Projection of future temperature over the
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Abstract: The future climate information is essential b develop adaptation and mitigation
strategies for climate change. In this study, future daily maximum and minimum temperature
projections over the Haile River Basin of China during the period 2011-2100 was generated based
the two CMIP5 models under two Reprggentative Concentration Pathway (RCP2.6 and RCP8.5) viaa
statistical downscaling model (SDSM). Compared to the baseline period (1971-2010), future change
in annual and seasonal maximum and minimum temperature was computed after bias correction.
The spatial distribution and trend change of annual maximum and minimum temperature were also
analyzed using ensemble projection method. The re show that: Under two future scenarios
during the 2020s, Ds and 2070s, the changes In annual mean maximum and minimum
temperature would increase and magnitude of maximum temperature would be higher than
minimum temperature. The increase in magnitugg for the weather station in the mountains and
along the coastline would be remarkably obvious. Er annual maximum and minimum temperature,
the significant upward trend will be obtained under RCP 8.5 scenario and the magnitude will be 0.37
and 0.39 C per decade, respectively; the increase in magnitude under RCP 2.6 scenario will be
upward in 2020s and then decrgage in 2050s and 2070s, and the magnitude will be 0.01 and 0.01°C
per decade, respectively. The results obtained in this study could be used as references for

decision-making of food production and environmental sustainability in the basin.

Keywords: Statistical downscaling; Temperature; CMIP5 models; Ensemble projection; Climate
change projection

1. Introduction

global average surface temperature increased 0.85 (0.65 to 1.06)C in the period 1880-2012,
and each of the last three decades has begcontinuously warmer at the Earth's surface than any
preceding decade since 1850 (IPCC 2013). Due to human activities including the burning of fossil
fuel, deforestation and so on, the markedly increase ncentration of greenhouse gas emissions
cause the increasing air temperature, which further cause acceleration of the hydrological
redistribution of water resources and cgpy growth on spatial and temporal scales (Acharya et al.
2012; Ju et al. 2013; Wang et al. 2014). This will inevitably affect the availability of water qme
purpose of domestic, agriculture, hydropower generation, and ecological environment, which
ultimately affect the social economy of the region.
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general Circulation Models (GCMSs) are the principal instrumer@r making projections of
future climatic conditions, and have been ap extensively to the research on the response of
natural system to future mnate change(Araya et al. 2015; Pumo et al. 2016; Sun et al. 2013; Wang et
al. 2015).IHowever, their remain relative coarse in resolution so that are unable to resolve important
sub-grid @ggale features such as topography and clouds (Wilby et al. 2002). Thus, the raw GCMs'
outputs do not meet t eeds of regional impact studies of ate change. Fortunately,
downscaling technology have been developed in the past decades to bridge thehp between the
outputs from the GCMs and the requests for the regional impact studies. There are many
downscaling techniques, but gy can be mainly divided into two categories: dynamic downscaling
and statistical downscaling (Wilby et GZUOZ). Dynamic downscaling needs a GCM to define the
atmospheric boundary conditions, and statistical downscaling establishes the statistical relationship
between large-scale atmosphm variables (predictors) deprived from the GCM and local ground
observations (predictands). Comparing to dynamic downscaling, statistical downscaling is
comparatively cheap and computationally efficient and have been widely used all over the world in
regional impact studies (Ahmadi et al. 2014; Ye and Grimm 2013; Zhang et al. 2012).The most
common statistical downscaling method are transfer functions, this further dividing into traditional
linear and nonlinear regression technology. The first of thRe includes linear regression (Sachindra et
al. 2014), canonical correlation analysis (Jha et al.) and principal ccmonent analysis (Dibike and
Coulibaly }; the others includes artificial neural network (Chen et al. 2010; Duhan and Pandey
2015) and support vect achine(Raje and Mujumdar 2011; Srinivas et al. 2014). Among the above
mentioned techniques, tat—isticﬁownScaling Model (SDSM) developed by Wilby et al. (2002)
incorporate both deterministic transfer function (reggfgsion models)and stochastic components
(stochastic weather generator) and has its advantaﬁbeing simple and easy to implement, the
excellent user interface. Therefore, SDSM has been exgnsively used applied in statistical
downscaling studies for climate variables all over the world x(g:u et al. 2010; Kazmi et al. 2015; Liu et
al. 2011; Singh et al. 2015; Tatsumi et al. 2015; Tryhorn and DeGaetano 2011).Meanwhile, the
comparison researches on simulation ability for the historical climate variables b n SDSM and
the other statistical techniques have presented that SDSM performed well(Hassan et al. 2014; Hu et
al. 2013; Khan et al. 2006).
The latest generation of state-of-the-art GCMs is the five phase of the Coupled Model
Intercomparison Project (CMIP5) models, which provides scientific support for the IPCC ARS.
mpared with CIMP3 models, there are some improvements in CMIP5 models (Bauer et al. 2008;
oss et al. 2010; Taylor et al. 2012). Meanwhile, the studies on the comparison of the performance
evaluation for temperature between CMIP3 and CMIP5 have shown that the CMIP5 models overall
perform well CMIP3 models (Chen and Frauenfeld 2014). To our knowledge, CMIP3 models have
been extensively applied in regional impact studi@g there is few contribution of CMIP5 models to
regional impact studies exist all over the world (galomi.no—bemus et al. 2015; Rashid et al. 2015),
much less in China (Wu et al. 2015). Takinto consideration the adverse effect of the increased
temperature to nature system, the future maximum and minimum temperature (Tmax and Tmin,
hereafter) at the regional scale are the very important climatic variables to the decision-makers for
watershed water resource, regional crop production and so on. The modeling iques, including
hydrological models, water quality models and crop models, are widely used to predict the effect of
future climate change for the purpose of the formulation of the mitigation counter-measures. So the
future prediction of Tmax and Tmin not only could provide the informative suggort for the local
decision-makers, but also is also necessary input values for relevant models. Ee to strucfyal
differences of the GCMs, future projections for climatic variables ained by GCMs datasets vary
from one GCM to another, thus causing different projections when outputs of GCMs are downscaled
at the regional scale (Li et al. 2012; Souvignet and Heinrich 2011). Nowadays, most researcggon
statistical downscaling of climate variables often adopt the outcome from only one model (Chu et al.
2010; Duhan and Pandey 2015; Hassan et al. 2014; Jeong et al. 2012; Kazmi et al. 2015). Avoid
uncertainty linked to choice of the GCMs (Huang et al. 2013), multiple GCMs is recommended to
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igate possible biases of the different GCMs and reduce the uncertainty related to GCMs while
statistical downscaling techniques are applied for regional impact studies.

