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How does neural tissue give rise to the mind?

• A mechanisms underlies a mental phenomenon (i.e., system S 
is engaged in behavior Y) 

• Behavior of the system S as a whole can be broken down into 
organized causal interactions among the activities of the parts.

Craver & Tabery 2017
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What are the fundamental aspects 
of cognition?

What are the fundamental roles of 
distinct networks in the brain?

How can cognitive processes 
be modulated or enhanced?

Aims of cognitive neuroscience

broad narrow

Research questions

> 20

threshold of p ! 0.05. Group-level images were visualized on an average
surface brain using MRICron (Rorden and Brett, 2000).

EEG-informed imaging analysis
In the next part of the study we examined the way in which EEG cascades
relate to activation at the spatiotemporal scale measured by fMRI. At the
subject level, statistical analyses were performed in FSL FILM using ran-
dom effects GLMs with local autocorrelation correction by voxelwise
temporal prewhitening. Design matrices were generated for the voxel-
wise time series analysis with double-gamma HRF functions, in addition
to the first derivatives of explanatory variables (EVs) to account for tem-
poral offsets. The timings of large EEG cascades (above a high SD trigger
threshold) were entered as EVs in the GLM. We do this to quantify how
much of the variance in fMRI activity can be explained solely by EEG
cascades, with the effects of motion and task activation covaried from the
data, as described in the following paragraph.

Cascades occurring during times of possible motion in the EEG trace
were entered as confound EVs in the GLMs. In addition to EEG motion
confounds, both fMRI motion parameters (six columns) and fMRI mo-
tion outliers (FSL motion outliers) were also entered into the GLM as
covariates of no interest. Further, a task-block regressor was entered as a
confound EV to account for mean offset effects in the difference between
rest and task. This was done to prevent the GLM from falsely attributing
task timing-related variance in the fMRI data to cascades in the EEG. All
EVs were high-pass filtered at the same cutoff frequency as the fMRI data.
The resulting individual subject-level parameter estimates were then en-
tered into high-level (mixed-effects) cluster-corrected FEAT analyses;
these investigated whether there were overall effects of EEG cascades
across all three conditions and each condition individually, as well as a
within-subject ANOVA, investigating differences between conditions.
The analysis of group effects was performed using FLAME with mean
relative rms motion parameters as confound regressors to control for any
residual subject-level motion. All final group-level images were thresh-
olded using a cluster correction threshold of Z " 2.3 and a cluster signif-
icance threshold of p ! 0.05. Group-level images were visualized on an
average surface brain using MRICron.

We extract EEG cascade explanatory variables using a threshold of 2
SD (results remain consistent between 2 and 4.5 SD and binning win-
dows of 4 –12 ms). Below an SD of 2, the EEG cascade time courses show
very little variance, given the downsampling required to match the fMRI
temporal resolution. To further test the robustness of these results, the
above analysis was rerun with cascade time courses that had been gener-
ated by (1) using cascade timings with the same mean and SD of start
times and durations as the empirical data; (2) using cascade timings from
the empirical data, for which the start times had been shifted by #5 s; and
(3) using cascade timings generated from data in which the time courses
of individual channels had been shuffled using circular permutation with
random offset. None of these three methods showed any significant associ-
ation with BOLD signal, which demonstrates that the results are not artifac-
tual, but rather arise from a genuine relationship between EEG and fMRI.

Individual variability in cognitive performance
Finally, we investigated the relationship between individual subjects’ re-
action times during task and how far their neural dynamics operate from
criticality, as quantified by !. We calculated correlations between reac-
tion times and ! across all participants using linear mixed-effects models
to account for the multiple reaction times considered for the same
subjects.

Results
Task-related functional imaging activation
Before investigating the EEG-domain cascades and their relation-
ship to cognitive state, we first explored the fMRI data with stan-
dard contrasts to illustrate which brain regions are activated, as
well as deactivated, by task. This provides a way of interpreting
the spatial pattern of BOLD signal associated with the EEG-
defined cascade time courses. Figure 2A demonstrates the effects
of task"intermittent rest and intermittent rest"task contrasts
during the CRT. The results show that, as expected, task perfor-

mance is associated with activation within predominantly higher
order visual and motor systems, including ventral and dorsal
visual streams and superior prefrontal regions, as well as within
the basal ganglia (Bonnelle et al., 2011; Sharp et al., 2011). Greater
activation for intermittent rest over task is observed in the medial
early visual regions, as well as in the precuneus and lateral inferior
parietal regions, consistent with nodes of the default mode net-
work (DMN; Raichle et al., 2001).

