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Abstract

This supplementary material provides more background and additional empirical
results for the sparse principal component analysis method. Some results regarding
the estimation of the center are provided. Conditions on the eigenvalues are stated
for successful recovery of the sparse principal components. The additional simulation
results include results concerning outlier detection performance. The analysis of the
escalator video is discussed in more detail. A toy example illustrating the advantages
of sequential estimation of the principal components is given. Finally, the performance
of the method is evaluated when estimating a five-dimensional PC subspace.
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Estimation of the center

We compare the performance of (reweighted) LTS-SPCA when updating or not updating

the estimate of the center in the iterations. When the center is not updated, we center

the data with the estimate of µ given by LTS-PCA before running Algorithm 2 in the

manuscript and remove step 11 from the algorithm. From the results in Table S.1 it can

be seen that updating the center estimate leads to slightly better results in most cases.

Table S.1: The average angles between estimated and true PC subspace given by
(reweighted) LTS-SPCA when updating or not updating the center estimate for the data
generated from setting 3 (η = 25) with n = 200, p = 20 (b = 4) or 500 (b = 20) and
ε = 0%, 20% or 40%.

p update µ ε (%) LTS-SPCA LTS-SPCA-RW2 LTS-SPCA-RW5

20

yes
0 0.0878 0.0560 0.0573
20 0.0837 0.0665 0.0649
40 0.0706 0.0787 0.0698

no
0 0.0905 0.0556 0.0551
20 0.0846 0.0706 0.0686
40 0.0833 0.0975 0.1016

500

yes
0 0.0760 0.0616 0.0580
20 0.0755 0.0683 0.0661
40 0.0732 0.0786 0.0771

no
0 0.0760 0.0615 0.0590
20 0.0781 0.0683 0.0658
40 0.0933 0.0783 0.0812

Conditions on the eigenvalues

Let us define the largest and smallest s-sparse eigenvalue for any matrix A ∈ Rp×p by

λmax(A, s) = max
v∈Rp,‖v‖2=1

vTAv s.t. ‖v‖0 6 s, (S.1)

and

λmin(A, s) = min
v∈Rp,‖v‖2=1

vTAv s.t. ‖v‖0 6 s, (S.2)
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respectively. Now, define ρ(A, s) = max{|λmax(A, s)|, |λmin(A, s)|}. We assume that the

regular observations follow model (3) in the manuscript and the corresponding empirical

covariance matrix Σ̂ can be decomposed into

Σ̂ = Σ +E (S.3)

where Σ is the population covariance matrix. Denote by λj(Σ) the jth eigenvector of Σ,

where λ1(Σ) > λ2(Σ) > . . . > λk(Σ). It can be seen that λj(Σ) = ρ2j in the multi-spike

model. Let ∆λ = λ1(Σ)−max
j>1

(λj(Σ)) denote the gap between the largest eigenvalue and

the remaining eigenvalues, and s̄ = ‖v1‖0 the true sparsity of the first principal component.

For the single spike model it holds that s = O(s̄) and with large probability ρ(E, s) =

O(
√
s log p/n) when the zi’s are random Gaussian noise (see Theorem 4 in Yuan and Zhang

(2013) for more details). Under the assumption that ∆λ > 2ρ(E, s′), with s′ = 2s + s̄ for

some s > s̄, Yuan and Zhang (2013) have shown that for the hard-thresholding penalty the

estimation error is of order ‖ṽ − v‖ = O(s̄ log(p)/n) and the upper bound decreases with

larger ∆λ. For the multiple spike model, the assumption needs to hold for the successive

deflated matrices to ensure that the PCs are estimated with an acceptable error bound.

Additional simulation results

Here we present additional results for the simulation study in Section 3 of the manuscript.

