Estimative of gravity-gradient tensor components via fast iterative equivalent-layer technique

Larissa S. Piauilino*
Fillipe C. L. Siqueira
Vanderlei C. Oliveira Jr
Valeria C. F. Barbosa

Observatório Nacional, Brazil

Agenda

1 Introduction
2 The classical equivalent layer
3 The fast equivalent layer
4 Applications to synthetic data
5 Application to real data
6 Conclusions
7 Acknowledgments

Agenda

1 Introduction
2 The classical equivalent layer
3 The fast equivalent layer
4 Applications to synthetic data
5 Application to real data
6 Conclusions
7 Acknowledgments

- Gravitational attraction produced by a 3D gravity source.

$$
\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}, \mathrm{z}_{\mathrm{i}}\right)
$$

- Gravitational attraction produced by a 3D gravity source.

Can be decomposed in three components:

- Gravitational attraction produced by a 3D gravity source.

Can be decomposed in three component:

$$
\left[g_{y}\right]
$$

- Gravitational attraction produced by a 3D gravity source.

Can be decomposed in three component:

$$
\left[\begin{array}{l}
\\
g_{z}
\end{array}\right]
$$

- Gravitational attraction produced by a 3D gravity source.

Can be decomposed in three component:
$\left[\begin{array}{l}\text { g. }\end{array}\right] \longrightarrow$ Vertical component of the gravitational attraction

$$
\mathrm{g}_{\mathrm{z}}
$$

- Gravitational attraction produced by a 3D gravity source.

Can be decomposed in three component:
$\left[\mathrm{g}_{2}\right] \longrightarrow$ Vertical component of the gravitational attraction

$$
\mathrm{g}_{\mathrm{z}}
$$

- Gravitational attraction produced by a 3D gravity source.

Can be decomposed in three component:
\qquad

$$
\mathrm{g}_{\mathrm{z}}
$$

- Gravitational attraction produced by a 3D gravity source.

Can be decomposed in three component:
$\left[\mathrm{g}_{2}\right] \longrightarrow$ Vertical component of the gravitational attraction

$$
\mathrm{g}_{\mathrm{z}}
$$

- Gravitational attraction produced by a 3D gravity source.

Can be decomposed in three component:
\qquad

$$
\mathrm{g}_{\mathrm{z}}
$$

- Gravitational attraction produced by a 3D gravity source.

Can be decomposed in three component:

$$
\mathrm{g}_{\mathrm{z}}
$$

- Gravitational attraction produced by a 3D gravity source. Can be decomposed in three component:
\qquad

$$
\mathrm{g}_{\mathrm{z}}
$$

- Gravitational attraction produced by a 3D gravity source.

Can be decomposed in three component:

The fast
equivalent layer

Applications to
synthetic data

Application to
real data

Gravity vector

Gravity-gradient tensor

Symmetric matrix !

Gravity vector

The fast
equivalent layer

Applications to
synthetic data

Application to
real data

Gravity-gradient tensor

The fast
equivalent layer

Applications to
synthetic data

Application to
real data

Gravity vector

Gravity-gradient tensor

The fast Applications to
equivalent layer
synthetic data

Application to
real data

Gravity vector

Gravity-gradient tensor

Symmetric matrix !

The fast
equivalent layer

Applications to
synthetic data

Application to
real data

Gravity vector

Gravity-gradient tensor

Symmetric matrix !

The fast
equivalent layer

Applications to
synthetic data

Gravity vector
Gravity-gradient tensor

\mathbf{g}_{z}-component

- The g_{z} - component has historically been used because of the ease of interpretation and the low-cost of measurement;
- Qualitative interpretation; e.g.: Horizontal delimitation of the source.
- Quantitative interpretation; e.g.: Inversion.

Gravity-gradient tensor

- Since the great improvement in the acquisition of accurate gravity-gradient data, these data have increasingly been used in geophysical prospecting (mining and hydrocarbon explorations; e.g., Zhdanov et al. 2004; Uieda and Barbosa, 2012; Martinez et al., 2013; and Carlos et al., 2014).
- Qualitative interpretation; e.g.: Horizontal delimitation of the source.
- Quantitative interpretation; e.g.: Inversion.

