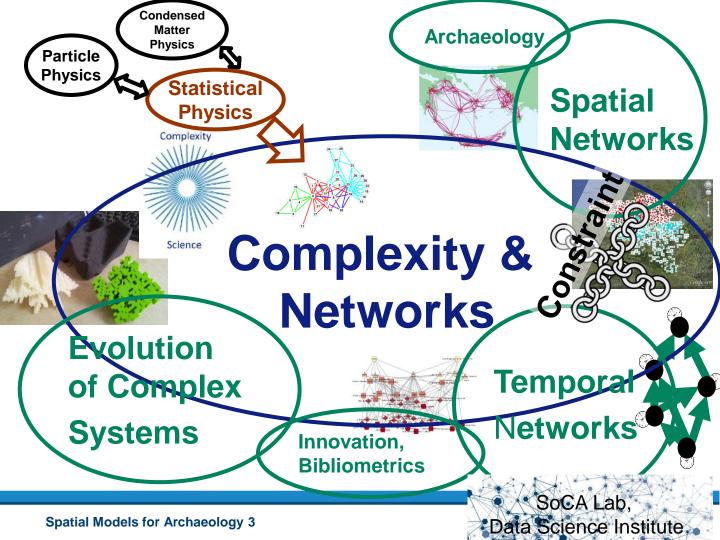

Imperial College London


Extracting and analysing networks from spatio-temporal data,
Satellite of CCS Singapore

2/10/2019

Introduction

- Archaeological Data
- Motivation
- Modelling Choices
- Zones of Control Models
- Proximal Point Analysis
- Comparisons Using Models
- Missing Sites Examples
- Uncertainty in Modelling

Archaeological Data

- Excavations necessarily partial
 - Unknown sites
 - Sites destroyed
 - Sites unreachable e.g. under modern site
- Large amounts of material
 - Documented artefacts only a tiny fraction
 - Representative items not all items
 - No universal parameters or standards
- Biased sample
 - Materials biodegrade
 - Social biases
- Paper Records
 - tiny fraction published

Lots of data! NOT Big Data Small/Dirty Data!

Archaeological Data on Exchange

Exchange is hard to measure

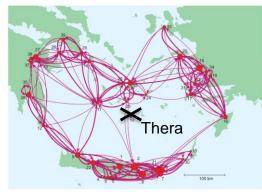
- Most artefacts locally produced,
 - exchange a small fraction of that small fraction
 - ~10% of artefacts imported at Akrotiri
- Exchange difficult to identify by source
 - Analysis Expensive
 - Not always conclusive
- Direct Evidence Rare
 - Texts have biases

Uluburun Shipwreck 1300BC

Site-Site Interactions

- Archaeology can be "SITE CENTRIC"
 - Regional and global interactions hard to consider

- Models can emphasise interactions
 - Mesoscopic picture
 - Macroscopic effects


What did archaeological models

ever do for us?

- Importance of Sites
 - Network centrality
 - Location of missing sites
- Regions of Influence
 - Political
 - o Economic
- Comparisons
 - Null models
 - Evolution in time
 - Different effect of social, geographical, economic factors

⇒ Proof or Narrative ?

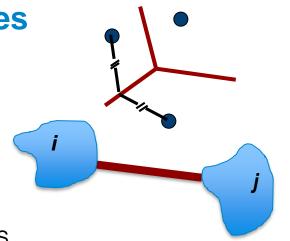
[Knappett, TSE, Rivers, Antiquity 2012]

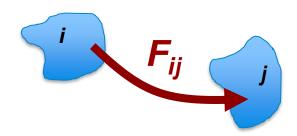
What is a Site?

Issues of scale:-

- Any Settlement
- Large Settlement
- Important Building e.g. shrine, fortification
- Region e.g. Valley defined by geography GIS methods

The scale of a settlement is not always obvious


- Missing sites
- Sites now underwater
- Size of sites beneath modern cities

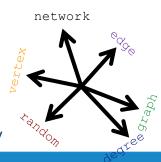

Interactions between sites

- Boundaries between sites
- Model binary interactions
 - ⇒ SPATIAL NETWORKS
- Model flows
 - ⇒ Spatial Interaction Models

Could be exchange of:-

- Bulk Goods
- Elite goods
- Social Exchange
- Political Exchange

Different Spaces

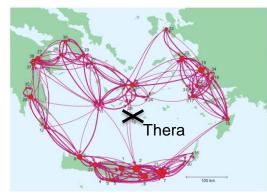

Looking at relationships between "nodes" embedded in space

Focus here on two-dimensional geographical space

- Euclidean distance
- Cost of trip
- Ranked distance, intervening opportunities

Can apply to artefact spaces

- Artefact count
- Word frequency


What did Simple Spatial Interaction Models

ever do for us?

Test Basic Principles

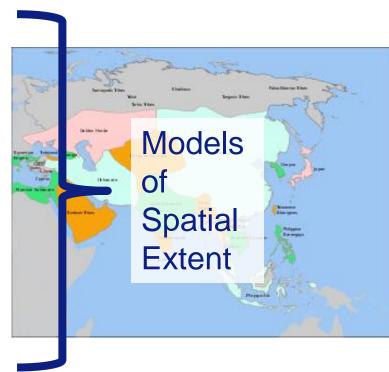
- e.g. is city attractiveness a non-linear function of population? [Bettencourt at al. 2007]
- Look at general properties
 How does space effect system
- Comparisons, Null Models
 - e.g. Spatial Clustering [Expert at al. 2011]
- General Predictions
 - e.g. destruction of Thera only weakens
 Aegean networks

[Knappett, TSE, Rivers, Antiquity 2012]

Proof by Example

Will illustrate some of these ideas by highlighting a few examples.