These results confirm the conclusions in the manuscript.
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Estimation performance
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Figure S.1: Average angles for the three contamination settings with n = 200, p = 20,
b = 4, ε = 20% and varying η. The dashed horizontal line is the result of sPCA-rSVD on
clean data.
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Figure S.2: Average angles for the three contamination settings with n = 200, p = 20,
b = 4, ε = 40% and varying η. The dashed horizontal line is the result of sPCA-rSVD on
clean data.
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Figure S.3: Average angles computed for the three contamination settings corresponding
to the three columns for p = 2000 with different b and ε, and varying η. The horizontal
dashed line is the angle given by sPCA-rSVD on clean data.
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Variable selection performance
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Figure S.4: Average false negatives (FN) for setting 1 with n = 200, p = 20, b = 4, ε = 20%
and varying η. The dashed horizontal line is the result of sPCA-rSVD on clean data.
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Figure S.5: Average false negatives (FN) for setting 2 with n = 200, p = 20, b = 4, ε = 20%
and varying η. The dashed horizontal line is the result of sPCA-rSVD on clean data.
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Figure S.6: Average false negatives (FN) for setting 3 with n = 200, p = 20, b = 4, ε = 20%
and varying η. The dashed horizontal line is the result of sPCA-rSVD on clean data.
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Figure S.7: Average false positives (FP) for setting 1 with n = 200, p = 20, b = 4, ε = 20%
and varying η. The dashed horizontal line is the result of sPCA-rSVD on clean data.
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Figure S.8: Average false positives (FP) for setting 2 with n = 200, p = 20, b = 4, ε = 20%
and varying η. The dashed horizontal line is the result of sPCA-rSVD on clean data.
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Figure S.9: Average false positives (FP) for setting 3 with n = 200, p = 20, b = 4, ε = 20%
and varying η. The dashed horizontal line is the result of sPCA-rSVD on clean data.
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Figure S.10: Average false negatives (FN) for setting 1 with n = 200, p = 20, b = 4,
ε = 40% and varying η. The dashed horizontal line is the result of sPCA-rSVD on clean
data.
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Figure S.11: Average false negatives (FN) for setting 2 with n = 200, p = 20, b = 4,
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Figure S.12: Average false negatives (FN) for setting 3 with n = 200, p = 20, b = 4,
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Figure S.13: Average false positives (FP) for setting 1 with n = 200, p = 20, b = 4, ε = 40%
and varying η. The dashed horizontal line is the result of sPCA-rSVD on clean data.
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Figure S.15: Average false positives (FP) for setting 3 with n = 200, p = 20, b = 4, ε = 40%
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Figure S.16: Average false negatives (FN) for setting 1 with n = 200, p = 2000, b = 20 or
200, ε = 20% or 40%, and varying η. The dashed horizontal line is the result of sPCA-rSVD
on clean data.
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Figure S.17: Average false positives (FP) for setting 1 with n = 200, p = 2000, b = 20 or
200, ε = 20% or 40%, and varying η. The dashed horizontal line is the result of sPCA-rSVD
on clean data.
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Figure S.18: Average false negatives (FN) for setting 2 with n = 200, p = 2000, b = 20 or
200, ε = 20% or 40%, and varying η. The dashed horizontal line is the result of sPCA-rSVD
on clean data.
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Figure S.19: Average false positives (FP) for setting 2 with n = 200, p = 2000, b = 20 or
200, ε = 20% or 40%, and varying η. The dashed horizontal line is the result of sPCA-rSVD
on clean data.
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Figure S.20: Average false negatives (FN) for setting 3 with n = 200, p = 2000, b = 20 or
200, ε = 20% or 40%, and varying η. The dashed horizontal line is the result of sPCA-rSVD
on clean data.
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Figure S.21: Average false positives (FP) for setting 3 with n = 200, p = 2000, b = 20 or
200, ε = 20% or 40%, and varying η. The dashed horizontal line is the result of sPCA-rSVD
on clean data.
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Outlier detection performance
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Figure S.22: The masking effect for the three contamination settings with n = 200, p = 20,
b = 4, ε = 20% or 40%, and varying η.
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Figure S.23: The swamping effect for the three contamination settings with n = 200,
p = 20, b = 4, ε = 20% or 40%, and varying η.
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Figure S.24: The masking effect for the three contamination settings with n = 200, p =
2000, b = 20, ε = 20% or 40%, and varying η.
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Figure S.25: The swamping effect for the three contamination settings with n = 200,
p = 2000, b = 20, ε = 20% or 40%, and varying η.
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Figure S.26: The masking effect for the three contamination settings with n = 200, p =
2000, b = 200, ε = 20% or 40%, and varying η.
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Figure S.27: The swamping effect for the three contamination settings with n = 200,
p = 2000, b = 200, ε = 20% or 40%, and varying η.
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Escalator video data continued