Hence, this paper aims at projection of future Tmax Tmin by downscaling the atmospheric
variables from the two CMIP5 models using SDSM model under RC and RCI'8.5 scenarios in the
Haihe River Basin during the period 2011-2100. The future change of seasonal and annual Maximum
and Minimum temperature of the basin under all GCMs and scenarios was analyzed. To reduce the
uncertainty linked to GCMs, the ensemble projection is used to ?erate ensemble projections from
multiple GCMs projection to a single projection. Thereafter, the spatial distribution and trend
change of annual me@Q Tmax and Imin are also analyzed after bias correction and ensemble
projections. The result will enhance the decision capacity of local water manager as well as provide
supportive information for decision-maker with more rational estimates of potential impacts of
climate change.

The paper is organized in four main sections. First, the study area and the data used in this
paper will be described. The next section will introduce the methodology adopted in this work. After
a description of the statistical downscaling method, the statistical test and analysis used in the
uncertainty analysis will be presented. Thereafter, results the performance evaluation and
change of temperature under future climate change scenarios will be explored. Eventually, general
concluding remarks will be summarized.

2. Materials and Methods

91 Study area

The Haihe River Basin (HRB), hing between 112-120°E and 35-43° N, covers an area of
approximately 31.8x104 km2, which accounts for 3.3% of the total area of China. The elevation of the
basin varies between 100-3,059m e mean sea level, and the elevation gradient from high to low
is from w east. The basin comprises th@®gountains and plateaus in the north and west
occupying nearly 60% of the 1 area, and the@orth China Plain in the east and south occupying
the remaining 40% (Figure 1). To the north of the catchment is the Yanshan Mountains, to the west is
the Taihang Mountains, to the east is the North China Plain, and to the south is the Yellow River. All
rivers in the basin flow westward and drain into the Bohai Sea.

1OPE 15°E 20°E 123°E

Figure 1. Location map of the Haihe River Basin

The basin is located in the transition zone from arid to humid climate in China. The
predominant climate is the Asian Monsoon climate characterized by cold and dry winters and hot
and rainy summers. The multi-year average rainfall in the basin, 75% of which mainly occurs during
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the period from July to September, ranges from 350 to 750 mm, and shows the trend that gradually
decreases from theast to northwest; the average annual Tmax and Tmin are -4.9 and 15°C,
respectively. The spatial distribution of rainfall is also uneven; there is more rain along the coast due
to strong sea-land wind and on the windward side of the Yan Mountains and Taihang Mountains
due to the orographic uplift.

2.2 Data description

2.2.1 Temperature data

The daily observed maximum temperature (Tmax, hereafter)and minimum temperature (Tmin,
reafter) from 28 meteorological stations over the HRB were obtained from the China
Meteorological Data Sharing Serviceofstem(http:;’lcdc.cma‘gov.cn/)‘ All station records used in this
study have complete series for the entire @Jd (1971-2000) and have passed NMO data quality
control. The details of the station are given in Table 1 and Figure 1.

