg)
hist(mtcars$mpg, breaks = 10)
hist(mtcars$mpg, breaks = 10, col = "black")

We can create a scatterplot between two variables with plot(varX, varY).

# This would also work, but let's use with(). plot(mtcars$disp, mtcars$mpg)
with(mtcars, plot(disp, mpg))

There are hundreds of plotting parameters you can use to make your plot look exactly like
you want. Let’s use a solid-filled point instead of an open circle with the pch= argument
(point character), color the points red with the col= argument, give it a title by passing a
character object to the main= argument, and change the x and y axis titles with the xlab=
and ylab= arguments, respectively. Let’s go through this one step at a time.

with(mtcars, plot(disp, mpg, pch = 16))
with(mtcars, plot(disp, mpg, pch = 16, col = "red"))
with(mtcars, plot(disp, mpg, pch = 16, col = "red", main = "MPG vs Displacement"))
with(mtcars, plot(disp, mpg, pch = 16, col = "red", main = "MPG vs Displacement",

ylab = "Fuel Economy (MPG)", xlab = "Displacement (cu. in.)"))

Notice how on that last line I broke the command up into two lines for better readability. I
broke the command at the comma separating arguments, and indented the following line for
readability.
With plotting parameters, Google is your friend.

• Forget what each point character represents? Google R pch.
• Forget the names of R’s colors? Google R colors. Want to learn more about color

schemes in R? Google RColorBrewer.
• Try googling R graphical parameters.

EXERCISE
Plot horsepower (y-axis) vs displacement (x-axis) for vehicles with more than 4 cylinders.
Give the graph a title and label the axes. Make the points solid (hint, pch=16) blue (hint,
col="blue") circles.
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Reading in / writing out data

First, lets create a small dataset consisting of only 8 cylinder cars.

mtcars_8cyl <- subset(mtcars, cyl == 8)
mtcars_8cyl

Next, check what your working directory is with getwd() with no arguments, and look up
some help for write.table() and write.csv().

getwd()
help(write.table)
help(write.csv)

Using RStudio, go to the Session menu, and select the directory (folder) you want to work
from under the “Set Working Directory” menu. You can also do this manually with the
setwd() command.

getwd()
setwd("~/Desktop/R")

Once you’ve set your working directory either using RStudio or on the command line, save the
new reduced data frame to a comma-separated file called cars8.csv using the write.csv()
function.

write.csv(mtcars_8cyl, file = "cars8.csv")

Data can be loaded using the Tools – Import Dataset – From text file menu in R studio. Or
you can also load a dataset manually using read.table() or read.csv(). First, read the
help on these functions:

help(read.table)
help(read.csv)

Here let’s remove the dataset, and re-import it into an object called cars8 from the file we
just saved.

rm(mtcars_8cyl)
mtcars_8cyl
cars8 <- read.table(file = "cars8.csv", header = TRUE, sep = ",", row.names = 1)
cars8
rm(cars8)
cars8 <- read.csv(file = "cars8.csv", header = TRUE, row.names = 1)
cars8
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Chapter 4

RNA-seq: differential gene expression
analysis

back to course contents
This is an introduction to RNAseq analysis involving reading in count data from an RNAseq
experiment, exploring the data using base R functions and then analysis with the DESeq2
package.

Install and load packages

First, we’ll need to install some add-on packages. Most generic R packages are hosted on
the Comprehensive R Archive Network (CRAN, http://cran.us.r-project.org/). To install
one of these packages, you would use install.packages("packagename"). You only need
to install a package once, then load it each time using library(packagename). Let’s install
the gplots and calibrate packages.

install.packages("gplots")
install.packages("calibrate")

Bioconductor packages work a bit differently, and are not hosted on CRAN. Go to http:
//bioconductor.org/ to learn more about the Bioconductor project. To use any Bioconductor
package, you’ll need a few “core” Bioconductor packages. Run the following commands to
(1) download the installer script, and (2) install some core Bioconductor packages. You’ll
need internet connectivity to do this, and it’ll take a few minutes, but it only needs to be
done once.