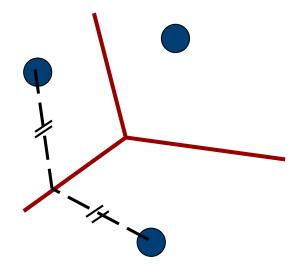
- Personal Favourites
- Several other examples of similar types of analysis
- Many other types of analysis not covered here

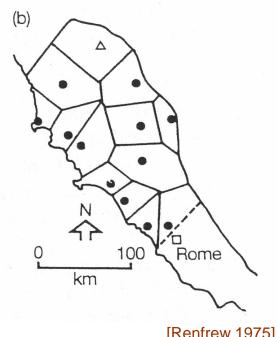

For more examples see

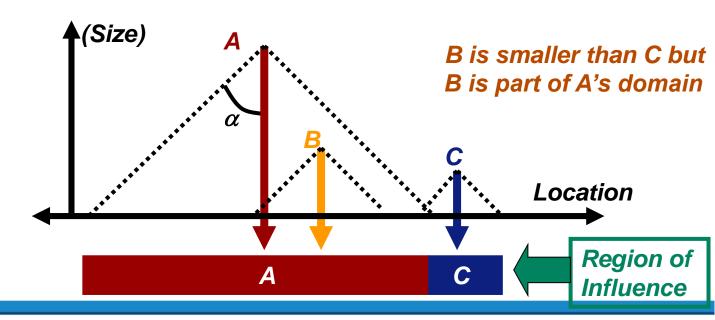
- [Brughmans 2010]
- "The Connected Past"
- Proceedings of CAA

- Introduction
 - Archaeological Data
 - Motivation
 - Modelling Choices
- Zones of Control Models
- Proximal Point Analysis
- Comparisons Using Models
- Missing Sites Examples
- Uncertainty in Modelling

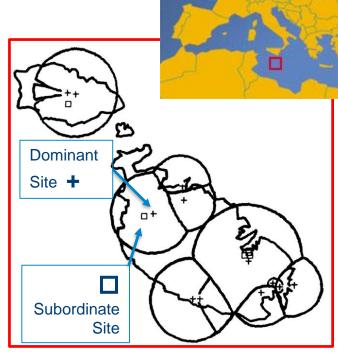
Zone of Control models


- Thiessen Polygons (Voronoi Diagrams)
 - equal site sizes
- XTent model [Renfrew and Level 1979]
 - Thiessen with variable site sizes
- Retail Gravity model [Rihll & Wilson 1987,1991]

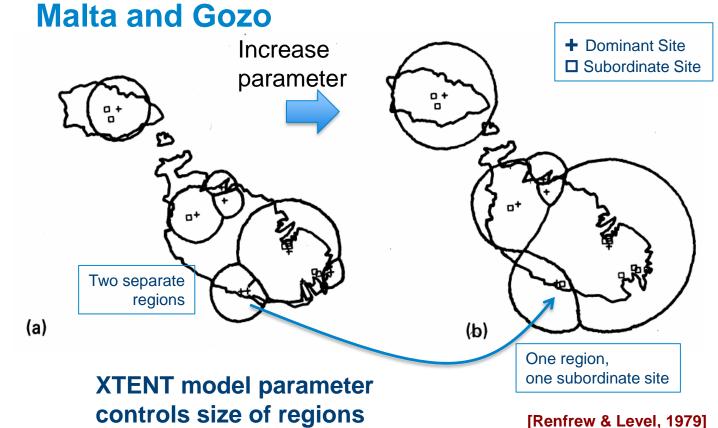

- Boundaries = Midpoint between nearest sites
- All sites equal


12 Etrurian Cities [Renfrew 1975]

[Renfrew 1975]


XTent Model

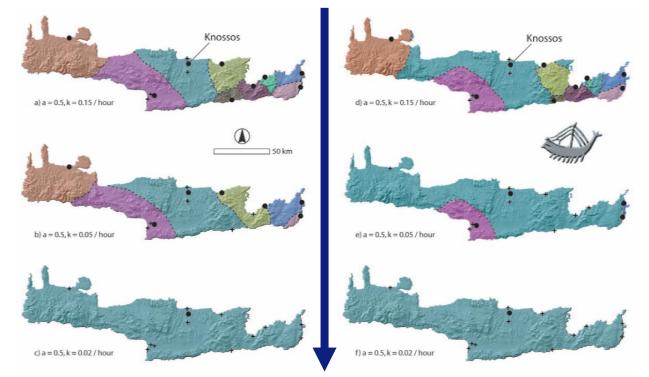
- Thiessen polygons for unequal size sites
- One Parameter


Political organization in prehistoric Malta and Gozo

- Area of TempleSize of Site
- XTENT model with one parameter
- Gives "zones of control" for each site

[Renfrew and Level, 1979; Renfrew 1981]

Political organization in prehistoric



Xtent Model Neopalatial Crete

[Bevan 2010]

(~1750BC - ~1500BC)

On foot

Increasing distance

- Introduction
 - Archaeological Data
 - Motivation
 - Modelling Choices
- Zones of Control Models
- Proximal Point Analysis
- Comparisons Using Models
- Missing Sites Examples
- Uncertainty in Modelling

Network Models

Long history:

from social science network analysis to anthropology and then archaeology

for example

- Cappadocia [Tobler & Weinberg 1971]
- Solomon Islands Melanesia [Terrell 1976, 1977]
- Oceania [Hage & Harray 1991]
- Aegean [Broodbank 1993, 2000]
- etc, etc.

e.g. see Brughmans 2010 for a review

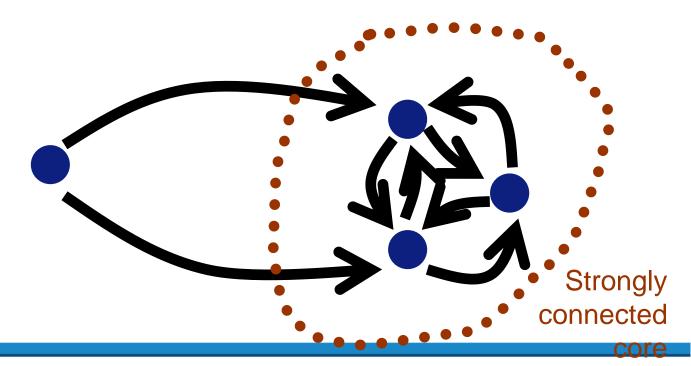
PPA – Proximal Point Analysis

Also known as RANDOM PROXIMITY GRAPHS or K-NEAREST NEIGHBOUR GRAPHS (k-NNG)

- Simple Network Model with one integer parameter
- Each node connects to its k nearest neighbours.

