Supporting information

Core-Shell Biopolymer Nanoparticles for Co-Delivery of Curcumin and Piperine: Sequential Electrostatic Deposition of Hyaluronic Acid and Chitosan Shells on the Zein Core

Shuai Chen, [†] David Julian McClements, [‡] Lin Jian, [§] Yahong Han, ^{II}Lei Dai, [†] Like

Mao, [†] Yanxiang Gao*[†]

[†]College of Food Science & Nutritional Engineering, [§]College of Engineering, China

Agricultural University, Beijing 100083, China

[‡]Department of Food Science, University of Massachusetts Amherst, Amherst,

Massachusetts 01003, United States

^{II} College of Engineering, Huazhong Agricultural University, Wuhan 430070, China

*Corresponding author.

Yanxiang Gao

Tel.: + 86-10-62737034 Fax: + 86-10-62737986

Address: No.17 Qinghua East Road, Haidian District, Beijing 100083, China.

E-mail: gyxcau@126.com

E-mail addresses of all coauthors:

Shuai Chen: chenshuai2016@hotmail.com

David Julian McClements: mcclements@foodsci.umass.edu

Lin jian: jianlin@cau.edu.cn	Yahong Han: yahonghan2019@hotmail.com
Lei Dai: dailei508@163.com	Like Mao: likemao@cau.edu.cn

S-1

Bioactive		1 / · · · h	t _{1/2} (min)	D ²
compound	Sample	$K(\min^{-1})$		K-
	Cur	0.0256	27.1	0.9752
	Cur-zein	0.0138	50.2	0.9948
Curcumin	Cur-zein-HA	0.0087	79.7	0.9730
	Cur-zein-HA-Pip	0.0072	96.3	0.9761
	Cur-zein-HA-Pip-LCH	0.0058	119.5	0.9649
	Cur-zein-HA-Pip-MCH	0.0063	110.0	0.9746
	Cur-zein-HA-Pip-HCH	0.0065	106.6	0.9754
	Cur-Pip-zein-HA-LCH	0.0064	108.3	0.9762
	Piperine	0.0048	144.4	0.9673
Piperine	Cur-zein-HA-Pip	0.0037	187.4	0.9646
	Cur-zein-HA-Pip-LCH	0.0026	266.6	0.9494
	Cur-zein-HA-Pip-MCH	0.0028	247.6	0.9439
	Cur-zein-HA-Pip-HCH	0.0029	239.0	0.9314
	Cur-Pip-zein-HA-LCH	0.0021	330.1	0.9369

Table S1. Light degradation kinetics parameters of curcumin and piperine in the core-shell biopolymer nanoparticles

Table S2. Particle size and zeta-potential of fresh samples and stored samples (2 months)

Sample	Particle size (nm)		Zeta-potential (mV)	
	Fresh	Stored	Fresh	Stored
Cur-zein	105.5 ± 3.6 $^{\rm b}$	120.2 ± 2.9 ^a	$+24.6\pm$ 1.0 a	$+18.9\pm0.4$ b
Cur-zein-HA	$153.0\pm5.8~^{\rm b}$	324.5 ± 11.4 a	-40.6 \pm 3.2 $^{\rm b}$	$-36.3\pm2.3~^{a}$
Cur-zein-HA-Pip	186.0 ± 8.6 ^b	393.8 ± 5.4 ^a	-28.8 \pm 2.2 $^{\rm b}$	$\text{-}24.5\pm0.6~^{\text{a}}$
Cur-zein-HA-Pip-LCH	598.6 ± 24.9 $^{\rm b}$	676.9 ± 33.6 ^a	$+38.1\pm3.5$ a	$+34.3\pm2.1~^{\text{b}}$
Cur-zein-HA-Pip-MCH	$712.0\pm23.6\ ^{b}$	$811.0\pm14.3~^{a}$	$+38.7\pm2.3$ a	$+33.4\pm1.9$ b
Cur-zein-HA-Pip-HCH	$807.0\pm18.6\ ^{\mathrm{b}}$	$948.5\pm27.0~^{a}$	$+39.8\pm2.6$ a	$+35.9\pm2.1$ b
Cur-Pip-zein-HA-LCH	613.7 ± 22.9 $^{\rm b}$	824.2 ± 18.5 a	$+34.4\pm$ 1.8 a	$+30.1\pm1.3$ b

Different superscript letters (a, b...) in the same row indicate significant differences (p < 0.05)

Figure S1. The polydispersity index (PDI) of freshly prepared nanoparticle dispersions (**A**) and stored (2 months) nanoparticle dispersions (**B**). Different superscript letters (a, b, c...) in the Figure indicate significant differences (p < 0.05)

Figure S2 A-B. Isothermal calorimetry titration thermogram (**A**) binding isotherm (**B**) of piperine-hyaluronic acid. (1.8 mM piperine (50 μ L) was placed in the syringe and 0.18 mM hyaluronic acid (170 μ L) was placed in reaction cell, 20 successive 2.5 μ L injections of piperine solution were titrated into hyaluronic acid solutions at time intervals of 60 seconds). The Δ H, T Δ S, and Δ G were calculated as -91.2 KJ/mol, -71.0 KJ/mol, and -20.2 KJ/mol. The interaction between piperine and hyaluronic acid was exothermic and enthalpy driven, and hydrogen bonding was involved in the molecular interaction between piperine and hyaluronic acid.