# Download the installer script
source("http://bioconductor.org/biocLite.R")
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# biocLite() is the bioconductor installer function. Run it without any
# arguments to install the core packages or update any installed packages.
# This requires internet connectivity and will take some time!
biocLite()

To install specific packages, first download the installer script if you haven’t done so, and use
biocLite("packagename"). This only needs to be done once then you can load the package
like any other package. Let’s download the DESeq2 package:

# Do only once
source("http://bioconductor.org/biocLite.R")
biocLite("DESeq2")

Now let’s load the packages we’ll use:

library(DESeq2)
library(gplots)
library(calibrate)

Bioconductor packages usually have great documentation in the form of vignettes. For a
great example, take a look at the DESeq2 vignette for analyzing count data.

Introduction and data import

Analyzing an RNAseq experiment begins with sequencing reads. These are aligned to a
reference genome, then the number of reads mapped to each gene can be counted.
The data for this tutorial comes from a PLOS ONE paper, Genome-Wide Transcriptional
Profiling of Skin and Dorsal Root Ganglia after Ultraviolet-B-Induced Inflammation, and the
raw data can be downloaded from Gene Expression Omnibus database (GEO).
This data has already been downloaded and aligned to the human genome. The command
line tool featureCounts was used to count reads mapped to human genes from the Ensembl
annotation.
The output from this tool is provided in the counts.txt file in the data directory. Have a
look at this file in the shell, using head.
First, set your working directory to the top level of the RNA-seq course. Import the data
into R as a data.frame and examine it again. You can set the arguments of read.table to
import the first row as a header giving the column names, and the first column as row names.

# Filename with output from featureCounts
countfile <- "data/counts.txt"
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# Read in the data
countdata <- read.table(countfile, header = TRUE, row.names = 1)
head(countdata)
colnames(countdata)
class(countdata)

The data.frame contains information about genes (one gene per row) with the gene positions
in the first five columns and then information about the number of reads aligning to the gene
in each experimental sample. There are three replicates for control (column names starting
with “ctl”) and three for samples treated with ultraviolet-B light (starting “uvb”). We don’t
need the information on gene position for this analysis, just the counts for each gene and
sample, so we can remove it from the data frame.

# Remove first five columns (chr, start, end, strand, length)
countdata <- countdata[, -(1:5)]
head(countdata)
colnames(countdata)

We can rename the columns to something shorter and a bit more readable.

# Manually
c("ctl1", "ctl2", "ctl3", "uvb1", "uvb2", "uvb3")

We can do it manually, but what if we have 600 samples instead of 6? This would become
cumbersome. Also, it’s always a bad idea to hard-code sample phenotype information at the
top of the file like this. A better way to do this is to use the gsub command to strip out the
extra information. This more robust to introduced errors, for example if the column order
changes at some point in the future or you add additional replicates.

# Using gsub -- robust. Get help with ?gsub
gsub(pattern = "trimmed_|.fastq_tophat.accepted_hits.bam", replacement = "",

x = colnames(countdata))
colnames(countdata) <- gsub(pattern = "trimmed_|.fastq_tophat.accepted_hits.bam",

replacement = "", x = colnames(countdata))
head(countdata)

EXERCISE
There’s an R function called rowSums() that calculates the sum of each row in a numeric
matrix, like the count matrix we have here, and it returns a vector. There’s also a function
called which.max() that determines the index of the maximum value in a vector.
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0. Find the gene with the highest expression across all samples – remember, each row is a
gene.

1. Extract the expression data for this gene for all samples.
2. In which sample does it have the highest expression?
3. What is the function of the gene? Can you suggest why this is the top expressed gene?