Mapping EEG cascades to functional images
We next identified regions in which activation corresponded to
EEG-defined cascades, by using cascade time courses to interro-
gate the fMRI data: providing additional information to charac-
terize the EEG-defined cascades. Figure 2, B–E, shows brain
regions for which there is significant positive correlation between
the timings of EEG cascades and fMRI activity. We first investi-
gated the effect of EEG cascades obtained from an amalgamation
of data from all cognitive states on the fMRI data (Fig. 4B). These
generalized cascades are associated with increased BOLD signal

Figure 2. Spatial maps of fMRI activity. Cluster-corrected group-level statistics, with motion
regressed from the data, projected onto the standard MNI 152 2 mm brain, as well as onto axial
slices, for A–E. A, Standard contrast. CRT"rest: warm colors are voxels with relative activation,
cold colors are voxels with relative deactivation. B, BOLD signal associated with EEG-defined
cascades (using a threshold of 2 SD to define the EEG cascades). Results are combined across all
three conditions: continuous rest, task, and intermittent rest. C, Same as B, but with only
continuous rest data. D, Same as B but with CRT task data (significant effect of cascades is only
apparent using the lower threshold, SD " 2; with higher thresholds no voxels survive multiple-
comparison correction. E, Same as B, but with only intermittent rest data.
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threshold of p ! 0.05. Group-level images were visualized on an average
surface brain using MRICron (Rorden and Brett, 2000).

EEG-informed imaging analysis
In the next part of the study we examined the way in which EEG cascades
relate to activation at the spatiotemporal scale measured by fMRI. At the
subject level, statistical analyses were performed in FSL FILM using ran-
dom effects GLMs with local autocorrelation correction by voxelwise
temporal prewhitening. Design matrices were generated for the voxel-
wise time series analysis with double-gamma HRF functions, in addition
to the first derivatives of explanatory variables (EVs) to account for tem-
poral offsets. The timings of large EEG cascades (above a high SD trigger
threshold) were entered as EVs in the GLM. We do this to quantify how
much of the variance in fMRI activity can be explained solely by EEG
cascades, with the effects of motion and task activation covaried from the
data, as described in the following paragraph.

Cascades occurring during times of possible motion in the EEG trace
were entered as confound EVs in the GLMs. In addition to EEG motion
confounds, both fMRI motion parameters (six columns) and fMRI mo-
tion outliers (FSL motion outliers) were also entered into the GLM as
covariates of no interest. Further, a task-block regressor was entered as a
confound EV to account for mean offset effects in the difference between
rest and task. This was done to prevent the GLM from falsely attributing
task timing-related variance in the fMRI data to cascades in the EEG. All
EVs were high-pass filtered at the same cutoff frequency as the fMRI data.
The resulting individual subject-level parameter estimates were then en-
tered into high-level (mixed-effects) cluster-corrected FEAT analyses;
these investigated whether there were overall effects of EEG cascades
across all three conditions and each condition individually, as well as a
within-subject ANOVA, investigating differences between conditions.
The analysis of group effects was performed using FLAME with mean
relative rms motion parameters as confound regressors to control for any
residual subject-level motion. All final group-level images were thresh-
olded using a cluster correction threshold of Z " 2.3 and a cluster signif-
icance threshold of p ! 0.05. Group-level images were visualized on an
average surface brain using MRICron.

We extract EEG cascade explanatory variables using a threshold of 2
SD (results remain consistent between 2 and 4.5 SD and binning win-
dows of 4 –12 ms). Below an SD of 2, the EEG cascade time courses show
very little variance, given the downsampling required to match the fMRI
temporal resolution. To further test the robustness of these results, the
above analysis was rerun with cascade time courses that had been gener-
ated by (1) using cascade timings with the same mean and SD of start
times and durations as the empirical data; (2) using cascade timings from
the empirical data, for which the start times had been shifted by #5 s; and
(3) using cascade timings generated from data in which the time courses
of individual channels had been shuffled using circular permutation with
random offset. None of these three methods showed any significant associ-
ation with BOLD signal, which demonstrates that the results are not artifac-
tual, but rather arise from a genuine relationship between EEG and fMRI.

