

A Holistic Framework for Supporting Evidence-Based Institutional Research Data Management

Ge Peng^{1,2}, PhD

In Collaboration With

Jeffrey L. Privette², Edward Kearns³, Nancy Ritchey², Otis Brown¹,

Curt Tilmes⁴, Sky Bristol⁵, Hampapuram Ramapriyan^{4,6}, and Thomas Maycock¹

¹ North Carolina Institute for Climate Studies (NCICS), North Carolina State University, Asheville, NC 28801 USA;
 ² NOAA National Centers for Environmental Information (NCEI), USA;
 ³ NOAA Office of the Chief Information Officer (OCIO), USA;
 ⁴ NASA Goddard Space Flight Center (GSFC), USA;
 ⁵ United States Geological Survey (USGS), USA;
 ⁶ Science Systems and Applications, Inc. (SSAI), USA

CODATA 2019 Meeting, Beijing, China, September 19, 2019

Main Challenges for Institutional RDM

- Increasing Quantity and Variety of Digital Research Data,
- Evolving Users Requirements,
- Increased Federal Requirements,
- Multi-Perspectives of Data Management and Stewardship,
- Multi-Dimensions of Data and Information Quality.

Increased Federal Requirements -> Quality Attributes

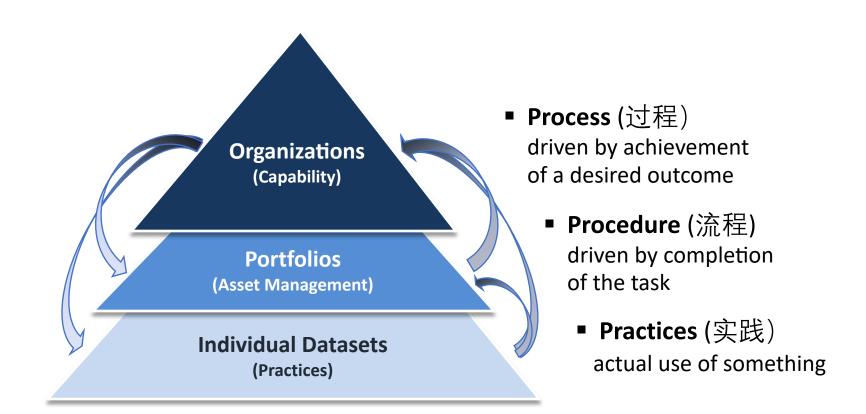
US Public Laws

- Information Quality Act (106-554 2000),
- DATA Act (113-101 2014),
- OPEN Government Data Act (115-435 2019, Title II).

US Federal Policies

- Information Quality Act Guidelines (OMB 2002), revised in 2019,
- Open Data Policy Managing Information as an Asset (OMB 2013),
- Increasing access (OSTP 2013)

Important Quality Attributes for U.S. Federally

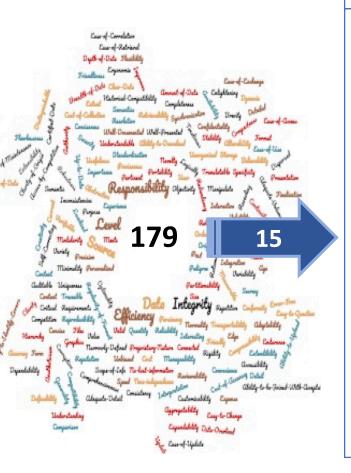

Funded Digital Research Data Include:

 Accuracy, Integrity, Utility, Transparency, Traceability, Preservability, Accessibility, Interoperability, Usability.

Compliance reporting with support evidences

Multi-Perspectives of Institutional RDM

Data Production: Processes ensure a data product is produced in a right way while practices ensure the produced product is a right one.



There Are Many Data Quality Attributes!

Multi-Dimensions of Data and Information Quality

Quality Attributes

- accuracy, objectivity, believability, reputation,
- relevance, timeliness, completeness, valueadded, appropriate amount of data,
- ease of understanding, concise representation and representational consistency, interpretability,
- accessibility, access security.

