Supporting Information

Charge Coupling Enhanced Photocatalytic Activity of BaTiO₃/MoO₃ Heterostructures

Kevin V. Alex,[†] Aarya Prabhakaran,[†] A.R. Jayakrishnan,[†] K. Kamakshi,[‡] J.P.B. Silva,^{**},[§] K.C. Sekhar^{*,†}

*Department of Physics, School of Basic and Applied Sciences, Central University of Tamil Nadu, Thiruvarur 610 005, India
*Department of Physics, Madanapalle Institute of Technology & Science, Madanapalle 517325, Andhra Pradesh, India
*Centro de Fisica das Universidades do Minho e do Porto (CF-UM-UP), Campus de Gualtar,4710 057 Braga, Portugal

*Corresponding author's e-mail: sekhar.koppole@gmail.com **E-mail:josesilva@fisica.uminho.pt

$$MoO_3 (t_{MoO_3} = 40 - 800 \text{ nm})$$
$$BaTiO_3 (t = 500 \text{ nm})$$
Glass substrate

Figure S1. Schematic diagram of the BTO/MoO₃ heterostructure.

Figure S2. Shift in the fundamental absorption edge for heterostructures with $t_{MoO_3} = 40, 67$ and 200 nm.

Figure S3. Tau plots for pure BTO and MoO₃ films and the BTO/MoO₃ heterostructures with $t_{MoO_3} = 67$ nm

Figure S4. Variation in intensity of the peak at 668 nm for pure BTO film and BTO/MoO₃ heterostructures.

Figure S5. The absorbance curves of RhB adsorbed on BTO and MoO₃ films and the BTO/MoO₃ heterostructure with the time under dark conditions.

Figure S6. Photocatalytic activity of pure films and BTO/MoO₃ heterostructures.