Table 1. Location of weather station used during study periods

NoStation nameLat.(N)Long.(E)Alt. m amsINoStation nameLat.(N)Long.(E)Alt. m amsl
Anyang 3605 1144 629 15 Raoyang 38.23 115.73 19
Baoding  38.85 115.52 17.2 16 Shijiazhuang 38.03 114.42 81

Beijing 398 11647 313 17 Tangshan 39.67 118.15 278

Chengde 4098 117.95 3859 18 Tanggu  39.05 117.72 4.8
@ong 401 113.33 10672 19  Tianjin 39.08 117.07 2.5
Duolun 4218 11647 12454 20 Weichang 41.93 117.75 842.8

Fengning 4122 116.63 661.2 21 Weixian 39.83 114.57 909.5
Huailai 404 1155 536.8 22 Wautaishan 3895 113.52  2208.3
Huangye 3837 117.35 6.6 23 Xinxiang 3532 113.88 732

10 Huimin 3748 117.53 11.7 24 Xietai 37.07 1145 77.3
11 Leting 3943 118.88 10.5 25  Yushe 37.07 11298 10414
12 Nangong 37.37 115.38 274 26 Yuanping 38.73 112.72 828.2
13 Qinhuangdao 39.85 119.52 24 27 Zhangjiakou 40.78 114.88 724.2

14 Qinglong 404 11895 2275 28 Zunhua 40.2  117.95 549
Lat., long., Alt., and m amsl denote latitude, longitude, altitude and meter mean above sea level,

respectively.

Ri=l e =T e I S I

2.2.2 Predictors

The databases related to predictors include the following two categories: 1) daily predictors
from the National Center for Environmental Prediction (INCEP) re-analysis dataset; 2) daily
predictors frorawo GCMs dataset.

The daily predfgiors, derived from the National Center for Environmental Prediction (NCEP)
re-analysis dataset (http://www.cde.noaa.gov/cde/reanalysis/)at a spatial resolutio .5°, was used
as the observation data for developiggg statistical downscaling model. The NCEP reanalysis dataset
is available from 1948 to the present.gelevant predictors were extracted for a six by six array of grid
cells (2.5°x2.5%) coveri all meteorological weathers over the HRB. The data pert to the
period for 1971-2000 were downloaded for each grid point in Figure 1. The 36 grid points
surrounding the study region are selected as the spatial domain of the predictors to adequately
cover the various circul domains of the predictors co red in this study.

Two chosen GCMs datasets used in the present study were downloaded from the five phase of
the Coupled Model Inter-comparison Project (CMIP5, hereafters). These are MPI-ESM-LP and
CNRM-CM5(hereafters, MPI and CNRM, respectively). Table 1 itemizes the model name,
originating group and atmosphere resolution of selected models. These two models' outputs under
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?CP 2.6 and RCP 8.5 scenarios during the periods of 2011-2010 were used to provide the future
large-scale atmospheric variables for projection future Tmax and Tmin changes.

Table 2. Details of the selected CMIP5 climate models

No Model Originating groups Atmospheric
names resolution
(longitude by
latitude)
1 CNRM-CM5 @ntre National de Recherches Meteorologiques, 256x128
93 Meteo-France, France
2  MPI-ESM-LR Max Planck Institute for Meteorology 192x96
The overlaying %&—scale atmospheric variables from the NCEP and GCM dataset are

extracted as the candidate precm)r. In this study, 24 daily predictors (1971-2000) such as
temperature, geopotential height, zonal and meridional wind speeds at variable pressure level, sea
level pressure and surface temperature were chosen for screening predictors (Table 3).

Table 3. The overlaying candidates predictor from NCEP and GCMs for downscaling models

No. Abbreviation Predictor
1 hur850 850 hPa relative humidity
2 hur700 700 hPa relative humidity
3 hur500 00 hPa relative humidity
4 zg850 850 hPPa geopotential height
5 zg700 700 hPa geopotential height
6 zg500 500 hPa geopotential height
7 zg250 hP’a geopotential height
8 ua850 0 hPa zonal wind speed
9 ua700 700 hPa zonal wind speed
10 ua500 500 hPa zonal wind speed
11 ua250 7) 250 hPa zonal wind speed
12 va850 850 hPa meridional wind speed
13 va700 700 hPa meridional wind speed
14 va500 500 hPa meridional wind speed
15 va250 250 meridional wind speed
16 ta850 Pa air temperature
17 ta700 Pa air temperature
18 ta500 Pa air temperature
19 ta250 250 hPa air temperature
20 tas Surface temperature
21 mslp Sea level pressure
Before the calibration and validation of SDSM model, the predictors should be processed to fit
the need of the SDS e GCMs predictors were first interpolated by means of lineantterpolation

technique to NCEP grid resolution (2.5<2.5) to eliminate spatial differences. This utility of this
interpolation method was checked in glevious downscaling studies(Hu et al. 2013). Subsequently,
the predictors from NCEP and GCMs @lere normalized by utilizing long-term mean and standard
deviations of 1971-2000, respectively. These CMIP’5 model were chosen based on our previous study
related to the performance evaluation of CMIP5 models over the HRB. gy

