Supporting Information

Monitoring G-quadruplex formation with DNA carriers and solid-state nanopores

Filip Bošković, Jinbo Zhu \ddagger, Kaikai Chen \ddagger, Ulrich F. Keyser*

Cavendish Laboratory, University of Cambridge, JJ Thompson Avenue, Cambridge, CB3 0HE, United Kingdom

Table of contents

Section 1. Nanopore chip preparation and measurement conditions
1.1. Nanopore fabrication
1.2. Nanopore chip assembly
1.3. Nanopore diameter estimation
1.4. Nanopore measurement
1.5. Materials

Section 2. DNA carrier preparation
2.1. DNA carrier annealing
2.2. Oligonucleotides
2.3. G-quadruplex sequences

Section 3. Circular dichroism recordings
Section 4. Data analysis
Section 5. Statistics of nanopores
Section 6. Sample events

Section 1. Nanopore chip preparation and measurement conditions

1.1. Nanopore fabrication

Glass quartz capillaries with filaments with an outer diameter of 0.5 mm and inner diameter 0.2 $\mathrm{mm}, 7 \mathrm{~cm}$ in length were purchased from Sutter Instruments, USA. Capillaries were pulled to the desired pore diameter using P-2000 model of laser puller (Sutter Instruments, USA). The pulling parameters for 5 $\pm 1 \mathrm{~nm}$ nanopores were: ${ }^{1}$

HEAT=575, FIL=0, VEL=25, DEL=170, PUL=225
For the streptavidin-biotin assay, the inner nanopore diameter was $12 \pm 3 \mathrm{~nm}$ (mean $\pm \mathrm{s}$. d.). This estimation is based on a previously described nanopore fabrication. ${ }^{1,2}$

The parameters have to be adjusted to glass quartz capillary batch and are variable between instruments.

1.2. Nanopore chip assembly

Capillaries were cut to the desired length using ceramic blade to connect the chip cis and trans chamber. Chip is produced by mixing PDMS and curing agent in the ratio 10:1. Mould was filled with PDMS mixture and left overnight to remove the bubbles. The mould with PDMS was solidified by heating on $60^{\circ} \mathrm{C}$ for 1 hour. The holes in the trans chambers were made by biopsy puncher with 1.5 mm diameter and holes between chambers were 1 mm in diameter. Pulled capillaries were placed to connect cis and trans chamber and attached to a glass slide using plasma etching. The 1 mm holes between cis and trans chambers were filled with 10:1 PDMS mixture and heated for 15 minutes on $100^{\circ} \mathrm{C}$ to separate possible connections between chambers.

1.3. Nanopore diameter estimation

A glass nanopore diameter is estimated using a scanning electron microscopy (SEM). The inner diameter of nanopores is estimated based on the previous paper. ${ }^{1}$ An example of an SEM micrograph is shown below. We used 5 nm and 15 nm nanopores in our experiments. For detection of Gq and kinetics of Gq folding, we used 5 nm nanopores, and for streptavidin-biotin duplex-quadruplex transition, 15 nm nanopores are used. The estimation of nanopore diameter can be made based on the base current. For the 5 nm nanopore at 600 mV applied voltage, in $4 \mathrm{M} \mathrm{LiCl}, 100 \mathrm{mM}, 1 \times \mathrm{TE}$ the base current has to be between 2.94 nA and 4.2 nA . Under the same conditions for 15 nm nanopore, the base current should be between 9 nA and 12 nA .

Figure S-1. An example SEM micrograph of the glass nanopore used in this study. Scale bar is 20 nm . The tip diameter represents the outer diameter of the nanopore.

1.4. Nanopore measurement

Glass nanopores were plasma cleaned for 5 minutes on maximum generator power to make glass hydrophilic. Immediately after filling chamber with working buffer (for instance $4 \mathrm{M} \mathrm{LiCl}, 1 \times \mathrm{TE}$). DNA in the concentration of 0.3 nM to 0.5 nM were mixed with the same volume of 8 M LiCl , with/without 200 $\mathrm{mM} \mathrm{KCl}, 2 \times \mathrm{TE}, \mathrm{pH}=9.44$ and then we added 4 M LiCl , with/without $100 \mathrm{mM} \mathrm{KCl}, 1 \times \mathrm{TE}, \mathrm{pH}=9.44$ (adjusted with 2 M LiOH) up to $15 \mu \mathrm{~L}$. The nanopore measurements were recorded using an Axopatch 200B (Molecular Devices, Sunnyvale, CA, USA) and filtered with 50 kHz Bessel filter (Frequency devices, Ottawa, IL, USA). We digitized recordings at a 250 kHz sampling rate with a data card (PCl 6251; National Instruments, Austin, TX, USA).

1.5. Materials

Lithium chloride, lithium hydroxide, potassium chloride, sodium chloride, and $100 \times$ TE buffer were purchased from Sigma-Aldrich (1 M Tris- $\mathrm{HCl}, 0.1 \mathrm{M} \mathrm{EDTA}, \mathrm{pH}=8.0$). All buffers were filtered before any experiment using $0.22 \mu \mathrm{~m}$ pore size membrane filter from (Millipore).