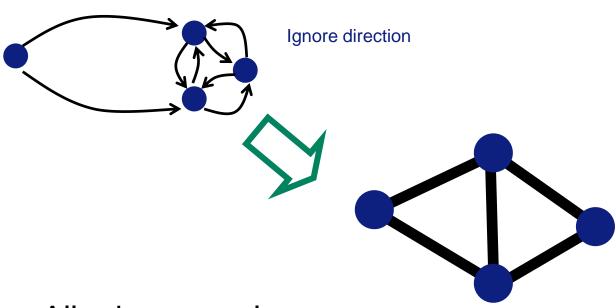
PPA - Proximal Point Analysis

PPA 1


- Equal sized sites or size ignored
- Sites connect to k nearest neighbours
- Analyse graph
 - Often without directions on edges
 - Sometimes only local measures used e.g. Degree
 - Sometimes global measures used
 e.g. ranking, centrality, betweenness

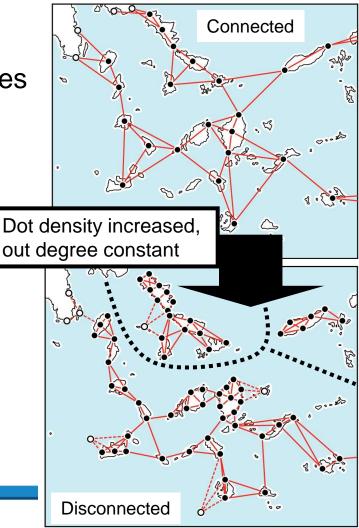
Examples: Terrell 1977; Irwin 1983; Hage & Harary 1991; Broodbank 2000; Collar 2007

PPA Example



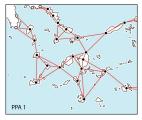
Connect each site to its **k=2** nearest neighbours

PPA Example

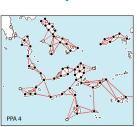


- All edges equal
- Network now simply connected

Broodbank PPA

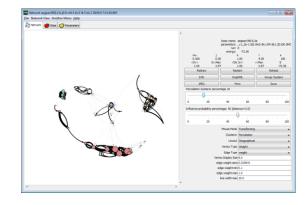

- Early Bronze Age Cyclades
- Population = # vertices
- ⇒Low density = connected graph
- ⇒High density = disconnected graph, clusters on large islands

[fig 75, p239, Broodbank 2000]



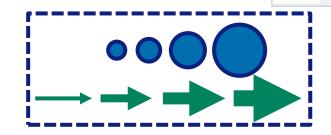
Broodbank PPA (2)

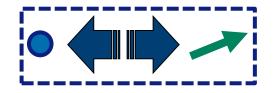
- EBA Cyclades (Early Bronze Age)
 - Settlements similar size
 - rowing ~ 10km daily
- ⇒ PPA appropriate



- A simple model suitable for an era with limited data?
- Is more detailed analysis inappropriate?
 e.g. use inherent directionality of edges

- Introduction
 - Archaeological Data
 - Motivation
 - Modelling Choices
- Zones of Control Models
- Proximal Point Analysis
- Comparisons Using Models
- Missing Sites Examples
- Uncertainty in Modelling


Comparisons: before and after


Model built in response to earlier network studies — **Ariadne** [Evans, Knappett & Rivers, 2004 onwards]

Features of ariadne

- Both vertices and edges of variable size
- Values of both are interlinked
- Cost/Benefit balance
- Not a fixed single solution good but never perfect

Cost/Benefit Analysis

`Energy', resources

$$H =$$

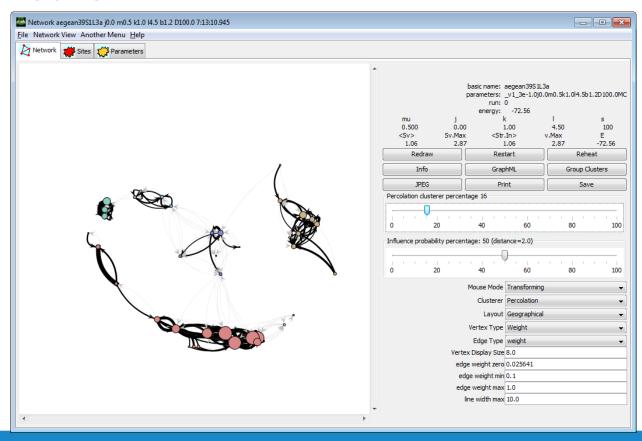
Isolated sites have optimal size $v_i = 0.5$