RCP2.6 (a very-low forcing level) corresponds t@ythe case of radiative forcing peak at
approximately 3.0 W/m? before 2100 and then declines, g:ich is equivalent to approximately 490
ppm COq. Similarly, RCP8.5 (a very high emission scenario) is defined as the case where the
radiation is assumed to exceed 8.5 W/m?, which means the equivalent CO: exceeds 1370 ppm(Moss
et al. 2010; van Vuuren et al. 2011)
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!; Statistical downscaling model descriptions o1
91
The SDSM, which was adopted in this study to establish statistical relationship between

large-scale atmospheric variables and local climatic variables, is a hybrid between a multivariate
linear regression method and a stochastic weather generator(Wilby et al. 2002). TBSDSM software
implements statistical downscaling task through the following main processes: 1) quality control
and data transformation;2) screening of potential downscaling predictor variables; 3) model
calibration; 4) weather ge on; 5) data analysis;6) graphing analysis; 7) scenario generation. The
mathematical details described by Wilby et al. (1999) and Chu et al. (2010).

For SDSM model, there are three kinds of sub-models: monthly, seasonal and annual sub-model.
Monthly sub-model was used in this study considering the lag-1 day autoregression. The default
parameter values including variance inflation and bias correction were used in this study.

24 (arice of predictor
n statistical downscaling, the relevance of relationship between large-scale predictors
(variables from NCEP and G datasets) and the regional predictands (Tmax and Tmin from

weather staglgn in this study) wi 1 determine the model ability to reproduce the historical climate
change and to produce good climate projections over the study area. This is based on the assumption
that the relationships between predictor and predictant under the current conditions still remain
valid under future climate scenarios. This assumption allows the implement of statistical
downscaling for future climate projects. Therefore, the choice of the suitable predictors is of
particular importance in the development of statistical. 1

The basic principle for the choice of the predictor is that the selected predictors must be

obviously correlated with the predictand, dem physically meaning, realistically represented by

M, and multiyear variability captured(Liu et al. 2013; Wilby et al. 1999). Some statistical method
such as partial correlation analysis, step-wise regression, correlation coefficient may be used to
screen most promng predictor variables from the lots of candidate predictors(Jeong et al. 2012). In
this study, the potential predictors were screened through a correlation analysis with climate
variables at each of all 28 weather stations. Furthermore, experience and recommendations from

ilar studies over the HRB and neighbouring regions were also taken into account(Chu et al. 2
The final set of predictors for downscaling of Tmax and Tmin were chosen as follows: air
temperature at 850 hPPa pressure level, Sea level pressure and meridional wind speed at 850 hPa
pressure level and geopotential heigzjat 250 hP’a pressure levels.

There are 4 predictors at 36 NCEP grid point with a dimensionality of 144 for statistical
downscaling gg@dels, multi-dimensionality of the predictors may lead to a computationally
complicated. To reduce the dimensionality of the explanatory dataset, the principal component
analysis (PCA) was then adopted to reduce the dimensionality of the predictors. nwhile, the use
of principal components as input to the downscaling model is helpful to ma e model more stable
and at the same time reduces its computational burden. In this study, the first four principal
components, which accounted for more than 90% of the total variance, were used as input to the
SDSM.

2.5 Bias correction

Due to varying performance of historical %ﬁtic variables such as temperature and
precipitation for different GCMs, the bias correction methods always adopted to make the
distribution of simulated values clmto the historical observed pattern(Fowler et al. 2007). In this
study, the change factor, which is ordinary bias correction method, is adopted to reduce the bias
between downscaled values with predictors and observations(Hassan et al. 2014; Mahmood
and Babel 2013). Tlgm bias between long-term monthly mean of historical observed varigjles and
downscaled values in the baseline period (i.e., 1971-2000 in this study) are used to adjust the future
downscaled daily time series according to their respective months. The specific equation is showed
as follows:
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‘ X{ =X — (Xgey—Xops”
Where X;, X; refer to raP and corrected downscaled variables for future period (i.e., 2011-2010),

Xgey and ?o ps presents the long-term mean monthly variable from the historical observed variable
and downscaling values.

2.6 %el performance

@his study, in addition to visual inspection of the figures of observed and simula lues,
the performance of the model during calibration and validation periods is alsﬂevaluatedﬂ:ﬂam
statistical measures/criteria for goodness-of—fit such as mean, standard error, normalized root mean
square error (NRMSE) and coefficient of determination (R2). The NRMSE and R?are explained as

follows:
(1) NSMSE
30y
N'RMSE=H'='—
1 < —\2
E,Z_:‘(O' -0)
(2) R

2

Where O and P are the modeled and observed values of time series i and n is the sample length.