Data investigation using base R

We can investigate this data a bit more using some of the basic R functions before going on
to use more sophisticated analysis tools.
First make a copy of the data, because we’ll need it later. We will work on the copy. We will
calculate the mean for each gene for each condition and plot them.

cd2 <- countdata #make a copy

# get Control columns
colnames(cd2)

# grep searches for matches to a pattern. Get help with ?grep

# get the indexes for the controls
grep("ctl", colnames(cd2))
ctlCols <- grep("ctl", colnames(cd2))
head(cd2[, ctlCols])

# use the rowMeans function
cd2$ctlmean <- rowMeans(cd2[, ctlCols])
head(cd2)

# same for uvb
uvbCols <- grep("uvb", colnames(cd2))
cd2$uvbmean <- rowMeans(cd2[, uvbCols])

head(cd2)

EXERCISE
Using the subset() function, print out all the columns where the control mean does not
equal 0 and where the UVB mean does not equal zero.
Bonus: code golf – use the fewest characters to get the same solution.
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EXERCISE

1. Plot the mean expression of each gene in control against the UVB sample mean. Are
there any outliers?

2. How could you make this plot more informative and look more professional? Hint: try
plotting on the log scale and using a different point character.

plot(cd2$ctlmean, cd2$uvbmean)
with(cd2, plot(log10(ctlmean), log10(uvbmean), pch = 16))
with(cd2, plot(ctlmean, uvbmean, log = "xy", pch = 16))

Poor man’s differential gene expression

We can find candidate differentially expressed genes by looking for genes with a large change
between control and UVB samples. A common threshold used is log2 fold change more than
2 or less than -2. We will calculate log2 fold change for all the genes and colour the genes
with log2 fold change of more than 2 or less than -2 on the plot.
First, check for genes with a mean expression of 0. Putting zeroes into the log2 fold change
calculation will produce NAs, so we might want to remove these genes. Note: this is for
mathematical reasons, although different software may produce different results when you
try to do log2(0).

head(cd2$ctlmean)
head(cd2$ctlmean > 0)

In R, TRUE and FALSE can be represented as 1 and 0, respectively. When we call
sum(cd2$ctlmean > 0), we’re really asking, “how many genes have a mean above 0 in the
control group?”

sum(cd2$ctlmean > 0)
sum(cd2$uvbmean > 0)

Now, let’s subset the data and keep things where either the control or UVB group means are
greater than zero.

nrow(cd2)
cd2 <- subset(cd2, cd2$ctlmean > 0 | cd2$uvbmean > 0)
nrow(cd2)
head(cd2)
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Mathematically things work out better for us when we test things on the log scale. On the
absolute scale, upregulation goes from 1 to infinity, while downregulation is bounded by 0
and 1. On the log scale, upregulation goes from 0 to infinity, and downregulation goes from 0
to negative infinity. Let’s compute a log-base-2 of the fold change.
When we do this we’ll see some Inf and -Inf values. This is what happens when we take
log2(Inf) or log2(0).

# calculate the log2 fold change
cd2$log2FC <- log2(cd2$uvbmean/cd2$ctlmean)
head(cd2)

# see how many are up, down, or both (using the absolute value function)
sum(cd2$log2FC > 2)
sum(cd2$log2FC < -2)
sum(abs(cd2$log2FC) > 2)

We can few just the “outliers” with subset(cd2, abs(log2FC)>2), which gets us just the
things that have a large fold change in either direction. Let’s plot these.

with(cd2, plot(ctlmean, uvbmean, log = "xy", pch = 16))
subset(cd2, abs(log2FC) > 2)
# use the points function to add more points to the same axes
with(subset(cd2, abs(log2FC) > 2), points(ctlmean, uvbmean, pch = 16, col = "red"))

What do you notice about the positions of the outliers on these plots? How would you
interpret this? What are some of the problems with this simple approach?

