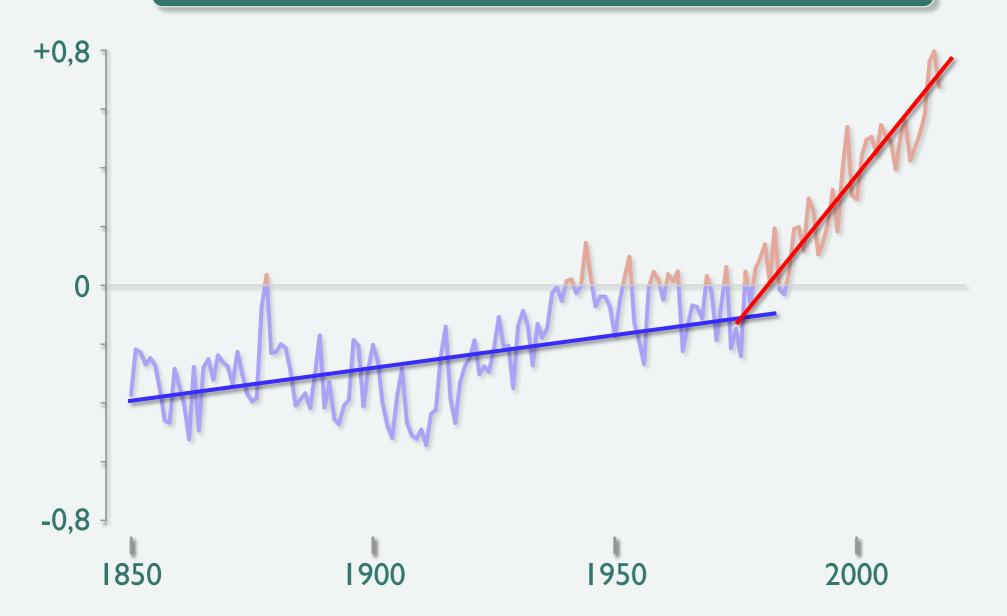
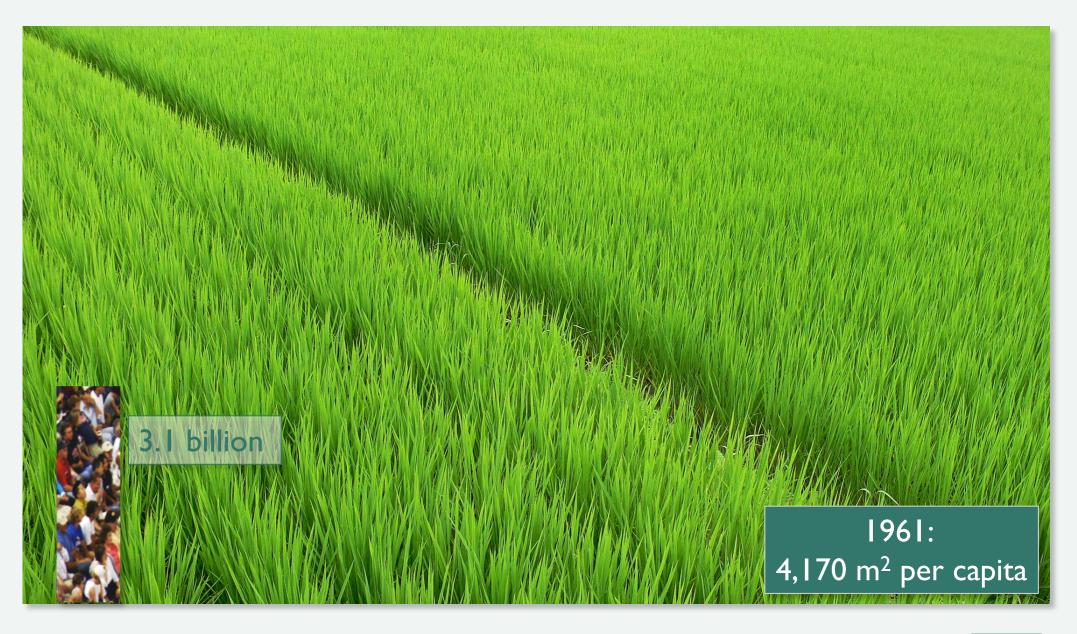
Detlef Weigel Max Planck Institute for Developmental Biology


http://weigelworld.org @PlantEvolution

(I regularly consult for industry)