In general, higher R? indicate better accuracy of model simulation, whereas lower value of NRMSE
show a better fit.
2.7 Trend analysis and Sen slope estimator tests

The Nonparametric Mann-Ken end test, a useful tool for non-parameter assessment of the
significance of monotoni@prends, has been widely used to trend detection analysis for the
hydroclimatic time series (Duhan and ey 2015; Martinez et al. 2012; Xu et al. 2010). It has the
following two advantages. Firstly, it handle non-normalities involving seasorgglity, missing
values, outliers, censoring. Secondly, it has a high asymptotic efficiency(Gan l998)%ddition to
trend detection, it is also necessary to estimate the magnitude of the trend. Thus, Mann-Kendall
trend test and Sen slope estimator test are adopted in this study.

3. Rﬁl]ts and discussion

is section may be divided by subheadings. It should provide a concise and precise
description of the experimental results, their interpretation as well as the experimental conclusions
that can be drawn.

3.1. Calibration and validation

3.1.1. Calibration

The daily downscaled Tmax and Tmin values from the SDSM model over the HRB for
calibration period are compared with corresponding observed values (Figure 2). As shown in Figure
2, for Tmax and Tmin, the change of the simulated value matches consistently well with the
observed values in all years. Especially, the good fit of pea es and valley value are also obtained.
Reasonably high R? values during the calibration period for Tmax and Tm e 0.975 and 0.971
respectively, and this shows satisfactory performance for the SDSM model during the calibration
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period. The NSMSE between observed and simulated values @Tmax and Tmin are 0.157 and 0.168,
respectively.

[3) ——Observaton - NCEP
g s

E 40 Calibration Validation

_E -

2 20

5 10

E o

£ a0

] T T T + T T
s wn 1981 199] 2001
8

%’" - Calibration Validation

£

E o

5o ‘

E -10

5

£ 20

5 T T 4

s 1971 1951 1991 2001

Figure 2. Comparison of observations and simulated Tmax (up)and Tmin(bottom) on daily time
scale

As shown in pable 4, the mean and SD of observed mean monthly Tmax and Tmin during
calibration is 15.94 10.78, 4.43 and 10.89 deg D, respectively. Overall, the mean and SD of
simulated values of mean monthly Tmax and Tmin during calibration period is close to that of
observed values. Th or range for these two statistics measures is below 0.01 deg D. For Tmax, R?

and N E during calibration period are 0.996 and 0.061, respectively. F in, R? and NRMSE
during calibration period are 0.997 and 0.052, respectively. It is noted that, for Tmax and Tmin, the
performance of 1 perform well in the monthly scale than in the daily scale during the

calibration period, which is consistent with(IHassan et al. 2014; Huang et al. 2011).
Table 4. Statistical comparison of observed and downscaled mean monthly Tmax and Tmin
during calibration period(1971-1990)

Mean SD R2 NRMSE
Tmax Observed 15.94 10.78
NCEP-SDSM 15.95 10.78 0.996 0.061
Tmin Observed 4.43 10.89
NCEP-SDSM 4.43 10.88 0.997 0.052

3.1.2 Validation

In the validation process, the model' ability to reproduce historical observations with the
outputs from the NCEP and GCMs dataset are separately analyzed. Figure 2 shows, for Tmax and
Tmin, the pa of the daily simulated values matches consistently well with the observed values
in all years as Wilthe calibration period. Reasonably high R? values during the validation period for
Tmax and Tmin are 6 and 0.977, respectively, and the NSMSE are 0.153 and 0.151, respectively.
The statistical indic the validation period are given in Table 5. It is seen in Table 5 that the mean
and SD of observed mean monthly Tmax and Tmin using NCEP variables during validation period
is 16.60 and 10.60, 5.19 and 10.59 deg D, respectively, and t 2value is 0.996 and 0.997, respectively.
This shows that the simulated values from NCEP dataset are in good agreement with those of the
observed values and that the SDSM model has the ability to reproduce historical observed data
using the Nm’ dataset, which is consistent with the excellent performance of SDSM model for
temperature in other parts of the world(Khan et al. 2006; Souvignet et al. 2010).
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In addition to NCEP dataset, the sets of large-scale atmospheric predictors derived from
MPT and CNRM are also validated during 1991-2000. The simulation error is caused when the model
is driven by the MPI and CNRM. As for CNRM, the mean and SD value for simulated Tmax and
Tmin values are 16.01 and 10.64, 4.55 and 10.8 deg D, respectively. As to MPI, the mean and SD value
for Tmax and Tmin are 16.21 and 10.49, 4.69 and 10.69, respectively. As for MP], the R? and NRMSE
for simulated Tmax and Tmin values are 0.888 and 0.27, 0.898 and 0.29, respectively, which is better
than that of CNRM. Compared with observed values for Tmax and Tmin over the HRB, the
downscaled values from MPI and CNRM with R? of around 0.85 are not as well as that from NCEP,
and the CNRM is a little worse than MPI. This is due to the simulation bias of predictor from the
GCMs dataset compared to the NCEP reanalysis outputs. Meanwhile, it is generally acknowledged
that both GCMs the ves and adopted downscaling techniques determine the downscaling result
of climatic variables at the catchment scale(Rashid et al. 2015; Salathe et al. 2007). For example, the
CNRM model has systematically cold bias over HRB presented by the Sun et al. (2014), and then the
bias transfer to the downscaling climatic variables by downscaling techniques.