Section 2. DNA carrier preparation

2.1. DNA carrier annealing

The protocol is modified based on the previous paper. ${ }^{2}$
Single-stranded DNA carrier - M13 is bought from New English Biolabs - NEB (M13mp18, catalogue number N4040S). As previously described, a DNA carrier with the desired design is prepared as follows:
A 39nt long ssDNA was hybridised to the M13 carrier by mixing
$40 \mu \mathrm{M} 13$ (stock concentration $250 \mathrm{ng} / \mu \mathrm{l}$),
$8 \mu \mathrm{l} 10 \times$ NEB cutsmart buffer (Catalog number B7204S),
2μ l of oligonucleotide ($100 \mu \mathrm{M}$, purchased from Integrated DNA technologies - IDT),
$28 \mu \mathrm{l}$ of milli-Q water
Followed by heating to $65^{\circ} \mathrm{C}$ and cooling to $25^{\circ} \mathrm{C}$ in a thermocycler over 40 minutes. Then $1 \mu \mathrm{l}$ of BamHIhigh fidelity (R3136T, NEB) and $1 \mu \mathrm{l}$ of EcoRI-high fidelity (R3101T, NEB) restriction enzymes each at 100000 units $/ \mathrm{ml}$, were added to the reaction and incubated for 1 hour at $37^{\circ} \mathrm{C}$. The linearized M 13 was purified from reaction products using a NucleoSpin gel and PCR clean-up kit (Machery-Nagel), the PCR clean-up protocol was used and the purified M13 is eluted in 2 times 30μ l elution buffer to have high recovery of M13.

The next step was annealing of the designed oligonucleotides to the carrier. The reaction mixture contained
20.6μ l of milli-Q water,
6.35μ of cut M13 (126 nM),
4.55μ l of oligonucleotide mixture (527.5 nM of each oligonucleotide),
$5.6 \mu \mathrm{l}$ of $100 \mathrm{mM} \mathrm{MgCl}{ }_{2}$,
$2.9 \mu \mathrm{l}$ of $10 \times$ TE (100 mM Tris $-\mathrm{HCl} \mathrm{pH}=8.0,10 \mathrm{mM}$ EDTA)
which was heated to $85^{\circ} \mathrm{C}$ for the 30 s , and then on $84.5^{\circ} \mathrm{C}$ followed by cooling over 1 hour to $25^{\circ} \mathrm{C}$. The oligonucleotides are at 3 times excess to the carrier. Nonannealed oligonucleotides were removed using Amicon Ultra 0.5 ml 100 kDa filters. One tube of reaction ($40 \mu \mathrm{l}$) was added to $460 \mu \mathrm{l}$ of washing buffer (10 mM Tris- $\mathrm{HCl} \mathrm{pH}=8.0,0.5 \mathrm{mM} \mathrm{MgCl} 2$) and centrifuged at $6000 \times g$ for 10 minutes at $4^{\circ} \mathrm{C}$. This process is repeated three times. After leftover oligonucleotide removal, around $30 \mu \mathrm{l}$ of purified DNA nanostructure was collected and 3μ of stabilizing solution was added ($100 \mathrm{mM} \mathrm{NaCl}, 2 \mathrm{mM} \mathrm{MgCl} 2,10 \mathrm{mM}$ Tris- HCl , $\mathrm{pH}=8.0$). The concentration of DNA was measured on the Nanodrop UV/Vis spectrophotometer.
*For preparation of the DNA carriers used in direct detection of Gqs (Figure 1-3), purification is done in only filtered 10 mM Tris- HCl solution and stabilizing solution was not added.

To cover M13 carrier with a length of 7228 nt after restriction digestion, 190 oligonucleotides were hybridized (Section 2.2), and desired modified oligonucleotides were in 6 times excess to the carrier. Each oligonucleotide was 38 nt long except the last and the first with 46 nt in length.

2.2. Oligonucleotides

Below are shown oligonucleotides used to anneal to carrier M13.
Table S-1. Oligonucleotide sequences added to anneal a DNA carrier.