Individual variability in cognitive performance
Finally, we investigated the relationship between individual subjects’ re-
action times during task and how far their neural dynamics operate from
criticality, as quantified by !. We calculated correlations between reac-
tion times and ! across all participants using linear mixed-effects models
to account for the multiple reaction times considered for the same
subjects.

Results
Task-related functional imaging activation
Before investigating the EEG-domain cascades and their relation-
ship to cognitive state, we first explored the fMRI data with stan-
dard contrasts to illustrate which brain regions are activated, as
well as deactivated, by task. This provides a way of interpreting
the spatial pattern of BOLD signal associated with the EEG-
defined cascade time courses. Figure 2A demonstrates the effects
of task"intermittent rest and intermittent rest"task contrasts
during the CRT. The results show that, as expected, task perfor-

mance is associated with activation within predominantly higher
order visual and motor systems, including ventral and dorsal
visual streams and superior prefrontal regions, as well as within
the basal ganglia (Bonnelle et al., 2011; Sharp et al., 2011). Greater
activation for intermittent rest over task is observed in the medial
early visual regions, as well as in the precuneus and lateral inferior
parietal regions, consistent with nodes of the default mode net-
work (DMN; Raichle et al., 2001).

Mapping EEG cascades to functional images
We next identified regions in which activation corresponded to
EEG-defined cascades, by using cascade time courses to interro-
gate the fMRI data: providing additional information to charac-
terize the EEG-defined cascades. Figure 2, B–E, shows brain
regions for which there is significant positive correlation between
the timings of EEG cascades and fMRI activity. We first investi-
gated the effect of EEG cascades obtained from an amalgamation
of data from all cognitive states on the fMRI data (Fig. 4B). These
generalized cascades are associated with increased BOLD signal

Figure 2. Spatial maps of fMRI activity. Cluster-corrected group-level statistics, with motion
regressed from the data, projected onto the standard MNI 152 2 mm brain, as well as onto axial
slices, for A–E. A, Standard contrast. CRT"rest: warm colors are voxels with relative activation,
cold colors are voxels with relative deactivation. B, BOLD signal associated with EEG-defined
cascades (using a threshold of 2 SD to define the EEG cascades). Results are combined across all
three conditions: continuous rest, task, and intermittent rest. C, Same as B, but with only
continuous rest data. D, Same as B but with CRT task data (significant effect of cascades is only
apparent using the lower threshold, SD " 2; with higher thresholds no voxels survive multiple-
comparison correction. E, Same as B, but with only intermittent rest data.
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The framework

CHAPTER 1 | Introduction 
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iv. automatically trades off exploration and exploitation in the search for the optimum, 

v. has “memory” of all available data, encoded in the surrogate model (unlike using only 

the most recent observation as is the case for gradient-based optimization), and  

therefore 

vi. may adequately handle noisy measurements. 

Due to its efficiency, simplicity and versatility Bayesian optimization has emerged as a powerful 

technique that is rapidly transforming a wide range of areas such as robotics (Cully et al., 2015), 

artificial intelligence (Ghahramani, 2015), recommender systems, interactive user interfaces, 

environmental monitoring and sensor networks ((Shahriari et al., 2016) and references therein). 

Within the field of sensory neuroscience, Bayesian optimization has been proposed in animal 

neurophysiology (Lewi et al., 2008; Pillow and Park, 2016) and optogenetics (Shababo et al., 

2013). For application within psychology and cognitive sciences, mainly simulation studies 

(Cavagnaro et al., 2009b, 2013a; Tang et al., 2010) have been carried out; however a few 

empirical studies involved real-time experimentation with humans, investigating memory 

retention  (Cavagnaro et al., 2009a), decision making (Cavagnaro et al., 2013b) and 

psychophysics (Lesmes et al., 2006). These studies however optimized based on behavioural 

responses. To date, no study has yet employed non-parametric Bayesian optimization in 

combination with brain measures derived from functional neuroimaging techniques in humans.  

 
Figure 1.4 | Neuroadaptive Bayesian optimization. (1) The subject is presented with an experimental condition. (2) 
Real-time functional neuroimaging (i.e., real-time fMRI, see Chapter 2) is used acquire brain data. (3) The desired 
brain state to optimize for is analysed in response to this experimental condition. (4) This information is then fed into 
the Bayesian optimization algorithm and based on this, the algorithm chooses an experimental condition closer to the 
maximum of the objective function, hence trying to optimize for the desired target brain state.  

