

Towards a neurobiologically-derived cognitive taxonomy

Romy Lorenz

Sir Henry Wellcome Postdoctoral Fellow University of Cambridge, Stanford University & Max Planck Institute for Human Cognitive and Brain Sciences

- A mechanisms underlies a mental phenomenon (i.e., system S is engaged in behavior Y)
- Behavior of the system S as a whole can be broken down into organized **causal interactions** among the activities of the **parts**.

Craver & Tabery 2017

- 1. Motivation
- 2. Neuroadaptive Bayesian optimization
 - 2.1 Human brain mapping
 - 2.2 Non-invasive brain stimulation
 - 2.3 Biomarker discovery
- 3. Implications for study pre-registration
- 4. What next?

1. Motivation

- 2. Neuroadaptive Bayesian optimization
 - 2.1 Human brain mapping
 - 2.2 Non-invasive brain stimulation
 - 2.3 Biomarker discovery
- 3. Implications for study pre-registration
- 4. What next?

Aims of cognitive neuroscience

Research questions

What are the fundamental aspects of cognition?

What are the fundamental roles of distinct networks in the brain?

How can cognitive processes be modulated or enhanced?

Standard approach

Aims of cognitive neuroscience

Lorenz et al. TiCS 2017

Human-brain mapping

- Over-specified inferences about functional-anatomical mappings
 - right IFG Hampshire & Sharp *TiCS* 2015
 - dACC Wager et al. PNAS 2016

Biomarker discovery

• Which exact task conditions will be sensitive to certain patient group? Sprooten et al. *Human Brain Mapping* 2017

Non-invasive brain stimulation

 Many *free* parameters, confusion surrounding efficacy

broad

1. Motivation

2. Neuroadaptive Bayesian optimization

- 2.1 Human brain mapping
- 2.2 Non-invasive brain stimulation
- 2.3 Biomarker discovery
- 3. Implications for study pre-registration
- 4. What next?

The framework

Lorenz et al. NeuroImage 2016

Bayesian optimization

Rasmussen & Williams 2006 Brochu et al. *arXiv* 2010

Bayesian optimization

Rasmussen & Williams 2006 Brochu et al. *arXiv* 2010

GP regression (1D – example)

Bayesian optimization

Expected improvement acquisition function:

 $EI(x) = (m(x) - f_{max})q(z) + var(x)p(z)$

m(x): predicted mean

- var(x): predicted variance
- f_{max} : maximum predicted value
- $q_{(i)}$: cumulative distribution function
- p_O : probability density function

 $z = \frac{m(x) - f_{max}}{var(x)}$

Rasmussen & Williams 2006 Brochu et al. *arXiv* 2010

Bayesian optimization (1D – example)

1. Motivation

2. Neuroadaptive Bayesian optimization

2.1 Human brain mapping

- 2.2 Non-invasive brain stimulation
- 2.3 Biomarker discovery
- 3. Implications for study pre-registration
- 4. What next?

Many-to-many mapping problem

Duncan & Owen *TiNS* 2000 Fedorenko et al. *PNAS* 2013

Many-to-many mapping problem

Hampshire et al. Neuron 2012

Many-to-many mapping problem

Limited reproducibility

Lorenz et al. *TiCS* 2017 Westfall et al. *Wellcome Open Research* 2017

Searching across cognitive tasks

Task space based on meta-analysis

FPN = frontoparietal network

maps & space from Yeo et al. *Cerebral Cortex* 2015

10

Searching across cognitive tasks

Find optimal tasks

Tower of London & Deductive Reasoning tasks maximally dissociate FPNs

Zoom in task space and fine-tune tasks

Find optimal task parameters

Tower of London

Deductive Reasoning

Find unique functional activation profile

Tower of London, Deductive Reasoning, Encoding & Wisconsin Card Sorting

Go/No-Go, Divided Auditory Attention, Imagined Movement, Passive Listening & Overt Reading

- Results deviate from previous meta-analyses and hypothesized functional labels for these FPNs
- Cognitive tasks identified for each network do not share a prima facie intuitive underlying cognitive label/process
- High intra- and inter-subject reliability (subject-level results)
- Starting point for neurobiologically-derived cognitive taxonomy

Lorenz et al. Nature Communications 2018

- 1. Motivation
- 2. Neuroadaptive Bayesian optimization
 - 2.1 Human brain mapping

2.2 Non-invasive brain stimulation

- 2.3 Biomarker discovery
- 3. Implications for study pre-registration
- 4. What next?

Transcranial alternating current stimulation (tACS)

Status Quo

- Ad hoc definition of frequency and phase
- Cohort testing

Limitation

- 1. How to choose frequency and phase?
- 2. Stimulation parameters may vary due to anatomy or pathology

Proof-of-principle

Proof-of-principle

Lorenz et al. Brain Stimulation 2019

- 1. Motivation
- 2. Neuroadaptive Bayesian optimization
 - 2.1 Human brain mapping
 - 2.2 Non-invasive brain stimulation

2.3 Biomarker discovery

- 3. Implications for study pre-registration
- 4. What next?

Biomarker discovery

Lorenz et al. in preparation

Biomarker discovery

Group results

Subject results

Lorenz et al. in preparation

- 1. Motivation
- 2. Neuroadaptive Bayesian optimization
 - 2.1 Human brain mapping
 - 2.2 Non-invasive brain stimulation
 - 2.3 Biomarker discovery

3. Implications for study pre-registration

4. What next?

Implications for improving reproducibility

- More flexible hypothesis possible (exploration)
- Improved specifity & generalizability of research findings
- Can be combined with pre-registration

Lorenz et al. TiCS 2017

- 1. Motivation
- 2. Neuroadaptive Bayesian optimization
 - 2.1 Human brain mapping
 - 2.2 Non-invasive brain stimulation
 - 2.3 Biomarker discovery
- 3. Implications for study pre-registration

4. What next?

From 'big data' to mechanism?

FPN mapping **FPN** mechanism coarse mapping fine mapping Computational Large-scale **Neuro-adaptive** Modeling & automated **Bayesian Behaviour** meta-analysis optimization

From 'big data' to mechanism?

FPN mechanism **FPN** mapping coarse mapping fine mapping Computational Large-scale **Neuro-adaptive** Modeling & automated Bayesian **Behaviour** meta-analysis optimization

Text-mining and automated meta-analyses

- BrainMap based on manual entries
- *Neurosynth* based on word frequency in abstracts
- Take advantage of developments in deep learning to learn word embeddings (e.g. word2vec, doc2vec)

Word embeddings have nice properties: you can make **analogies**!

Man: Woman as King: Queen Father: Doctor as Mother: Nurse

Capture & correct for current biases in the field?

Words mapped into high-D vector space

From 'big data' to mechanism?

FPN mapping **FPN** mechanism coarse mapping fine mapping Computational Large-scale **Neuro-adaptive** Modeling & automated **Bayesian Behaviour** meta-analysis optimization

From 'big data' to mechanism?

FPN mechanism

FPN mapping

Deep neural networks for learning cognitive tasks

2. Which tasks are similar?

3. What about brain?

Costa, Popescu, Leech & Lorenz CNS Conference 2019

Acknowledgement

Engineering and Physical Sciences Research Council

Imperial Biomedical Research Centre

Imperial College London

Robert Leech Adam Hampshire Ines R. Violante Fatemeh Geranmayeh Ricardo P. Monti

Rob

Adam

Ines

Fatemeh

Ricardo

Questions

