Supporting information

Solubility and Diffusivity of Oxygen in Ionic Liquids

Tangqiumei Song ^a, Oscar Morales-Collazo^b, and Joan F. Brennecke ^{b,*}

^aDepartment of Chemical and Biomolecular Engineering, University of Notre Dame, Notre

Dame, Indiana, 46556, USA

^bMcKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas

78712, USA

*Tel: (512) 471-5092. Fax: (512) 471-1760. E-mail: jfb@che.utexas.edu.

	Density, ρ (g/cm ³)									
T (K)	[PP ₁₄]	[Pyrro ₁₄]	[N ₁₂₂₄]	[MTBD]	[MTBD]	[TMG]	[MTBD]	[bmim]		
	[TFSI]	[TFSI]	[TFSI]	[TFSI]	[beti]	[beti]	[TSE]	[TSE]		
283				1.527		1.588	1.503	1.430		
293	1.384	1.398	1.362	1.518	1.587	1.577	1.493	1.420		
295	1.382	1.396	1.361	1.516	1.584	1.575	1.491	1.418		
298	1.380	1.394	1.358	1.513	1.582	1.571	1.488	1.415		
303	1.375	1.389	1.354	1.508	1.577	1.566	1.483	1.410		
313	1.367	1.380	1.345	1.498	1.566	1.555	1.472	1.399		
323	1.358	1.372	1.336	1.489	1.556	1.544	1.462	1.389		
333	1.350	1.363	1.328	1.479	1.545	1.533	1.452	1.379		
343	1.341	1.355	1.319	1.470	1.535	1.522	1.443	1.370		
353	1.333	1.346	1.311	1.461	1.525	1.512	1.433	1.360		

Table S1. Densities of ILs investigated in this work at pressure p=0.1 MPa^a.

^a Standard uncertainties are u(T) = 0.1 K, $u_r(\rho) = 0.002$.

	Viscosity, η (mPa•s)										
T (K)	[PP ₁₄]	[Pyrro ₁₄]	[N ₁₂₂₄]	[MTBD]	[MTBD]	[TMG]	[MTBD]	[bmim]			
	[TFSI]	[TFSI]	[TFSI]	[TFSI]	[beti]	[beti]	[TSE]	[TSE]			
283	512	159	306	297	1342		348	112			
293	240	90	156	151	538	341	169	66			
295				133	463	295	149	60			
298	173	70	114	112	363	240	125	52			
303	131	57	89	89	264	174	97	43			
313	78	39	57	57	144	96	61	30			
323	51	28	39	39	87	59	42	23			
333	37	22	29	30	58	43	31	19			
343	27	17	23	24	41	30	25	16			
353	22	14	18	19	30	20	20	15			

Table S2. Viscosities of ILs investigated in this work at pressure p=0.1 MPa^a

^a Standard uncertainties are u(T) = 0.1 K, $u(\eta)_r = 0.05$.

[hmim]	[TFSI]	[hmpy]	[TFSI]	[P2228][TFSI]		[PP ₁₃]	[TFSI]	
Pressure (MPa)	O ₂ mole fraction	Pressure (MPa)	O ₂ mole fraction	Pressure (MPa)	O ₂ mole fraction	Pressure (MPa)	O ₂ mole fraction	
0	0	0	0	0	0	0	0	
1.01	0.036	1.00	0.031	1.00	0.034	1.01	0.022	
1.99	0.069	2.99	0.091	1.49	0.048	2.02	0.045	
3.01	0.103	4.98	0.142	2.03	0.069	3.01	0.066	
3.99	0.130	6.97	0.189	3.00	0.096	4.00	0.090	
4.98	0.158	6.06	0.167	4.00	0.124	5.01	0.110	
5.99	0.184	4.03	0.118	4.49	0.132	6.01	0.127	
6.97	0.205					7.00	0.145	
[PP ₁₄]	[TFSI]	[bthiol]	[bthiol][TFSI]		[bmim][TSE]		[MTBD][TSE]	
Pressure (MPa)	O ₂ mole fraction	Pressure (MPa)	O ₂ mole fraction	Pressure (MPa)	O ₂ mole fraction	Pressure (MPa)	O ₂ mole fraction	
0	0	0	0	0	0	0	0	
1.03	0.032	0.50	0.012	1.00	0.030	1.01	0.031	
2.00	0.055	1.50	0.037	2.01	0.062	2.00	0.056	
3.00	0.080	2.49	0.057	3.00	0.090	3.00	0.084	
3.99	0.101	5.49	0.115	3.98	0.113	3.99	0.105	
5.00	0.124	6.51	0.134	4.99	0.137	4.99	0.130	
5.99	0.142	6.03	0.127	5.99	0.159	7.97	0.187	
7.04	0.162			7.96	0.196	7.04	0.172	
8.11	0.180			7.06	0.179	6.03	0.154	

Table S3. Solubility of O₂ in [hmim][TFSI], [hmpy][TFSI], [P₂₂₂₈][TFSI], [PP₁₃][TFSI], [PP₁₄][TFSI], [bthiol][TFSI], [bmim][TSE], and [MTBD][TSE] at 293 K^a