Lorenz et al. NeuroImage 2016

Start with broad experiment 
space and iteratively find 
optimal experimental 
condition

this case, stochastic approximation algorithms have the clear strength of
making very limited assumptions regarding the data. However, the aim
of the subsequent Study 2 was to go beyond simple convergence onto
the optimal experiment conditions and to demonstrate how our frame-
work can be used to rapidly map out the underlying relationship be-
tween stimuli and neural responses across an extensive experiment
parameter space. For this case, stochastic approximation approaches
are ill suited as they relegate the objective to only learning the optimal
stimulus pairing as opposed to obtaining a far richer understanding of
the global relationships between stimuli and neural response across ex-
periment conditions.Moreover, stochastic approximationmethods esti-
mate the gradient at every iteration without exploiting information
about estimates from any previous observation, which increases
the susceptibility to noisy outliers and reduces the efficiency in
low contrast-to-noise scenarios. Hence, in Study 2 we used a non-
parametric Bayesian optimization approach. Supporting simulation
analyseswere carried out to demonstrate the robustness of theBayesian
optimization for a range of contrast-to-noise ratios.

We show that our closed-loop framework is far more efficient than
the standard approach in that it substitutes an otherwise exhaustive
search through all possible tasks by performing anoptimal search across
many experimental dimensions simultaneously before converging on
the optimal experimental setup to evoke a desired pattern of brain acti-
vation. Moreover, this framework provides a description of the whole

experiment space under investigation, meaning the complex relation-
ship between task and brain can be unveiled more easily.

Methods

Subjects

Twelve healthy volunteers (7 females, mean age ± SD: 26.8 ±
4.5 years) participated in our studies. Subjects had no history of either
contraindication to MRI scanning or neurological/psychiatric disorders.
Subjects had normal or corrected-to-normal vision and gavewritten in-
formed consent for their participation. The study was approved by the
Hammersmith Hospital (London, UK) research ethics committee. Sub-
jects were informed about the real-time nature of the fMRI scans but
no information was given on the actual aim of the study or which pa-
rameters in the experimentwould be adapted in real-time.Most impor-
tantly, subjects were unaware of the target brain state our algorithm
was optimizing for.

Target brain state and scanning conditions

We identified two target brain regions: bilateral lateral occipital cor-
tex and bilateral superior temporal cortex (Fig. 2a). Masks for these two
brain regions were obtained from thresholded (z N 5) and binarized

Fig. 2. Target brain state and two-dimensional experiment parameter space for both studies. (a) Based on a previous study (Braga et al., 2013) we identified two target brain regions:
bilateral lateral occipital cortex (red) and bilateral superior temporal cortex (blue) that strongly activate for complex visual (e.g., naturalistic movie) or auditory stimuli (e.g., speech), re-
spectively. The two tested target brain states of interest were: (1) maximized occipital cortex activity with minimum superior temporal cortex activity and (2) maximized superior tem-
poral cortex with minimized occipital cortex activity. (b) Parameter space of Study 1 with 10 × 10 (100) possible combinations composed of auditory and visual stimuli of varying
complexity. The optimization algorithm traversed through the two-dimensional parameter space in order thefind themost optimal audio–visual stimulus combination. Based on previous
work (Braga et al., 2013), the hypothesized optimal stimulus combination for evoking target brain state (1) is themost complex visual stimulus in combinationwith no auditory input (red
square). The reverse stimulus combination (complex auditory, no visual input)was hypothesized to be optimal for target brain state (2) (blue square). (c) The larger andmore challenging
parameter space of Study 2 involving 19× 19 (361) possible combinations. Here, stimuli were only optimized for target brain state (1). The hypothesized optimal stimulus combination is
now, due to mirroring of the axes, located in the center of the grid (red square).

322 R. Lorenz et al. / NeuroImage 129 (2016) 320–334
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!,! ∈ ℝ!!
!! ∈ ℝ! variance of covariance kernel

! !,! = !! exp − ! − ! !

2!!! !