DESeq2 analysis

DESeq2 is an R package for analyzing count-based NGS data like RNA-seq. It is available
from Bioconductor. Bioconductor is a project to provide tools for analysing high-throughput
genomic data including RNA-seq, ChIP-seq and arrays. You can explore Bioconductor
packages here.
Just like R packages from CRAN, you only need to install Bioconductor packages once, then
load them every time you start a new R session.

source("http://bioconductor.org/biocLite.R")
biocLite("DESeq2")

library("DESeq2")
citation("DESeq2")
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It requires the count data to be in matrix form, and an additional dataframe describing
sample metadata. Notice that the colnames of the countdata match the **rownames of
the metadata*.

mycoldata <- read.csv("data/coldata.csv", row.names = 1)
mycoldata

DESeq works on a particular type of object called a DESeqDataSet. The DESeqDataSet
is a single object that contains input values, intermediate calculations like how things
are normalized, and all results of a differential expression analysis. You can construct a
DESeqDataSet from a count matrix, a metadata file, and a formula indicating the design of
the experiment.

dds <- DESeqDataSetFromMatrix(countData = countdata, colData = mycoldata, design = ~condition)
dds

Next, let’s run the DESeq pipeline on the dataset, and reassign the resulting object back to
the same variable. Before we start, dds is a bare-bones DESeqDataSet. The DESeq() function
takes a DESeqDataSet and returns a DESeqDataSet, but with lots of other information filled
in (normalization, results, etc). Here, we’re running the DESeq pipeline on the dds object,
and reassigning the whole thing back to dds, which will now be a DESeqDataSet populated
with results.

dds <- DESeq(dds)

Now, let’s use the results() function to pull out the results from the dds object. Let’s
re-order by the adjusted p-value.

# Get differential expression results
res <- results(dds)
head(res)

# Order by adjusted p-value
res <- res[order(res$padj), ]
head(res)

Combine DEseq results with the original counts data. Write significant results to a file.

sig <- subset(res, padj < 0.05)
dir.create("results")
write.csv(sig, file = "results/sig.csv") # tab delim data

You can open this file in Excel or any text editor (try it now).
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Data Visualization

We can also do some exploratory plotting of the data.
The differential expression analysis above operates on the raw (normalized) count data. But
for visualizing or clustering data as you would with a microarray experiment, you ned to
work with transformed versions of the data. First, use a regularlized log transofmration
while re-estimating the dispersion ignoring any information you have about the samples
(blind=TRUE). Perform a principal components analysis and hierarchical clustering.

# Transform
rld <- rlogTransformation(dds)

# Principal components analysis
plotPCA(rld, intgroup = "condition")

# Hierarchical clustering analysis let's get the actual values for the first
# few genes
head(assay(rld))
## now transpose those
t(head(assay(rld)))
## now get the sample distances from the transpose of the whole thing
dist(t(assay(rld)))
sampledist <- dist(t(assay(rld)))
plot(hclust(sampledist))

Let’s plot a heatmap.

# ?heatmap for help
sampledist
as.matrix(sampledist)
sampledistmat <- as.matrix(sampledist)
heatmap(sampledistmat)

That’s a horribly ugly default. You can change the built-in heatmap function, but others are
better.

# better heatmap with gplots
library("gplots")
heatmap.2(sampledistmat)
heatmap.2(sampledistmat, key = FALSE, trace = "none")
colorpanel(10, "black", "white")
heatmap.2(sampledistmat, col = colorpanel(64, "black", "white"), key = FALSE,

trace = "none")
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heatmap.2(sampledistmat, col = colorpanel(64, "steelblue", "white"), key = FALSE,
trace = "none")

heatmap.2(sampledistmat, col = colorpanel(64, "red", "white", "blue"), key = FALSE,
trace = "none")

What about a histogram of the p-values?