$$-\kappa \sum_{i} 4S_{i} v_{i} (1 - v_{i})$$

Interactions (trade) bring benefits

$$-\lambda \sum_{i,j} (S_i v_i) \cdot e_{ij} V(d_{ij}/D) \cdot (S_j v_j)$$

Increasing 'population' has a cost

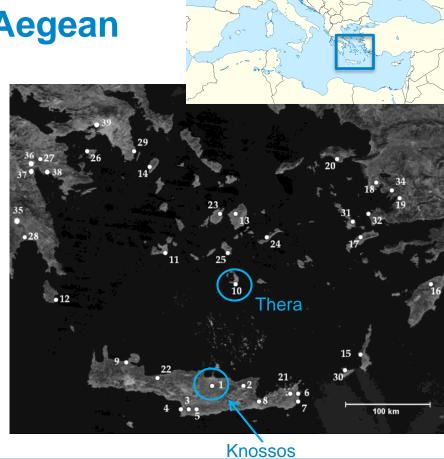

$$+j\sum_{i}S_{i}v_{i}$$

$$+\mu\sum_{i}S_{i}v_{i}e_{ij}$$

$$0 \le \sum_{j} e_{ij} \le 1$$

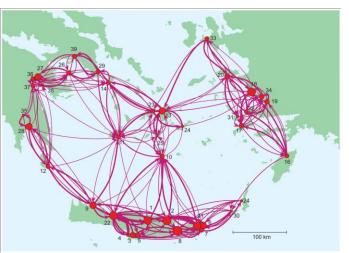
$$0 \le v_i$$

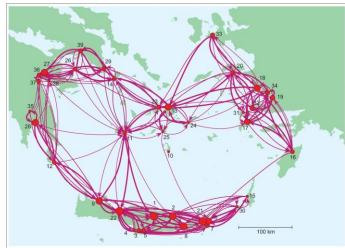
ariadne



Focus: Minoan Aegean

Focus: Minoan Aegean

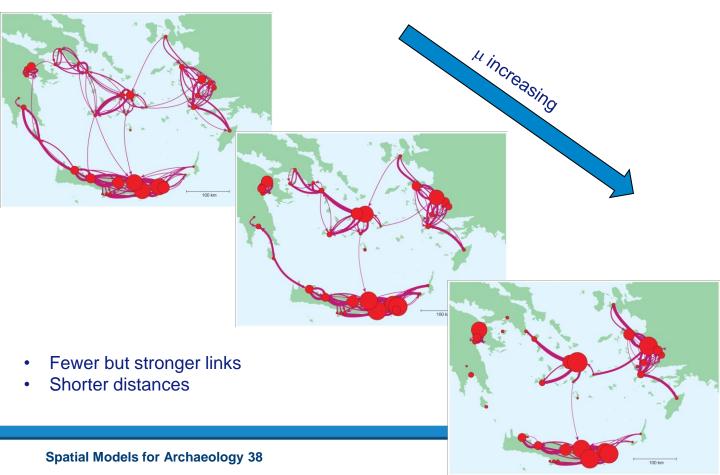

- c.2000BC distinct
 Minoan culture
 starts
 (sail replaces oar)
 - c.1500BC Minoan dominance ends (50yr after Thera)
- Physically largely self contained (Egypt?)



How do we use these models?

- Can not assign real values to parameters
 - → make **comparisons** between different values
 - e.g. vary one parameter, hold rest fixed.
- For any given set of (reasonable) values:
 - a) can analyse intrinsic network measures e.g. degree of vertices
 - b) can perform further `games' to analyse properties
 - e.g. diffusion, apply cultural transmission models, ABM on this substrate.

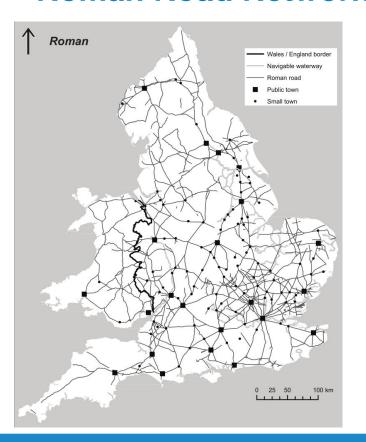
Before and After the Eruption



- Total population largely unchanged
- Total interaction largely unchanged

For same parameter values

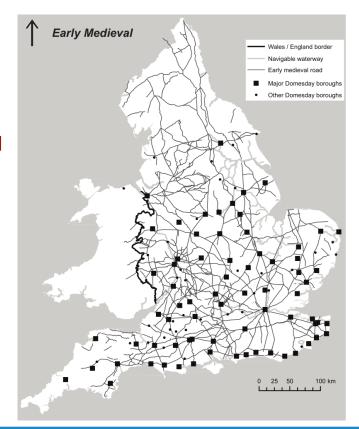
$$\lambda$$
= 4.0, κ = 1.0, μ = 0.1, j = -2.0, D = 110km


Increasing Interaction Cost post Eruption

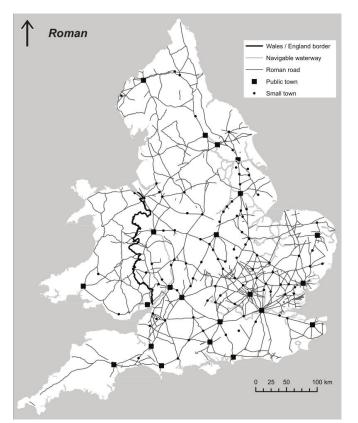
Comparisons: The changing role of rivers

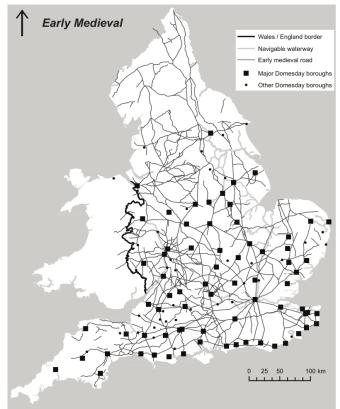
Study also illustrates the use of network centrality measures. [Brookes & Huynh 2018]

Roman Road Network

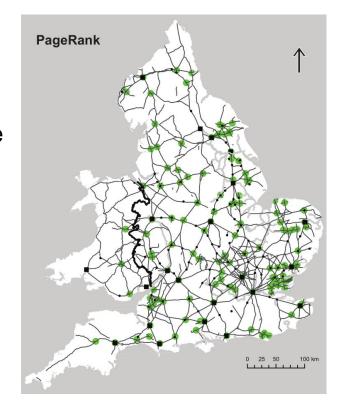

- Roman roads well understood
- Roman Settlements harder
 - 22 'public towns'
 civitas (capitals), colonia and municipia
 - 95 smaller centres