^a Standard uncertainties are u(T) = 0.1 K, $u(x_{O2}) = 0.001$ mole fraction, u(p) = 0.01 MPa

293	293 K		3 K	333 K		
Pressure	O ₂ mole	Pressure	O ₂ mole	Pressure	O ₂ mole	
(MPa)	fraction	(MPa)	fraction	(MPa)	fraction	
2.52	0.083	1.05	0.025	1.07	0.025	
5.51	0.164	3.00	0.075	3.00	0.057	
8.00	0.215	4.99	0.113	4.99	0.100	
7.02	0.195					
6.02	0.171					
4.51	0.135					
3.52	0.106					

Table S4. Solubility of O2 in [MTBD][beti] at 293 K, 313 K, and 333 K^a

^a Standard uncertainties are u(T) = 0.1 K, $u(x_{O2}) = 0.001$ mole fraction, u(p) = 0.01 MPa

Table S5. Solubility of O2 in [MTBD][TFSI] at 293 K, 313 K, and 333 K^a

293 K		31.	3 K	333 K		
Pressure	O ₂ mole	Pressure	O ₂ mole	Pressure	O ₂ mole	
(MPa)	fraction	(MPa)	fraction	(MPa)	fraction	
1.02	0.029	1.02	0.019	1.01	0.013	
3.01	0.074	3.00	0.054	3.02	0.046	
4.98	0.116					

^a Standard uncertainties are u(T) = 0.1 K, $u(x_{O2}) = 0.001$ mole fraction, u(p) = 0.01 MPa

Table S6. Solubility of O2 in [TMG][beti] at 293 K, 313 K, and 333 K^a

293 K		31.	3 K	333 K		
Pressure (MPa)	O ₂ mole fraction	Pressure (MPa)	O ₂ mole fraction	Pressure (MPa)	O ₂ mole fraction	
0.11	0.011	1.04	0.028	3.03	0.073	
1.08	0.048	3.01	0.077	5.01	0.119	
3.02	0.113	4.98	0.129	5.97	0.140	
4.99	0.171	5.98	0.154	4.09	0.101	
7.98	0.243			2.01	0.047	
6.54	0.214			0.99	0.024	
4.01	0.144					

^a Standard uncertainties are u(T) = 0.1 K, $u(x_{O2}) = 0.001$ mole fraction, u(p) = 0.01 MPa.

293	293 K		зк	333 K		
	\mathbf{R}	D				
Pressure	O_2 mole	Pressure	O_2 mole	Pressure	O_2 mole	
(MPa)	fraction	(MPa)	fraction	(MPa)	fraction	
1.01	0.034	1.00	0.022	1.26	0.021	
2.00	0.062	2.00	0.045	2.00	0.034	
3.00	0.088	3.00	0.068	3.01	0.057	
4.01	0.117	6.01	0.138	7.00	0.141	
4.99	0.138	7.02	0.159	6.01	0.124	
5.99	0.159	5.01	0.116	4.99	0.102	
7.98	0.203	4.02	0.094	3.99	0.080	
7.02	0.183			3.01	0.058	

Table S7. Solubility of O_2 in [N₁₂₂₄][TFSI] at 293 K, 313 K, and 333 K^a

^a Standard uncertainties are u(T) = 0.1 K, $u(x_{O2}) = 0.001$ mole fraction, u(p) = 0.01 MPa.

Table S8. Solubility of O_2 in [DEME][TFSI] at 293 K, 313 K, and 333 K^a

293	3 K	313	3 K	333 K		
Pressure (MPa)	O ₂ mole fraction	Pressure (MPa)	O ₂ mole fraction	Pressure (MPa)	O ₂ mole fraction	
1.02	0.026	1.00	0.023	1.02	0.014	
2.01	0.050	2.00	0.045	2.01	0.031	
3.01	0.074	3.01	0.064	4.01	0.070	
4.01	0.097	3.99	0.085	2.96	0.051	
5.01	0.117	4.99	0.103	9.32	0.155	
6.01	0.137	7.02	0.144	6.01	0.103	
7.00	0.157					
8.00	0.175					

^a Standard uncertainties are u(T) = 0.1 K, $u(x_{O2}) = 0.001$ mole fraction, u(p) = 0.01 MPa.

293	293 K		3 K	333 K		
Pressure (MPa)	O ₂ mole fraction	Pressure (MPa)	O ₂ mole fraction	Pressure (MPa)	O ₂ mole fraction	
2.32	0.048	1.02	0.018	1.00	0.026	
3.01	0.061	3.01	0.058	3.11	0.057	
4.03	0.079	5.00	0.099	4.99	0.087	
5.01	0.097					
6.00	0.110					

Table S9. Solubility of O_2 in [PP_{12O1}][TFSI] at 293 K, 313 K, and 333 K^a

^a Standard uncertainties are u(T) = 0.1 K, $u(x_{O2}) = 0.001$ mole fraction, u(p) = 0.01 MPa.

