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Overview

 Total-field anomaly and magnetization direction;
 Equivalent layer and the positivity;
 Forward and inverse problems;
 Numerical simulations;
 Field data application;
 Conclusion.
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How to estimate the magnetization direction? 



1. Methods that presume some 
geometry for the source

Set of prisms or spherical geometries 
(e.g.,Battacharyya,1996; 
Emilia e Massey, 1974; Medeiros e Silva, 
1995; Parker et al, 1987; 
Kubota e Uchiyama, 2005; 
Oliveira Jr et al, 2015)

2. Methods that not presume 
any information about the 

source

Analysis of the magnetic moment 
of sources (e.g., Tontini e Pedersen, 
2008)

Correlating of potential quantities
(e.g.,Roest e Pilkington,1993;
Dannemiller e Li, 2006; Gerovska, 2009;
 Li et al, 2017; Zhang et al, 2018)

Succesive RTP (Fedi, 1994)
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An interesting feature! 



We can retrieve the data generated by a 3D 
source using a 2D physical-property 

distribution 
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There is an interesting feature that associates the magnetization 
direction of the layer with the magnetic source
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If...

This feature was explored by Pedersen (1991) 
and Li et al (2014).

Lima and Weiss (2007) and Baratchart et al (2013) 
pointed out that uniqueness can be achieved by 

imposing an unidirectional solution. 

The magnetic-moment distribution is all-positive 
over the layer.
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Summary:

If the layer has the 
same direction of the 
true source

the magnetic-moment 
distribution is all-positive.

This is an interesting characteristic that can be used to 
auxiliate in estimating the magnetization direction



How does it work in practice?
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of observations
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∆To

Observed data vector

Reproduce the data 
using an equivalent-layer

We can group this 
data into a vector



x

y

∆T
i

z

z
c

F
0

Equivalent layer

y



x

y

∆T
i

z

z
c

F
0

Equivalent layer

y

The equivalent layer can be 
approximated by a set of equivalent 
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dipoles with unit volume
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sources that, in this case, are 
dipoles with unit volume
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the ith observation point is

Parameter 
vector 

The magnetic moment of the jth 
dipole, j = 1, …, M.

This parameter vector is formed 
by the magnetic moment 

distribution and the 
magnetization direction
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where

The task here is  to 
estimate the 

magnetization direction! 
The magnetic moment of the jth 

dipole, j = 1, …, M.



The procedure for estimating magnetization 
direction
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and nonlinear relation 
with the magnetization 

direction

First, we must have to emphasize 
two issues
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Data misfit
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Minimize

Subject to

Tik-0 reg.

Estimate the p* and q* which 
minimizes the difference 
between ∆To  and ∆T(s)



How to solve this inverse problem?



We propose a nested 
algorithm that solves the 

problem in two steps
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Given an initial guess q
0
 for 

magnetization direction

We propose a nested 
algorithm that solves the 

problem in two steps
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2

Nonnegative least squares 
(NNLS) by Lawson and 

Hanson (1974)

Levenberg-Marquardt 
method



An overview of the 
algorithm



Numerical simulations 

1. Unidirectional magnetization sources

2. Unidirectional with shallow-seated source

3. Shallow-seated source with different direction
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    A model composed by five magnetic 
sources :   
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sources :       (450,950)      

    (500,2050)    
  

    Two rectangular prisms



    *(top, bottom) in meters      For all simulations

    A model composed by five magnetic 
sources :   

    (450,3150)    
      Prism with 

polygonal cross-section
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    A model composed by five magnetic 
sources :   

    (500,1500)   
   

    Two spheres
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Grid spacing

z = 100 m   Height

  N = 1225 points   
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= -40º,-22º  Simulated main field 

direction
Gaussian noise with 
zero mean and 
standard deviation 
10 nT 
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For all simulations For the inversion

M = 1225 equivalent sources    

Depth of z = 1150 m

L-curve for choosing the 
regularization parameter proposed 
by Hansen (1992). 

 

The initial guess of 
q

0
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(same number of observations)    



1. Unidirectional magnetization sources



The magnetization direction 
for all sources: 

(I,D) = (-25º,30º)



Data Fitting(I,D) = (-25º,30º)

(I,D) = (-28.6º,30.8º)



Data Fitting(I,D) = (-25º,30º)

(I,D) = (-28.6º,30.8º)

Note that the histogram shows a Gaussian pattern 
in which the mean and standard deviation close to 

the true ones



Magnetic moment distribution

Note the positive 
magnetic moment 

distribution!