Objective
\mathbf{g}_{z}-component

Objective

Objective

gravity gradient tensor components

Objective
\mathbf{g}_{z}-component

Agenda

1 Introduction
2 The classical equivalent layer
3 The fast equivalent layer
4 Applications to synthetic data
5 Application to real data
6 Conclusions
7 Acknowledgments

Forward modeling
g_{z}-component data vector

$$
\mathbf{g}=\left[\begin{array}{c}
g_{1} \\
g_{2} \\
\vdots \\
g_{N}
\end{array}\right]_{N \times 1}
$$

Forward modeling

$$
g=A
$$

Parameter vector

$$
\mathbf{m}=\left[\begin{array}{c}
m_{1} \\
m_{2} \\
\vdots \\
m_{M}
\end{array}\right]_{M \times 1}
$$

Forward modeling

$$
\begin{gathered}
\mathbf{g}_{\mathbf{z}} \text {-component data vector } \\
\mathbf{g}=\mathbf{A m}=\left[\begin{array}{c}
g_{1} \\
g_{2} \\
\vdots \\
g_{N}
\end{array}\right]_{N \times 1} \\
\text { Parameter vector } \\
\mathbf{m}=\left[\begin{array}{c}
m_{1} \\
m_{2} \\
\vdots \\
m_{M}
\end{array}\right]_{M \times 1}
\end{gathered}
$$

Forward modeling

$$
\mathrm{g}=\mathrm{Am}
$$

The $\widehat{\mathbf{m}}$ vector can be estimated by using the zeroth-order Tikhonov regularization (Tikhonov and Arsenin, 1977):

$$
\widehat{\mathbf{m}}=\left(\mathbf{A}^{\top} \mathbf{A}+\mu \mathbf{I}\right)^{-1} \mathbf{A}^{\top} \mathbf{g}^{\mathbf{0}}
$$

g_{z}-component data vector

$$
\mathbf{g}=\left[\begin{array}{c}
g_{1} \\
g_{2} \\
\vdots \\
g_{N}
\end{array}\right]_{N \times 1}
$$

Parameter vector

$$
\mathbf{m}=\left[\begin{array}{c}
m_{1} \\
m_{2} \\
\vdots \\
m_{M} \\
M \times 1
\end{array}{ }^{2}\right.
$$

$$
N>M
$$

Forward modeling

$$
\mathrm{g}=\mathrm{A} \mathrm{~m}
$$

The $\widehat{\mathbf{m}}$ vector can be estimated by using the zeroth-order Tikhonov regularization (Tikhonov and Arsenin, 1977):

$$
(\mathrm{m})=\left(\mathbf{A}^{\top} \mathbf{A}+\mu \mathbf{I}\right)^{-1} \mathbf{A}^{\top} \mathbf{g}^{0}
$$

g_{z}-component data vector

$$
\mathbf{g}=\left[\begin{array}{c}
g_{1} \\
g_{2} \\
\vdots \\
g_{N}
\end{array}\right]_{N \times 1}
$$

Parameter vector

$$
\mathbf{m}=\left[\begin{array}{c}
m_{1} \\
m_{2} \\
\vdots \\
m_{M}
\end{array}\right]_{M \times 1}
$$

Forward modeling

$$
\mathrm{g}=\mathrm{Am}
$$

The $\widehat{\mathbf{m}}$ vector can be estimated by using the zeroth-order Tikhonov regularization (Tikhonov and Arsenin, 1977):

$$
\widehat{\mathbf{m}}=\left(\mathbf{A}^{\top} \mathbf{A}+\mu \mathbf{I}\right)^{-1} \mathbf{A}^{\top} \mathbf{g}^{\mathbf{0}}
$$

g_{z}-component data vector

$$
\mathbf{g}=\left[\begin{array}{c}
g_{1} \\
g_{2} \\
\vdots \\
g_{N}
\end{array}\right]_{N \times 1}
$$