! ∈ ℝ! length of covariance kernel

audio-visual stimulus

squared exponential kernel:

Rasmussen & Williams 2006
Brochu et al. arXiv 2010 
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Bayesian optimization
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Bayesian optimization
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!

q() :
p()	:

cumulative distribution function
probability density function

m(x) :

var(x)	:

predicted mean

predicted variance

fmax : maximum predicted value 

!" ! = ! ! − !!!"# q ! + !"#(!)!(!)!
Expected improvement acquisition function:



Sensation and Perception to Awareness Seminar – University of Sussex@romy_lorenz

Bayesian optimization (1D – example)

Lorenz et al. TiCS 2017

exploitationexploration
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Many-to-many mapping problem

frontoparietal 
networks 

(FPNs)

N-back task

Stroop task

Maths task

Divided attention task

Go/No-Go task

Duncan & Owen TiNS 2000
Fedorenko et al. PNAS 2013
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Hampshire et al. Neuron 2012
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N-back task

Stroop task

Maths task

Divided attention task

Go/No-Go task

Standard fMRI 
approach

• Limited generalizability
• Limited reproducibility

Lorenz et al. TiCS 2017
Westfall et al. Wellcome Open Research 2017

Many-to-many mapping problem
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Searching across cognitive tasks

Lorenz et al. Nature Communications 2018
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Task space based on meta-analysis
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Yeo et al. Cerebral Cortex 2015

Study 3

FPN = frontoparietal network

10
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Study 1 Study 2 Study 3

Tower of London & Deductive Reasoning tasks maximally dissociate FPNs

Find optimal tasks
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Study 1 Study 2 Study 3

Zoom in task space and fine-tune tasks
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Study 1 Study 2 Study 3

Find optimal task parameters
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Find unique functional activation profile

Study 1 Study 2 Study 3

dorsal FPN > 3 other FPNs ventral FPN > 3 other FPNs

Tower of London, Deductive Reasoning, Encoding 
& Wisconsin Card Sorting

Go/No-Go, Divided Auditory Attention, Imagined 
Movement, Passive Listening & Overt Reading

comparison between the dFPN/vFPN and the three remaining
FPNs across the entire task space (Fig. 6). For the sake of com-
pleteness, we also computed each contrast between the two FPNs
added in Experiment 3 and the three remaining FPNs (Fig. 6—see
Component 05 and Component 06). For all FPNs, each pairwise
comparison yielded qualitatively distinct activation profiles across
the task space. As detailed in the next paragraphs, the tasks or set
of tasks identified as optimal for each single pairwise comparison,
were all resembled in the average activation profile of the
respective networks (Fig. 6 - bottom row). This demonstrated that
this target measure indeed was well suited for addressing the
many-to-many mapping problem by identifying a set of tasks that
uniquely differentiates one FPN from functionally highly similar
FPNs.

In particular, for the dFPN we found a unique activation
profile (i.e., average activation profile in bottom row) featuring
the Tower of London, Wisconsin Card Sorting and Deductive
Reasoning tasks. Equally, these tasks or a subset of them were also
present in each single pairwise comparison: for the contrast
dFPN > Component 05, the Tower of London task was highly
activated; for the contrast dFPN > Component 06, the Wisconsin
Card Sorting, the Divided Auditory Attention, the Encoding, and
the Theory of Mind tasks were highly activated, and for the
contrast dFPN > vFPN, the Tower of London and Deductive
Reasoning tasks were highly activated.

The average activity profile for the vFPN showed a unique
activation profile featuring the Reading, Go/No-go, Imagined
Movement, Divided Auditory Attention, and Passive Listening

Group-level  prediction

HypothesizedBurn-in

Closed-loop

Posner
task

Flashing
checker-

board

Imagined
movement

Anti-
saccade

task

Go/no-go
task

Tower of
London

Oddball
discrimination Encoding Deductive

reasoning

Theory of
mind task

Passive
listening

Wisconsin
card

sorting

Counting/
calculation

Fixation
cross

Divided
auditory
attention

Reading
overt

Closed-loop

Posner
task

Flashing
checker-

board

Imagined
movement

Anti-
saccade

task

Go/no-go
task

Tower of
London

Oddball
discrimination Encoding Deductive

reasoning

Theory of
mind task

Passive
listening

Wisconsin
card

sorting

Counting/
calculation

Fixation
cross

Divided
auditory
attention

Reading
overt

Burn-in Hypothesized

Group-level  prediction

dF
P

N
>3

 F
P

N
s

vF
P

N
>3

 F
P

N
s

0.06–0.180.01–0.05<0.005 >0.19 0.06–0.180.01–0.05<0.005 >0.19

0.06–0.18

0.01–0.05

<0.005

>0.19

0.06–0.18

0.01–0.05

<0.005

>0.19

Pr (dorsal FPN I task)