Figure S.28 displays images of the original video (left) and the diagnostic plots corre-

sponding to LTS-SPCA (middle) and LTS-PCA (right). The four rows in the first column

correspond to frames 1, 30, 70, and 100 of the video. On the diagnostic plots, the obser-

vation is then marked by a cross. The positioning information for all the frames can be

found at https://www.dropbox.com/s/ykngmddjw0o9gnh/video-out-detect-4pc.mp4?

dl=0. These plots show that LTS-SPCA is more consistent with the movement in the

original video. When we only look at the scaled ODs on the vertical axis, the two methods

deliver similar information. The emerging persons result in an increase of the OD. Indeed,

the first 54 frames are flagged as orthogonal outliers by LTS-SPCA/LTS-PCA. However,

within the PC subspace, the pictures are quite different. The score weights given by LTS-

SPCA change consistently with the moving crowds on the escalator. In the beginning, when

people start gathering above the escalator, the frames jump out as bad leverage points on

the diagnostic plot. Finally, when the moving crowds disappear in the video, the corre-

sponding frames become non-outlying. On the other hand, the score weights corresponding

to LTS-PCA show a rather random variation without clear relation to the movement in

the video.
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(a) Original Video (b) LTS-SPCA (c) LTS-PCA
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Figure S.28: The original video (a), and the diagnostic plots given by LTS-SPCA (b), and
by LTS-PCA (c).
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A toy example

Here, we use a toy example to illustrate potential problems that may occur when estimating

the whole PC subspace at once with LTS-PCA. Then, we use the same example to show

how the LTS-(S)PCA works with the deflation method.

To estimate the whole PC subspace at the same time, we need to pre-specify the dimen-

sion of the PC subspace. As discussed in the manuscript, the outlier detection performance

depends on the dimension of the PC subspace. It is highly possible for an orthogonal out-

lier detected in the lower dimensional PC subspace to be a score outlier in an enlarged PC

subspace. These score outliers may then affect all the PCs which span the PC subspace.

This can lead to instability in the detection of the outliers. If some of the outliers are

modeled by the PC subspace and fail to be detected, they will not only destroy the sparse

structure within the PC subspace, but also inflate the estimate of the explained variance

and lead to an erroneous estimation of the PC dimension. Moreover, due to the presence

of outliers, the estimated PC subspaces will not be necessarily nested, i.e. lower dimen-

sional PC subspaces may not be covered by higher dimensional subspaces. This further

complicates outlier detection and the selection of the PC dimension.

We use a toy example to illustrate this phenomenon. We simulate a set of regular

observations from a multivariate Gaussian distribution with block diagonal covariance ma-

trix as in the simulation study, but with three correlated blocks of important variables.

More explicitly, we generate X = Xu + Xnoise with Xu ∼ Np(0,Σ), Xnoise ∼ Np(0, Ip),

Σ = D
1
2RD

1
2 with D a diagonal matrix, and

R =


R(a1) 0b×b 0b×b 0b×(p−3b)

0b×b R(a2) 0b×b 0b×(p−3b)

0b×b 0b×b R(a3) 0b×(p−3b)

0(p−3b)×b 0(p−3b)×b 0(p−3b)×b I(p−3b)


where R(y) (|y| < 1) is a b × b matrix with ones on its diagonal and y as the off-

diagonal elements. We take n = 200, p = 20, b = 4, a1 = 0.9, a2 = 0.7, a3 = 0.5 and