Table S10. Solubility of O2 in [Pyrro1201] [TFSI] at 293 K, 313 K, and 333 K^a

293	3 K	31.	3 K	333 K		
Pressure	O ₂ mole	Pressure O ₂ mole		Pressure	O ₂ mole	
(MPa)	fraction	(MPa)	fraction	(MPa)	fraction	
1.02	0.027	1.00	0.021	1.04	0.016	
2.06	0.049	2.98	0.063	3.33	0.060	
3.01	0.070	4.99	0.105	4.97	0.088	
4.02	0.094					
5.00	0.111					
5.99	0.127					
7.00	0.146					
8.01	0.164					

^a Standard uncertainties are u(T) = 0.1 K, $u(x_{O2}) = 0.001$ mole fraction, u(p) = 0.01 MPa.

293	3 K	313	3 K	333 K		
Pressure	O ₂ mole	Pressure	O ₂ mole	Pressure	O ₂ mole	
(MPa)	fraction	(MPa)	fraction	(MPa)	fraction	
1.00	0.037	1.02	0.026	1.03	0.025	
1.99	0.068	3.00	0.072	3.02	0.060	
2.99	0.099	5.00	0.102	4.98	0.089	
3.99	0.127	5.98	0.116	3.99	0.072	
4.99	0.154	3.99	0.086	1.98	0.047	
5.98	0.176	1.98	0.049			
7.98	0.221					
7.03	0.200					

Table S11. Solubility of O2 in [Pyrro14][TFSI] at 293 K, 313 K, and 333 K^a

^a Standard uncertainties are u(T) = 0.1 K, $u(x_{O2}) = 0.001$ mole fraction, u(p) = 0.01 MPa.

Table S12.	Diffusion	coefficients	of O_2 a	t 313 K	K and 333	K, 3	MPa	and 5	MPa
------------	-----------	--------------	------------	---------	-----------	------	-----	-------	-----

Ionic Liquids	At 313 K				At 333 K			
	Diffusion coefficients of O ₂ , $D_{O2} \ge 10^6 / \text{ cm}^2 \text{ s}^{-1}$				Diffusion coefficients of O ₂ , $D_{O2} \ge 10^6 / \text{ cm}^2 \text{ s}^{-1}$			
	3 MPa		5 MPa		3 MPa		5 MPa	
[Pyrro1201][TFSI]	4.9	± 0.3	6.0	± 0.5	6.0	± 2.0	8.0	± 2.0
[Pyrro14][TFSI]	4.4	± 0.3	4.6	± 0.2	6.4	± 0.2	6.7	± 0.7
[DEME][TFSI]	6.0	± 1.0	-	-	7.0	± 1.0	-	-
[MTBD][TFSI]	4.1	± 0.3	-	-	3.0	± 2.0	-	-
[N ₁₂₂₄][TFSI]	4.4	± 0.2	4.6	± 0.2	6.5	± 0.4	6.5	± 0.6
[PP ₁₂₀₁][TFSI]	3.5	± 0.6	2.5	± 1.0	4.3	± 0.7	5.4	± 1.0
[TMG][beti]	3.0	± 0.2	3.2	± 0.2	5.3	± 0.2	-	-
[MTBD][beti]	2.0	± 1.0	2.0	± 0.5	-	-	-	-

^a Standard uncertainties are u(T) = 0.1 K, u(p) = 0.01 MPa, and the standard uncertainties in the diffusion coefficients are listed in the table.

Synthesis Methods

Triethyl(octyl)phosphonium bromide, [P2228][Br]

Under inert atmosphere, in a flame dried round bottom flask (500 mL) a solution of triethylphosphine (25 g, 212 mmol) in anhydrous toluene (200 mL) was treated with 1-bromooctane (43 g, 222 mmol) via cannula. The reaction was stirred at room temperature for 20 minutes and 343 K for 5 h. After completion the reaction was concentrated, dissolved in acetonitrile and recrystallized from acetonitrile/ethyl acetate (1:2) to obtain triethyl(octyl) phosphonium bromide ([P₂₂₂₈][Br]) as a white solid. ¹H NMR (500 MHz, DMSO-*d*₆) δ 2.30 (m, 8H), 1.48 (m, 2H), 1.37 (m, 2H), 1.26 (m, 8H), 1.12 (dt, *J* = 18.0, 7.7 Hz, 9H), 0.84 (t, *J* = 7.6 Hz, 3H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 31.70, 30.71, 30.59, 28.92, 28.72, 22.53, 21.08, 21.05, 17.28, 16.90, 14.41, 11.40, 11.02, 5.83, 5.79.

Triethyl(octyl)phosphonium bis(trifluoromethanesulfonyl)imide, [P2228][TFSI]

In a round bottom flask (500 mL) a solution of triethyl(octyl)phosphonium bromide ([P₂₂₂₈][Br]) (10.00)42.00 mmol) in (200)mL) with lithium water was treated g, bis(trifluoromethanesulfonyl)imide (12.66 g, 44.10 mmol) and stirred for 8 h. The mixture was washed with water (3x) and extracted with dichloromethane until no residual halide precipitation was observed by AgNO₃ test. ¹H NMR (500 MHz, DMSO-*d*₆) δ 2.21 (m, 8H),1.48 (m, 2H), 1.40 (quint, J = 6.6 Hz, 2H), 1.28 (m, 8H), 1.13 (dt, J = 18.0, 7.7 Hz, 9H), 0.87 (t, J = 6.7 Hz, 3H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 123.79, 121.23, 118.67, 116.11, 31.67, 30.66, 30.54, 28.86, 28.67, 22.50, 20.95, 20.91, 17.05, 16.67, 14.35, 11.17, 10.78, 5.60, 5.56. ¹⁹F NMR (471 MHz, DMSO-*d*₆) δ-78.77