Parameter vector

$$
\mathbf{m}=\left[\begin{array}{c}
m_{1} \\
m_{2} \\
\vdots \\
m_{M} \\
M \times 1
\end{array}\right.
$$

$$
\mathbf{N}>\mathbf{M}
$$

Forward modeling

$$
\mathrm{g}=\mathrm{Am}
$$

The $\widehat{\mathbf{m}}$ vector can be estimated by using the zeroth-order Tikhonov regularization (Tikhonov and Arsenin, 1977):

$$
\widehat{\mathbf{m}}=\left(\mathbf{A}^{\top} \mathbf{A}+\mu \mathbf{I}\right)^{-1} \mathbf{A}^{\top} \mathbf{g}^{0}
$$

g_{z}-component data vector

$$
\mathbf{g}=\left[\begin{array}{c}
g_{1} \\
g_{2} \\
\vdots \\
g_{N}
\end{array}\right]_{N \times 1}
$$

Parameter vector

$$
\mathbf{m}=\left[\begin{array}{c}
m_{1} \\
m_{2} \\
\vdots \\
m_{M}
\end{array}\right]
$$

Forward modeling

$$
\mathrm{g}=\mathrm{Am}
$$

The $\widehat{\mathbf{m}}$ vector can be estimated by using the zeroth-order Tikhonov regularization (Tikhonov and Arsenin, 1977):

$$
\widehat{\mathbf{m}}=\left(\mathbf{A}^{\top} \mathbf{A}+\mu \mathrm{I}\right)^{-1} \mathbf{A}^{\top} \mathbf{g}^{0}
$$

$$
\left\{\begin{array}{l}
\mu \text { is the regularizing parameter } \\
I \text { is an identity matrix of order } N
\end{array}\right.
$$

g_{z}-component data vector

$$
\mathbf{g}=\left[\begin{array}{c}
g_{1} \\
g_{2} \\
\vdots \\
g_{N}
\end{array}\right]_{N \times 1}
$$

Parameter vector

$$
\mathbf{m}=\left[\begin{array}{c}
m_{1} \\
m_{2} \\
\vdots \\
m_{M}
\end{array}\right]_{M \times 1}
$$

Forward modeling

$$
\mathrm{g}=\mathrm{Am}
$$

The $\widehat{\mathbf{m}}$ vector can be estimated by using the zeroth-order Tikhonov regularization (Tikhonov and Arsenin, 1977):

$$
\widehat{\mathbf{m}}=\left(\mathbf{A}^{\top} \mathbf{A}+\mu \mathbf{I}\right)^{-1} \mathbf{A}^{\top} \mathbf{g}^{0}
$$

g_{z}-component data vector

$$
\mathbf{g}=\left[\begin{array}{c}
g_{1} \\
g_{2} \\
\vdots \\
g_{N}
\end{array}\right]_{N \times 1}
$$

Parameter vector

$$
\mathbf{m}=\left[\begin{array}{c}
m_{1} \\
m_{2} \\
\vdots \\
m_{M}
\end{array}\right]_{M \times 1}
$$

Forward modeling

$$
\mathrm{g}=\mathrm{Am}
$$

The $\widehat{\mathbf{m}}$ vector can be estimated by using the zeroth-order Tikhonov regularization (Tikhonov and Arsenin, 1977):

$$
\underbrace{\widehat{\mathbf{m}}=\underbrace{\left(\mathbf{A}^{\top} \mathbf{A}+\mu \mathbf{I}\right)^{-1}} \mathbf{A}^{\top} \mathbf{g}^{\mathbf{0}}}_{M X M}
$$

g_{z}-component data vector

$$
\mathbf{g}=\left[\begin{array}{c}
g_{1} \\
g_{2} \\
\vdots \\
g_{N}
\end{array}\right]_{N \times 1}
$$

Parameter vector

$$
\mathbf{m}=\left[\begin{array}{c}
m_{1} \\
m_{2} \\
\vdots \\
m_{M}
\end{array}\right]_{M \times 1}
$$

Agenda

1 Introduction

2 The classical equivalent layer
3 The fast equivalent layer
4 Applications to synthetic data
5 Application to real data
6 Conclusions
7 Acknowledgments

- The iterative equivalent-layer proposed by Siqueira et al. (2017) is grounded on the excess of mass and on the positive correlation between the \mathbf{g}_{z}-component data and the masses on the equivalent layer.

- The iterative equivalent-layer proposed by Siqueira et al. (2017) is grounded on the excess of mass and on the positive correlation between the \mathbf{g}_{z}-component data and the masses on the equivalent layer.