Oligonucleotide	Sequence (5'-3')	Length (nt)	74	AACAAGCAAGCCGTTTTATTTTCATCGTAGGAATCAT	38
			75	TACCGCGCCCAATAGCAAGCAAATCAGATATAGAAGGC	38
1	TTTCGTAATCATGGTCATAGCTG ${ }^{\text {ITTCTGGTGTGAAATTGTTATC }}$	46	76	TTATCGGGTATTCTAAGAACGGGAGGCGTTTTAGCGAA	38
2	CGCTCACAATTCCACACAACATACGAGCCGGAAGCATA	38	77	CCTCCCGACTTGCGGGAGGTTTTGAAGCCTTAAATCAA	38
3	AAGTGTAAAGCCTGGGGTGCCTAATGAGTGAGCTAACT	38	78	GATTAGTGGTATTTGGACCCAGCTACAATTTATCC	38
4	CACATTAATTGCGTTGCGCTCACTGCCCGCTTTCCAGT	38	79	TGAATCTTACCAACGCTAACGAGCGTCTTTCCAGAGCC	38
5	CGGGAAACCTGTCGTGCCAGCTGCATTAATGAATCGGC	38	80	TAATTTGCCAGTTACAAAATAAACAGCCATATTATTTA	38
6	CAACGCGCGGGGAGAGGCGGTTTGCGTATTGGGCGCCA	38	81	TCCCAATCCAAATAAGAAACGATTTTTGTTAACGTC	38
7	GGGTGGTTTTCTTTTCACCAGTGAGACGGGCAACAGC	38	82	AAAAATGAAAATAGCAGCCTTTACAGAGAGAATAACAT	38
8	TGATTGCCCTTCACCGCCTGGCCCTGAGAGAGTTGCAG	38	83	AAAAACAGGGAAGCGCATTAGACGGGAGAATTAACTGA	38
9	CAAGCGGTCCACGGTGGTTGCCCCAGCAGGCGAAAAT	38	84	ACACCCTGAACAAAGTCAGAGGGTAATTGAGCGCTAAT	38
10	CCTGTTGATGGTGGTCCGAAATCGGCAAAATCCCTT	38	85	ATCAGAGAGATAACCCACAAGAATTGAGTTAAGCCCAA	38
11	ATAAATCAAAAGAATAGCCCGAGATAGGGTGAGTGT	38	86	TAATAAGAGCAAGAAACAATGAAATAGCAATAGCTATC	38
12	GTTCCAGTTTGGAACAAGAGTCCACTATTAAAGAACGT	38	87	TTACCGAAGCCCTTTTAAGAAAAGTAAGCAGATAGCC	38
13	GGACTCCAACGTCAAAGGGCGAAAAACCGTCTATCAGG	38	88	GAACAAAGTTACCAGAAGGAAACGGAGGAAACGCAATA	38
14	GCGATGGCCCACTACGTGAACCATCACCCAAATCAAGT	38	89	ATAACGGAATACCCAAAAGAACTGGCATGATTAAGACT	38
15	TTTTGGGGTCGAGGTGCCGTAAAGCACTAAATCGGAA	38	90	CCTATTACGCAGTATGTTAGCAAACGTAGAAAATACA	38
16	CCCTAAAGGGAGCCCCCGATTTAGAGCTTGACGGGGAA	38	91	TACATAAAGGTGGCAACATATAAAAGAAACGCAAAGAC	38
17	AGCCGGCGAACGTGGCGAGAAAGGAAGGGAAGAAAGCG	38	92	ACCACGGAATAAGTTATTTTGTCACAATCAATAGAAA	38
18	AAAGGAGCGGGCGCTAGGGCGCTGGCAAGTGTAGCGGT	38	93	ATTCATATGGTTTACCAGCGCCAAAGACAAAAGGGCGA	38
19	CACGCTGCGCGTAACCACCACACCCGCCGCGCTTAATG	38	94	CATTCAACCGATTGAGGGAGGGAAGGTAAATATTGACG	38
20	CGCCGCTACAGGGCGCGTACTATGGTTGCTTTGACGAG	38	95	GAAATTATTCATTAAAGGTGAATTATCACCGTCACCGA	38
21	CACGTATAACGTGCTTTCCTCGTTAGAATCAGAGCGGG	38	96	CTTGAGCCATTTGGGAATTAGAGCCAGCAAAATCACCA	38
22	AGcTAAACAGGAGGCCGATTAAAGGGATTTAGACAGG	38	97	GTAGCACCATTACCATTAGCAAGGCCGGAAACGTCACC	38
23	AACGGTACGCCAGAATCCTGAGAAGTGTTTTATAATC	38	98	AATGAAACCATCGATAGCAGCACCGTAATCAGTAGCGA	38
24	AGTGAGGCCACCGAGTAAAAGAGTCTGTCCATCACGCA	38	99	CAGAATCAAGTTGCCTTTAGCGTCAGACTGTAGCGCG	38
25	AATTAACGGTTGTAGCAATACTTCTTTGATAATAATA	38	100	TTTTCATCGGCATTTTCGGTCATAGCCCCCTTATTAGC	38
26	ACATCACTTGCCTGAGTAGAAGAACTCAAACTATCGGC	38	101	GTTTGCCATCTTTTCATAATCAAAATCACCGGAACCAG	38
27	CTTGCTGGTAATATCCAGAACAATATTACCGCCAGCCA	38	102	AGCCACCACCGGAACCGCCTCCCTCAGAGCCGCCACCC	38
28	TGCAACAGGAAAAACGCTCATGGAAATACCTACATTT	38	103	TCAGAACCGCCACCCTCAGAGCCACCACCCTCAGAGCC	38
29	TGACGCTCAATCGTCTGAAATGGATTATTTACATTGGC	38	104	GCCACCAGAACCACCACCAGAGCCGCCGCCAGCATTGA	38
30	AGATTCACCAGTCACACGACCAGTAATAAAAGGGACAT	38	105	CAGGAGGTTGAGGCAGGTCAGACGATTGGCCTTGATAT	38
31	TCTGGCCAACAGAGATAGAACCCTTCTGACCTGAAAGC	38	106	TCACAAACAAATAAATCCTCATTAAAGCCAGAATGGAA	38
32	GTAAGAATACGTGGCACAGACAATATTTTGGAATGGCT	38	107	AGCGCAGTCTCTGAATTTACCGTTCCAGTAAGCGTCAT	38
33	ATTAGTCTTTAATGCGCGAACTGATAGCCCTAAAACAT	38	108	ACATGGCTTTTGATGATACAGGAGTGTACTGGTAATAA	38
34	CGCCATTAAAAATACCGAACGAACCACCAGCAGAAGAT	38	109	GTTTTAACGGGGTCAGTGCCTTGAGTAACAGTGCCCGT	38
35	AAAACAGAGGTGAGGCGGTCAGTATTAACACCGCCTGC	38	110	ATAAACAGTTAATGCCCCCTGCCTATTTGGGAACCTAT	38
36	AACAGTGCCACGCTGAGAGCCAGCAGCAAATGAAAAAT	38	111	TATTCTGAAACATGAAAGTATTAAGAGGCTGAGACTCC	38