 'undefended settlements',
 'minor towns', 'minor defended sites', specialised 'religious' and 'industrial' sites
- Navigable waterways

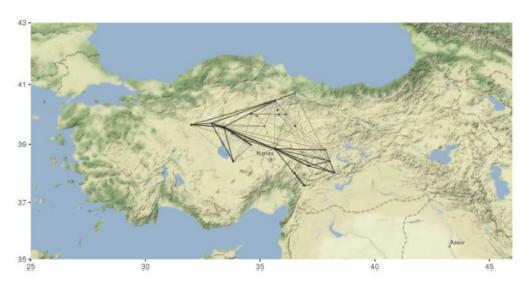

PageRank · Brookes & Huynh


Early Medieval Period ~ 1100 CF

- Roads reconstructed
 [Cole 2013; Leverhulme Project 2016]
 - Some changes from Roman network
- Settlements Domesday Survey 1086CE
 - 112 settlements with 'burgesses' or townsmen
- Navigable waterways


PageRank · Brookes & Huynh

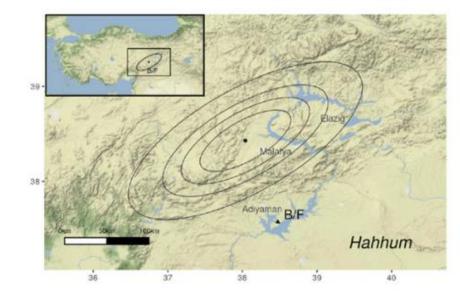
PageRank


- PageRank more stable than other centrality measures
- Road connections laid out between these centres were especially important for military and administration
- Navigable waterways in connecting places appears to have been less important in Roman era

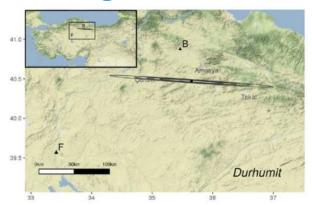
- Introduction
 - Archaeological Data
 - Motivation
 - Modelling Choices
- Zones of Control Models
- Proximal Point Analysis
- Comparisons Using Models
- Missing Sites Examples
- Uncertainty in Modelling

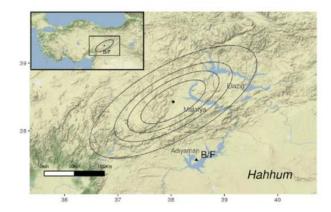
For example

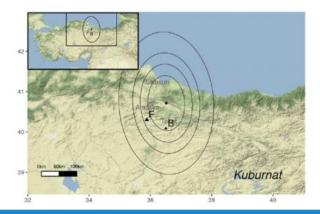
- Assyrian [Barjamovic et al, 2019]
- Minoan Crete, [Palliou & Bevan 2016]

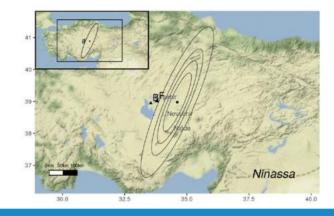


Assyrian Cities, Bronze age in Anatolia, Turkey

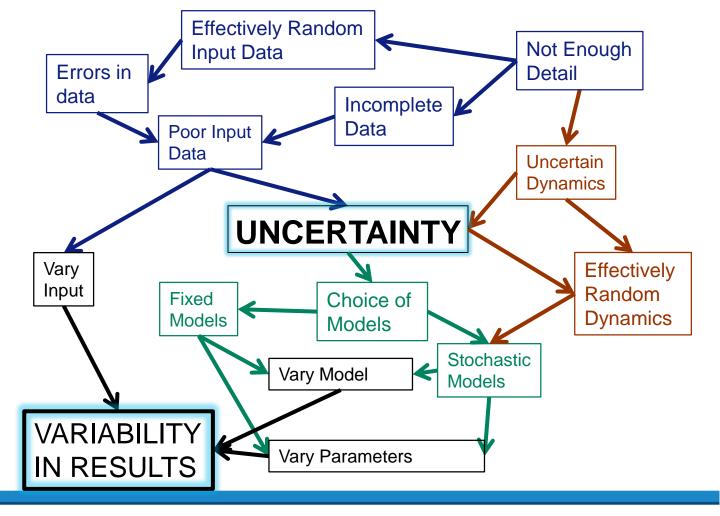

- 15 known sites, 10 unknown
- 198 Tablets with 227 itineraries


[Barjamovic et al, 2019]

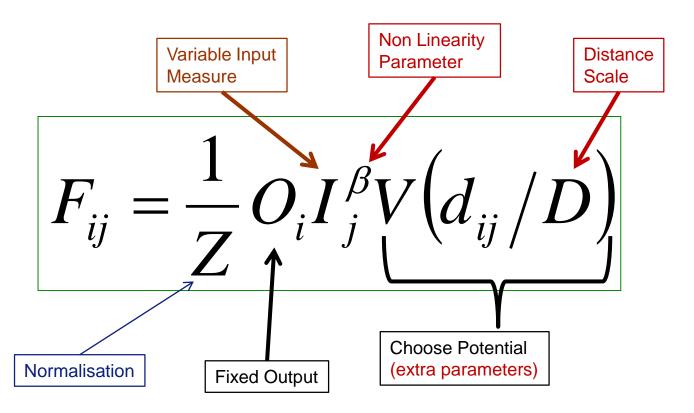

- Assign locations to missing sites
- Flows modelled with form of the gravity model



- Interesting economic theory derivation
- Match to data on shipment counts
- NLLS estimators to optimise missing site locations
- Includes uncertainties (typical error 0.5° ~50km)


- Introduction
 - Archaeological Data
 - Motivation
 - Modelling Choices
- Zones of Control Models
- Proximal Point Analysis
- Comparisons Using Models
- Missing Sites Examples
- Uncertainty in Modelling

Should Thebes exist?