(I,D) = (-25º,30º)

(I,D) = (-28.6º,30.8º)



The algorithm convergence
(I,D) = (-25º,30º)

(I,D) = (-28.6º,30.8º)



The algorithm convergence

These results show that the all-positive magnetic-moment distribution
and the estimated magnetization direction produce an acceptable data 

fitting

(I,D) = (-25º,30º)

(I,D) = (-28.6º,30.8º)



2. Unidirectional with shallow-seated source
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Data Fitting(I,D) = (-25º,30º)

 (I,D) = (-28.7º,31.7º)

Note high residual concentrated just 
above the shallow-seated source



Magnetic moment distribution

Note the positive 
magnetic moment 

distribution!

(I,D) = (-25º,30º)

 (I,D) = (-28.7º,31.7º)



The algorithm convergence

(I,D) = (-25º,30º)

 (I,D) = (-28.7º,31.7º)



The algorithm convergence

Despite the large residual located above the shallow-seated source, we 
consider that the methodology produced a reliable result because the 
estimated magnetization direction is very close to the corresponding 
true magnetization direction.

(I,D) = (-25º,30º)

 (I,D) = (-28.7º,31.7º)



3. Shallow-seated source with different direction



    (150,650)     
 

Now the shallow-seated source has a 
different magnetization direction

(I,D) = (20º,-30º)



    (150,650)     
 

Now the shallow-seated source has a 
different magnetization direction

(I,D) = (20º,-30º)

while the other sources: 

(I,D) = (-25º,30º)



Data Fitting(I,D) = (-25º,30º)

(I,D) = (-30.4º,27.6º)



Data Fitting(I,D) = (-25º,30º)

(I,D) = (-30.4º,27.6º)

The same concentration equal to the 
previous one



Magnetic moment distribution

Note the positive 
magnetic moment 

distribution!

(I,D) = (-25º,30º)

(I,D) = (-30.4º,27.6º)



The algorithm convergence

(I,D) = (-25º,30º)

(I,D) = (-30.4º,27.6º)



The algorithm convergence

Despite the slight difference from the true magnetization direction, 
the estimated magnetic-moment distribution produces an acceptable 
data fit, with the exception of the small area exactly above the small-
seated prism.

(I,D) = (-25º,30º)

(I,D) = (-30.4º,27.6º)



Field data application
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Goiás Alkaline Province (GAP):  
Complex of Montes Claros de 

Goiás

A total of N=1787 
observations    

This area was flown with an 
aeromagnetic survey

The flight height of 100 m 
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For the inversion

M = 1787 equivalent sources    

Depth of z = 840 m

L-curve for choosing the 
regularization parameter proposed 
by Hansen (1992). 

 

The initial guess of 
q

0
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(same number of observations)    



Data Fitting

(I,D) = (-50.2º,34.9º)



Data Fitting

Note the two large residuals that 
may indicate the existence of 
shallow-seated geologic sources

(I,D) = (-50.2º,34.9º)



Magnetic moment distribution

Note the positive 
magnetic moment 

distribution!

(I,D) = (-50.2º,34.9º)



The algorithm convergence

(I,D) = (-50.2º,34.9º)



The algorithm convergence

We check the quality of the estimated magnetic-moment distribution 
and estimated magnetization direction by computing the reduction-to-
pole of the observed total-field anomaly!



The reduction-to-pole

(I,D) = (-50.2º,34.9º)



The reduction-to-poleWe can note 
predominantly 
positive values over 
the study area. For 
this reason, we 
consider the 
estimated 
magnetization 
direction satisfactory

(I,D) = (-50.2º,34.9º)



The reduction-to-pole

From these results, we can also conclude that the all-positive magnetic 
moment distribution and the estimated magnetization direction 
produce an acceptable data fitting. We can also conclude that these 
intrusions present a strong remanent magnetization component.

(I,D) = (-50.2º,34.9º)
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equivalent-layer technique; 
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● We presented a method for estimating the total magnetization direction with 
equivalent-layer technique; 

● We propose a nested algorithm for solving the inverse problem in two steps;

● This method can be applied to estimate the total magnetization direction of multiple 
sources;

● We show that the positive magnetic-moment distribution can auxiliate the 
magnetization estimation;

● After synthetic tests, we conclude that the method is capable to retrieve the 
magnetization direction of magnetic sources;

● The field data application confirms that our method can be a reliable tool for 
interpreting geological scenarios

● However, despite the reliable magnetization estimate, we cannot infer if shallow 
sources has the same direction of the final solution.
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