1-Hexyl-3-methyl-imidazolium bis(trifluoromethanesulfonyl)imide, [hmim][TFSI]

In a round bottom flask (500 mL) a solution of 1-hexyl-3-methyl-imidazolium bromide ([hmim][Br]) (10.00 g, 40.50 mmol) in water (200 mL) was treated with lithium bis(trifluoromethanesulfonyl)imide (11.61 g, 40.50 mmol) and stirred for 8 h. The mixture was washed with water (3x) and extracted with dichloromethane until no residual halide precipitation was observed by AgNO₃ test. ¹H NMR (500 MHz, DMSO-*d*₆) δ 9.10 (s, 1H), 7.75 (dd, *J* = 1.8 Hz, 1H), 7.68 (dd, *J* = 1.8 Hz, 1H), 4.16 (t, *J* = 7.2 Hz, 2H), 3.86 (s, 3H), 1.79 (p, *J* = 7.4 Hz, 2H), 1.28 (m, 6H), 0.87 (t, *J* = 7.6 Hz, 3H).¹³C NMR (126 MHz, DMSO-*d*₆) δ 136.93, 124.01, 123.78, 122.66, 121.22, 118.66, 116.11, 49.25, 36.11, 30.97, 29.78, 25.57, 22.28, 14.11.¹⁹F NMR (471 MHz, DMSO-*d*₆) δ -78.89.

1-Hexyl-3-methylpyridinium bromide, [hmpy][Br]

Under inert atmosphere, in a flame dried round bottom flask (250 mL) a solution of 3- picoline (12.00 g, 129.0 mmol) in anhydrous toluene (60 mL) was treated with 1-bromohexane (22.33 g, 135.0 mmol) via cannula. The reaction was stirred at room temperature for 20 minutes and 343 K for 5 h. After completion the reaction was concentrated, dissolved in acetonitrile and recrystallized from acetonitrile/ethyl acetate (1:2) to obtain 1-hexyl-3-methylpyrrolidinium bromide ([hmpy][Br]) as a white solid. ¹H NMR (500 MHz, DMSO-*d*₆) δ 9.21 (s, 1H), 9.07 (d, *J* = 6.0 Hz, 1H), 8.48 (d, *J* = 7.9 Hz, 1H), 8.08 (dd, *J* = 8.0, 6.0 Hz, 1H), 4.63 (t, *J* = 7.5 Hz, 2H), 2.50 (s, 3H), 1.92 (quint, *J* = 7.4 Hz, 2H), 1.26 (d, *J* = 4.3 Hz, 6H), 0.83 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 146.21, 144.77, 142.45, 139.11, 127.76, 60.83, 31.11, 31.02, 25.50, 22.30, 18.30, 14.28.

1-Hexyl-3-methylpyridinium bis(trifluoromethanesulfonyl)imide, [hmpy][TFSI]

In a round bottom flask (500 mL) a solution of 1-hexyl-3-methylpyridinium bromide ([hmpy][Br]) (10.00)38.70 in (200)mL) lithium mmol) water was treated with g, bis(trifluoromethanesulfonyl)imide (11.12 g, 38.70 mmol) and stirred for 8 h. The mixture was washed with water (3x) and extracted with dichloromethane until no residual halide precipitation was observed by AgNO₃ test. ¹H NMR (500 MHz, DMSO- d_6) δ 8.99 (s, 1H), 8.91 (d, J = 6.0 Hz, 1H), 8.44 (d, J = 8.0 Hz, 1H), 8.04 (t, J = 6.1 Hz, 1H), 4.54 (t, J = 7.5 Hz, 2H), 1.92 (quint, J = 7.4Hz, 2H), 1.29 (m, 6H), 0.86 (t, J = 6.3 Hz, 3H). ¹³C NMR (126 MHz, DMSO- d_6) δ 146.15, 144.64, 142.38, 139.28, 127.76, 123.78, 121.22, 118.66, 116.10, 61.15, 31.04, 30.98, 25.51, 22.25, 18.24, 14.16. ¹⁹F NMR (471 MHz, DMSO-*d*₆) δ -78.81.

N-Butyl-N-methylpyrrolidinium bromide, [Pyrro14][Br]

Under inert atmosphere, in a flame dried round bottom flask (250 mL) a solution of 1methylpyrrolidine (12.00 g, 141.0 mmol) in anhydrous toluene (70 mL) was treated with 1bromobutane (20.28 g, 148.0 mmol) via cannula. The reaction was stirred at room temperature for 20 minutes and 343 K for 5 h. After completion the reaction was concentrated, dissolved in acetonitrile and recrystallized from acetonitrile/ethyl acetate (1:2) to obtain N-butyl-Nmethylpyrrolidinium bromide ([Pyrro₁₄][Br]) as a white solid. ¹H NMR (500 MHz, DMSO-*d*₆) δ 3.52 (m, 4H), 3.41 (m, 2H), 3.03 (s, 3H), 2.07 (q, *J* = 5.6, 4.8 Hz, 4H), 1.67 (ddt, *J* = 12.1, 8.0, 6.1 Hz, 2H), 1.29 (h, *J* = 7.4 Hz, 2H), 0.91 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 63.74, 63.06, 47.91, 25.44, 21.51, 19.76, 14.00.