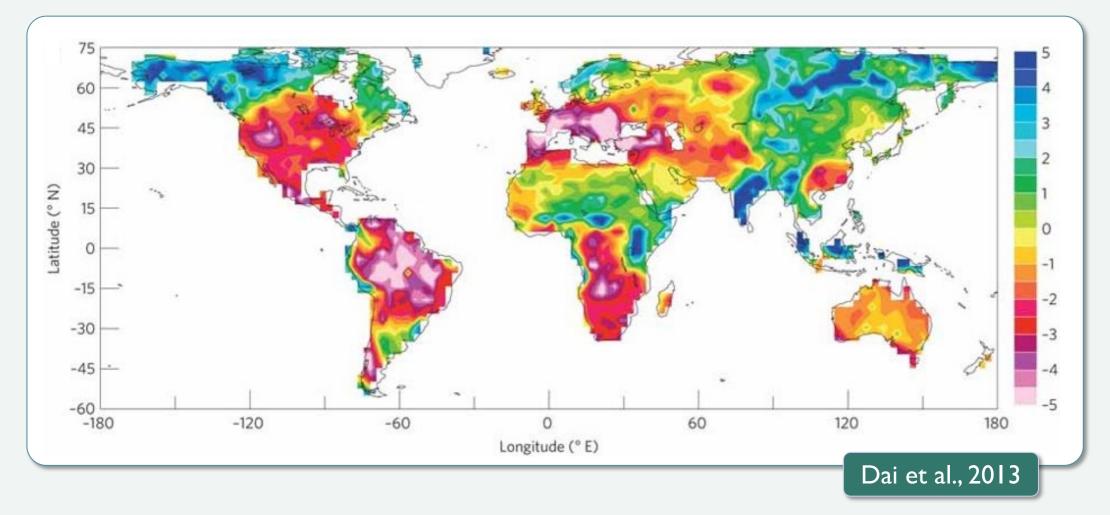
The World Is Changing



1/25

Agricultural Land Is Shrinking



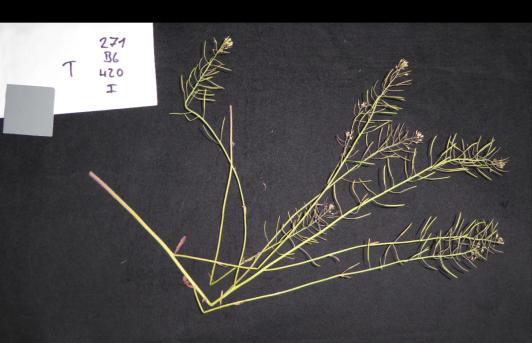


But we must do better

Threat of More Frequent and Extreme Droughts

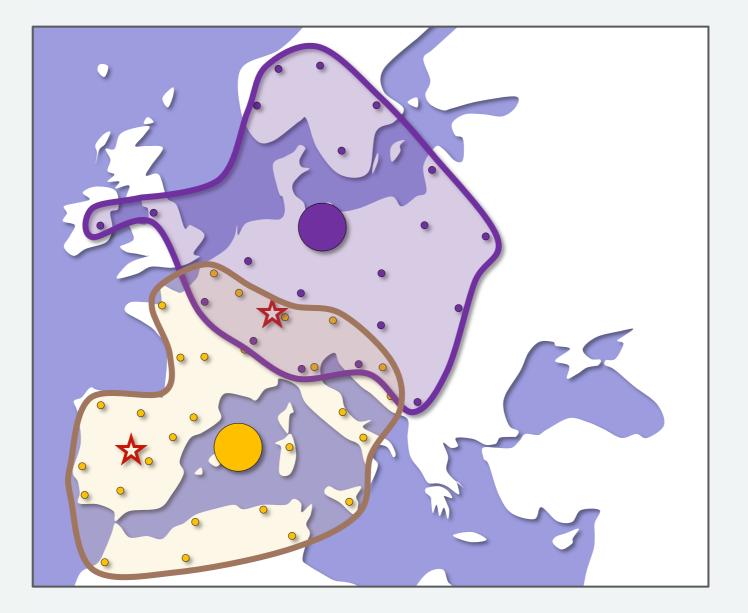
self-calibrated Palmer drought severity index (PDSI) 2100 vs. present "value of -3.0 or below indicates severe to extreme droughts"

