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 Since the great improvement in the acquisition of
accurate gravity-gradient data, these data have
increasingly been used in geophysical prospecting
(mining and hydrocarbon explorations; e.g., Zhdanov
et al. 2004; Uieda and Barbosa, 2012; Martinez et al.,
2013; and Carlos et al., 2014).
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delimitation of the source.

 Quantitative interpretation; e.g.: Inversion.
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...using the fast equivalent-layer technique.

transforming

𝐠z -component
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𝐠𝐳-component data vector
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⋮
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μ is the regularizing parameter

I is an identity matrix of order N

g = Am

The  m vector can be estimated by using the zeroth-order 
Tikhonov regularization (Tikhonov and Arsenin, 1977):

Forward modeling



The fast
equivalent layer

Applications to
synthetic data

The classical
equivalent layer

Application to
real data

ConclusionsIntroduction Acknowladgments

𝐠𝐳-component data vector

Nx1

g = 

𝑔1
𝑔2
⋮
𝑔𝑁

m = 

𝑚1

𝑚2

⋮
𝑚𝑀

Parameter vector

Mx1

The  m vector can be estimated by using the zeroth-order 
Tikhonov regularization (Tikhonov and Arsenin, 1977):

g = Am

 m = (A⊺A + μI)−1A⊺go

Forward modeling
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𝐠𝐳-component data vector

Nx1

g = 

𝑔1
𝑔2
⋮
𝑔𝑁

m = 

𝑚1

𝑚2

⋮
𝑚𝑀

Parameter vector

Mx1

The  m vector can be estimated by using the zeroth-order 
Tikhonov regularization (Tikhonov and Arsenin, 1977):

M x M
Computationally costly!

g = Am

 m = (A⊺A + μI)−1A⊺go

Forward modeling

What is the problem with this estimate?
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whose Δsi is the horizontal area located at depth zi and
centered at the horizontal coordinates (xi, yi) of the ith
𝐠𝐳-component data .

(xi, yi, zi) 

Δ𝑠i = Δ𝑥i. Δ𝑦i

Δ𝑥i

Δ𝑦i
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 m1  m1=  m0 + Δ  m0
the mass distribution 

updated at the 1st iteration
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 m3=  m2 + Δ m2
the mass distribution 

updated at the 3rd iteration
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 m4=  m3 + Δ  m3
the mass distribution 

updated at the 4th iteration
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 m5=  m4 + Δ  m4
the mass distribution 

updated at the 5th iteration

𝐠5
p

 m5

...

5th Iteration …. 
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 m30=  m29 + Δ  m29
the mass distribution 

updated at the 30th iteration

𝐠30
p

 m30

...
… 30th Iteration 
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Calculating the gravity-gradient data

 m𝟑𝟎

gαβ= Tαβ  m

N-dimensional vector gαβ that contains the gαβ-
component of the gravity-gradient tensor:
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Calculating the gravity-gradient data

 m𝟑𝟎

gαβ= Tαβ  m

Tij
αβ

=

3 αi− αj
′

r5
−
1

r3
if α = β

3 αi− αj
′ βi− βj

′

r5
if α ≠ β

αi,βi= xi,yi,zi
αj
′ ,βj

′ = x′,y′,z0

N-dimensional vector gαβ that contains the gαβ-
component of the gravity-gradient tensor:

r = (xi − xj
′)² + (yi − yj

′)² + (zi − z0)²
1/2
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N-dimensional vector gxy that contains the gxy-
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′)² + (yi − yj

′)² + (zi − z0)²
1/2
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Calculating the gravity-gradient data

 m𝟑𝟎

gxz= Txz  m

Tij
xz=

3 xi− xj
′ zi− zj

′

r5

gx𝑧

N-dimensional vector gxz that contains the gxz-
component of the gravity-gradient tensor:

r = (xi − xj
′)² + (yi − yj

′)² + (zi − z0)²
1/2
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Calculating the gravity-gradient data

 m𝟑𝟎

gyy= Tyy  m

Tij
yy

=
3 yi− yj

′

r5
−
1

r3

gyy

N-dimensional vector gyy that contains the gyy-
component of the gravity-gradient tensor:
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′)² + (yi − yj

′)² + (zi − z0)²
1/2
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Calculating the gravity-gradient data

 m𝟑𝟎

gyz= Tyz  m

Tij
yz
=
3 yi− yj

′ zi− zj
′

r5

N-dimensional vector gyz that contains the gyz-
component of the gravity-gradient tensor:

gyz

r = (xi − xj
′)² + (yi − yj

′)² + (zi − z0)²
1/2
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Calculating the gravity-gradient data

 m𝟑𝟎

gzz= Tzz  m

Tij
zz=

3 zi− zj
′

r5
−
1

r3

gz𝑧

N-dimensional vector gzz that contains the gzz-
component of the gravity-gradient tensor:

r = (xi − xj
′)² + (yi − yj

′)² + (zi − z0)²
1/2
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21.095 observation points: the number of flops  (floating-points operations) required to estimate the 
mass distribution is approximately 173.37 times  less than the number of flops required by the classical approach.

1st synthetic test: 𝐠𝐳-component data without a regional trend
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 𝐠𝐳-component data  Regional trend removed

Beltrão et al. (1991): regional-residual separation method. 
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𝐠𝐳-component data
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 We have used a fast iterative equivalent-layer technique for calculating gravity-gradient data
from 𝐠z-component data.

 This method uses the excess of mass and the positive correlation between the observed 𝐠z-
component and the masses on the equivalent layer.

 The computational efficiency of the method relies heavily on the fast estimation of the mass
distribution on the equivalent layer without requiring matrix multiplications and the solution of
linear systems.

 Applications to synthetic and real data show the ability of the method to calculate the gravity-
gradient tensor from large data set when a regional data is removed. The presence of a regional
data may result in errors in the calculation of the components.
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