0.06–0.180.01–0.05<0.005 >0.19

Pr (dorsal FPN I task)

Pr (dorsal FPN I task)

0.06–0.180.01–0.05<0.005 >0.19

Pr (dorsal FPN I task)

P
r 

(v
en

tr
al

 F
P

N
 I 

ta
sk

)

P
r 

(v
en

tr
al

 F
P

N
 I 

ta
sk

)

0.25
0.6

0.4

0.2

0

–0.2

–0.4

–0.6

–0.8

0.2

0.15

0.1

0.05

0

0.4

0.2

0

–0.2

–0.4

–0.6

–0.8

0.06–0.18

0.01–0.05

<0.005

>0.19

0.06–0.18

0.01–0.05

<0.005

>0.19

P
r 

(v
en

tr
al

 F
P

N
 I 

ta
sk

)

P
r 

(v
en

tr
al

 F
P

N
 I 

ta
sk

)

0.25

0.2

0.15

0.1

0.05

0

S
am

pling frequecy (%
)

S
am

pling frequecy (%
)

M
ean B

O
LD

 difference
(dF

P
N

 > 3 F
P

N
s)

M
ean B

O
LD

 difference
(vF

P
N

 > 3 F
P

N
s)

a b

c d

Fig. 5 Group-level results of Experiment 3. a For the contrast dFPN > all other three FPNs, the Tower of London, Wisconsin Card Sorting, and Encoding
tasks were most frequently sampled by neuroadaptive Bayesian optimization. b Group-level predictions across the task space equally show the Tower of
London, Wisconsin Card Sorting and Encoding tasks to be optimal for dissociating the dFPN from the other FPNs, in addition to the Deductive Reasoning
task. c For the contrast vFPN > all other three FPNs, the Go/No-go, Passive Listening and Imagined Movement tasks were most frequently sampled by
neuroadaptive Bayesian optimization. d Group-level predictions across the task space equally show the Go/No-go, Passive Listening and Imagined
Movement tasks to be optimal for dissociating the vFPN from the other FPNs, in addition to the Reading and Divided Auditory Attention tasks

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-03657-3 ARTICLE

NATURE COMMUNICATIONS | �(2018)�9:1227� | DOI: 10.1038/s41467-018-03657-3 | www.nature.com/naturecommunications 7

comparison between the dFPN/vFPN and the three remaining
FPNs across the entire task space (Fig. 6). For the sake of com-
pleteness, we also computed each contrast between the two FPNs
added in Experiment 3 and the three remaining FPNs (Fig. 6—see
Component 05 and Component 06). For all FPNs, each pairwise
comparison yielded qualitatively distinct activation profiles across
the task space. As detailed in the next paragraphs, the tasks or set
of tasks identified as optimal for each single pairwise comparison,
were all resembled in the average activation profile of the
respective networks (Fig. 6 - bottom row). This demonstrated that
this target measure indeed was well suited for addressing the
many-to-many mapping problem by identifying a set of tasks that
uniquely differentiates one FPN from functionally highly similar
FPNs.

In particular, for the dFPN we found a unique activation
profile (i.e., average activation profile in bottom row) featuring
the Tower of London, Wisconsin Card Sorting and Deductive
Reasoning tasks. Equally, these tasks or a subset of them were also
present in each single pairwise comparison: for the contrast
dFPN > Component 05, the Tower of London task was highly
activated; for the contrast dFPN > Component 06, the Wisconsin
Card Sorting, the Divided Auditory Attention, the Encoding, and
the Theory of Mind tasks were highly activated, and for the
contrast dFPN > vFPN, the Tower of London and Deductive
Reasoning tasks were highly activated.