Field Experiments in Tübingen und Madrid

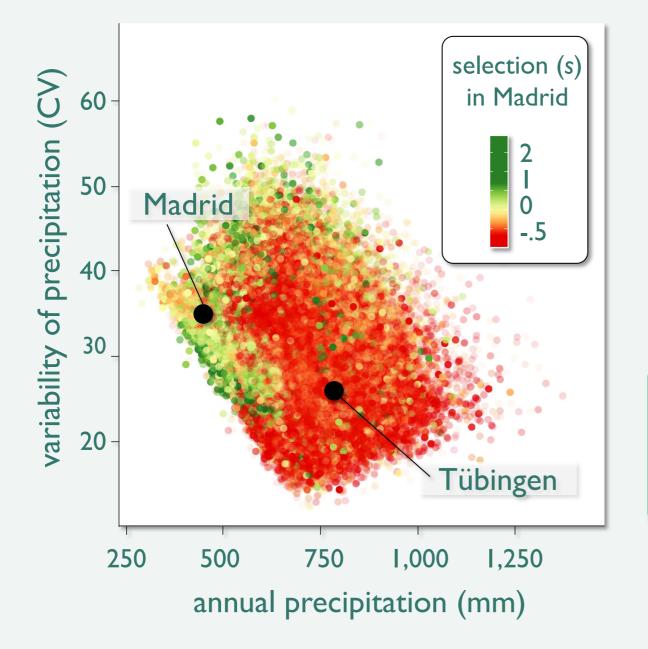


Plenty of rain fall: Tübingen

Limited rain fall: Madrid

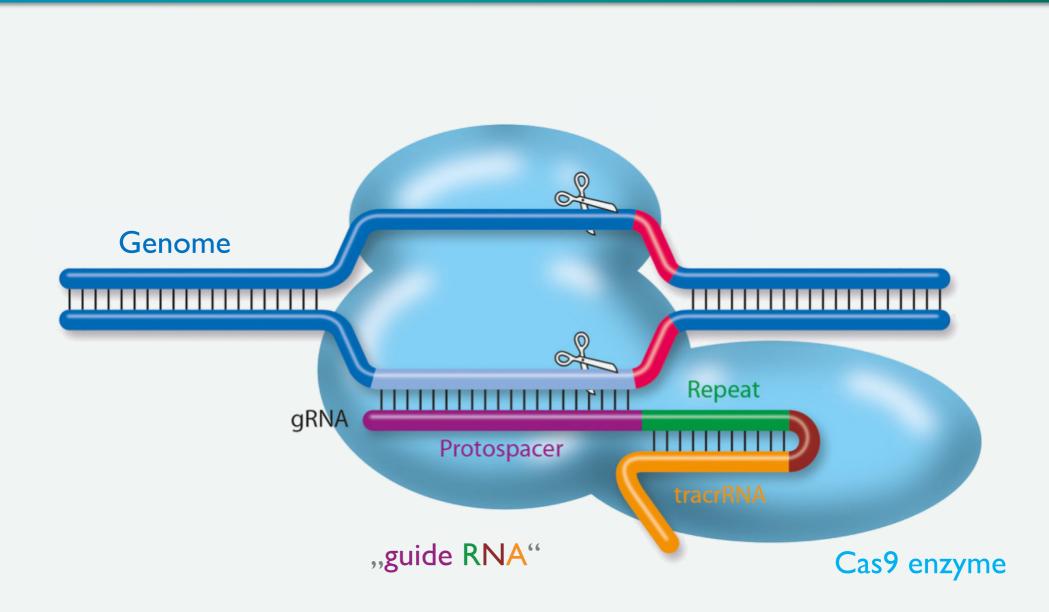

Number of seeds

Survival x progeny = Darwinian fitness

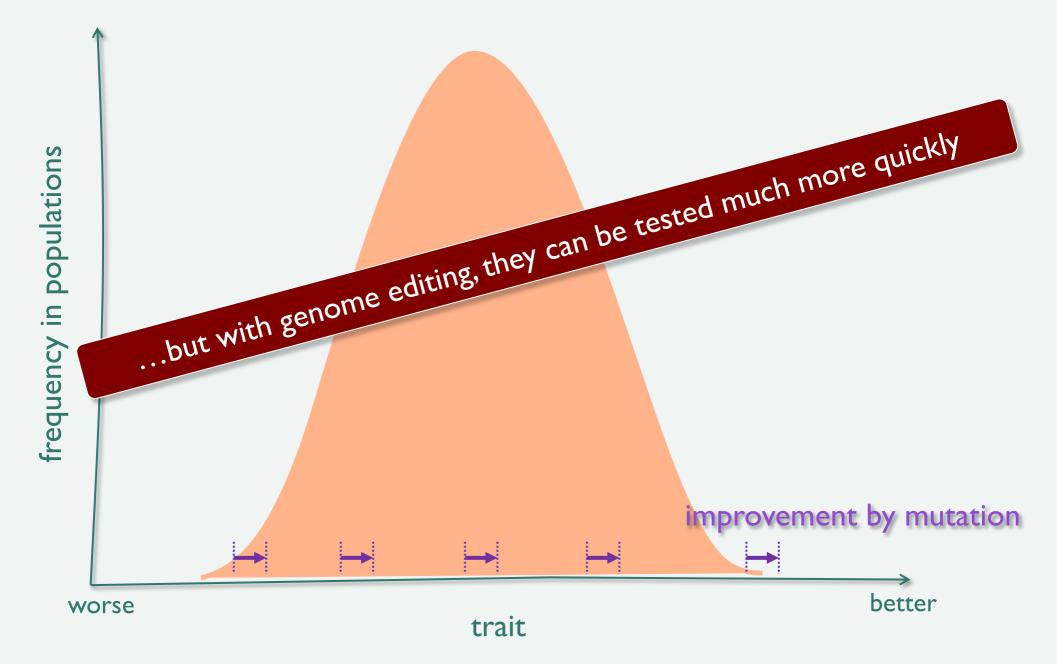


Survival

Home Advantage of Genetic Variants



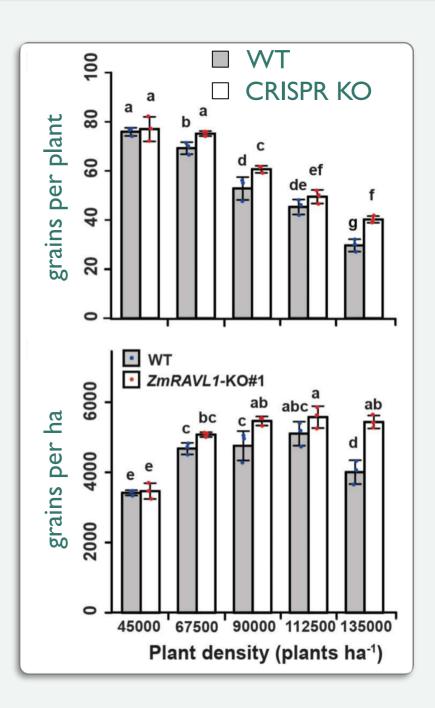
M Expósito (now Carnegie)


With Burbano, Bossdorf & Nielsen labs

Exposito-Alonso et al. (2019)

How do we get such variants into our crops?

Some recent hits of genome editing



Teosinte ligule allele narrows plant architecture and enhances high-density maize yields Science 2019