Example of how one can add include when modelling.

- Early study Rihll & Wilson, 1987, 1991
- Later study Evans & Rivers 2017

Thebes is one of the leading cities in classical Greece C5th BCE

Retail Gravity Model

Data

- Same data set as RW
 Rihll and Wilson 1987, 1991
 (RW87 & RW91)
- Late Geometric Period
- Part of central southern mainland Greece
 - Boeotia, Attica, Isthmus, Argolid
- RW aim to look at rise of unequal cities from equal sized settlements
 - Thebes, Athens, Corinth,
 Argos

Sparsification using Terminals

Rihll & Wilson define Terminal Sites

Terminal sites satisfy

Total Flow In > Largest Single flow out

More people owe you than you owe others

Terminals Dominant

Rihll & Wilson identify terminal sites as dominant sites emerging from equal sized villages

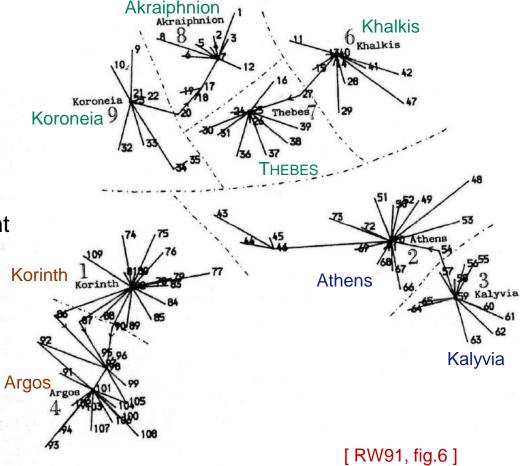
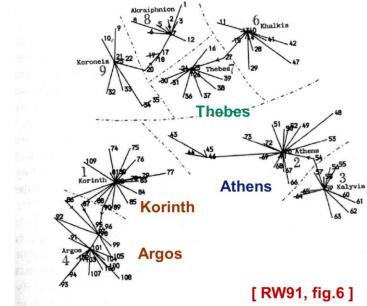
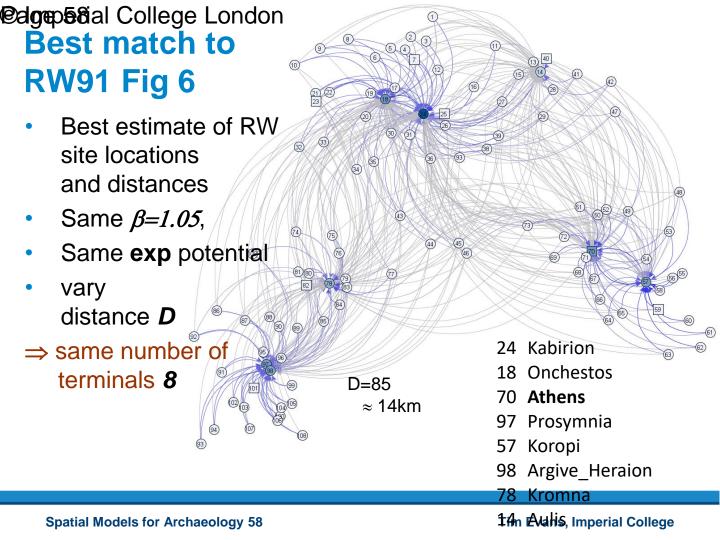


Figure 6: $\alpha = 1.05 \ \beta = 0.175 \ T = 8 \ge 75\% \ max. \ debit$

Uncertainty

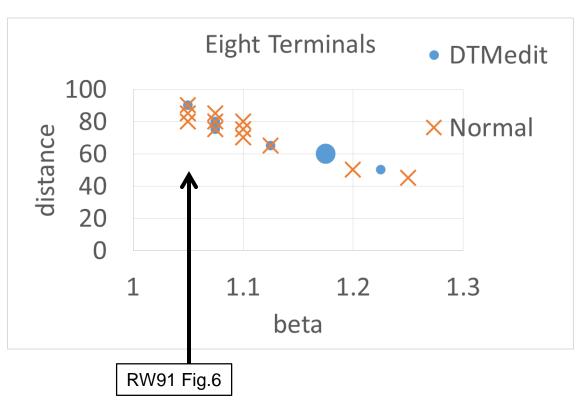
- Rihll & Wilson looked at several parameter values but typically found similar results
 - Thebes and Athens always identified



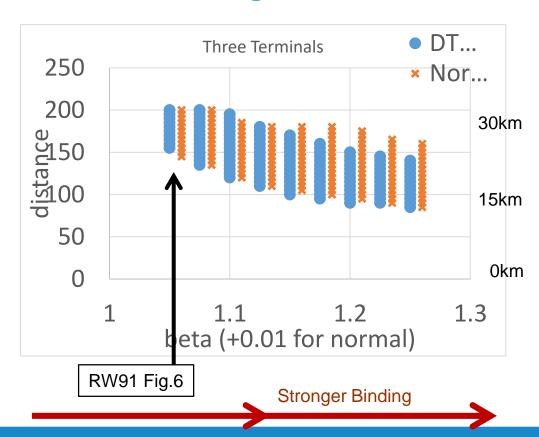

Figure 6: $\alpha = 1.05 \ \beta = 0.175 \ T = 8 \ge 75\%$ max. debit

- Korinth and Argos or close neighbours often identified
- Other centres also found in addition