N-Butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide, [Pyrro14][TFSI]

In a round bottom flask (500 mL) a solution of N-butyl-N-methylpyrrolidinium bromide ([Pyrro₁₄][Br]) (10.00 g, 45.00 mmol) in water (200 mL) was treated with lithium bis(trifluoromethanesulfonyl)imide (13.57 g, 47.30 mmol) and stirred for 8 h. The mixture was washed with water (3x) and extracted with dichloromethane until no residual halide precipitation was observed by AgNO₃ test. ¹H NMR (500 MHz, DMSO-*d*₆) δ 3.44 (m, 4H), 3.29 (m, 2H), 2.98 (s, 3H), 2.09 (p, *J* = 3.6 Hz, 4H), 1.68 (quint, *J* = 8.1 Hz, 2H), 1.33 (h, *J* = 7.4 Hz, 2H), 0.94 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 123.78, 121.23, 118.67, 116.11, 63.90, 63.87, 63.85, 63.42, 63.40, 63.38, 47.97, 47.94, 47.90, 25.37, 21.51, 19.74, 13.84. ¹⁹F NMR (471 MHz, DMSO-*d*₆) δ -78.79

N-Butyl-N-methylpiperidinium bromide, [PP14][Br]

Under inert atmosphere, in a flame dried round bottom flask (500 mL) a solution of 1methylpiperidine (18.00 g, 181.0 mmol) in anhydrous toluene (150 mL) was treated with 1bromobutane (27.40 g, 200.0 mmol) via cannula. The reaction was stirred at room temperature for 20 minutes and 343 K for 5 h. After completion the reaction was concentrated, dissolved in acetonitrile and recrystallized from acetonitrile/ethyl acetate (1:2) to obtain N-butyl-Nmethylpiperidinium bromide ([PP₁₄][Br]) as a white solid. ¹H NMR (600 MHz, Chloroform-*d*) δ 3.39 (m, 6H), 3.06 (s, 3H), 1.79 (m, 4H), 1.65 (dq, *J* = 12.0, 7.8 Hz, 2H), 1.54 (m, 2H), 1.32 (h, *J* = 7.4 Hz, 2H), 0.94 (t, *J* = 7.4 Hz, 3H).

N-Butyl-N-methylpiperidinium bis(trifluoromethanesulfonyl)imide, [PP14][TFSI]

In a round bottom flask (500 mL) a solution of N-butyl-N-methylpiperidinium bromide ([PP₁₄][Br]) (10.00 g, 42.30 mmol) in water (200 mL) was treated with lithium bis(trifluoromethanesulfonyl)imide (12.28 g, 42.80 mmol) and stirred for 8 h. The mixture was washed with water (3x) and extracted with dichloromethane until no residual halide precipitation was observed by AgNO₃ test. ¹H NMR (500 MHz, DMSO-*d*₆) δ 3.30 (m, 6H), 2.99 (s, 3H), 1.79 (bs, 4H), 1.66 (quint, 7.3 Hz, 2H), 1.56 (m, 2H), 1.34 (h, *J* = 7.4 Hz, 2H), 0.96 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 123.79, 121.23, 118.67, 116.11, 60.48, 60.46, 60.44, 23.40, 21.12, 19.70, 19.68, 13.82. ¹⁹F NMR (471 MHz, DMSO-*d*₆) δ -78.84.

1-(2-methoxyethyl)-1-methylpyrrolidinium bromide, [Pyrro1201][Br]

Under inert atmosphere, in a flame dried round bottom flask (500 mL) a solution of Nmethylpyrrolidine (15.00 g, 176.0 mmol) in anhydrous toluene (150 mL) was treated with 2bromoethyl methyl ether (23.26 g, 167.0 mmol) via cannula. The reaction was stirred at room temperature for 20 minutes and 343 K for 5 h. After completion the reaction was concentrated, dissolved in acetonitrile and recrystallized from acetonitrile/ethyl acetate (1:2) to obtain 1-(2methoxyethyl)-1-methylpyrrolidinium bromide ([Pyrro₁₂₀₁][Br]) as a white solid.

1-(2-methoxyethyl)-1-methylpyrrolidiniumbis(trifluoromethanesulfonyl)imide,[Pyrro1201][TFSI]

In a round bottom flask (500 mL) a solution of 1-(2-methoxyethyl)-1-methylpyrrolidinium bromide ([Pyrro₁₂₀₁][Br]) (10.00 g, 44.60 mmol) in water (200 mL) was treated with lithium bis(trifluoromethanesulfonyl)imide (12.93 g, 45.10 mmol) and stirred for 8 h. The mixture was washed with water (3x) and extracted with dichloromethane until no residual halide precipitation was observed by AgNO₃ test. ¹H NMR (500 MHz, DMSO-d6) δ 3.76 (m, 2H), 3.57 (m, 2H), 3.51 (m, 4H), 3.32 (s, 3H), 3.04 (s, 3H), 2.11 (quint, J = 3.4 Hz, 4H). 13C NMR (126 MHz, DMSO-d6)

δ 123.78, 121.22, 118.67, 116.11, 66.40, 64.69, 64.67, 64.65, 62.60, 62.58, 62.55, 58.41, 48.47, 48.44, 48.41, 21.24.19F NMR (471 MHz, DMSO-d6) δ -78.99.