Jinge Tian^{*}, Chenglong Wang^{*}, Jinliang Xia, Lishuan Wu, Guanghui Xu, Weihao Wu, Dan Li, Wenchao Qin, Xu Han, Qiuyue Chen, Weiwei Jin, Feng Tian[†]

teosinte variant maize variant (weak) (strong)

Plenty of Examples of Advantageous Gene Inactivation

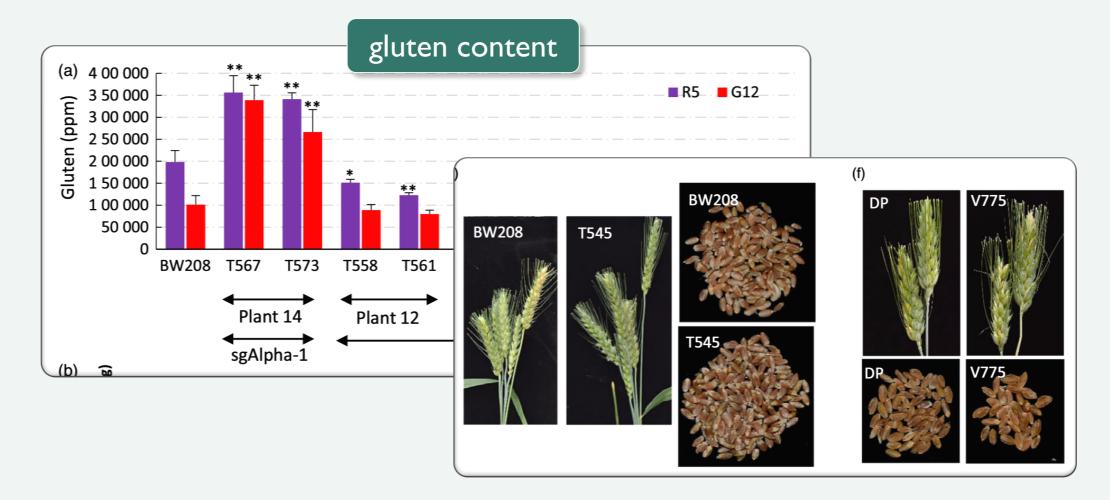
Semidwarf (*sd-1*), "green revolution" rice, contains a defective gibberellin 20-oxidase gene

Wolfgang Spielmeyer*[†], Marc H. Ellis*, and Peter M. Chandler

PNAS 2002

Division of Plant Industry, Commonwealth Scientific and Industrial Research Organization, GPO Box 1600, Canberra ACT 2601, Australia