The average activity profile for the vFPN showed a unique
activation profile featuring the Reading, Go/No-go, Imagined
Movement, Divided Auditory Attention, and Passive Listening
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Fig. 5 Group-level results of Experiment 3. a For the contrast dFPN > all other three FPNs, the Tower of London, Wisconsin Card Sorting, and Encoding
tasks were most frequently sampled by neuroadaptive Bayesian optimization. b Group-level predictions across the task space equally show the Tower of
London, Wisconsin Card Sorting and Encoding tasks to be optimal for dissociating the dFPN from the other FPNs, in addition to the Deductive Reasoning
task. c For the contrast vFPN > all other three FPNs, the Go/No-go, Passive Listening and Imagined Movement tasks were most frequently sampled by
neuroadaptive Bayesian optimization. d Group-level predictions across the task space equally show the Go/No-go, Passive Listening and Imagined
Movement tasks to be optimal for dissociating the vFPN from the other FPNs, in addition to the Reading and Divided Auditory Attention tasks
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Results

• Results deviate from previous meta-analyses and 
hypothesized functional labels for these FPNs

• Cognitive tasks identified for each network do not 
share a prima facie intuitive underlying cognitive 
label/process

• High intra- and inter-subject reliability (subject-level 
results)

• Starting point for neurobiologically-derived cognitive 
taxonomy

Lorenz et al. Nature Communications 2018
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Transcranial alternating current stimulation (tACS)

§ Status Quo
- Ad hoc definition of 

frequency and phase
- Cohort testing

§ Limitation
1. How to choose frequency 

and phase?
2. Stimulation parameters 

may vary due to anatomy 
or pathology

Ines Violante
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Proof-of-principle

Ines Violante

Lorenz et al. Brain Stimulation 2019
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Results:

1. The intra-subject reliability of the optimization, as measured by the spatial correlation of Bayesian predictions
across the two runs were high for controls (median Spearman rho ± std: 0.91 ± 0.18) and moderately high for
patients (0.71 ± 0.45).  
2. The Calculation, Semantic Judgement and Encoding tasks maximally differentiated the FPN from DMN in
controls (Fig. 2a).  
3. As a group, patients showed similar activation pattern to that in the controls but the magnitude of the
FPN>DMN contrast was diminished (Fig. 2a). 
4. At a subject-level, there was high variability within patients compared to controls, displaying unique functional
pro�les for the FPN-DMN dissociation (Fig. 2b). 
5. We found that these individual functional pro�les were associated with behavioral performance in patients:
those patients with the most dissimilar patterns to the control group pattern, had the worse performance on the
cognition task (partial correlation accounting for lesion volume r = -.86, p < .0045, Bonferroni corrected).

Biomarker discovery

Fatemeh 
Geranmayeh

14 stroke patients + 14 controls

Lorenz et al. in preparation
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Biomarker discovery

Fatemeh 
Geranmayeh

Lorenz et al. in preparation

19/12/2018 OHBM
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Conclusions:

We show, for the �rst time, that neuroadaptive Bayesian optimization is an ef�cient and reliable approach for
identifying individual functional network pro�les across many task conditions in a patient cohort. While the
sample size is too small to draw de�nite conclusions, we show how these unique patient pro�les are associated
with behavior; thereby demonstrating the potential of this approach for exploring and testing novel neuroimaging
biomarkers for recovery after stroke. Importantly, this approach can be extended to optimize task conditions and
non-invasive brain stimulation parameters conjointly, opening new avenues for precision medicine.

Disorders of the Nervous System:

Stroke 

Imaging Methods:

BOLD fMRI

Language:

Language Comprehension and Semantics
Speech Production

Modeling and Analysis Methods:

Bayesian Modeling 

Keywords:

1

2

Group results

Subject results
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Implications for improving reproducibility

• Improved specifity &  
generalizability of 
research findings

• Can be combined 
with pre-registration 

Lorenz et al. TiCS 2017

• More flexible 
hypothesis possible 
(exploration)
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Text-mining and automated meta-analyses

Word embeddings have nice 
properties: you can make analogies! 

Capture & correct for current 
biases in the field?

§ BrainMap based on manual entries

§ Neurosynth based on word frequency in abstracts

§ Take advantage of developments in deep learning to learn 
word embeddings  (e.g. word2vec, doc2vec)

Man: Woman as King: Queen
Father: Doctor as Mother: Nurse

Words mapped into high-D vector space
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Deep neural networks for learning cognitive tasks

Pedro Costa

256 units 128 units

33 units

Test set accuracy: 93.28% 

Digitally lesion units or ensembles 
of units and study for which tasks 
performance drops

2. Which tasks are similar? 

1. Train neural net to learn 6 tasks

Representational 
Similarity Analysis

3. What about brain?

Correlations of hidden
unit’s variance

Correlation of meta-analytic 
derived brain maps

Costa, Popescu, Leech & Lorenz CNS Conference 2019

Inspired by Yang et al. Nat Neurosci 2019
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