37	CTAAAGCATCACCTTGCTGAACCTCAAATATCAAACCC	38	112	TCAAGAGAAGGATTAGGATTAGCGGGGTTTGCTCAGT	38
38	TCAATCAATATCTGGTCAGTGGCAAATCAACAGTTGA	38	113	ACCAGGCGGATAAGTGCCGTCGAGAGGGTTGATATAAG	38
39	AAGGAATTGAGGAAGGTTATCTAAAATATCTTTAGGAG	38	114	TATAGCCCGGAATAGGTGTATCACCGTACTCAGGAGGT	38
40	CACTAACAACTAATAGATTAGAGCCGTCAATAGATAAT	38	115	TAGTACCGCCACCCTCAGAACCGCCACCCTCAGAACC	38
41	ACATTGAGGATTTAGAAGTATTAGACTTTACAAACAA	38	116	GCCACCCTCAGAGCCACCACCCTCATTTTCAGGGATAG	38
42	TTCGACAACTCGTATTAAATCCTTTGCCCGAACGTTAT	38	117	CAAGCCCAATAGGAACCCATGTACCGTAACACTGAGTT	38
43	TAATTTTAAAAGTTGAGTAACATTATCATTTGCGGA	38	118	TCGTCACCAGTACAAACTACAACGCCTGTAGCATTCCA	38
44	ACAAAGAAACCACCAGAAGGAGCGGAATTATCATCATA	38	119	CAGACAGCCCTCATAGTTAGCGTAACGATCTAAAGTT	38
45	TCCTGATTATCAGATGATGGCAATTCATCAATATAAT	38	120	TGTCGTCTTTCCAGACGTTAGTAAATGAATTTTCTGTA	38
46	CCTGATTGTTTGGATTATACTTCTGAATAATGGAAGGG	38	121	TGGGATTTTGCTAAACAACTTTCAACAGTTTCAGCGGA	38
47	TTAGAACCTACCATATCAAAATTATTTGCACGTAAAAC	38	122	GTGAGAATAGAAAGGAACAACTAAAGGAATTGCGAATA	38
48	AGAAATAAAGAAATTGCGTAGATTTTCAGGTTTAACGT	38	123	ATAATTTTTCACGTTGAAAATCTCCAAAAAAAAGGCT	38
49	CAGATGAATATACAGTAACAGTACCTTTTACATCGGGA	38	124	CCAAAAGGAGCCTTTAATTGTATCGGTTTATCAGCTTG	38
50	GAAACAATAACGGATTCGCCTGATTGCTTTGAATACCA	38	125	CTTTCGAGGTGAATTTCTTAAACAGCTTGATACCGATA	38
51	AGTTACAAAATCGGGCAGAGGCGAATTATTCATTTCAA	38	126	GTTGCGCCGACAATGACAACAACCATCGCCCACGCATA	38
52	ttacctgagcaatagaigatgatganacaaicatcang	38	127	ACCGATATATTCGGTCGCTGAGGCTTGCAGGGAGTTAA	38
53	AAAACAAAATTAATTACATTTAACAATTTCATTTGAAT	38	128	AGGCCGCTTTTGCGGGATCGTCACCCTCAGCAGCGAAA	38
54	TACCTTTTTAATGGAAACAGTACATAAATCAATATAT	38	129	GACAGCATCGGAACGAGGGTAGCAACGGCTACAGAGGC	38
55	GTGAGTGAATAACCTTGCTTCTGTAAATCGTCGCTATT	38	130	TTGAGGACTAAAGACTTTTCATGAGGAAGTTCCAT	38
56	AATTAATTTTCCCTTAGAATCCTTGAAAACATAGGGAT	38	131	TAAACGGGTAAAATACGTAATGCCACTACGAAGGCACC	38
57	AGCTTAGATTAAGACGCTGAGAAGAGTCAATAGTGAAT	38	132	AACCTAAAACGAAAGAGGCAAAAGAATACACTAAAACA	38
58	TATCAAAATCATAGGTCTGAGAGACTACCTTTTAAC	38	133	СTCATCTTTGACCCCCAGCGATTATACCAAGCGCGAAA	38
59	CTCCGGCTTAGGTTGGGTTATATAACTATATGTAAATG	38	134	CAAAGTACAACGGAGATTTGTATCATCGCCTGATAAAT	38
60	CTGATGCAAATCCAATCGCAAGACAAAGAACGCGAGAA	38	135	TGTGTCGAAATCGGCGACCTGCTCCATGTTACTIAGCC	38
61	AАСТTTTCAAATATATTTTAGTTAATTTCATCTTCTG	38	136	GGAACGAGGCGCAGACGGTCAATCATAAGGGAACCGAA	38
62	ACCTAAATTTAATGGTTTGAAATACCGACCGTGTGATA	38	137	CTGACCAACTTTGAAAGAGGACAGATGAACGGTGTACA	38
63	AATAAGGCGTTAAATAAGAATAAACACCGGAATCATAA	38	138	GACCAGGCGCATAGGCTGGCTGACCTTCATCAAGAGTA	38
64	TTACTAGAAAAAGCCTGTTTAGTATCATATGCGTTATA	38	139	ATCTTGACAAGAACCGGATATTCATTACCCAAATCAAC	38
65	CAAATTCTTACCAGTATAAAGCCAACGCTCAACAGTAG	38	140	GTAACAAAGCTGCTCATTCAGTGAATAAGGCTTGCCCT	38
66	GGCTTAATTGAGAATCGCCATATTTAACAACGCCAACA	38	141	GACGAGAAACACCAGAACGAGTAGTAAATTGGGCTTGA	38
67	TGTAATTTAGGCAGAGGCATTTTCGAGCCAGTAATAAG	38	142	GATGGTTTAATTTCAACTTTAATCATTGTGAATTACCT	38
68	AgAATATAAAGTACCGACAAAAGGTAAAGTAATTCTGT	38	143	TATGCGATTTTAAGAACTGGCTCATTATACCAGTCAGG	38
69	CCAGACGACGACAATAAACAACATGTTCAGCTAATGCA	38	144	ACGTTGGGAAGAAAAATCTACGTTAATAAAACGAACTA	38
70	GAACGCGCCTGTTATCAACAATAGATAAGTCCTGAAC	38	145	ACGGAACAACATTATTACAGGTAGAAAGATTCATCAGT	38
71	AAGAAAAATAATATCCCATCCTAATTTACGAGCATGTA	38	146	TGAGATTTAGGAATACCACATTCAACTAATGCAGATAC	38
72	GAAACCAATCAATAATCGGCTGTCTTCCTTATCATTC	38	147	ATAACGCCAAAAGGAATTACGAGGCATAGTAAGAGCAA	38
73	CAAGAACGGGTATTAAACCAAGTACCGCACTCATCGAG	38	148	CACTATCATAACCCTCGTTTACCAGACGACGATAAAAA	38