D = diag(102, . . . , 102︸ ︷︷ ︸
b

, 72, . . . , 72︸ ︷︷ ︸
b

, 52, . . . , 52︸ ︷︷ ︸
b

, 22, . . . , 22︸ ︷︷ ︸
b

). For this setting, the regular data

has three principal components which are the three leading eigenvectors of the covariance
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matrix Σ:

v1 = (0.5, . . . , 0.5︸ ︷︷ ︸
4

, 0, . . . , 0︸ ︷︷ ︸
4

, 0, . . . , 0︸ ︷︷ ︸
4

, 0, . . . , 0︸ ︷︷ ︸
8

)T

v2 = (0, . . . , 0︸ ︷︷ ︸
4

, 0.5, . . . , 0.5︸ ︷︷ ︸
4

, 0, . . . , 0︸ ︷︷ ︸
4

, 0, . . . , 0︸ ︷︷ ︸
8

)T

v3 = (0, . . . , 0︸ ︷︷ ︸
4

, 0, . . . , 0︸ ︷︷ ︸
4

, 0.5, . . . , 0.5︸ ︷︷ ︸
4

, 0, . . . , 0︸ ︷︷ ︸
8

)T

Then, we add 20% of observations which are outlying in two variables in two blocks of

correlated variables and have larger variances in the unimportant variables. In particular,

we set (Xout)j ∼ N(15, 3) for j ∈ {1, 2, 5, 6}, (Xout)j ∼ N(0, 3) for j ∈ {13, . . . , 20},

and (Xout)j = Xj otherwise. The data matrix is shown in Figure S.29, where each line

represents one observation, the grey lines represent the clean observations, and the red lines

represent outliers. It can be seen that the outliers are very close to the regular observations,

and are hard to detect if we inspect each variable individually.

5 10 15 20

−
2

0
−

1
0

0
1

0
2

0
3

0

Variables

X

Figure S.29: The plot of the original data matrix for the toy example.

We first apply LTS-PCA to estimate a k-dimensional PC subspace for different choices

of k. The resulting loadings for different dimensions k are displayed in Figure S.30. It can

be seen that for k = 1, the single PC mainly contains information from the first block of

important variables. For k = 2, LTS-PCA produces two PCs which model information from

the first and the second block of important variables, respectively. We can thus conclude
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that the first PC or the first two PCs are successfully recovered by LTS-PCA when k = 1

or k = 2, respectively (ignoring the small loadings for the other variables due to the lack

of sparsity). However, for k = 3, not only the third PC but also the first one is estimated

erroneously. In this case, the three PCs fail to recover the block structure within the PC

subspace.

Similar phenomena can be seen when estimating more PCs. For k > 3, the LTS-PCA

PC subspace is affected by the outliers. Indeed, several outliers have small orthogonal

distances as can be seen from Figure S.31. When k = 3 or 4, most of the outliers also have

small score weights and thus cannot be detected. From Figure S.32 (a) and (b), we can

see that they indeed lie very close to the regular data in the k-dimensional PC subspace.

If we estimate a 5-dimensional PC subspace, the fifth PC provides a separation between

the outliers and the regular data which makes the outliers detectable as score outliers (see

Figure S.32 (c)). However, if we enlarge the dimension to k = 6 the estimates of all PCs

change (see Figure S.30 (f)) and the outliers become undetectable again (see Figure S.31

(f) and Figure S.32 (d)). Any unflagged outliers unduly inflate the estimated variance

contained in the PC subspace, and deteriorate the estimation of the PC dimension.

On the other hand, if we search for kmax = 6 PCs sequentially by running LTS-PCA

with k = 1 on a set of deflated matrix (i.e. the non-sparse analog of LTS-SPCA), we can

get a set of nested PC subspaces, which means that lower dimensional PC subspaces are

now fully covered by higher dimensional PC subspaces. The resulting PC loadings are

displayed in Figure S.33 (a). It can be seen that the first two PCs are both well estimated

(again ignoring small loadings on other variables). In contrast to the previous approach,

the inclusion of a higher order PC does not influence the estimation of its leading PCs.