mle 5. Statistical comparison of observed and downscaled mean monthly Tmax and Tmin
during calibration period over the HRB(1991-2000)

Mean SD R? NRMSE RE-mean RE-SD
Observed 16.61 10.61
NCEP 16.60 10.60 0.996 0.06 0.01 0.01
Imax MPI 16.21 10.49 0.888 0.27 04 0.12
CNRM 16.01 10.64 0.855 0.37 0.6 -0.03
Observed 5.45 10.67
) NCEP 5.19 10.59 0.997 0.05 0.26 0.08
Tmin MPI 4.69 10.69 0.898 0.29 0.76 0,02
CNRM 4.55 10.8 0.844 0.39 0.9 -0.13
The downsca onthly, seasonal and annual mean Tmax and Tmin, with NCEP, MPI and
CNRM predictors, are compared graphically with observed valued in Figure 3. As shown in Figure 3,
the variation pattern of downscaled monthly mean Tmax and Tmi captured well by SDSM

model with all three datasets (NCEP, MPI and CNRM) over the HRB for the validation period, and
the downscaled result from NCEP variables performs best. Meanwhile, the similar result@gn be
obtained in the patter of seasonal variation of Tmax and Tmin. Compared with the observed values,
it is obvious tl-@le downscaled monthly mean Tmax and Tmin with MPI and CNRM dataset
underestimate in the month of February, December, July and August, this causing that the
downscaled values for Tmax and Tmin are underestimated in winter and summer, especially
distinct in winter. In addition, the simulated values for Tmax with MPI dataset are obviously
overestimated in April and May.
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minimum (bottom) temperature for the period 1991-2000

Figure 4 and 6 show that the values of R? and NRMSE ofily and monthly mean Tmax and
Tmin during the calibration and validation at all weather stations. The average R? between
downscaled and observed daily Tmax and Tmin is are around 94% during the calibration and
validation, and the average NRMSE is around 0.24. Similarly, all statistical measure in month scale at
all weather stations is remarkably better in the daily scale than in the month scale for Tmax and
Tmin. The average R? between downscaled and observed monthly Tmax and Tmin at all stations
exceed 98% during the calibration and validation except the Wutaishan weather station with the

altitude of 2208.3m.
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Figure 4. Box-plot of R? (up) and NRMSE (bottom)of maximum temperature for all weather

stations
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Figure 5. Box-plot of R? (up) and NRMSE (bottom)of minimum temperature for all weather
stations

3.2 Downscaling of future maximum and minimum temperature

Like other impact studies, in this study, the period of 1971-2000 was takermthe baseline period

which present the current climate, and the future period was divided into thi@g thirty-year time
slices, including 2020s(2011-2040), 2050s(2041-2070) and 2080s(2081-2100). The patterns of change
about future Tmax and Tmin scenarios compared to the baseline period were analyzed with MPI
and CNRM predictors under two scenarios(i.e.,RCP2.6 and RCP 8.5).The arithmeticmean was used
to generate ensemble projections from multiple GCMs projection to a single projection for spatial
distribution and trend of future Tmax and Tmin change.

92.1 The future change of seasonal and annual Minimum temperature and Maximum temperature

Compared to the observations during the baseline periogg(1971-2000), the projected changes in
the seasonal and annual n Tmin and Tmax of the basin in the 2020s, 2050s and 2080s with the
MPI and CNRM datasets under the RCP2.6 and RCP8.5 scen are shown in Table 6 and 7.

There is a consistency among all GCMs and scenarios (RCP2.6 and RCP8.5) that annual mean
Tmax and Tmin will increase during the period 2011-2100.The increase under RCP8.5 scenario will
be more obvious than under scenario RCP2.6. In addition, il increases in magnitude of area annual
mean Tmin W“Je higher than that of Tmax. As for Tmin, it is seen that under the RCP2.6 scenario,
the changes of annual mean Tmax and Tmin in future periods (2020s, 2050s and 2080s) with two MPI
and CRNM datasets over the whole basin will be 1.03 1.08 and 0.90 deg D, 0.79, 0.85 and 0.92 deg D,
respectively. Under the RCP8.5 scenario, the changes for Tmax and Tmin will be 2.52, 3.21 and

8deg D, 1.74, 2.22 and 2.75deg D, respectively. As for Tmax, the changes in area annual mean
Tmax and Tmin in future periods (2020s, 2050s and 2080s) under the RCP2.6 scenario will be 0.99
1.03 and 0.87 deg D, 0.75, 0.80 and 0.87 deg D, respective der the RCP8.5 scenario, the changes
will be 2.39, 3.03 and 3.79deg D, 1.62, 2.05 and 2.53deg D, respectively.