- The iterative equivalent-layer proposed by Siqueira et al. (2017) is grounded on the excess of mass and on the positive correlation between the \mathbf{g}_{z}-component data and the masses on the equivalent layer.

$\longleftarrow N$ observation points
$\longleftarrow M$ equivalent sources

$$
N=M
$$

- The iterative equivalent-layer proposed by Siqueira et al. (2017) is grounded on the excess of mass and on the positive correlation between the \mathbf{g}_{z}-component data and the masses on the equivalent layer.

each equivalent source is located directly below each observation point

- The iterative equivalent-layer proposed by Siqueira et al. (2017) is grounded on the excess of mass and on the positive correlation between the $\mathbf{g}_{\mathbf{z}}$-component data and the masses on the equivalent layer.
- The Gauss-Newton's method is used for estimating a mass distribution on the equivalent layer.

The initial aproximation:

$$
\mathbf{m}_{0}=\widetilde{\mathbf{A}}^{-1} \mathbf{g}^{\mathbf{o}}
$$

- The iterative equivalent-layer proposed by Siqueira et al. (2017) is grounded on the excess of mass and on the positive correlation between the $\mathbf{g}_{\mathbf{z}}$-component data and the masses on the equivalent layer.
- The Gauss-Newton's method is used for estimating a mass distribution on the equivalent layer.

The initial aproximation:

$$
\begin{aligned}
& \mathbf{m}_{0}=\widetilde{\mathbf{A}}^{-1} \mathbf{g}^{\mathbf{o}} \\
& \widetilde{\mathbf{A}}=2 \pi \gamma \Delta \mathbf{S}^{-1}
\end{aligned}
$$

- The iterative equivalent-layer proposed by Siqueira et al. (2017) is grounded on the excess of mass and on the positive correlation between the $\mathbf{g}_{\mathbf{z}}$-component data and the masses on the equivalent layer.
- The Gauss-Newton's method is used for estimating a mass distribution on the equivalent layer.

The initial aproximation:

$$
\begin{aligned}
& \mathbf{m}_{0}=\widetilde{\mathbf{A}}^{-1} \mathbf{g}^{\mathbf{o}} \\
& \widetilde{\mathbf{A}}=2 \pi \gamma \Delta \mathbf{S}^{-1}
\end{aligned}
$$

$\left\{\begin{array}{l}\gamma \text { is Newton's gravitational constant } \\ \text { SAN ANTONIO, TX }\end{array}\right.$

- The iterative equivalent-layer proposed by Siqueira et al. (2017) is grounded on the excess of mass and on the positive correlation between the $\mathbf{g}_{\mathbf{z}}$-component data and the masses on the equivalent layer.
- The Gauss-Newton's method is used for estimating a mass distribution on the equivalent layer.

The initial aproximation:

$$
\begin{aligned}
& \mathbf{m}_{0}=\widetilde{\mathbf{A}}^{-1} \mathbf{g}^{\mathbf{o}} \\
& \widetilde{\mathbf{A}}=2 \pi \gamma \Delta \mathbf{S}^{-1}
\end{aligned}
$$

$\left\{\begin{array}{l}\gamma \text { is Newton's gravitational constant } \\ \Delta S \text { is a diagonal matrix }\end{array}\right.$

- The iterative equivalent-layer proposed by Siqueira et al. (2017) is grounded on the excess of mass and on the positive correlation between the $\mathbf{g}_{\mathbf{z}}$-component data and the masses on the equivalent layer.
- The Gauss-Newton's method is used for estimating a mass distribution on the equivalent layer

The initial aproximation:

$$
\begin{gathered}
\mathbf{m}_{0}=\widetilde{\mathbf{A}}^{-1} \mathbf{g}^{\mathbf{o}} \\
\widetilde{\mathbf{A}}=2 \pi \gamma \Delta \mathbf{S}^{-1}
\end{gathered}
$$

$\left\{\begin{array}{l}\gamma \text { is Newton's gravitational constant } \\ \Delta S \text { is a diagonal matrix }\end{array}\right.$

- The iterative equivalent-layer proposed by Siqueira et al. (2017) is grounded on the excess of mass and on the positive correlation between the \mathbf{g}_{z}-component data and the masses on the equivalent layer.
- The Gauss-Newton's method is used for estimating a mass distribution on the equivalent layer.

whose $\Delta \mathrm{s}_{\mathrm{i}}$ is the horizontal area located at depth z_{i} and centered at the horizontal coordinates ($\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}$) of the i th \mathbf{g}_{z}-component data.