1-(2-methoxyethyl)-1-methylpiperidinium bromide, [PP₁₂₀₁][Br]

Under inert atmosphere, in a flame dried round bottom flask (500 mL) a solution of 1methylpiperidine (15.00 g, 181.0 mmol) in anhydrous toluene (150 mL) was treated with 2bromoethyl methyl ether (19.97 g, 144.0 mmol) via cannula. The reaction was stirred at room temperature for 20 minutes and 343 K for 5 h. After completion the reaction was concentrated, dissolved in acetonitrile and recrystallized from acetonitrile/ethyl acetate (1:2) to obtain 1-(2methoxyethyl)-1-methylpiperidinium bromide ([PP₁₂₀₁][Br]) as a white solid. ¹H NMR (400 MHz, DMSO-d6) δ 3.73 (t, J = 4.7 Hz, 2H), 3.57 (m, 2H), 3.335 (m, 4H), 3.26 (s, 3H), 3.05 (s, 3H), 1.75 (h, J = 5.9 Hz, 4H), 1.50 (m, 2H).

1-(2-methoxyethyl)-1-methylpiperidinium bis(trifluoromethanesulfonyl)imide,

[PP₁₂₀₁][TFSI]

In a round bottom flask (500 mL) a solution of 1-(2-methoxyethyl)-1-methylpiperidinium bromide ([PP₁₂₀₁][Br]) (10.00 g, 42.00 mmol) in water (200 mL) was treated with lithium bis(trifluoromethanesulfonyl)imide (12.66 g, 44.10 mmol) and stirred for 8 h. The mixture was washed with water (3x) and extracted with dichloromethane until no residual halide precipitation was observed by AgNO₃ test. ¹H NMR (500 MHz, DMSO-d6) δ 3.76 (m, 2H), 3.56 (m, 2H), 3.36 (m, 4H), 3.30 (s, 3H), 3.06 (s, 3H), 1.79 (quint, J = 6.0 Hz, 4H), 1.54 (m, 2H). 13C NMR (126 MHz, DMSO-d6) δ 123.78, 121.23, 118.67, 116.11, 65.47, 62.17, 61.30, 58.53, 48.40, 21.00, 19.74. 19F NMR (471 MHz, DMSO-d6) δ -78.79.

1-Butyltetrahydrothiophenium iodide, [bthiol][I]

Under inert atmosphere, in a flame dried pressure tube round (100 mL) tetrahydrothiophene (12.00 g, 136.0 mmol) was treated with 1-iodobutane (26.30 g, 143.0 mmol) via cannula. The reaction was stirred at room temperature for 20 minutes and 343 K for 5 h. After completion the reaction was concentrated, dissolved in acetonitrile and recrystallized from acetonitrile/ethyl acetate (1:2) to obtain 1-butyltetrahydrothiophenium iodide ([bthiol][I]) as a white solid.¹H NMR (500 MHz, DMSO-*d*₆) δ 3.51 (m, 2H), 3.41 (m, 2H), 3.21 (t, *J* = 7.8 Hz, 2H), 2.22 (m, 2H), 2.15 (m, 2H), 1.68 (quint, *J* = 7.5 Hz, 2H), 1.42 (h, *J* = 7.4 Hz, 2H), 0.93 (t, *J* = 7.4 Hz, 3H).¹³C NMR (126 MHz, DMSO-*d*₆) δ 43.26, 41.32, 28.56, 26.93, 21.46, 13.80.

1-Butyltetrahydrothiophenium bis(trifluoromethanesulfonyl)imide, [bthiol][TFSI]

In a round bottom flask (500 mL) a solution of 1-butyltetrahydrothiophenium iodide ([bthiol][I]) (10.00)36.70 g, mmol) in water (200)mL) was treated with lithium bis(trifluoromethanesulfonyl)imide (10.65 g, 37.10 mmol) and stirred for 8 h. The mixture was washed with water (3x) and extracted with dichloromethane until no residual halide precipitation was observed by AgNO₃ test. ¹H NMR (500 MHz, DMSO- d_6) δ 3.49 (dt, J = 13.3, 6.7 Hz, 2H), 3.38 (dt, J = 12.5, 6.0 Hz, 2H), 3.18 (t, J = 7.6 Hz 2H), 2.22 (m, 2H), 2.14 (m, 2H), 1.68 (p, J =7.5 Hz, 2H), 1.42 (h, J = 7.4 Hz, 2H), 0.93 (t, J = 7.4 Hz, 3H). ¹³C NMR (126 MHz, DMSO- d_6) δ 123.79, 121.23, 118.67, 116.11, 43.18, 41.40, 28.45, 26.89, 21.41, 13.60. ¹⁹F NMR (471 MHz, DMSO-*d*₆) δ -78.82.