The projected changes in the area seasonal mean Tmax and Tmin with MPI and CRNM datasets
under RCP2.6 and RCP8.5 scenarios will be markedly differergffor MPI dataset, the higher increase
in seasonal mean minimum temperature seasons under both RCP 2.6 and RCP 8.5 s rios will be
in spring; the highest increase in seasonal mean Tmax over the basin will be in spring under RCP 2.6
scenario and in autumn under RCP 8.5 scenario. For CNRM dataset, the highest increase for Tmin
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363  willbe winter under RCP@g6 scenario and in autumn under RCP 8.5 scenario; the highest increase
364  for Tmax will be in summer under RCP 2.6 and ¥ 8.5 scenarios.
365 Under RCP 2.6 scenario, the seasonal and annual mean Tmax and Tmin with MPI datasets in
366  different time slices will give the same trend, firstly increasing and then decreasing. ver, the
367  CRNM will show continuously increased trend. Under RCP 8.5 scenario, the change of seasonal and
368  annual mean Tmax and Tmin with MPI and CNRM datasets in different time slices will have the
369  same increased trend.

370 Table 6.Elture changes in Tmin with respect to baseline (1971-2000) under RCP2.6 and RCP8.5
371 scenarios
S . Period MPI CNRM
cenarto - Terto 2020s  2050s  2080s  2020s  2050s 2080s
Winter 0.99 1.10 0.86 1.07 1.24 1.36
Spring 2.05 2.06 2.04 0.64 0.67 0.63
RCP2.6 Summer -0.15 -0.10 -0.35 1.00 0.99 1.14
Autumn 1.25 1.25 1.06 0.45 0.50 0.55
Annual 1.03 1.08 0.90 0.79 0.85 0.92
Winter 2.24 295 3.88 1.81 2.06 2.47
Spring 3.44 4.16 4.65 1.68 2.28 2.87
?CPS.S Summer 1.30 1.92 2.64 1.88 2.27 2.70
Autumn 3.11 3.82 4.78 1.59 2.26 2.95
Annual 2.52 3.21 3.98 1.74 222 2.75
372 Table 7. Future changes in Tmax with respect to the baseline period (1971-2000) under RCP2.6 and
373 RCP8.5 scenarios
B ) MPI CNRM
Seenario [N _%azus 2050s  2080s  2020s  2050s 20805
Winter 0.76 0.86 0.70 0.59 0.75 0.81
Spring 1.51 1.51 1.44 0.63 0.66 0.66
RCP2.6  Summer 0.63 0.67 047 1.31 1.27 1.43
Autumn 1.05 1.06 0.86 047 0.52 0.56
Annual 0.99 1.03 0.87 0.75 0.80 0.87
Winter 1.91 245 3.12 1.26 1.49 1.76
1 Spring 2.50 3.05 344 1.40 1.84 2.26
RCP8.5 Summer 2.25 3.03 3.98 231 2.76 3.27
Autumn 2.88 3.58 4.61 1.49 2.10 2.80
Annual 2.39 3.03 3.79 1.62 2.05 2.53

374  3.3.2 Spatial distribution and trend analysis of future annual mean maximum and minimum

375  tempera

376 The Figure 6 shon the spatial distribution of magnitude of annual mean Tmax and Tmin for all
377 28 weather stations (compared to baseline period) in 2020s, 2050s, and 2080s under RCP2.6 and
378 RCP8.@gcenarios. For all weather stations, both increase in magnitude of annual mean Tmax and
379  Tmin thder RCP8.5 will be higher than that under RCP2.6. It is obvious that the increase in
380  magnitude for all weather stations in the mountains and near the coastline will be obvious. For
381  example, the maximum itude of Tmax and Tmin is Wutaishan station and Fengtai station,
382 respectively. Compared to RCP2.6 scenario, the spatial distribution characteristics of the magnitude
383  of Tmax and Tmin under RCI8.5 scenario will be more remarkable.

384
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Fi 6. %ﬁal distribution of the change of annual mean Tmax (left) and Tmin(Bauer et
al.)compared to baseline period in 2020s, 2050s and 2080s under RCP2.6 and RCP8.5 scenarios

The trend and magnitude of annual mean Tmax and Tmin of the basin using @K trend test and
Sen slope estimator test in the 2020s, 2050s and 2070s and during the periods 2011-2100 are shown in
Table 8. The significantly increasing trends of Tmax and Tmin under RCP 8.5 scenario were obtained
in all four time span (i.e., 2020s,2050s 2070s and 2011-2010). Overall, the magnitude of annual mean
Tmax and Tmin will be 0.37 and 0.39 per decade, respectively. As to RCP2.6 scenario, the annual
mean Tmax and Tmin of basin will increase in 2020s with magnitude of 0.26 and 0.27 deg D per
decade, respectively, and then decrease in 2050s with a magnitude of -0.05 and -0.14deg D per
decade and 2070swith magnitude of -0.01 and -0.02 deg D per decade, respectively. The magnitude
of annual Tmax and Tmin will be the same,0.01 and 0.01 per decade, respectively.