# Examine plot of p-values
hist(res$pvalue, breaks = 50, col = "grey")

Let’s plot an MA-plot. This shows the fold change versus the overall expression values.

with(res, plot(baseMean, log2FoldChange, pch = 16, cex = 0.5, log = "x"))
with(subset(res, padj < 0.05), points(baseMean, log2FoldChange, col = "red",

pch = 16))

# optional: label the points with the calibrate package. see ?textxy for
# help
library("calibrate")
res$Gene <- rownames(res)
head(res)
with(subset(res, padj < 0.05), textxy(baseMean, log2FoldChange, labs = Gene,

cex = 1, col = "red"))

Let’s create a volcano plot.

par(pch = 16)
with(res, plot(log2FoldChange, -log10(pvalue), main = "Volcano plot"))
with(subset(res, padj < 0.05), points(log2FoldChange, -log10(pvalue), col = "red"))
with(subset(res, abs(log2FoldChange) > 2), points(log2FoldChange, -log10(pvalue),

col = "orange"))
with(subset(res, padj < 0.05 & abs(log2FoldChange) > 2), points(log2FoldChange,

-log10(pvalue), col = "green"))
# Add legend
legend("topleft", legend = c("FDR<0.05", "|LFC|>2", "both"), pch = 16, col = c("red",

"orange", "green"))
# Label points
with(subset(res, padj < 0.05 & abs(log2FoldChange) > 2), textxy(log2FoldChange,

-log10(pvalue), labs = Gene, cex = 1))
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Record package and version info with sessionInfo()

The sessionInfo() prints version information about R and any attached packages. It’s a
good practice to always run this command at the end of your R session and record it for the
sake of reproducibility in the future.

sessionInfo()

## R version 3.1.0 (2014-04-10)
## Platform: x86_64-apple-darwin13.1.0 (64-bit)
##
## locale:
## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
##
## attached base packages:
## [1] parallel methods stats graphics grDevices utils datasets
## [8] base
##
## other attached packages:
## [1] calibrate_1.7.2 MASS_7.3-33
## [3] gplots_2.14.1 DESeq2_1.4.5
## [5] RcppArmadillo_0.4.320.0 Rcpp_0.11.2
## [7] GenomicRanges_1.16.3 GenomeInfoDb_1.0.2
## [9] IRanges_1.22.9 BiocGenerics_0.10.0
## [11] knitr_1.6 BiocInstaller_1.14.2
##
## loaded via a namespace (and not attached):
## [1] annotate_1.42.1 AnnotationDbi_1.26.0 Biobase_2.24.0
## [4] bitops_1.0-6 caTools_1.17 DBI_0.3.1
## [7] evaluate_0.5.5 formatR_0.10 gdata_2.13.3
## [10] genefilter_1.46.1 geneplotter_1.42.0 grid_3.1.0
## [13] gtools_3.4.1 KernSmooth_2.23-12 lattice_0.20-29
## [16] locfit_1.5-9.1 RColorBrewer_1.0-5 RSQLite_0.11.4
## [19] splines_3.1.0 stats4_3.1.0 stringr_0.6.2
## [22] survival_2.37-7 tools_3.1.0 XML_3.98-1.1
## [25] xtable_1.7-3 XVector_0.4.0

Going further

• After the course, download the Integrative Genome Viewer from the Broad Institute.
Download all your .bam files from your AWS instance, and load them into IGV. Try
navigating to regions around differentially expressed genes to view how reads map to
genes differently in the controls versus the irradiated samples.
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• Can you see any genes where differential expression is likely attributable to a specific
isoform?

• Do you see any instances of differential exon usage? You can investigate this formally
with the DEXSeq package.

• Read about pathway analysis with GOSeq or SeqGSEA - tools for gene ontology analysis
and gene set enrichment analysis using next-generation sequencing data.

• Read about multifactor designs in the DESeq2 vignette for cases where you have
multiple variables of interest (e.g. irradiated vs controls in multiple tissue types).

After the course, make sure you stop any running AWS instances.
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