GPO Box 1600, Canberra ACT 2601, Australia MAGSAYSAY

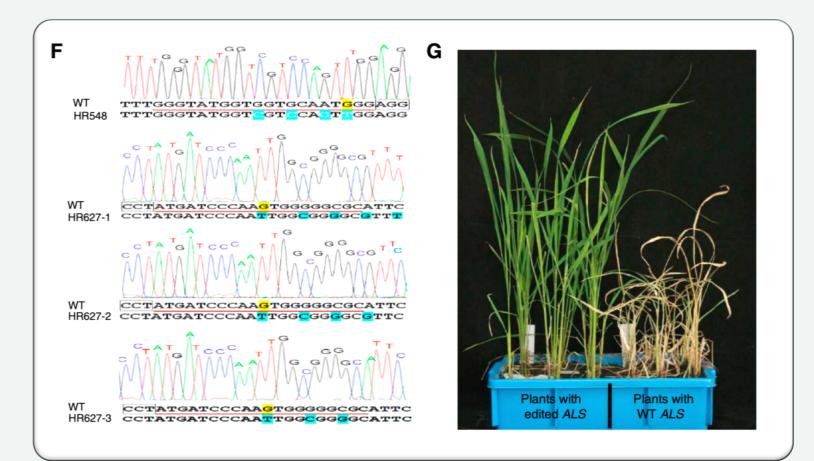

L	ate	ggto	ggc	cga	gca	ccc	cac	gcc	acc	aca	gcc	gca	cca	acc	acc	gcc	cat	gga	ctc	cacc	
	М	V	А	E	Н	Ρ	т	Р	Ρ	Q	Ρ	Н	Q	Ρ	Ρ	Ρ	М	D	S	Т	
51	gco A															cct L				gccc P	
121	aag	gato	CCC	gga	gcc	att	cgt	gtg	gcc	gaa	cgg	cga	cgc	gag	gcc		gtc	ggc	ggc	ggag E	
L81																				gcgc	
LOI				_	-		_	-								A					
	Г	D	141	Р	V	V	D	V	G	V	Г	R	D	G	D	А	E	G	Ц	R	
241	cg	cgco	cgc	ggc	gca	ggt	ggc	cgc	cgc	gtg	cgc	cac	gca	cgg	gtt	ctt	сса	ggt	gtc	ogag	
	R	А	А	А	Q	V	А	А	А	С	А	Т	Н	G	F	F	Q	V	S	E	
301	ca	cgg(cgt	cga	cgc	cgc	tct	ggc	gcg	ICGC	cgc	gct	cga	cgg	cgc	cag	cga	ctt	ctt	ccgc	
	Н	G	V	D	А	А	L	А	R	А	А	L	D	G	A	S	D	F	F	R	
361	ct	ccc	gct	cgc	cga	gaa	gcg	ccg	cgc	gcg	CCG	cgt	CCC	ggg	cac	cgt	gtc	cgg	cta	cacc	
	L	Р	L	А	E	K	R	R	А	R	R	V	Ρ	G	Т	V	S	G	Y	т	
121	ag	cac	cca	cac	cga	ccq	ctt	cac	ctc	caa	act	CCC	atq	gaa	gga	gac	cct	ctc	ctt	cggc	
	S	А	Н	А	D	R	F	A	S	K	L	Р	W	K	Е	Т	L	S	F	G	
181		cca		cca									cta		ctc	cag	cac	cct	caa	CCCC	
	F		D	R	A	A	A			V			Y	F	S	S	т	L	G	P	
	-		2			t				•		_		-	_	-	-		-	_	
					the second s	-	-					•	•								
541																				gtcg	
	D	\mathbf{F}	А	Ρ	М	G	R	V	Y	Q	K	Y	С	Е	E	М	K	Ē	\mathbb{L}	S	
501																				ggag	
	L	т	Ι	М	Ε	\mathbf{L}	\mathbf{L}	E	L	S	\mathbf{L}	G	V	E	R	G	Y	Y	R	E	
661	tt	ctt	cgc	gga	cag	cag	ctc	aat	cat	gcg	gtg	rcaa	cta	cta	CCC	gcc	atg	CCC	gga	gccg	
	F	F	А	D	S	S	S	I	М	R	С	Ν	Y	Y	Ρ	Ρ	С	Р	E	Р	
721	ga	gcg	gac	gct	cgg	cac	ggg	ccc	gca	ctg	icga	ICCC	cac	cgc	cct	cac	cat	cct	cct	ccag	
	Ε	R	т	L	G	т	G	Ρ	Н	С	D	Ρ	т	А	L	Т	I	L	L	Q	
781	ga	cga	cgt	cgg	cgg	cct	cga	ggt	cct	cgt	cga	icgg	rcga	atg	gcg	ccc	cgt	cag	ccc	cgtc	
	D	D	v	G	G	L	E	V	L	V	D	G	E	W	R	Р	V	S	Р	V	
	2	2	•	0	0	_		•	-	•		-				gca					
														-	-						
841	CC	cgg	cgc	cat	ggt	cat	caa	cat	cgg	lcda	icac	ctt	cat	.ggc	gct	gtc	gaa	cgg	gag	gtat	
	Р	G	А	М	V	I	Ν	I	G	D	т	F	М	А	L	S	N	G	R	Y	
901	aa	gag	ctg	cct	gca	cag	ggc	ggt	ggt	gaa	icca	igcg	gcg	igga	gcg	gcg	gto	gct	ggc	gttc	
	Κ	S	С	L	Н	R	А	V	V	Ν	Q	R	R	E	R	R	S	\mathbf{L}	А	F	
961	tt	cct	gtg	ccc	gcg	gga	gga	cag	ggt	ggt	gcg	gcc	gcc	gcc	gag	icgc	cgc	cac	gcc	gcag	
	F	L	C	Ρ	R	E	D	R	V	V	R	Р	Ρ	Р	S	A	A	т	Ρ	Q	
1021	ca	cta	ccc	qqa	ctt	cac	ctg	aac	cga	acct	cat	gcg	rctt	cac	gca	gcg	cca	cta	ccg	rcgcc	
							-								-	R					
1081	αa	cac	cca	cac	act	cqa	cac	ctt	cac	acc	rcto	ract	cac	acc	acc	aac	cac	cqa	cac	cgcc	
																A			A	A	
1141		gac		-				-	-			_		-	-			_			
****	-	T		-		-			S	*	,										
	~	*	~	×	*		~	-	5												1
		-					-						A 100	-	100					10. PT. 1 P. A	10.00