The initial aproximation:

$$
\begin{aligned}
& \mathbf{m}_{0}=\widetilde{\mathbf{A}}^{-1} \mathbf{g}^{\mathbf{o}} \\
& \widetilde{\mathbf{A}}=2 \pi \gamma \Delta \mathbf{S}^{-1}
\end{aligned}
$$

$\left\{\begin{array}{l}\gamma \text { is Newton's gravitational constant } \\ \Delta \mathbf{S} \text { is a diagonal matrix }\end{array}\right.$

Iteration 0

$$
\mathbf{m}_{0}=\widetilde{\mathbf{A}}^{-1} \mathbf{g}^{\mathbf{0}}
$$

Iteration 0

$$
\mathbf{m}_{0}=\widetilde{\mathbf{A}}^{-1} \mathbf{g}^{\mathbf{0}}
$$

$$
\mathbf{r}_{0}=\mathbf{g}^{\mathbf{0}}-\mathbf{A} \mathbf{m}_{0}
$$

Iteration 0

$$
\mathbf{m}_{0}=\widetilde{\mathbf{A}}^{-1} \mathbf{g}^{\mathbf{o}}
$$

the predicted $\mathbf{g}_{\mathbf{z}}$-component data (\mathbf{g}^{p}) at the 0 iteration

Iteration 0

$$
\mathbf{m}_{0}=\widetilde{\mathbf{A}}^{-1} \mathbf{g}^{\mathbf{0}}
$$

the predicted \mathbf{g}_{z}-component data (g^{p}) at the 0 iteration

$$
\Delta \widehat{\mathrm{m}}_{0}=\widetilde{\mathrm{A}}^{-1} \mathrm{r}_{0}
$$

The excess mass contraint

$1^{\text {st }}$ Iteration

the mass distribution updated at the $1^{\text {st }}$ iteration

$1^{\text {st }}$ Iteration

the mass distribution updated at the $1^{\text {st }}$ iteration

$3^{\text {rd }}$ Iteration

the mass distribution updated at the $3^{\text {rd }}$ iteration

$4^{\text {th }}$ Iteration

the mass distribution updated at the $4^{\text {th }}$ iteration

$5^{\text {th }}$ Iteration

the mass distribution updated at the $5^{\text {th }}$ iteration

Calculating the gravity-gradient data

N-dimensional vector $\mathbf{g}^{\alpha \beta}$ that contains the $\mathrm{g}^{\alpha \beta}$. component of the gravity-gradient tensor:

$$
\mathbf{g}^{\alpha \beta}=\mathbf{T}^{\alpha \beta} \widehat{\mathbf{m}}
$$

Calculating the gravity-gradient data

N-dimensional vector $\mathbf{g}^{\alpha \beta}$ that contains the $\mathrm{g}^{\alpha \beta}$. component of the gravity-gradient tensor:

$$
\mathbf{g}^{\alpha \beta}=\mathrm{T}^{\alpha \beta} \widehat{\mathbf{m}}
$$

Calculating the gravity-gradient data
N-dimensional vector $\mathbf{g}^{\alpha \beta}$ that contains the $\mathrm{g}^{\alpha \beta}$ _ component of the gravity-gradient tensor:

$$
g^{\alpha \beta}=T^{\alpha \beta}
$$

$$
\mathrm{T}_{\mathrm{ij}}^{\alpha \beta}= \begin{cases}\frac{3\left(\alpha_{\mathrm{i}}-\alpha_{j}^{\prime}\right)}{r^{5}}-\frac{1}{r^{3}} \quad \text { if } \quad \alpha=\beta \\ \frac{3\left(\alpha_{\mathrm{i}}-\alpha_{\mathrm{j}}^{\prime}\right)\left(\beta_{\mathrm{i}}-\beta_{\mathrm{j}}^{\prime}\right)}{\mathrm{r}^{5}} & \text { if } \quad \alpha \neq \beta\end{cases}
$$