149	CCAAAATAGCGAGAGGCTTTTGCAAAAGAAGTTTTGCC	38	170	GTAGGTAAAGATTCAAAAGGGTGAGAAAGGCCGGAGAC	38
150	AGAGGGGGTAATAGTAAAATGTTTAGACTGGATAGCGT	38	171	AGTCAAATCACCATCAATATGATATTCAACCGTTCTAG	38
151	CCAATACTGCGGAATCGTCATAAATATTCATTGAATCC	38	172	CTGATAAATTAATGCCGGAGAGGGTAGCTATTTTTGAG	38
152	CCCTCAAATGCTTTAAACAGTTCAGAAAACGAGAATGA	38	173	AGATCTACAAAGGCTATCAGGTCATTGCCTGAGAGTCT	38
153	CCATAAATCAAAAATCAGGTCTTTACCCTGACTATTAT	38	174	GGAGCAAACAAGAGAATCGATGAACGGTAATCGTAAAA	38
154	AGTCAGAAGCAAAGCGGATTGCATCAAAAAGATTAAGA	38	175	CTAGCATGTCAATCATATGTACCCCGGTTGATAATCAG	38
155	GGAAGCCCGAAAGACTTCAAATATCGCGTTTTAATTCG	38	176	AAAAGCCCCAAAAACAGGAAGATTGTATAAGCAAATAT	38
156	AGCTTCAAAGCGAACCAGACCGGAAGCAAACTCCAACA	38	177	TTAAATTGTAAACGTTAATATTTTGTTAAAATTCGCAT	38
157	GGTCAGGATTAGAGAGTACCTTTAATTGCTCCTTTTGA	38	178	TAAATTTTTGTTAAATCAGCTCATTTTTTAACCAATAG	38
158	TAAGAGGTCATTTTTGCGGATGGCTTAGAGCTTAATTG	38	179	GAACGCCATCAAAAATAATTCGCGTCTGGCCTTCCTGT	38
159	CTGAATATAATGCTGTAGCTCAACATGTTTTAAATATG	38	180	AGCCAGCTTTCATCAACATTAAATGTGAGCGAGTAACA	38
160	CAACTAAAGTACGGTGTCTGGAAGTTTCATTCCATATA	38	181	ACCCGTCGGATTCTCCGTGGGAACAAACGGCGGATTGA	38
161	ACAGTTGATTCCCAATTCTGCGAACGAGTAGATTTAGT	38	182	CCGTAATGGGATAGGTCACGTTGGTGTAGATGGGCGCA	38
162	TTGACCATTAGATACATTTCGCAAATGGTCAATAACCT	38	183	TCGTAACCGTGCATCTGCCAGTTTGAGGGGACGACGAC	38
163	GTTTAGCTATATTTTCATTTGGGGCGCGAGCTGAAAAG	38	184	AGTATCGGCCTCAGGAAGATCGCACTCCAGCCAGCTTT	38
164	GTGGCATCAATTCTACTAATAGTAGTAGCATTAACATC	38	185	CCGGCACCGCTTCTGGTGCCGGAAACCAGGCAAAGCGC	38
165	CAATAAATCATACAGGCAAGGCAAAGAATTAGCAAAAT	38	186	CATTCGCCATTCAGGCTGCGCAACTGTTGGGAAGGGCG	38
166	TAAGCAATAAAGCCTCAGAGCATAAAGCTAAATCGGTT	38	187	ATCGGTGCGGGCCTCTTCGCTATTACGCCAGCTGGCGA	38
167	GTACCAAAAACATTATGACCCTGTAATACTTTTGCGGG	38	188	AAGGGGGATGTGCTGCAAGGCGATTAAGTTGGGTAACG	38
168	AGAAGCCTTTATTTCAACGCAAGGATAAAAATTTTTAG	38	189	CCAGGGTTTTCCCAGTCACGACGTTGTAAAACGACGGC	38
169	AACCCTCATATATTTTAAATGCAATGCCTGAGTAATGT	38	190	CAGTGCCAAGCTTGCATGCCTGCAGGTCGACTCTAGAGGATCTTTT	46