8. Annual trend and magnitude of?max and Tmin in the 2020s,2050s 2070s and 2011-2010
under RCP2.6 and RCP8.5 scenarios

Period Scenario i Tonin
Y4 Slope (deg D/year) Y4 Slope (deg D/year)

2020s P2.6 3.50 0.026 3.10 0.027
RCP8.5 3.39 0.023 3.03 0.026
2050s RCP2.6 -0.82 -0.005 -2.43 -0.014
RCP8.5 5.74 0.038 5.60 0.042
2070s RCP2.6 -0.32 -0.001 -0.46 -0.002
RCP8.5 4.35 0.039 417 0.044
2011-2100  RCP2:6 1.05 0.001 0.75 0.001
RCP8.5 11.83 0.037 11.65 0.039

4. Conclusions

A statistical downscaling model (SDSM) was constructed to generate future maximum and
minimum temperature projection from the two CEPS models (MPI-ESM-LR and CNRM-CMS5) to
investigate possible future climate change under RCP2.6 and §&¥8:5 scenarios during the period
2011-2100 gyer the Haihe River Basin, China. Firstly, the SDSM model was calibrated and validated
using the Eath NCEP reanalysis data and ground observations (daily maxfggim and minimum
temperature) during the period 1971-2010. The performance of SDSM model during the calibration
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and validation period was checked by visual inspection and statistical measures, including mean,
standard @er determination of coefficient and normalized root mean square error. The GCMs
predictors were downscaled to historical temperature to assess how the models perform. When bias

tween downscaled values with GCMs predictors and observations was ob@gved, change factor
bias correction method was employed in this study. The future change of seasonal and annual
Maximum and Minimum temperature of the basin under all GCMs and scenarios was analyzed. To
reduce the uncertainty linked to GCMs, the arithmeticmean is use generate ensemble projections
from multiple GCMs projection to a single projection. Thereafter, the spatial distribution and trend
change of annual mean maximum and minimum temperature were also analyzed after bias
correction and ensemble projections.

The major results in this study are as follows:

1.The variation pattern of observed daily and monthly mean Tmax and Tminof the basin are
represented well by SDSM model with all three datasets (NCEP, MPI and CNRM) over the HRB, and
e downscaled result from NCEP variables performs best. Compared with the observed values, the
bias was observed using historical predictors from two CMIP5 models and the performance of
CNRM is a little worse than MPI. The downscaled monthly mean Tmax and Tmin with MPI and
CNRM dataset underestimate in February, December, July and August. In addition, the simulated
values for Tmax with MPI dataset are obviously overestimated in April and May.

The downscaled projection of area annual mean Tmax and Tminin future period under both
climate change scenarios (RCP2.6 and RCI’8.5) over the HRB indicates an increase for all GCMs and
scenarios. The increases in magnitude of area annual mean Tmin will be higher than that of Tmax.
The projected changes in the area seasonal mean Tmax and Tmin with MPI and CRNM datasets
under RCP2.6 and RCP8.5 scenarios will be markedly different. 1

3.Theincrease in magnitude of annual mean Tmax and Tmin for all weather stations under RCP8.5
are higher than under RCP2.6, and the weather stations in the mountains and near the coastline will
have higher increase in magnitude of annual mean Tmax and Tmin. The significantly increasing
trends of Tmax and Tmin under RCP 8.5 scenario are obtained in all four time span (i.e., 2020s,2050s
2070s and 2011-2010). Overall, the magnitude of annual mean Tmax and Tmin will be 0.37 and 0.39
per decaa, respectively. Under RCP2.6 scenario, the annual mean Tmax and Tmin of the basin will
increase in 2020s, and then decrease in 2050s and 2070s. The magnitude of annual Tmax and Tmin
will be tl-@ne,().[]l and 0.01 per decade, respectively.

Future changes in maximum and mi m temperature will eventually affect the regional water
resources and growth. The future water resources and crop production need be evaluated and
to established adaptation and mitigation of strategy for future climate change. Meargghile, the result
is expected that the understanding of regional climate change from CMIP5 models will enhance the
decision capacity of local water manager as well as provide supportive information for
decision-maker with more rational estimates of potential impacts of climate change in the region.
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gppendix A

The appendix is an optional section that can contain details and data supplemental to the main
text. For example, explanations of experimental details that would disrupt the flow of the main text,
but nonetheless remain crucial to understanding and reproducing the research shown; figures of
replicates for experiments of which representative data is shown in the main text can be added here
if brief, or as Supplementary data. Mathematical proofs of results not central to the paper can be
added as an appendix.
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