Dimensions

➢ Intrinsic

Contextual

Representational

> Accessibility

(Wang and Strong 1996, J. Management Info. Sys.)

Multi-Dimensions of Data and Information Quality

Perspective

Based on open data and data sharing principles

(Wilkinson et al. 2016, Scientific Data)

Quality Attributes

- Findability,
- Accessibility,
- Interoperability,
- Reusability.

Multi-Dimensions of Data and Information Quality

Stages of Data Product Lifecycle

Define/Develop/Validate	Create/Evaluate/Obtain	Maintain/Preserve/Access	Use/User Service
Science	Product	Stewardship	Service
 Accuracy Precision Uncertainty Fitness for purpose 	 How well the product has been produced and assessed; Completeness of product metadata and documentation 	 How well the data are being managed, preserved, and stewarded; Metadata and documentation for access & use 	 How well the data are being serviced; User support Customer engagement

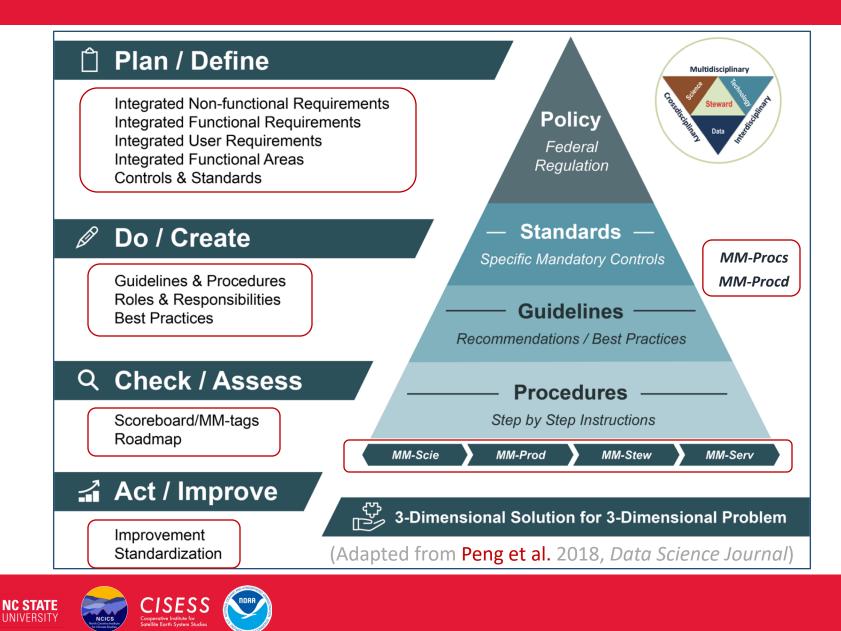
(Ramapriyan et al. 2017, D.-Lib Magazine)