$$
\alpha_{\mathrm{i}}, \beta_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}, \mathrm{z}_{\mathrm{i}}
$$

$$
\alpha_{j}^{\prime}, \beta_{j}^{\prime}=x^{\prime}, y^{\prime}, z_{0}
$$

$$
\left\{\mathrm{r}=\left[\left(\mathrm{x}_{\mathrm{i}}-\mathrm{x}_{\mathrm{j}}^{\prime}\right)^{2}+\left(\mathrm{y}_{\mathrm{i}}-\mathrm{y}_{\mathrm{j}}^{\prime}\right)^{2}+\left(\mathrm{z}_{\mathrm{i}}-\mathrm{z}_{0}\right)^{2}\right]^{1 / 2}\left(\left(\mathrm{~S}_{\text {SAN ANTONIO, } \mathrm{TX}}\right.\right.\right.
$$

Calculating the gravity-gradient data

N-dimensional vector \mathbf{g}^{XX} that contains the g^{XX} component of the gravity-gradient tensor:

$$
\begin{gathered}
\mathbf{g}^{x x}=\mathbf{T}^{x y}(\hat{\mathbf{m}} \\
T_{i j}^{x x}=\frac{3\left(x_{i}-x_{j}^{\prime}\right)}{r^{5}}-\frac{1}{r^{3}} \\
\left\{r=\left[\left(x_{i}-x_{j}^{\prime}\right)^{2}+\left(y_{i}-y_{j}^{\prime}\right)^{2}+\left(z_{i}-z_{0}\right)^{2}\right]^{1 / 2}\right.
\end{gathered}
$$

Calculating the gravity-gradient data

N-dimensional vector g^{xy} that contains the g^{Xy}. component of the gravity-gradient tensor:

$$
\begin{gathered}
\mathbf{g}^{x y}=\mathbf{T}^{x y}(\widehat{\mathbf{m}} \\
T_{i j}^{x y}=\frac{3\left(x_{i}-x_{j}^{\prime}\right)\left(y_{i}-y_{j}^{\prime}\right)}{r^{5}} \\
\left\{r=\left[\left(x_{i}-x_{j}^{\prime}\right)^{2}+\left(y_{i}-y_{j}^{\prime}\right)^{2}+\left(z_{i}-z_{0}\right)^{2}\right]^{1 / 2}\right.
\end{gathered}
$$

Calculating the gravity-gradient data

N-dimensional vector \mathbf{g}^{XZ} that contains the g^{XZ} component of the gravity-gradient tensor:

$$
\begin{gathered}
\mathbf{g}^{\mathrm{xz}}=\mathbf{T}^{\mathrm{xz}}(\widehat{\mathbf{m}} \\
T_{\mathrm{ij}}^{\mathrm{XZ}}=\frac{3\left(\mathrm{x}_{\mathrm{i}}-\mathrm{x}_{\mathrm{j}}^{\prime}\right)\left(\mathrm{z}_{\mathrm{i}}-z_{j}^{\prime}\right)}{r^{5}} \\
\left\{\mathrm{r}=\left[\left(\mathrm{x}_{\mathrm{i}}-\mathrm{x}_{\mathrm{j}}^{\prime}\right)^{2}+\left(y_{i}-y_{j}^{\prime}\right)^{2}+\left(z_{i}-z_{0}\right)^{2}\right]^{1 / 2}\right.
\end{gathered}
$$

Calculating the gravity-gradient data

N-dimensional vector g^{yy} that contains the gy ${ }^{\mathrm{yy}}$ component of the gravity-gradient tensor:

$$
\begin{gathered}
\mathbf{g}^{y y}=\mathbf{T}^{y y}(\widehat{\mathbf{m}} \\
T_{i j}^{y y}=\frac{3\left(y_{i}-y_{j}^{\prime}\right)}{r^{5}}-\frac{1}{r^{3}} \\
\left\{r=\left[\left(x_{i}-x_{j}^{\prime}\right)^{2}+\left(y_{i}-y_{j}^{\prime}\right)^{2}+\left(z_{i}-z_{0}\right)^{2}\right]^{1 / 2}\right.
\end{gathered}
$$