Wheat With Reduced Allergenicity

Low-gluten, nontransgenic wheat engineered with CRISPR/Cas9 Plant Biotech. J., 2018

Susana Sánchez-León^{1,#}, Javier Gil-Humanes^{2,*,#}, Carmen V. Ozuna¹, María J. Giménez¹, Carolina Sousa³, Daniel F. Voytas² and Francisco Barro^{1,*}

A Controversial Trait: Herbicide Tolerance


Engineering Herbicide-Resistant Rice Plants through CRISPR/Cas9-Mediated Homologous Recombination of Acetolactate Synthase

Dear Editor,

Genome editing technologies enable precise modifications of DNA sequences *in vivo* and offer great promise for crop improvement <u>CRISPR/Cas0</u> (Clustered Begularly, Interspaced Short

Sun et al., Mol. Plant 2016

Herbicide Tolerance – Without GMOs or Genome Editing

Have you heard about Clearfield[®] Canola?

It's the only canola system that delivers control of flushing weeds.

Clearfield canola is giving growers the kind of results they can't stop talking about. It's easy to use and the benefits are exceptional. So, say goodbye to your weeds and hello to your neighbour, because you'll be excited to tell them all about Clearfield canola.

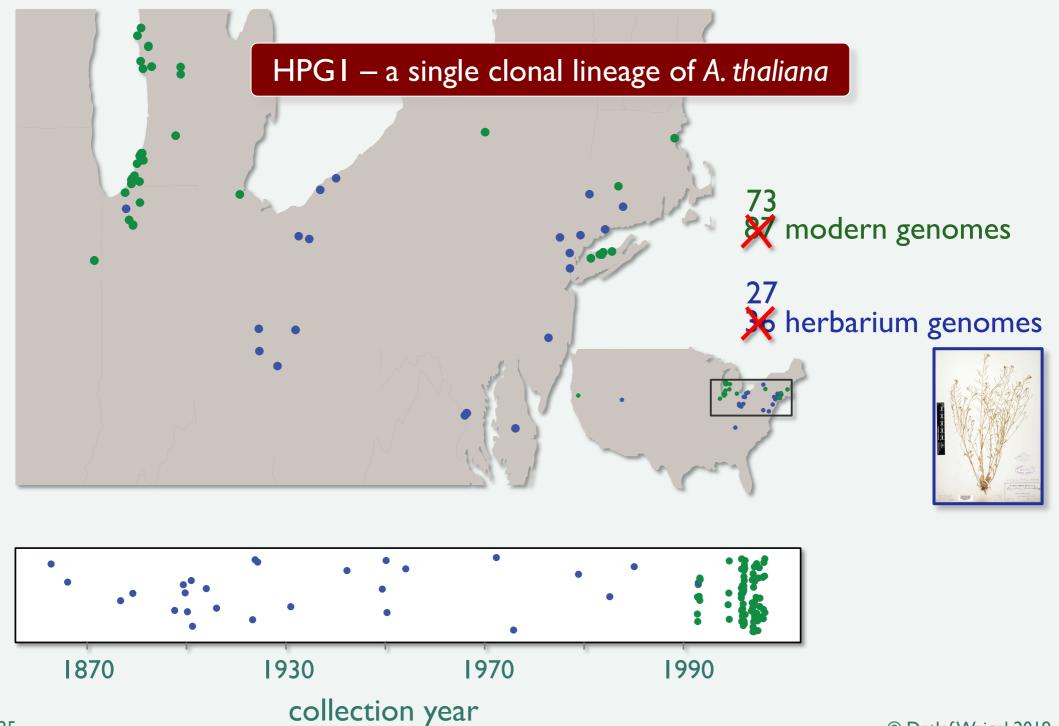
The **Clearfield** canola system controls weeds with a single in-crop application, saving time you might ordinarily have to spend in the sprayer. And less weeds means higher yield potential.