Uncertainty in Results


- Remarkably stable key results
- Only qualitative assessment of uncertainty
- Only one form of distance potential used pure exponential $\exp\left(-d_{ij}/D\right)$
- No uncertainty in site locations of distances
- Unverifiable
 - no comprehensive list of site locations and distances used

until now


Large terminal number regions

Number of Terminals sensitive to parameter values

Large terminal number regions

- Only 3 terminals stable
- DTMedit distance scales slightly larger

8 Terminals – in order of 'hierarchy'

DTMedit D90	Normal D90	Normal D85	Normal D80	RW91 Fig 6
Potniai 26	Kabirion	Kabirion	Kabirion	Thebes (25)
				Akraiphnion (7),
Medeon 17	Athens	Onchestos	Onchestos	Koroneia (23)
Berbati 96	Prosymnia	Athens	Athens	Athens
Koropi 57	Koropi	Prosymnia	Koropi 57	Kalyvia 59
			Prosymnia	Argos (101)
Athens 70	Argive Heraion	Koropi	97	
			Argive	Argos (101)
Korinth 82	Onchestos	Argive Heraion	Heraion 98	
Argive Heraion				Korinth (82)
98	Kromna	Kromna	Kromna 78	
Mykalessos 15	Aulis	Aulis	Aulis 14	Khalkis (40)

8 Terminals – ordered by location

DTMedit	Normal	RW91 Fig 6	Wider Location	
D90	D80, D85, D90			
Mykalessos 15	Aulis 14	Khalkis 40	Euboea environs	
Dotnici 26	Kabirion 24	Thebes 25	Neighbourhood of	
Potniai 26	Kabirion 24		Thebes	
Medeon 17	Onchestos 9	Akraiphnion 7	Northern Boeotia	
		Koroneia 23		
Athens 70	Athens 70	Athens	Athens	
Koropi 57	Koropi 57	Kalyvia 59	S.Attica	
Vorinth 02	Kromna 78	Korinth 82	Neighbourhood of	
Korinth 82			Corinth	
Berbati 96	Prosymnia 97		Neighbourhood of	
Argive Heraion	Argive Heraion	Argos (101)		
98	98	_ , ,	Argos	

Largely consistent on scale of about 10km

8 Terminals

Now we have 'error bars'

Ranges of uncertainty

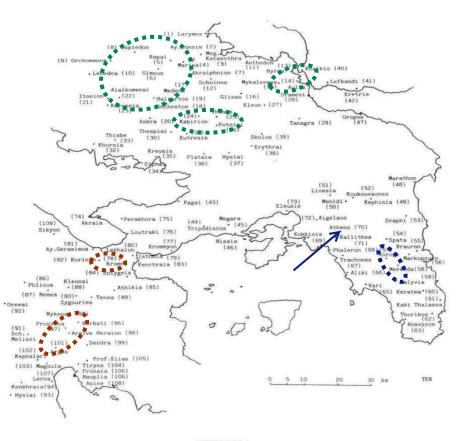


FIGURE 1

3 Terminal Sites – Exponential Potential

Distance	Distance	Terminal Sites		
Data	D	Boeotia	Attica	Isthmus/ Argolid
Normal	150	24 Kabirion	70 Athens	96 Berbati
Normal	155, 160, 165,	31 Eutresis	70 Athens	96 Berbati
	170, 175, 180			
Normal	185	31 Eutresis	70 Athens	89 Tenea
Normal	190,200	36 Plataia	70 Athens	89 Tenea
DTMedit	155,160,170,	26 Potniai	71 Kallithea	96 Berbati
	175			
DTMedit	180,190,200	26 Potniai	71 Kallithea	89 Teneai

Exponential potential

3 & 8 Terminals

Ranges of uncertainty

Grey = 8 Terminals

Coloured = 3 Terminals

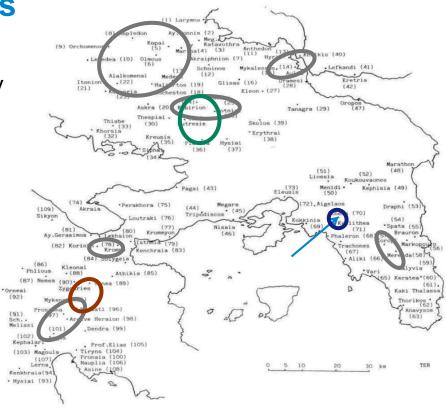


FIGURE 1

http://netplexity.org

- Uncertainty should be reflected in results
- Should see "errors" variability measures
 - Vary initial conditions ✓
 - Stochastic dynamics * (but ariadne/ERG)
 - Vary parameters ✓
 - Different Models ✓
- Illustration with Rihll and Wilson data (1987, 1991)

Slides: http://dx.doi.org/10.6084/m9.figshare.3840249

- General Approach to Modelling in Archaeology
- Geography and Zones of Control
- Geography and Interactions
- Our Model ariadne
- Summary

Slides: 10.6084/m9.figshare.9927080

Summary

http://bit.ly/2mMc8Kx

- Use of modelling networks is now increasing in archaeology
- Many models very simple
- Role of geography relatively easy to study
- Comparing against finds much harder
- Many options remain to be explored

All my work done with

Carl Knappett (Toronto)

Ray Rivers (Imperial)

