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The SIMBA Simulations

e Model 'calibrated' on FIRE galaxies

e Includes strong, kinetic AGN feedback
with various jet modes

e This feedback can blow bubbles ~20
Mpc 1n size

e Baryonic mass resolution ~10x worse
than EAGLE/Illustris

e More information in Dave+ 2019 or ask
me afterwards




The SIMBA Simulations

* Also going to use two comparison
models:

e NolJet: Same as SIMBA but with
AGN jets turned off (still includes
thermal AGN feedback)

e Non-Radiative: No galaxy formation
model - just hydrodynamics and
gravity




Previous Motivation
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e This is especially true in stmulations
that include AGN feedback (and of ~100 |
course 1n the real Universe)
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e Where does that gas go?
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Angles-Alcazar+, Baryon Cycling and Galaxy Assembly on FIRE, 2017



Previous Motivation

(a) Dark matter and their partners
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Liao+, The segregation of baryons and dark matter during halo assembly, 2017



The Spread Metric

e Look at how dark matter and baryons
move differently

e First pass: construct a metric that tells us
how far particles have moved 1n the
simulation, using only two snapshots.







- Visualised

e Dark matter substructure
picked out by low
movement

e (Gas in AGN bubbles picked
up by high movement.
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Dark Matter ~(hrgést halo)
Visualised

e Dark matter substructure
picked out by low
movement
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e (Gas in AGN bubbles picked
up by high movement.
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- Visualised

e Dark matter substructure
picked out by low
movement ‘

e (Gas in AGN bubbles picked
up by high movement.













A closer look

All Dark Matter

All Gas  —

e Take a look at the distribution of
distances for different types of
particles

e (as 1s much more spread out than
dark matter, as expected from the
above 1mages

Probability density distribution
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A closer look

All Dark Matter
Dark Matter in Halos = = =

All Gas  —
Gas in Halos = = =

e Splitting now by the particles only
in halos, we see that gas 1n halos at
z=() 1s much more closely bound to
the dark matter than 1in general

e Dark matter 1n halos, though,
behaves 1n the exact same way as
dark matter out of halos (could be to
do with the definitions we use)

Probability density distribution
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Lagrangian regions

75 kpc 2 Mpc

e Lagrangian region definition:

e Take all DM particles 1n halo at z=0

* Find their position 1n 1nitial
conditions (z=99) - this 1s the
Lagrangian region

* Find nearest gas particles to all of
these DM particles, those gas
particles are now also 1in the same LR

Mualo =7 X 1013 M@



Effects on the distance
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e (as in Lagrangian regions, where
the dark matter that ends up 1n halos
at z=0 comes from, shows a bias to
being powered out to larger distances
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Model dependence

Full Model NolJet Model Non-Radiative Model
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How much mass?
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Relative to sizes of haloes
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Relative to sizes of haloes
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Quick summary

All Dark Matter
Dark Matter in Halos = = =

All Gas  —
Gas in Halos = = =

e Particles can be spread out to 7 Mpc
(dark matter) and 12 Mpc (gas)

‘e \\ Gas 1in Lagrangian Regions == ==
e Majority of gas constrained to within

5 Mpc (this 1s still > 3Ryir of the
largest halo 1n the box)

e Haloes and Lagrangian regions
produce vastly different spread
metric distributions

Probability density distribution

Spread metric S [2~! Mpc]



DM 1n halo at z=0
(Gas 1n halo at z=0

Halo 100

Halo View
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DM 1n halo at z=0 '!

(Gas 1n halo at z=0
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DM in halo at z=0
Gas in halo at z=0
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DM 1n halo at z=0
(Gas 1n halo at z=0
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DM 1n halo at z=0
(Gas 1n halo at z=0
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DM 1n halo at z=0
(Gas 1n halo at z=0
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Binning

e Three bins: Outside LR Halo 364
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DM 1n halo at z=0
(Gas 1n halo at z=0
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DM 1n halo at z=0
(Gas 1n halo at z=0
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DM 1n halo at z=0
(Gas 1n halo at z=0

Halo 100
M, =4x1012 b M_

Binning

¢ Three bins: Outside LR 2 Halo 364

M, =1x102 /' M,

e Same halo as LR
e |n halo from outside LR

e [n halo from other LR M 00 1t Mo

Halo 263
M, =2x102 I' M
d






















Numerical Results: Simple Case

e Start with the simplest case!

e Non-radiative case, 1.e. without a
galaxy formation sub-grid model

e Mixing between gas and dark matter
leads to 15% 'contamination' of
baryons from outside Lagrangian
regions!
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Where do the baryons go?

0.8

e Now look at all baryons 1n the
Lagrangian region

= (wn Halo
=== ()ther Halos
== (Jutside Halos

e What 1s their eventual fate? 0.4 L

e (Can see the hole blown 1n 'own halo'
from AGN feedback around MW
mass and above.
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Resolved properties

0.9
 Consider all 1012- 1013 M, haloes, 0.8
and bin their gas profiles radially. 0.7

0.6

e Unfortunately, we can't do lower
mass than this due to SIMBA's
resolution.
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Taking away the jets

Fiducial NolJet
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Taking away the jets

Fiducial NolJet
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Taking away the jets
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Taking away the jets

= (Own LR
== (utside LR

e (lear that there 1s a more complex
interaction between jets and halo gas
than simply 'jet blows gas out'

)

N

e Jets only directly interact with 0.4%
of particles!

o

e Scems that gas from outside the LR
1s affected more significantly by
these jets than gas from 1nside -
points to preventative feedback?
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@JBorrow

C OHCIUSiOnS joshua.borrow@durham.ac.uk

o SIMBA exists!

e (Constraint on the maximal spread of baryons

e Able to extract gas that has been affected by strong feedback (including entrained
gas)

e 10% of the gas mass in a MW-mass halo originated from the LR of another halo!

e Plan to extend this analysis to EAGLE, IllustrisTNG, and EAGLE-XL (eventually)



