arXiv:1909.11818

Making Communities Show Respect for Order

Tim Evans

Work with Vaiva Vasiliauskaite

Directed Acyclic Graphs = DAG

- A directed network with no cycles
- Defines a Partial Order of nodes
- Order constrains direction of edges

e.g. Temporal Vertex Network

- vertices assigned a time
- edges respect the ARROW-OF-TIME

Directed Acyclic Graphs = DAG Examples

- Citation networks
 - Papers
 - Patents
 - Court judgements
 - Blogs
- Task scheduling
- Food webs
- Cryptocurrency Transactions
- Programme Dependencies
- Causal set approach to quantum gravity

Similar nodes in DAGs are not connected

Similar nodes form

an **ANTICHAIN**

An **antichain** is a set of nodes with no path between any of the nodes

A COMMUNITY is a set of similar

nodes

Usually a set of nodes with more connections within the community than outside

Communities in DAGs using Neighbours

The disconnected nodes of an antichain are similar if they have similar neighbours

Communities in DAGs using Neighbours

The disconnected nodes of an antichain are similar **if** they have similar neighbours

Siblinarity

- A = Antichain = Community,
 set of vertices with no path between any pair
- $\mathfrak{A} = \{A_1, A_2, A_3, ..., \}$ = Partition of nodes into antichains
- $S(\mathfrak{A}) = Siblinarity$ measures the quality of a partition of nodes into antichains

For each pair of nodes in the same antichain:-

- > add a measure of their similarity
- subtract expected value of similarity in a null model

$$S(\mathfrak{A}) = \sum_{\mathcal{A} \in \mathfrak{A}} \sum_{n,m \in \mathcal{A}} \left(\sin(n,m) - \sin_{\text{null}}(n,m) \right)$$

Siblinarity

A is adjacency matrix of DAG

One DAG – Different Communities

Price Model (1965) with Fields

- Models a citation networkDAG
- Directed version of BA model
- New paper assigned random field f
- Cites older papers based on
 - preferential attachment
 - Prefer papers from own field f with probability p.

Diversity in Communities

High D = All fields appear equally

Measure diversity of fields in antichains (= communities) with

$$D(\mathfrak{A}) = \frac{1}{|\mathfrak{A}|} \sum_{\mathcal{A} \in \mathfrak{A}} \exp \big(S(\mathcal{A}) \big)$$

 $S(\mathcal{A}) = -\sum p_f(\mathcal{A}) \log \left(p_f(\mathcal{A}) \right)$

 $p_f(\mathcal{A}) =$

Sum over all fields

Fraction of nodes of field f in A

Diversity of Communities in Modified Price model

One Siblinarity Community of Papers in arXiv repository hep-th section

U-Duality and Central Charges in Various Dimensions Revisited

Enhancement of Supersymmetry Near 5d BLACK HOLE Horizon

Extremality Versus Supersymmetry in Stringy BLACK HOLES

Microscopic Entropy of N = 2 Extremal **BLACK HOLES**

Dipole Moments of **BLACK HOLES** and String States

Static N = 2 **BLACK HOLES** For Quadratic Prepotentials

Electrically Charged **BLACK-HOLES** for the Heterotic String Compactified

Vertical versus Diagonal Dimensional Reduction for p-branes

Four Dimensional **BLACK HOLES** and Strings with Rescaled Tension

Supersymmetric dyonic **BLACK HOLES** of IIA string on Six Torus

The Complete Form of N = 2 Supergravity and its Place in the General

Wrapped Supermembrane

Antichain Partition based on common citers

arXiv:1909.11818

Conclusions

- The order in a Directed Acyclic Graph must be considered in any network measurement.
- To find communities in DAGs we use ANTICHAINS
- We use neighbour overlap to find similar nodes in antichains

Work with Vaiva VASILIAUSKAITE

Extra Slides

$$D(\mathcal{A}) = \exp\left(-\sum_{f} p_f \log p_f\right)$$

$D(\mathcal{A}) = \exp\left(-\sum_{f} p_f \log p_f\right)$ Diversity in Cora citation network

Siblinarity communities

Height antichains

Diversity of topic labels f of papers in siblinarity communities (based on common citers) is smaller than the diversity in height antichains

Florida Bay Food Web

Nodes = Antichain Communities

An induced graph is a coarser version of the initial food web and can help understand more clearly the flows of energy in the system

Diversity of Communities in Modified Price model

Two antichains of papers from High Energy Physics T arXiv repository

entral Charges in Various Dimensions Revisited

Supersymmetry Near 5d Black Hole Horizon

sus Supersymmetry in Stringy Black Holes

copy of N = 2 Extremal Black Holes

of **Black Holes** and String States

ck Holes For Quadratic Prepotentials

ged Black-holes for the Heterotic String

Diagonal Dimensional Reduction for p-branes

al Black Holes and Strings with Rescaled Tension

dyonic **black holes** of IIA string on Six Torus

orm of N = 2 Supergravity and its Place in the General nembrane

Modular invariance of **string** theory on **AdS**₃

Quantum Coherent String States in AdS_3 and SL(2,R) WZ

Vertex Operators in $AdS_3 \times S^3$ Background with NS_NS F Berkovits-Vafa-Witten Variables

Superstring Theory on $AdS_3 \times G/H$ and Boundary N = 1

Superconformal Symmetry

Constructing Classical and Quantum Superconformal Algeb

Boundary of **AdS**₃

String Theory on AdS_3 as Discrete Light-Cone Liouville T Correlation functions for M^N/S_N orbifolds

Conformal symmetry of superstrings on $AdS_3 \times S^3 \times T$ system

Topological String on $AdS_3 \times N$

Conformal Blocks and Correlators in WZNW Model. I. Genu

Boundary Fluctuations of *AdS* String

pased on common citers)