Tetra-methyl-guanidinium bis(perfluoroethylsulfonyl)imide, [TMG][beti]

In a round bottom flask (500 mL) a solution of tetra-methyl-guanidine ([TMG]) (1.50 g, 13.0 mmol) in water (80 mL) was treated with the slow addition of nitric acid (0.82 g, 13.0 mmol) and lithium bis(perfluoroethylsulfonyl)imide (5.09 g, 13.2 mmol) and stirred for 8 h. The mixture was washed with water (3x) and extracted with dichloromethane. ¹H NMR (500 MHz, DMSO-*d*₆) δ 7.77 (s, 2H), 2.89 (s, 12H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 161.44, 121.65 (t, *J* = 33.4 Hz), 119.37, 117.08, 114.80 (t, *J* = 33.6 Hz), 113.92 (q, *J* = 37.8 Hz), 111.74, 111.43, 109.26 (q, *J* = 37.8 Hz), 39.72. ¹⁹F NMR (471 MHz, DMSO-*d*₆) δ -78.68, -117.46.

N-Butyl-N,N-diethyl-N-methylammonium

bis(trifluoromethanesulfonyl)imide,

[N₁₂₂₄][TFSI]

In a round bottom flask (500 mL) a solution of N-butyl-N,N-diethyl-N-methylammonium

bromide ([N₁₂₂₄][Br]) (7.00 g, 31.2 mmol) in water (200 mL) was treated with lithium bis(trifluoromethanesulfonyl)imide (9.05 g, 31.5 mmol) and stirred for 8 h. The mixture was washed with water (3x) and extracted with dichloromethane until no residual halide precipitation was observed by AgNO₃ test. ¹H NMR (500 MHz, DMSO-*d*₆) δ 3.32 (q, *J* = 7.3 Hz, 4H), 3.21 (m, 2H), 2.95 (s, 3H), 1.64 (quint, *J* = 7.6 Hz, 2H), 1.36 (h, *J* = 7.4 Hz, 2H), 1.25 (t, *J* = 7.4, Hz, 6H), 0.98 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 123.79, 121.23, 118.67, 116.11, 63.90, 63.87, 63.85, 63.40, 59.78, 59.76, 59.74, 55.98, 55.96, 55.93, 46.95, 46.92, 46.88, 25.37, 23.74, 21.50, 19.74, 19.64, 13.83, 7.83. ¹⁹F NMR (471 MHz, DMSO-*d*₆) δ -78.80.

1,3,4,6,7,8-hexahydro-1-methyl-2*H*-pyrimido[1,2-a]pyrimidinium bis(trifluoromethanesulfonyl)imide, [MTBD][TFSI]

In a round bottom flask (500 mL) a solution of 1,3,4,6,7,8-hexahydro-1-methyl-2*H*-pyrimido[1,2a]pyrimidine ([MTBD]) (3.00 g, 19.6 mmol) in water (100 mL) was treated with the slow addition of nitric acid (1.23 g, 19.6 mmol) and lithium bis(trifluoromethanesulfonyl)imide (5.90 g, 20.6 mmol) and stirred for 8 h. The mixture was washed with water (3x) and extracted with dichloromethane. ¹H NMR (500 MHz, DMSO-*d*₆) δ 7.61 (s, 1H), 3.27 (m, 8H), 2.91 (s, 3H), 1.91 (dquint, *J* = 29.5, 6.0 Hz, 4H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 151.16, 123.79, 121.23, 118.67, 116.11, 47.99, 47.45, 46.98, 38.83, 37.41, 20.81, 20.66. ¹⁹F NMR (471 MHz, DMSO-*d*₆) δ -78.78.

1,3,4,6,7,8-hexahydro-1-methyl-2*H*-pyrimido[1,2-a]pyrimidinium

bis(perfluoroethylsulfonyl)imide, [MTBD][beti]

In a round bottom flask (500 mL) a solution of 1,3,4,6,7,8-hexahydro-1-methyl-*2H*pyrimido[1,2-a]pyrimidine ([MTBD]) (3.00 g, 19.6 mmol) in water (100 mL) was treated with the slow addition of nitric acid (1.23 g, 19.6 mmol) and lithium bis(perfluoroethylsulfonyl)imide (7.65 g, 19.8 mmol) and stirred for 8 h. The mixture was washed with water (3x) and extracted with dichloromethane.¹H NMR (500 MHz, DMSO-*d*₆) δ 7.63 (s, 1H), 3.28 (m, 8H), 2.92 (s, 3H), 1.94 (quint, *J* = 6.0 Hz, 2H), 1.89 (quint, *J* = 6.0 Hz, 2H).¹³C NMR (126 MHz, DMSO-*d*₆) δ 151.18, 121.65, 119.63, 119.37, 119.10, 117.35, 117.08, 116.81, 114.80, 114.09, 113.79, 112.07, 111.76, 111.46, 111.16, 109.43, 109.13, 47.93, 47.40, 46.92, 38.78, 37.28, 20.73, 20.57.¹⁹F NMR (471 MHz, DMSO-*d*₆) δ -78.90, -117.58.

