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Abstract
Planning the dispatch of contracted gas denom-
inations requires various simulations of the in-
volved gas transport infrastructure. Further-
more, due to the growing interplay of traditional
gas transport and fluctuating demands related
to renewable energies, the number of neces-
sary simulations vastly increases. Mathemati-
cally, a system of Euler equations, which are
coupled according to the underlying gas net-
work topology, embodies the associated nonlin-
ear and hyperbolic model. Repeated simula-
tion of large networks for varying supply and de-
mand scenarios often necessitates model order
reduction. Yet, beyond these variable bound-
ary conditions, further attributes of the network
may be uncertain or need to be kept vari-
able throughout simulations, which motivates
parametric model order reduction (pMOR).

1. Pipe Model
• Isothermal Euler Equation:
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◦ Nonlinear, hyperbolic, coupled PDE
◦ z(p) Compressibility factor (nonlinear)
◦ Discard inertia term due to flow speed

• Variables:
◦ p(x , t) Pressure
◦ q(x , t) Mass-flux

• Constants:
◦ D Pipe diameter
◦ S := 1

2Dπ2 Cross-section area
◦ T Temperature
◦ RS Specific gas constant
◦ λ Friction factor (nonlinear)

2. Network Model
• Graph-Based Approach:
◦ Edges correspond to pipes
◦ Nodes correspond to junctions

• Repetitive modelling: Four states per pipe:
◦ Pressure at inlet pi(t)
◦ Mass-flux at inlet qi(t)
◦ Pressure at outlet po(t)
◦ Mass-flux at outlet qo(t)

• Boundary Values:
◦ Supply pressure s(t)
◦ Demand mass-flux d(t)

• Conservation Laws:
1. pk
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◦ Interconnected PDAE

• Quantities of Interest:
◦ Demand pressure
◦ Supply mass-flux

3. Discretization
• Spatial: PDAE → DAE
◦ Finite differences
◦ 1D per pipeline
◦ Adaptive refinement

• Analytic Index Reduction:
◦ Transform DAE to implicit or explicit ODE
◦ (tractability) index-1

• Input-Output System:
◦ Inputs: Boundary values
◦ Outputs: Quantities of interest

• ODE Model:
Eẋ = A(θ)x + Bu + f (x , u, θ)

y = Cx
• Center at Steady-State:

E∆ẋ = A(θ)(x̄ + ∆x) + Bu + f (x̄ + ∆x , u, θ)
y = C(x̄ + ∆x)

• Temporal:
◦ 1st order implicit-explicit
◦ Stiff linear part: Implicitly
◦ Nonlinear part: Explicitly

4. Parametrization
• Parameters (θ ⊂ R2):
◦ θ1 := T Temperature
◦ θ2 := RS Specific gas constant

• Parametrization:
◦ Non-affine
◦ Challenge: Integration rather inefficent
◦ Solution: Lump in nonlinear vector field

• Lumping:
◦ Linear parametric part
◦ Compressibility
◦ Gravity term

• Outlook:
◦ Pipe roughness (high-dimensional θ)
◦ Combined state and parameter reduction5. Model Reduction

• Reducded Order Model:
Er ẋr = Arxr + Bru + fr (xr , u, θ)

ỹ = Crxr

such that:
‖y − ỹ‖ � 1
dim(xr)� dim(x)

• Projection-Based Model Reduction:
VEUẋr = VAUxr + VBu + Vf (Uxr , u, θ)

ỹ = CUxr

• Structured Model Reduction:
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(
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)
, V =

(
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0 Vq

)
• Parametric Model Order Reduction (pMOR):
‖y (θ)− ỹ (θ)‖ � 1

◦ Method I: Stacking
◦ Method II: Averaging

6. pMOR Methods
• Empirical Balanced Truncation

1. Empirical controllability Gramian
2. Empirical observability Gramian
3. Balancing transformation

• Empirical Direct Truncation
1. Empirical cross Gramian
2. Balancing transformation

• Empirical Approximate Truncation
1. Empirical nonsymmetric cross Gramian
2. Balancing transformation

• Proper Orthogonal Decomposition (POD)
1. Empirical controllability Gramian
2. Principal singular vectors

• Dynamic Mode Decomposition (DMD)
1. Approximate system matrix
2. Orthogonalized principal eigenvectors

7. Benchmark Model
• Roadrunner Pipeline:
◦ Pipe length: 329000m
◦ Pipe diameter: 0.762m
◦ Pipe roughness: 0.0005m

• Modelling:
◦ Friction factor: Hofer
◦ Compressibility factor: Ideal
◦ Auto-refine if: > 1000m

• Network Dimension:
◦ Number of internal nodes: 328
◦ Number of supply nodes: 1
◦ Number of demand nodes: 1
◦ Number of edges: 329

• System Dimension:
◦ Number of total states: 658
◦ Number of pressure-states: 329
◦ Number of mass-flux-states: 329
◦ Number of inputs: 2
◦ Number of outputs: 2

8. Numerical Results
• Scenario:
◦ Steady supply pressure: 55bar
◦ Steady demand flow: 150kg/s
◦ Time horizon: 24h
◦ Time resolution: 600s
◦ Temperature: [10, 30]◦C
◦ Specific gas constant: [1500, 1550]J/(kg K)

• Experiment:
◦ Training: Perturbed steady-state
◦ Test: Unsteady scenario
◦ Parameter: 10 Uniform samples
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