2.3. G-quadruplex (Gq) sequences

The full modified oligonucleotide sequences with attached Gq sequences and sequences of complementary strands with biotin modifications. The Gq sequence itself is bolded at the table. Number/position of oligonucleotide from the table S-1. which is modified is indicated at the table S-2.

Table S-2. Gq sequences and complementary sequences used in this study.

G-quadruplex full name	Code	Sequence (5'-3')	Modified oligonucleotide	Length (nt)
HIV integrase G-quadruplex	T30695	AATTAACCGTTGTAGCAATACTTCTTTGATTAGTAATA TTT GGGTGGGTGGGTGGGT	25	57
	T30695	GAAACAATAACGGATTCGCCTGATTGCTTTGAATACCA TTT GGGTGGGTGGGTGGGT	50	57
	T30695	TACCGCGCCCATAGCAAGCAAATCAGATATAGAAGGC TTT GGGTGGGTGGGTGGGT	75	57
T30695	TTTTCATCGGCATTTCGGTCATAGCCCCTTATTAGC TTT GGGTGGGTGGGTGGGT	100	57	
Single stranded poly- deoxythymidine DNA	T30695	CTTTCGAGGTGAATTTCTTAAACAGCTGATACCGATA TTT GGGTGGGTGGGTGGGT	125	57
polydT	AGAGGGGGTAATAGTAAAATGTTTAGACTGGATAGCGT TTT GGGTGGGTGGGTGGGT	150	57	
AATTAACCGTTGTAGCAATACTTCTTTGATTAGTAATA TTT TTTTTTTTTTTTTTT	25	57		
polydT	TACCGCGCCCAATAGCAAGCAAATCAGATATAGAAGGC TTTT TTTTTTTTTTTTTTT	75	57	
polydT	TTTTCATCGGCATTTTCGGTCATAGCCCCTTATTAGC TTT TTTTTTTTTTTTTTT	100	57	
polydT	CTTTCGAGGTGAATTTCTTAAACAGCTGATACCGATA TTT TTTTTTTTTTTTTTT	125	57	
polydT	AGAGGGGGTAATAGTAAAATGTTTAGACTGGATAGCGT TTT TTTTTTTTTTTTTTTT	150	57	

Human telomere Gquadruplex	hTel	GTAGCACCATTACCATTAGCAAGGCCGGAAACGTCACCT TTT TAGGGTTAGGGTTAGGGTTAGGG	97	65
	hTel	TGGGATTTTGCTAAACAACTTTCAACAGTTTCAGCGGAT TTT TAGGGTTAGGGTTAGGGTTAGGG	121	65
	hTel	GATGGTTTAATTTCAACTTTAATCATTGTGAATTACCTT TTT TAGGGTTAGGGTTAGGGTTAGGG	142	65
Human minisatellite 25CEB motif	26CEB	GTAGCACCATTACCATTAGCAAGGCCGGAAACGTCACCT TTT AAGGGTGGGTGTAAGTGTGGGTGGGT	97	68
	26CEB	TGGGATTTTGCTAAACAACTTTCAACAGTTTCAGCGGAT TTT AAGGGTGGGTGTAAGTGTGGGTGGGT	121	68
	26CEB	GATGGTTTAATTTCAACTTTAATCATTGTGAATTACCTT TTT AAGGGTGGGTGTAAGTGTGGGTGGGT	142	68
T30695 5'-biotin complementary strand	TC	/5Biosg/TTTACCCACCCACCCACCC	/	19
hTel 5'-biotin complementary strand	HC	/5Biosg/TTTCCCTAACCCTAACCCTAACCCTAA	/	27
26CEB 5'-biotin complementary strand	CC	/5Biosg/TTTACCCACCCACACTTACACCCACCCTT	/	29

