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Text S1 - Algorithm for Approximate Bayesian Computation Markov-chain Monte Carlo  

The algorithm used for sampling the model parameter space and to estimate an approximate posterior 

parameter distribution, incorporates simulation of the model traits M (Equations 1, 6, 21) into a 

standard Metropolis-Hastings (M-H) Markov Chain Monte Carlo (MCMC) algorithm (Gilks et al 

1997). The ABC-MCMC algorithm (Marjoram et al. 2003) was designed to overcome issues associated 

with low acceptance probability, which occur when sampling directly from a prior distribution that 

differs substantially from the target parameter distribution. The algorithm has the following structure 

(c.f. Toni et al 2009, Kypraios et al 2016). 

 

ABC-MCMC algorithm 

Input: observed temporal data D(tD), where tD is a vector of time points, summary statistics s(·), 

distance function d(.,.), tolerance Ɛ, proposal distribution q (· |· ), prior distribution π(θ) , initial state of 

Markov chain θ0. 

Output: samples from ���. |�) = ��. |�, 
����), ��. )) < ε)), the approximation to the posterior 

distribution π�. |�). 

1: Initialise the step number and state of the Markov chain: c=1 and θ c= θ 0. 

2: Sample θ∗ from a proposal distribution q (· |θc). 

3: Simulate a dataset D* from the continuous-time model M(t,θ) at t=tD and θ=θ∗. 

4: Accept θ* with probability: 

(S.1) α = min �1, ���∗,�∗) ���∗) ���∗|���
����,��� ����� ����|�∗�� 

(S.2)  r�D∗, θ∗� = ��
�����, ���∗�� < ε�,  

where �(x)=1 if x is true and 0 otherwise. 
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5: if θ* is accepted, set the new state θc+1= θ*, otherwise θc+1= θc.  

6: Set c=c+1; go to 2 and repeat until the required sample size is reached. 

 

For a uniform prior distribution and a symmetric proposal distribution, the probability of acceptance is 

1 if 
�����, ���∗�� < ε� and 0 otherwise. The following choices were made (see M&M): distance in 

Eq (12), tolerance start value Ɛest based on the data according to Eq (13) and tuned for each trait fitted 

if the corresponding acceptance rate is zero; a multivariate-normal proposal distribution centred at the 

current state with variance-covariance estimate based on the chain up to the current state (approach 

similar to that in Rosenthal (2010)), and burn-in period of one third of the chosen chain length. While, 

the chain generated by ABC-MCMC is guaranteed to converge asymptotically to a stationary posterior 

distribution (Majoran et al 2003), in practice, it is possible the chain may take too long to converge to 

be computationally viable, depending on the start parameter point and the nature and dimension of the 

model and data. To tackle unsuitable start points in regions with negligible parameter support, i.e. zero 

proposal acceptance within the chain length, we used sequential sampling of start points across sectors 

in parameter space up to a maximum number of trials. More efficient algorithms that attempt to 

overcome these difficulties and tune the choice of tolerances, such as sequential Monte Carlo ABC 

(Sisson et al 2007, Toni et al 2009, Del Moral 2012), have been developed, using multiple simultaneous 

chains (particles) with different start values that are filtered through using suitable probability weights. 

For the low-dimensional examples used in this paper it is sufficient to use ABC-MCMC, whose 

convergence is shown to be attained in moderate-length chains. For the likelihood-based inference, an 

identical M-H MCMC algorithm applies, with the difference that the r ratio in the probability of 

acceptance ((S.2) and (S.1)) is replaced by a likelihood ratio. In this paper, however, a direct parameter-

grid calculation is used for the likelihood-based parameter posterior distribution. 
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