The diagnostic plots for different dimensions k are provided in Figure S.34. The diagnostic

plots for k = 1 and k = 2 are very similar to those in Figure S.31. The outliers can be

flagged as orthogonal outliers with respect to the k-dimensional PC subspace whenever

k 6 4. When the 5th PC is included, some outliers become score outliers. From the

scatter plot of the scores in Figure S.33 (b), we can clearly observe the separation of the

regular observations and outliers on the 5th PC. By assigning a large weight to the 5th

PC according to its kurtosis, the outliers will be flagged as score outliers within the PC
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subspace (see Figure S.34 (e)). Furthermore, after modeling the outlying information by

the 5th PC, those outliers will have non-outlying projections on the subsequent PCs. The

extra PCs model the remaining information in the data, and bear very limited information.

Hence, including the extra PCs will not have much influence on the detection of outliers.

(a) k = 1 (b) k = 2 (c) k = 3
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Figure S.30: Plots of the PC loadings when estimating the whole PC subspace at once
using LTS-PCA for different dimensions k on the toy example.

Now, we explain how LTS-SPCA works on the toy example. We search for the PCs

sequentially using LTS-SPCA together with the deflation method. We start with searching

for the first PCs using the original data matrix (see Figure S.29) in which the outliers

are hard to detect if we inspect each variable individually. However, all the outliers are

successfully excluded from the h-subset, and this leads to an accurate estimate of the

first PC, see Figure S.35 (a1). The deflated matrix estimated from the first PC is shown in

Figure S.35 (a2). We can observe that most of the variability in the first block of correlated

variables is removed by deflation. Moreover, the outliers are more visible in the deflated
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(a) k = 1 (b) k = 2 (c) k = 3

1.0 0.8 0.6 0.4 0.2 0.0

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

Score outlier weight

S
c
a

le
d

 O
D

1.0 0.8 0.6 0.4 0.2 0.0

0
1

2
3

4

Score outlier weight

S
c
a

le
d

 O
D

1.0 0.8 0.6 0.4 0.2 0.0

0
.5

1
.0

1
.5

2
.0

Score outlier weight

S
c
a

le
d

 O
D

(d) k = 4 (e) k = 5 (f) k = 6

1.0 0.8 0.6 0.4 0.2 0.0

0
.5

1
.0

1
.5

2
.0

Score outlier weight

S
c
a

le
d

 O
D

1.0 0.8 0.6 0.4 0.2 0.0

0
.5

1
.0

1
.5

2
.0

Score outlier weight

S
c
a

le
d

 O
D

1.0 0.8 0.6 0.4 0.2 0.0

0
.5

1
.0

1
.5

2
.0

Score outlier weight

S
c
a

le
d

 O
D

Figure S.31: Diagnostic plots when estimating the whole PC subspace using LTS-PCA for
different dimensions k on the toy example: • represents the regular data, and N represents
the outliers.

matrix than in the original matrix. By estimating the second and the third PCs (see

Figure S.35 (b1) and (c1)), we sequentially remove most of the variability in the next two

blocks of correlated variables (see Figure S.35 (b2) and (c2)). The first three PCs together

give an accurate estimation of the true PC subspace, and the outliers become more visible

in its orthogonal complement (see Figure S.35 (c2)). The subsequent PCs, especially the

6th PC, will model the extra variability introduced by the outliers, since that variability

dominates the noise remaining in the regular data. Therefore, most of the outliers become

score outliers (see Figure S.36 (f)) when the 6th PC is included, and they are not visible

anymore after deflation (see Figure S.36 (f2)).

Starting from the 6-dimensional PC subspace, we run a reweighting step with all the

detected outliers removed. The final loadings are shown in Figure S.37 (a). From the scree

plot (see Figure S.37 (b)), we can select k = 3 PCs. We can see that the first three PCs
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(a) k = 3 (b) k = 4
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Figure S.32: Scatter plots of the scores when estimating the whole PC subspace using
LTS-PCA for different dimensions k on the toy example: • represents the regular data,
and N represents the outliers.
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Figure S.33: (a) Plot of the PC loadings and (b) scatter plot of the scores when estimating a
6-dimensional PC subspace sequentially using LTS-PCA together with the deflation method
on the toy example: • represents the regular data, and N represents the outliers.