Needs to be Holistic and Integrated

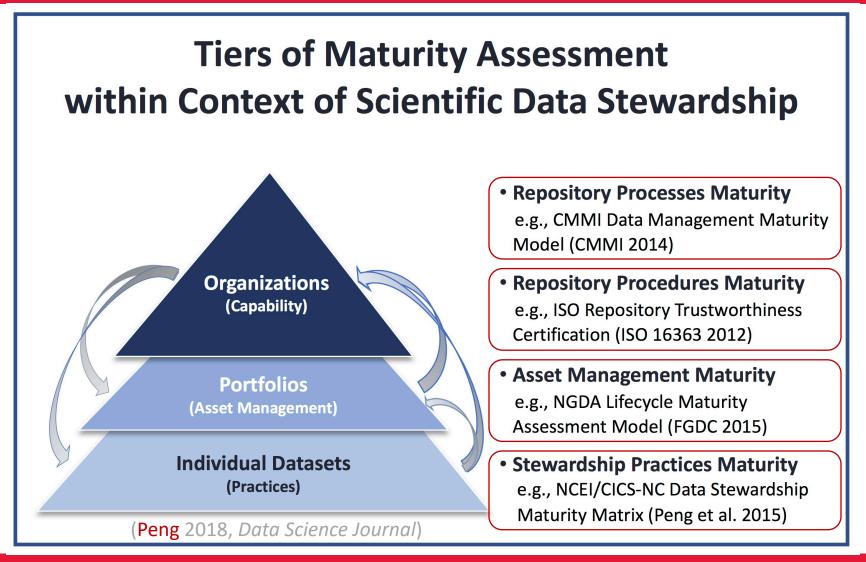
Institutional Research Data Management

- A lot of Moving Parts, many may have already been in place;
- Cross-Department;
- Cross-Discipline.

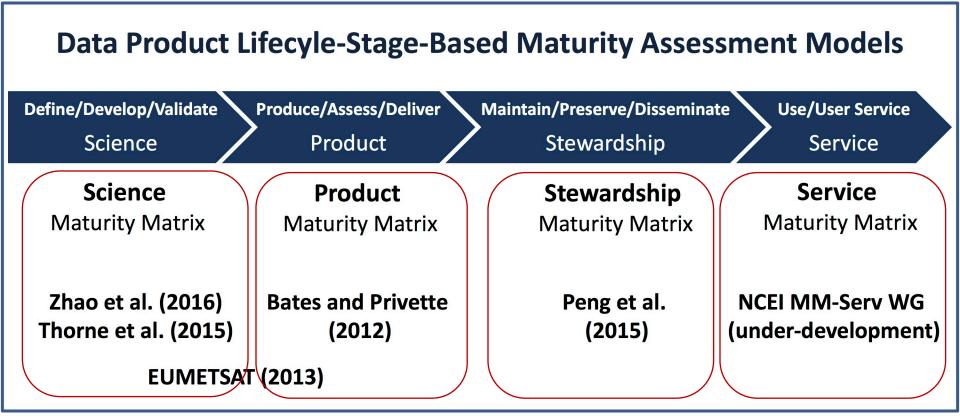
Institutions need to demonstrate the compliance by reporting with support evidences!


But How? Where to Start?

Needs to have a Holistic and Integrated Approach:

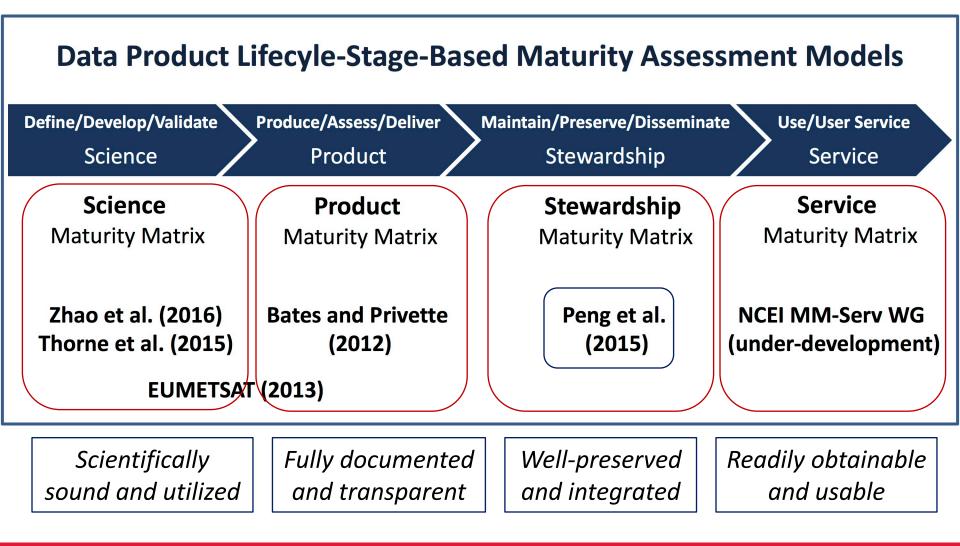

- To be utilized without much upfront cost,
- Enterprise-wide,
- Evidence-based,
- Support continuous improvement.