Section 3. Circular dichroism recordings

G-quadruplexes were purchased from Integrated DNA Technologies and dissolved in water to $100 \mu \mathrm{M}$ (IDT). For the CD measurement oligos were diluted in the respective buffer. Control samples were diluted in either control buffer ($4 \mathrm{M} \mathrm{LiCl}, 1 \times$ TE) Gq buffer ($4 \mathrm{M} \mathrm{LiCl}, 1 \times T \mathrm{TE}, 100 \mathrm{mM} \mathrm{KCl}$). With CD measurements we wanted to see if Gqs are folded in control buffer and afterwards if in Gq buffer they are folded. To do that, we diluted Gq oligonucleotides to $10 \mu \mathrm{M}$ in the respective buffer and leave samples overnight at $4^{\circ} \mathrm{C}$. CD measurements were recorded on JASCO J-810 with a temperature-controlled cuvette holder and incubated/measured for 1 h at $20^{\circ} \mathrm{C}$. A quartz cuvette with a path length of 1 mm was used. CD spectra were obtained as the average of 5 individual measurements in a range between 210 nm and 400 nm , with data interval 0.5 nm , bandwidth 1 nm , scanning speed $50 \mathrm{~nm} / \mathrm{min}$ and response time of 1 s . CD spectra of Gqs were normalized to the molar ellipticity using the formula $\Delta \varepsilon\left(\mathrm{M}^{-1} \cdot \mathrm{~cm}^{-1}\right)=\theta /\left(32980^{*} \mathrm{c}^{*}\right)^{3}$ where θ represents the CD ellipticity in millidegrees (mdeg), c is the Gq concentration in $\mathrm{mol} / \mathrm{L}$, and I is the path length in cm . CD spectra of all Gqs used in this study obtained in control buffer are shown in Figure S-2.

Figure S-2. Control CD spectra of Gqs used in this study in $4 \mathrm{M} \mathrm{LiCl}, 1 \times T E$ measurement buffer without KCl .

Section 4. Data analysis

We used the home-built Python code to find translocations. Since we are collecting single molecule data, short DNA fragments and large aggregates are excluded from further analysis and code distinguish them based on event charge deficit (event surface). Translocation finder isolates events with 100 points before and after an event. Secondly, we set the threshold for peak detection and used Bayesian fitting. ${ }^{4}$ Data consist of folded DNA and unfolded DNA. In further analysis, we used only linear-unfolded DNA events.

Positional analysis is done by relative measuring of peak position from the closest end of an event. In this way, we normalize the peak position regardless of the direction in which DNA translocates through a nanopore.

Detail description of nanopore data analysis are presented previously ${ }^{1-3}$. In the case of direct detection of G-quadruplexes, we normalized peak drop to DNA event as shown in Figure 3. This difference is used as $\boldsymbol{\Delta I}$ peak. All data are plotted using OriginPro 2018 version.

Section 5. Statistics of nanopores

Here we presented the characteristics of each nanopore measurement we used in this paper including the base current at 600 mV and respective RMS noise.

Table S-3. Data for individual nanopores including base current and a root mean square (RMS) noise for the 600 mV voltage used to obtain data.

Experiment	Nanopore number	Base current at $600 \mathrm{mV}(\mathrm{nA})$	RMS noise at $600 \mathrm{mV}(\mathrm{nA})$
Detection of T30695	1	4.22	0.00571
	2	3.71	0.00524
	3	3.27	0.00559
	4	2.94	0.0058
Detection of hTel	1	3.43	0.00531
	2	3.42	0.00542
	3	3.43	0.00555
	5	2.93	0.00516
Detection of $26 C E B$	6	3.2	0.00573
	7	3.84	0.00564
			0.00509

	8	3.6	0.00511
	9	3.06	0.00508
Kinetics of T30695 Gq folding	1	3.72	0.00539
	2		
	3	3.12	0.00519
	4	3.57	0.00545
	5	3.21	0.00547
	6	3.82	0.00530
	7	3.41	0.00593
	9	3.77	0.00537
	10	3.31	0.00559
T30965+TC	1	3.27	0.00556
	2	12.31	0.00557
	3	10.17	0.00677
hTel+HC	1	9.86	0.00676
	2	9.28	0.00683
	3	9.83	0.00674
$26 C E B+C C$	1	9.86	0.00660
	2	9.29	0.00654
		9.13	0.00659
			0.00656
			0.00661

The IV curves for the nanopores used for data obtaining are shown below. On Figure S-3a. IV curves of nanopores used in direct detection of Gqs and kinetics of Gq folding are plotted. On Figure S-3b. the IV curves used for the quadruplex-duplex competition are plotted.

Figure S-3. IV curves of nanopores for a) direct detection of Gq and for b) streptavidin-biotin assay.
Example of 2s current trace obtained in this study is shown below. Two events can be observed. The first one unfolded DNA and the second one represents folded DNA.

$200 \mathrm{pA} \underbrace{\underbrace{2}}_{250 \mathrm{~ms}}$

Figure S-4. An example of a current trace from the data.

Section 6. Sample events

For data presented in Figure 2. and Figure 4. we designed following DNA carriers. Firstly, for T30695 Gq modified oligonucleotides with Gq-sequence were added to 3^{\prime} end of oligonucleotide positions 25,50 , and 75 . Thus, the peaks in positions 25,50 , and 75 corresponds to $13 \%, 27 \%$, and 40% of event duration, respectively. In Figure 2 peaks positions are shown as $87 \%, 73 \%$, and 60% (100% minus $13 \%, 27 \%$, and 40%) for easier graphical understanding of data. Secondly, for hTel and 26CEB Gq modified oligonucleotides with respective Gq-sequence were added to 3^{\prime} end of oligonucleotide positions 97, 121, and 142. The peaks in positions 97, 121, and 142 corresponds to $51 \%, 64 \%$, and 75% of event duration. In our data analysis we measure peak position from the closest end of event. In this way we normalize peak position regardless of the DNA carrier direction of entering in nanopore.