Calculating the gravity-gradient data

N-dimensional vector g^{XZ} that contains the g^{YZ} component of the gravity-gradient tensor:

$$
\begin{gathered}
\mathbf{g}^{y z}=\mathbf{T}^{y z}(\widehat{\mathbf{m}} \\
T_{i j}^{y z}=\frac{3\left(y_{i}-y_{j}^{\prime}\right)\left(z_{i}-z_{j}^{\prime}\right)}{r^{5}} \\
\left\{r=\left[\left(x_{i}-x_{j}^{\prime}\right)^{2}+\left(y_{i}-y_{j}^{\prime}\right)^{2}+\left(z_{i}-z_{0}\right)^{2}\right]^{1 / 2}\right.
\end{gathered}
$$

Calculating the gravity-gradient data
N-dimensional vector \mathbf{g}^{ZZ} that contains the $\mathrm{g}^{\mathrm{ZZ}}-$ component of the gravity-gradient tensor:

$$
\begin{gathered}
\mathbf{g}^{\mathrm{zZ}}=\mathbf{T}^{\mathrm{Zz}}(\widehat{\mathbf{m}} \\
\mathrm{T}_{\mathrm{ij}}^{\mathrm{ZZ}}=\frac{3\left(\mathrm{z}_{\mathrm{i}}-\mathrm{z}_{\mathrm{j}}^{\prime}\right)}{\mathrm{r}^{5}}-\frac{1}{\mathrm{r}^{3}} \\
\left\{\mathrm{r}=\left[\left(\mathrm{x}_{\mathrm{i}}-\mathrm{x}_{\mathrm{j}}^{\prime}\right)^{2}+\left(\mathrm{y}_{\mathrm{i}}-\mathrm{y}_{\mathrm{j}}^{\prime}\right)^{2}+\left(\mathrm{z}_{\mathrm{i}}-\mathrm{z}_{0}\right)^{2}\right]^{1 / 2}\right.
\end{gathered}
$$

Agenda

1 Introduction

2 The classical equivalent layer
3 The fast equivalent layer
4 Applications to synthetic data
5 Application to real data
6 Conclusions
7 Acknowledgments
$\mathbf{1}^{\text {st }}$ synthetic test: g_{z}-component data without a regional trend

- Flight lines and horizontal projection of the 3D sources

$1^{\text {st }}$ synthetic test: $\mathbf{g}_{\mathbf{z}}$-component data without a regional trend
- Flight lines and horizontal projection of the 3D sources

- Simulated $\mathbf{g}_{\mathbf{z}}$ component data

$1^{\text {st }}$ synthetic test: $\mathbf{g}_{\mathbf{z}}$-component data without a regional trend
- Flight lines and horizontal projection of the 3D sources

- Simulated g_{z} component data
21.095 observation points: the number of flops (floating-points operations) required to estimate the mass distribution is approximately 173.37 times less than the number of flops required by the classical approach.

$\mathbf{1}^{\text {st }}$ synthetic test: g_{z}-component data without a regional trend
- True gravitygradient data

Applications to
Application to
$1^{\text {st }}$ synthetic test: g_{z}-component data without a regional trend

- Predicted gravitygradient data

$$
\mathrm{z}_{\mathrm{j}}=400 \mathrm{~m}
$$

30 iterations

$1^{\text {st }}$ synthetic test: $\mathbf{g}_{\mathbf{z}}$-component data without a regional trend

- Residuals

$2^{\text {nd }}$ synthetic test: \mathbf{g}_{z}-component data with a regional trend
- Flight lines (simulating the real data) and horizontal projection of the 3D sources

- Simulated \mathbf{g}_{z} component data

$\mathbf{2}^{\text {nd }}$ synthetic test: \mathbf{g}_{z}-component data with a regional trend
- Flight lines (simulating the real data) and horizontal projection of the 3D sources
- Regional trend simulated by a firstorder polynomial

- Total $\quad \mathbf{g}_{\mathbf{z}}$ component data

$\mathbf{2}^{\text {nd }}$ synthetic test: \mathbf{g}_{z}-component data with a regional trend
- Flight
lines (simulating the real data) and horizontal projection of the 3D sources
- Regional trend simulated by a firstorder polynomial

- Total \mathbf{g}_{z} component data
$2^{\text {nd }}$ synthetic test: $\mathbf{g}_{\mathbf{z}}$-component data with a regional trend
- True gravitygradient data
(a)