Clearfield Production System for Canola

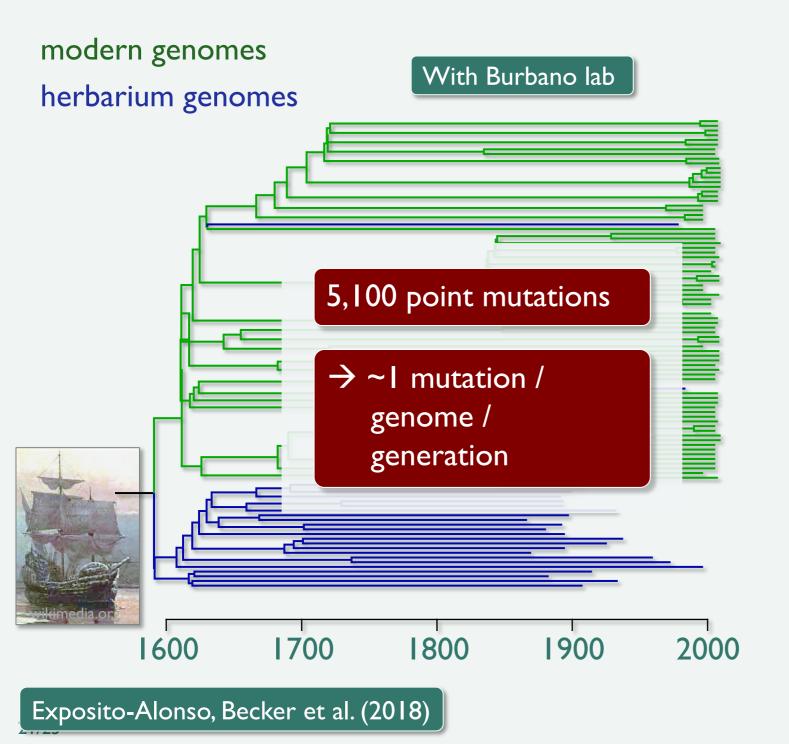
We strive to provide growers with holistic trait and herbicide solution package that support their canola crops. Get to know why our history, benefits and sustainability efforts matter. Discover what **Clearfield** can

Clearfield Products

Find solutions that work for you and your yield goals by applying **Clearfield** products. Ares[™] SN is a herbicide designed for the **Clearfield** Production System. It offers growers consistent and reliable control of grassy and broadleaf weeds,

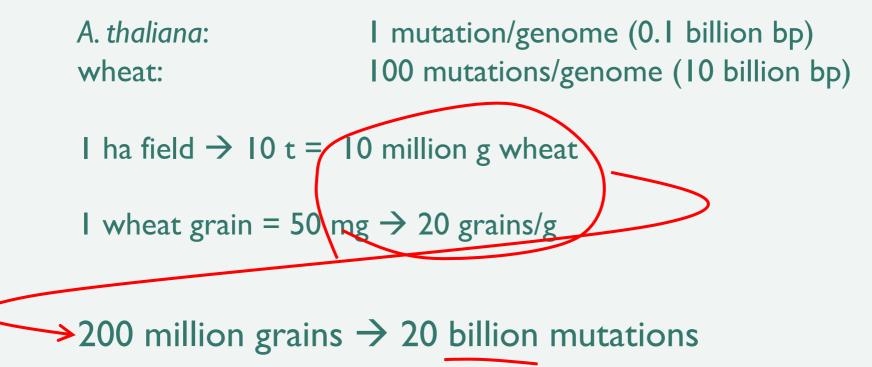

Information about the Clearfield Commitment

The **Clearfield** Commitment for canola is an agreement that allows growers to access the benefits of canola hybrids with the **Clearfield** trait. Uncover more about the **Clearfield** Production System


Natural Mutation Rates

Reconstruction of Phylogeny and Mutation Rates

M Expósito (now Carnegie)


C Becker (now GMI/LMU)

What Does This Imply For Crops Such as Wheat?