The DNA carrier for Gq folding kinetics experiments (Figure 3) had T30695 Gq modified oligonucleotides with Gq -sequence added to 3^{\prime} end of oligonucleotide positions $25,50,75,100,125$, and 150 . In Figure S-4., we show additional sample events for folded T30695 Gqs in 100 mM KCl .

Figure S-5. Sample events for folded T30695 Gq in 100 mM KCl are presented. The six peaks corresponding to folded Gq are shown.

For the DNA carrier designs used for quadruplex-duplex competition we exchange one of the 190 oligonucleotides with oligonucleotide with desired Gq-sequence at the 3' end. This was done in step of assembly of DNA carrier as aforementioned. The designed DNA carriers with sample events for both conditions are shown in Figure S-5. For the quadruplex-duplex structural transition data, we have the possibility of a maximum three folded/unfolded Gq so we have either three peaks (all unfolded Gq), two peaks (two unfolded Gq), 1 peak (one unfolded $G q$), or no peaks (all folded $G q$). Below we show sample events regarding all possible combinations for the quadruplex-duplex competition for T30695 (Figure S-6.), hTel (Figure S-7.) and 26CEB Gq (Figure S-8.). The position is indicated as place where Gq is added to the 3^{\prime}-sequence of oligonucleotides shown in Table S-1.

Figure S-6. smGNA quantifies quadruplex-duplex competition. In the presence of Gq stabilizing conditions including $1 \mu \mathrm{M}$ high-specific ligand pyridostatin (PDS) and 100 mM KCl majority of Gq are folded (left panel) even in the presence of complementary strand in the same concentration. In the absence of stabilizing conditions duplex forms in different ratios compare to Gq (right panel). The positions of Gq-forming sequences are identical as in Figure 2. Three Gqs are placed at the specific positions (percentage of the whole DNA carrier). Observed peaks correspond to duplex-biotin-streptavidin (duplex-sb) complex i.e. formed duplex. Here we present the DNA carriers and sample events for a) T30695, b) hTel, and c) 26CEB quadruplex-duplex competition.

Figure S-7. Events as results of the quadruplex-duplex competition for T30695 Gq. Each peak corresponds to duplex with the streptavidin-biotin complementary strand. Three Gqs were attached to the positions 25,50 and 75. a), b) all three unfolded, c) all three folded quadruplexes, d) quadruplexes at the positions 25 and 50 unfolded, e) quadruplexes at the positions 25 and 75 unfolded, f) quadruplexes at the positions 50 and 75 unfolded, g) quadruplex at the position 25 unfolded, h) quadruplex at the position 50 unfolded, i) quadruplex at the position 75 unfolded.

h

f

i

Figure S-8. Events as results of the quadruplex-duplex competition for hTel. Each peak corresponds to duplex with the streptavidin-biotin complementary strand. Three Gqs were attached to the positions 97, 121 and 142. a), b) all three unfolded, c) all three folded quadruplexes, d) quadruplexes at the positions 97 and 121 unfolded, e) quadruplexes at the positions 97 and 142 unfolded, f) quadruplexes at the positions 121 and 142 unfolded, g) quadruplex at the position 142 unfolded, h) quadruplex at the position 121 unfolded, i) quadruplex at the position 97 unfolded.

Figure S-9. Events as results of the quadruplex-duplex competition for 26CEB. Each peak corresponds to duplex with the streptavidin-biotin complementary strand. Three Gqs were attached to the positions 97, 121 and 142. a), b) all three unfolded, c) all three quadruplexes folded, d) quadruplexes at the positions 97 and 121 unfolded, e) quadruplexes at the positions 97 and 142 unfolded, f) quadruplexes at the positions 121 and 142 unfolded, g) quadruplex at the position 121 unfolded, h) quadruplex at the position 142 unfolded, i) quadruplex at the position 97 unfolded.

Figure S-10. DNA carrier with six single-stranded poly-deoxythymidine DNA (polydT) at the same positions as for the DNA carrier used for kinetics of Gq folding (Figure 3.). a) Six deep peaks can be observed, b) for 35 minutes six deep peaks still can be observed in both measurement buffer supplemented with 100 mM KCl and 0 mM KCl . The number of peaks are reduced if less than six peaks per event is observed.

References

1. Chen K, Kong J, Zhu J, Ermann N, Predki P, Keyser UF. Digital Data Storage Using DNA Nanostructures and Solid-State Nanopores. Nano Lett. 2019;19(2):1210-1215. doi:10.1021/acs.nanolett.8b04715
2. Bell NAW, Keyser UF. Digitally encoded DNA nanostructures for multiplexed, single-molecule protein
sensing with nanopores. Nat Nanotechnol. 2016;11(7):645-651. doi:10.1038/nnano.2016.50
3. Villar-Guerra R del, Gray RD, Chaires JB. Quadruplex DNA Structure Characterization by Circular Dichroism. Curr Protoc Nucleic Acid Chem. 2017;68:17.8.1. doi:10.1002/CPNC. 23
4. Ermann N, Chen K, Keyser UF. Bayesian inference for nanopore data analysis. April 2019. http://arxiv.org/abs/1904.01040. Accessed July 11, 2019.