are well-estimated, and the last three PCs now mainly contain noise. The final diagnostic

plot is shown in Figure S.37 (c).
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(a) k = 1 (b) k = 2 (c) k = 3
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Figure S.34: Diagnostic plots given by estimating a 6-dimensional PC subspace sequentially
using LTS-PCA together with the deflation method on the toy example: • represents the
regular data, and N represents the outliers.
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Figure S.35: Plots of deflated matrices and PC loadings when estimating 6 PCs sequentially
using LTS-SPCA together with the deflation method on the toy example.
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(a) k = 1 (b) k = 2 (c) k = 3
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Figure S.36: Diagnostic plots given by estimating a 6-dimensional PC subspace sequentially
using LTS-SPCA together with the deflation method on the toy example: • represents the
regular data, and N represents the outliers.
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Figure S.37: (a) Plot of the PC loadings, (b) scree plot of the explained variance (c)
diagnostic plot using Reweighted LTS-SPCA on the toy example.
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Simulation study with 5 PCs

Here we consider a simulation study which contains 5 important PCs. The regular data are

generated from a multivariate normal distribution with block diagonal covariance matrix

plus additional noise as in the simulation study in the manuscript. Here, we take five blocks

of correlated variables. The correlations between the variables within the five blocks are

0.9, 0.7, 0.8 0.6 and 0.5, respectively. The variances of the individual variables in the five

blocks are 302, 252, 202, 152, and 102, respectively. Moreover, we take n = 200, p = 2000,

b = 20. Then, we add ε = 20% or 40% of outliers. The outliers are generated according to

setting 1 in the manuscript, which is the most difficult type of outliers. Hence, the first two

variables in the second block are contaminated, i.e. (Xout)j ∼ N(−η, 1) if j = b+1 or b+2,

and (Xout)j = Xj otherwise. Here, η varies from 25 to 500 with steps of length 25. We run

LTS-SPCA with kmax = 5 or 10 followed by a reweighting step, and then consider the first 5

PCs. As before, we denote by ”LTS-SPCA” the initial LTS-SPCA without reweighting, and

by ”LTS-SPCA-RW5” or ”LTS-SPCA-RW10” the reweighted LTS-SPCA using kmax = 5 or

kmax = 10, respectively. The average angles between the estimated and true PC subspaces,

and the FNs and FPs associated with each PC and the PC subspace over 200 replicates

are reported in Figures S.38-S.42. Similar patterns can be observed as for the case of 2

PCs in the manuscript. The contamination in the important variables may lead to large

false negatives for the PCs given by the initial LTS-SPCA. As long as the outliers remain

detectable, reweighting based on a sufficient number of initial PCs significantly improves

the subspace estimation. Moreover, it is obvious that the reweighting step can also largely

reduce the number of false positives from the initially estimated PCs.
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(a) ε = 20% (b) ε = 40%
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Figure S.38: Average angles for the simulation study with 5 PCs with n = 200, p = 2000,
b = 20, ε = 20% and varying η. The dashed horizontal line is the result of sPCA-rSVD on
clean data.
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Figure S.39: Average false negatives (FN) for the simulation study with 5 PCs with n = 200,
p = 2000, b = 20, ε = 20% and varying η. The dashed horizontal line is the result of sPCA-
rSVD on clean data.
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Figure S.40: Average false negatives (FN) for the simulation study with 5 PCs with n = 200,
p = 2000, b = 20, ε = 40% and varying η. The dashed horizontal line is the result of sPCA-
rSVD on clean data.
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Figure S.41: Average false positives (FP) for the simulation study with 5 PCs with n = 200,
p = 2000, b = 20, ε = 20% and varying η. The dashed horizontal line is the result of sPCA-
rSVD on clean data.
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Figure S.42: Average false positives (FP) for the simulation study with 5 PCs with n = 200,
p = 2000, b = 20, ε = 40% and varying η. The dashed horizontal line is the result of sPCA-
rSVD on clean data.
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