Potassium perfluoropropanoyl(trifluoromethylsulfonyl)imide, K[TSE]

In a 1 L three-necked flask fitted a cylindrical funnel and a thermometer, trifluoromethanesulfonamide (10 g, 0.067 mol) was placed in 67 mL of dry methanol. After

addition of (7.53 g, 0.0671mol) of potassium *t*-butoxide the mixture was stirred at 333 K for 3 h under nitrogen atmosphere. The reaction mixture was concentrated under reduced pressure to give the white solid. After addition of 30 mL of dry diethyl ether, a solution of 20.8 g (0.0671 mol) of pentafluoropropanoic anhydride in 30 mL of dry diethyl ether was added dropwise at 273 K and stirred at 273 K for 2 h and then at room temperature for 4 h. The reaction mixture was filtered and washed with dry diethyl ether. The crystals were dried under reduced pressure to give of K[TSE] as a colorless crystal. ¹³C NMR (101 MHz, DMSO-*d*₆) δ 161.01 (t, *J* = 24.5 Hz), 121.93, 120.45 (t, *J* = 35.7 Hz), 117.61 (t, *J* = 35.7 Hz). ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -81.73, -84.91, -122.78

1-Butyl-3-methyl-imidazoliumperfluoropropanoyl(trifluoromethylsulfonyl)imide,[bmim][TSE]

In a round bottom flask (500 mL) a solution of 1-butyl-3-methyl-imidazolium bromide ([bmim][Br]) (10.00 g, 45.60 mmol) in water (200 mL) was treated with potassium perfluoropropanoyl(trifluoromethylsulfonyl)imide (15.97 g, 47.90 mmol) and stirred for 8 h. The mixture was washed with water (3x) and extracted with dichloromethane until no residual halide precipitation was observed by AgNO₃ test. ¹H NMR (500 MHz, DMSO-*d*₆) δ 9.11 (s, 1H), 7.76 (d, *J* = 1.7 Hz, 1H), 7.69 (d, *J* = 1.8 Hz, 1H), 4.17 (t, *J* = 7.2 Hz, 2H), 3.86 (s, 3H), 1.77 (quint, *J* = 7.3 Hz, 2H), 1.27 (h, *J* = 7.4 Hz, 2H), 0.90 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 160.98, 160.78, 160.59, 136.96, 124.03, 123.96, 122.68, 121.39, 119.94, 118.82, 117.95, 117.67, 116.26, 107.41, 107.11, 48.97, 36.11, 31.80, 19.18, 13.55. ¹⁹F NMR (471 MHz, DMSO-*d*₆) δ - 78.63, -81.84, -119.69.

1,3,4,6,7,8-hexahydro-1-methyl-2H-pyrimido[1,2-a]pyrimidinium

perfluoropropanoyl(trifluoromethylsulfonyl)imide, [MTBD][TSE]

In a round bottom flask (500 mL) a solution of 1,3,4,6,7,8-hexahydro-1-methyl-2H-pyrimido[1,2a]pyrimidine ([MTBD]) (3.00 g, 19.6 mmol) in water (100 mL) was treated with the slow addition of nitric acid (1.23)19.6 potassium mmol) and g, perfluoropropanoyl(trifluoromethylsulfonyl)imide (5.95 g, 19.8 mmol) and stirred for 8 h. The mixture was washed with water (3x) and extracted with dichloromethane.¹H NMR (500 MHz, DMSO-d₆) δ 7.62 (s, 1H), 3.28 (m, 8H), 2.92 (s, 3H), 1.94 (quint, J = 6.0 Hz, 2H), 1.88 (quint, J = 6.0 Hz, 2H). ¹³C NMR (126 MHz, DMSO- d_6) δ 160.97, 160.77, 160.58, 151.19, 123.97, 121.40, 120.23, 119.95, 118.84, 117.68, 116.27, 107.42, 107.13, 47.95, 47.42, 46.94, 38.80, 37.32, 20.76, 20.60. ¹⁹F NMR (471 MHz, DMSO-*d*₆) δ -78.71, -81.96, -119.77

Figure S1. ¹H NMR of [P₂₂₂₈][Br]

Figure S3. ¹H NMR of [P₂₂₂₈][TFSI]

Figure S5. ¹⁹F NMR of [P₂₂₂₈][TFSI]

Figure S9. ¹H NMR of [hmpy][Br]

Figure S11. ¹H NMR of [hmpy][TFSI]

Figure S13. ¹⁹F NMR of [hmpy][TFSI]

Figure S15. ¹³C NMR of [Pyrro₁₄][Br]

Figure S17. ¹³C NMR of [Pyrro₁₄][TFSI]

Figure S19. ¹H NMR of [Pyrro₁₂₀₁][Br]

Figure S21. ¹H NMR of [Pyrro₁₂₀₁][TFSI]

Figure S23. ¹⁹F NMR of [Pyrro₁₂₀₁][TFSI]

Figure S25. ¹³C NMR of [bthiol][I]

Figure S26. ¹H NMR of [bthiol][TFSI]

Figure S28. ¹⁹F NMR of [bthiol][TFSI]

Figure S30. ¹³C NMR of [MTBD][TFSI]