High-Level, Holistic Framework For Institutional RDM


Examples of Maturity Assessment Models

NC STATE

Examples of Dataset Maturity Assessment Models

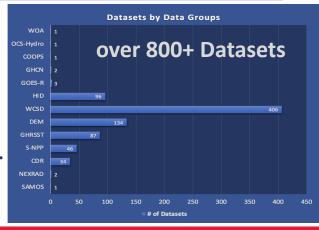


(Peng 2018, Data Science Journal)

- WMO Stewardship Maturity Matrix for Climate Data,
- CEOS Data Management and Stewardship Maturity Matrix.

Examples of Dataset Maturity Assessment Models

Possible to Assess the Maturity of Individual Datasets? (NOAA *OneStop* Application of a Data Stewardship Maturity Matrix)


What Is the DSMM?

- A Unified Framework for measuring stewardship practices applied to individual data products,
- Developed Jointly by domain Subject Matter Experts (i.e., data management, science, and technology),
- Leveraged institutional knowledge and community best practices and standards,
- Used and reused by various data management and stewardship organizations,
- Used to curate structured, rich, machine and human readable quality information metadata and documents.

(Peng et al. 2019, Data Science Journal; ncics.org/dsmm)

Maturity Scale Key Component	Level 1 - Ad Hoc Not Managed	Level 2 - Minimal Managed Limited	Level 3 - Intermediate Managed Defined, Partially Implemented	Level 4 - Advanced Managed Well-Defined, Fully Implemented	Level 5 - Optimal Level 4 + Measured , Controlled , Audit	
Preservability	The state of dataset being preservable					
Accessibility	The state of dataset being publicly searchable and accessible					
Usability	The state of data product being easy to understand and use					
Production Sustainability	The state of data production being sustainable and extendable					
Data Quality Assurance	The state of data product quality being assured/screened					
Data Quality Control /Monitoring	The state of data product quality being controlled and monitored					
Data Quality Assessment	The state of data product quality being assessed					
Transparency /Traceability	The state of data product being transparent, trackable, and traceable					
Data Integrity	The state of data integrity being verifiable					

Key Takeaways

Institutional Research Data Management:

- is a multi-perspective and multi-dimensional problem,
- requires an integrated data-centric framework.

Our framework

- follows the Plan-Do-Check-Act (PDCA) cycle,
- provides a tool to address RDM activities as a consistent, integrated, dataset-centric system,
- includes the application of maturity assessment models,
- supports informed decision-making process.

References

Peng, G., 2018: The state of assessing data stewardship maturity – An overview. Data Science Journal. 17, doi: 10.5334/dsj-2018-007.

Peng, G., J.L. Privette, C. Tilmes, S. Bristol, T. Maycock, J.J. Bates, S. Hausman, O. Brown, and E. J. Kearns, 2018: A Conceptual Enterprise Framework for Managing Scientific Data Stewardship. Data Science Journal, 17. doi:10.5334/dsj-2018-015.

Peng, G., A. Milan, N. Ritchey, R. P. Partee II, S. Zinn, PE. McQuinn, Lemieux III, R. Ionin, D. Collins, P. Jones, A. Jakositz, and K.S. Casey, 2019: Practical Application of a Stewardship Maturity Matrix for the NOAA OneStop Program. Data Science Journal, 18. doi:10.5334/dsj-2019-041.

Ramapriyan, H K, Peng, G, Moroni, D, and Shie, C L, 2017: Ensuring and Improving Information Quality for Earth Science Data and Products. D.-Lib Magazine, 23, DOI:10.1045/july2017-ramapriyan.

Contact Me:

gpeng@ncsu.edu

ORCID: http://orcid.org/0000-0002-1986-9115

Twitter: @DrPengAtAVL