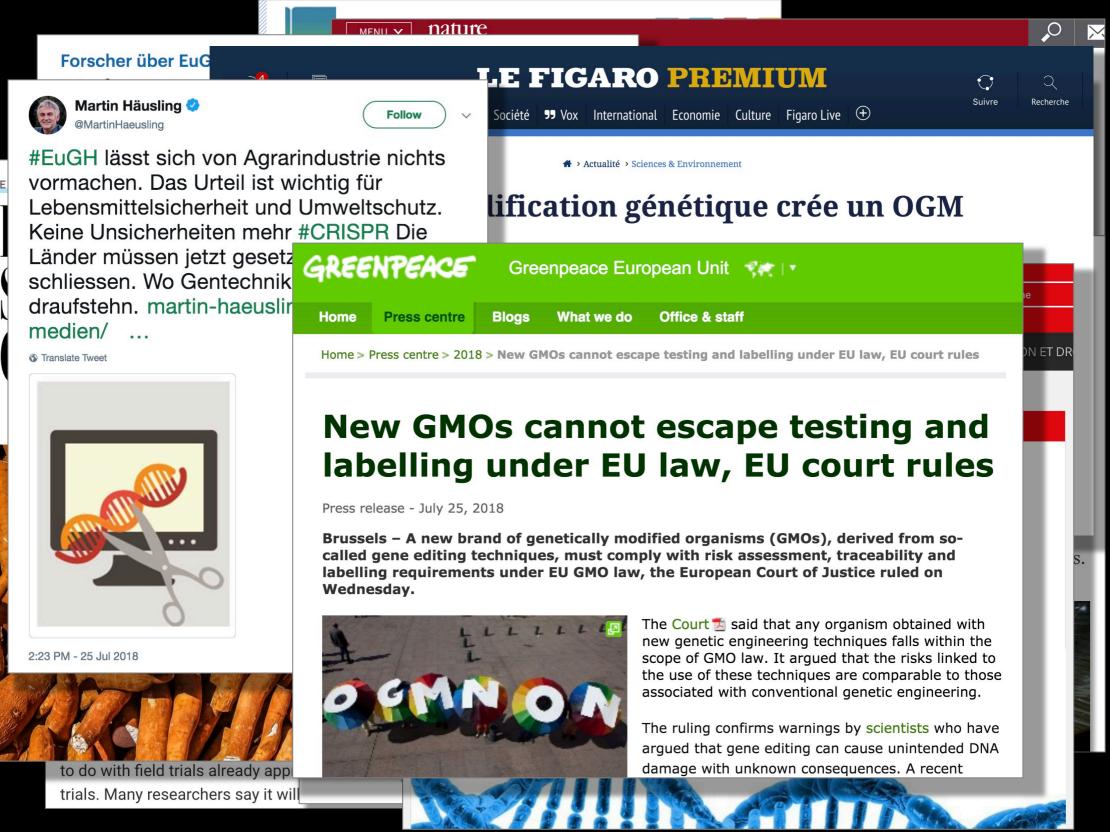


Table 2 Variations within genes between B73 and Mo17 genomes									
Variation type	Syntenic	genes	Nonsyntenic genes						
	B73 genes	Mo17 genes	B73 genes	Mo17 genes					
Structurally conserved genes	28,122	28,186	1,534	1,216					
Without amino acid substitutions	12,167	12,674	326	306					
No DNA variation in CDS region	9,760	10,231	256	246					
No DNA variation in CDS and intron region	6,870	7,344	169	169					
No DNA variation in genic region ^ь	2,498	2,458	12	10					
With amino acid changes	15,955	15,512	1,198	910					
With missense mutation in CDS	15,611	15,438	1,130	899					
With 3 <i>n</i> indel in CDS	5,941	5,632	186	221					
Genes with large effect mutations	3,947	4,020	1,387	977					
Start-codon mutation	240	374	175	109					
Stop-codon mutation	268	418	244	236					
Splice-donor mutation	170	124	73	37					
Splice-acceptor mutation	256	162	175	90					
With $3n \pm 1$ indel in CDS	2,044	1,983	547	384					
Premature stop codon	2,692	2,635	922	648					
Genes with large structural variations	1,612	1,391	2,112	1,765					
At least one exon missing	1,025	811	1,725	1,508					
PAV genes	-	-	72	50					
Total	33,681ª	33,597ª	5,105ª	4,008ª					

^aOnly genes and their best hits in the counterpart genome anchored in ten pseudomolecules were included for the analysis. ^bGenic regions include 2 kb upstream and downstream of the gene body.

	B73	Mol7
total number of genes	38,686	37,605
synonymous substitutions	16,744	16,437
nonsense- mutations	3,614	3,283
≥I exon missing	2,750	2,319

Phenomics-assisted breeding appears to be a promising tool for deciphering the stress responsiveness of crop and animal species (Papageorgiou 2017; Kole et al. 2015; Lopes et al. 2015; Boettcher et al. 2015). Initially discovered in bacteria and archaea, CRISPR–Cas9 is an adaptive immune system found in prokaryotes and since 2013 has been used as a genome editing tool in plants. The main use of CRISPR systems is to achieve improved yield performance, biofortification, biotic and abiotic stress tolerance, with rice (Oryza sativa) being the most studied crop (Gao 2018; Ricroch et al. 2017).

Intergovernmental Panel on Climate Change 2019 report