$2^{\text {nd }}$ synthetic test: $\mathbf{g}_{\mathbf{z}}$-component data with a regional trend
- Predicted gravitygradient data

$$
\mathrm{z}_{\mathrm{j}}=400 \mathrm{~m}
$$

30 iterations
Total \mathbf{g}_{z}-component data

$2^{\text {nd }}$ synthetic test: $\mathbf{g}_{\mathbf{z}}$-component data with a regional trend

- Residuals

Agenda

1 Introduction

2 The classical equivalent layer
3 The fast equivalent layer
4 Applications to synthetic data
5 Application to real data
6 Conclusions
7 Acknowledgments

Vinton salt dome, Louisiana, USA

- $\mathbf{g z}_{\mathbf{z}}$-component data

Vinton salt dome, Louisiana, USA

- $\mathbf{g}_{\mathbf{z}}$-component data

1

Beltrão et al. (1991): regional-residual separation method.

Vinton salt dome, Louisiana, USA

- $\mathbf{g}_{\mathbf{z}}$-component data

- Regional trend removed

- Residual \mathbf{g}_{z}-component data

Vinton salt dome, Louisiana, USA

- Observed gravitygradient data

Vinton salt dome, Louisiana, USA

- Predicted gravitygradient data

$$
\mathrm{z}_{\mathrm{j}}=400 \mathrm{~m}
$$

Residual $\mathbf{g}_{\mathbf{z}}$-component data

Vinton salt dome, Louisiana, USA
Residuals

Agenda

1 Introduction

2 The classical equivalent layer
3 The fast equivalent layer
4 Applications to synthetic data
5 Application to real data
6 Conclusions
7 Acknowledgments

- We have used a fast iterative equivalent-layer technique for calculating gravity-gradient data from \mathbf{g}_{z}-component data.
- This method uses the excess of mass and the positive correlation between the observed g_{z} component and the masses on the equivalent layer.
- The computational efficiency of the method relies heavily on the fast estimation of the mass distribution on the equivalent layer without requiring matrix multiplications and the solution of linear systems.
- Applications to synthetic and real data show the ability of the method to calculate the gravitygradient tensor from large data set when a regional data is removed. The presence of a regional data may result in errors in the calculation of the components.
- We have used a fast iterative equivalent-layer technique for calculating gravity-gradient data from \mathbf{g}_{z}-component data.
- This method uses the excess of mass and the positive correlation between the observed $\mathbf{g}_{\mathrm{z}}{ }^{-}$ component and the masses on the equivalent layer.
- The computational efficiency of the method relies heavily on the fast estimation of the mass distribution on the equivalent layer without requiring matrix multiplications and the solution of linear systems.
- Applications to synthetic and real data show the ability of the method to calculate the gravitygradient tensor from large data set when a regional data is removed. The presence of a regional data may result in errors in the calculation of the components.
- We have used a fast iterative equivalent-layer technique for calculating gravity-gradient data from g_{z}-component data.
- This method uses the excess of mass and the positive correlation between the observed \mathbf{g}_{z} component and the masses on the equivalent layer.
- The computational efficiency of the method relies heavily on the fast estimation of the mass distribution on the equivalent layer without requiring matrix multiplications and the solution of linear systems.
- Applications to synthetic and real data show the ability of the method to calculate the gravitygradient tensor from large data set when a regional data is removed. The presence of a regional data may result in errors in the calculation of the components.
- We have used a fast iterative equivalent-layer technique for calculating gravity-gradient data from \mathbf{g}_{z}-component data.
- This method uses the excess of mass and the positive correlation between the observed \mathbf{g}_{z} component and the masses on the equivalent layer.
- The computational efficiency of the method relies heavily on the fast estimation of the mass distribution on the equivalent layer without requiring matrix multiplications and the solution of linear systems.
- Applications to synthetic and real data show the ability of the method to calculate the gravitygradient tensor from large data set when a regional data is removed. The presence of a regional data may result in errors in the calculation of the components.

Agenda

1 Introduction

2 The classical equivalent layer
3 The fast equivalent layer
4 Application to synthetic data
5 Applications to real data
6 Conclusions
7 Acknowledgments

Support, scholarships, fellowships and dataset:

