The genetic structure of pastoralists in Northern Kenya

Angela M. Taravella^{1,2}, Carla Handley³, Emma K. Howell^{1,2}, Anne C. Stone^{1,2,3}, Sarah Mathew³, and Melissa A. Wilson^{1,2}

¹School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA

² Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85281, USA

³ School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85281, USA

Background

Genetic analyses across human populations in Africa have shed light onto the details of major population movements and migrations within Africa. However, the genetic history and how it relates to cultural practices and social organization among human populations in Africa on a local geographic scale remain relatively unexplored. The **Borana**, **Rendille**, **Samburu**, and **Turkana** are neighboring pastoral populations inhabiting Northern Kenya (**Figure 1**). They have male clan descent, are partially or fully patrilocal, and practice exogamy at either the clan or moiety kinship level. Further, when a female marries, they become culturally affiliated with their husbands clan. Linguistically, the Turkana and Samburu speak Eastern Nilotic languages while the Borana and Rendille speak Cushitic languages. **The aim of this project is to characterize the genetic relationships within and among Northern Kenyan human populations in light of cultural relationships and marital practices.**

amtarave@asu.edu

Arizona State University

Nethods	Population Cultural Clan Affiliation		Total	# Males	# Females				
Sampling	Borana	Nonituu	32	18	14				
278 individuals	(87)	Warjidda	35	20	15				
	Rendille	Ldupsai	23	11	12				
	(61)	Saale	27	13	14				
Illumina's Multi Ethnic	Samburu	Lpisikishu	21	12	9				
Global Array	(48)	Lukumai	18	11	7				
	-	Ngidoca	46	30	16				
	lurkana	Ngipongaa	41	27	14				
	(107)	Ngisiger	46	26	20				
Quality control	Table 1. Sample information. We sampled								

Table 1. Sample information. We sampled individuals from at least 2 clans in each population characterize culturally informed clan based genetic differentiation.

Figure 1. Genetic variation mirrors geography among Northern Kenyan pastoralists. The map (right), adapted from³, highlights the major populations in Kenya, a country in east Africa. We performed principal components analysis (left) to visualize the genetic structure among these groups. Each point represents an individual, colored by population affiliation.

Figure 2. ADMIXTURE analysis shows evidence for a shared genetic ancestry between the Rendille and Samburu, populations from different language families. To explore the genetic structure of Northern Kenyan populations, we ran ADMIXTURE² for K = 2-5 for the all samples (left), males (middle) and females (right). Each vertical bar represents an individual, the colors represent the proportion of ancestry corresponding K.

Key

Conclusions and Future Directions

- Genetic variation mirrors geography in Northern Kenya
- Shared genetic relationship between Rendille and Samburu
- Future analyses: 1) analyzing genetic variation of uniparental markers – Y chromosome and mitochondrial DNA – within and among Northern Kenyan populations, and 2) evaluate the correspondence between genetic, cultural, geographic, and linguistic relationships

References

1) Consortium. *Nature*. 2015, 2) Alexander, D. H., et al. *Genome Res*. 2009, 3) Kenya Dialect Map. Available at: http://mapsof.net/kenya/kenya-dialect-map. (Accessed: 29th April 2018)

Acknowledgements

National Institute of General Medical Sciences of the National Institutes of Health under Award Number R35GM124827. John Templeton foundation. Research Computing at Arizona State University.

62							Ngipongaa -		0	0.00069	Ngipongaa -		0	0.00315
	Lpisikishu -	0	0.00189	Lpisikishu -	0	0	Ngidoca -	0	0.00069	0.00039	Ngidoca -	0	0.00214	0
		Lpisikishu	Lukumai		Lpisikishu	Lukumai	Naidoca Naipongaa Naisiger			· ·	Naidoca Naiponaaa Naisiaer			

Figure 3. Inconsistent patterns of clan-based genetic F_{st} and cultural practices. To understand how cultural patterns relate to genetic variation, we calculated genetic differentiation as F_{st} across the autosomes and X chromosome among clans for each population – colored boxes corresponding to populations in figure 1. In a patrilocal society we expect more genetic differentiation for males and less for females. Although X chromosome F_{st} is consistent with these expectations, autosomal F_{st} is variable.