Bibliography

- Barjamovic, G., Chaney, T., Cosar A and Hortacsu, A., 2019, "Trade, Merchants, and the Lost Cities of the Bronze Age," The Quarterly Journal of Economics, vol. 134, no. August 2019, pp. 1455–1503.
 - Bevan, A., 2010. Political Geography and Palatial Crete, Journal of Mediterranean Archaeology 23.1, 27-54.
- Broodbank, C., 2000. An Island Archaeology of the Early Cyclades, CUP.
- Brookes, S. and Huynh, H. N., 2018. "Transport networks and towns in Roman and early medieval England: An application of PageRank to archaeological questions," Journal of Archaeological Science: Reports, 17, 477–490.
- Brughmans, T., 201. "Connecting the Dots: Towards Archaeological Network Analysis", Oxford Journal of Archaeology, Blackwell Publishing Ltd, 29, 277-303
- Cole, Ann. 2013.
 - 'Travel and Communication in Anglo-Saxon England', Leverhulme Trust funded project
- 97 (2016), Collar, A. 2007, Network Theory and Religious Innovation Mediterranean Historical Review, 22, 149-162.
- Evans, T.S., 2004. Complex Networks, Contemporary Physics, 45, 455-474.
- Evans, T.; Knappett, C. & Rivers, R., Physical and Relational Networks in the Aegean Bronze Age, in Proceedings of The European Conference on Complex Systems, J. Jost, F. R.-T. & Schuster, P. (Eds.), ECCS, 2006, 81. http://dx.doi.org/10.6084/m9.figshare.750447
- Evans, T., Knappett, C., & R. Rivers, 2009. Using statistical physics to understand relational space: a case study from Mediterranean prehistory, in D. Lane, S. van der Leeuw, D. Pumain & G. West (eds.), *Complexity perspectives in innovation and social change*: 451-79. Berlin: Springer Methodos Series. http://dx.doi.org/10.1007/978-1-4020-9663-1
- Evans, T.S., Knappett, C., & R.J. Rivers, 2012. Interactions in Space for Archaeological Models, Advances in Complex Systems 15, 1150009 (http://dx.doi.org/10.1142/S021952591100327X)
- Evans, T., Knappett, C., Rivers, R., 2013. Thirty Nine Minoan Sites, Figshare http://dx.doi.org/10.6084/m9.figshare.97395
- Evans T.S. and Rivers, R. 2017. "Was Thebes Necessary? Contingency in Spatial Modelling," Frontiers in Digital Humanities, 4, 8.
- Graham, S. 2006. Networks, Agent-Based Modeling, and the Antonine Itineraries. The Journal of Mediterranean Archaeology, 19, 45-64 http://www.equinoxjournals.com/JMA/article/viewArticle/2436
- Hage, P. & Harary, F. 1991. Exchange in Oceania: a graph theoretic analysis, Clarendon Press.
- Harris B. and Wilson, A., 1978. "Equilibrium values and dynamics of attractiveness terms in production-constrained spatial-interaction models,"
 Environment and Planning A., 10, no. 4, pp. 371–388.
- Irwin 1983. Chieftainship, kula and trade in Massim prehistory in Leach, J. & Leach, E. (Eds.) The Kula: New Perspectives on Massim Exchange, Cambridge: CUP, 29-72.

Bibliography

- Isaksen, L. 2006. Network Analysis of Transport Vectors in Roman Baetica, MSc Thesis, Univ. Southampton. http://eprints.soton.ac.uk/204535/
- Isaksen, L. 2008. The application of network analysis to ancient transport geography: A case study of Roman Baetica, Digital Medievalist, 4
 http://www.digitalmedievalist.org/journal/4/isaksen/
- Knappett, C., Evans, T. & R. Rivers, 2008. Modelling maritime interaction in the Aegean Bronze Age, Antiquity 82: 1009-24. http://antiquity.ac.uk/ant/082/ant0821009.htm http://doi.org/10.1017/S0003598X0009774X
- Knappett, C.; Evans, T. & Rivers, R., 2011. The Theran eruption and Minoan palatial collapse: new interpretations gained from modelling the maritime network, Antiquity, 85, 1008-1023. http://antiquity.ac.uk/ant/085/ant0851008.htm ttp://doi.org/10.1017/S0003598X00068459
- Ortúzar, J. d. D. & Willumsen, L. 1994. "Modelling Transport" Wiley.
- Paliou E. and Bevan A. 2016. "Evolving settlement patterns, spatial interaction and the socio-political organisation of late Prepalatial south-central Crete," Journal of Anthropological Archaeology, vol. 42, pp. 184–197.
- Renfrew, C. 1975. "Trade as action at a distance," in Ancient Civilization and Trade, J. A. Sabloff and C. C. Lamberg-Karlovsky, Eds. University of New Mexico Press, Albuquerque, pp. 3–59.
- Renfrew, C. 1981. "Space, Time and Man," Transactions of the Institute of British Geographers, vol. 6, no. 3, pp. 257–278.
- Renfrew C. and Level, E.V. 1979. "Exploring dominance: predicting polities from centres," in Transformations: Mathematical Approaches to Culture Change, A. C. Renfrew and K. L. Cooke, Eds. Academic Press, London, pp. 145–67.
- Rihll, T.E. & A.G. Wilson, 1987. Spatial interaction and structural models in historical analysis: some possibilities and an example, *Histoire & Mesure 2*:
- 5-32.
 Rihll, T.E. & A.G. Wilson, 1991. Modelling settlement structures in ancient Greece: new approaches to the polis, in J. Rich & A. Wallace-Hadrill (eds.),
- City and country in the ancient world: 59-95. London: Routledge.
 Rivers, R.: Knappett, C. & Evans, T., 2013. Network Models and Archaeological Spaces in Computational Approaches to Archaeological Spaces.
- A.Bevan & Lake, M. (Eds.), Left Coast Press.

 Sindbæk, S. M. 2007. The Small World of the Vikings: Networks in Early Medieval Communication and Exchange
- Norwegian Archaeological Review, 40, 59-74.
- Sindbæk, S.M. 2007. Networks and nodal points: the emergence of towns in early Viking Age Scandinavia, Antiquity 81, 119–132
- Renfrew & Level, 1979. Exploring dominance: predicting polities from centres, in Renfrew, A. & Cooke, K. (Eds.) Transformations: Mathematical Approaches to Culture Change, Academic Press, London, 145-67.
- Stouffer, S. A., 1940. Intervening Opportunities: A Theory Relating to Mobility and Distance, American Sociological Review 5, 845–867. doi:10.2307/2084520.
- Terrell, J. 1977. Human biogeography in the Solomon Islands, Fieldiana, Anthropology, 68.
- Wilson, A.G. 1967. A statistical theory of spatial distribution models, Transport Research 1, 253-269

Extra Slides