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Abstract 

A profound understanding of the stratospheric wintertime dynamics and its 
climate changes are important for improving seasonal forecast skill. The 
primary goal of the research of the wintertime Arctic stratospheric polar 
vortex (PV hereafter) is defining its states and their clustering. Manual 
classification is a highly time-consuming task suffering of researcher 
subjectivity. We apply deep learning methods that let us cluster the PV 
states based on their spatial structure. We designed the particular kind of 
neural networks called variational convolutional autoencoder with the 
sparsity constraint (SpCVAE). We applied the hierarchical agglomerative 
clustering algorithm to the states pf PV described by their embedded 
representation generated by SpCVAE. 96-dimensional embedded 
representation was found to be optimal with high samples reconstruction 
quality. The best number of clusters was chosen based on "elbow rule" and 
topic-specific reasoning. The approach applied let us automatically 
distinguish weak PVs of "displacement" and "split" types, as well as to 
isolate several strong vortex states of different shift directions. These 
results are only obtainable when one considers the spatial structure of the 
PV. We have constructed the calendar of the PV states based on the 
clustering result. Clustered events of weak PVs were examined and 
demonstrated good correspondence with the calendar of sudden 
stratospheric warmings that have been built manually. This result is now 
the basis for the research of the stratosphere-troposphere interaction for 
existing and future climate scenarios. 

1 Introduction 

Nowadays, skillful numerical weather prediction is limited by about 10 days due to the chaotic nature of atmospheric 
dynamics [1]. Skillful seasonal forecasting typically relies on the predictability of slow-varying components of the 
climate system, such as sea surface temperature, sea ice, snow cover, and soil moisture. For instance, the predictability 
of El Niño Southern Oscillation (ENSO) phenomenon is a remarkable example of high skills of the seasonal forecast 
system [2,3]. However, recent studies demonstrated that the maximum seasonal forecast skills have not yet been 
achieved, and pointed to the stratosphere as a potential source for enhancing seasonal predictability [1,4]. 

Before [5] the stratosphere was considered playing a passive role in the stratosphere-troposphere coupling, that is, it 
does not influence troposphere dynamics. Baldwin and Dunkerton showed [5] that the strength of the polar vortex 
affects the main features of the paths of the cyclones propagation. From that time, interest in the stratospheric dynamics 
and its climatic changes have constantly been growing. 

Polar stratosphere became extremely cold during the polar night, and meridional temperature gradient becomes 
strong, which leads to the formation of the polar vortex. Planetary waves propagating from the troposphere to the 
stratosphere disturb and sometimes destroy polar vortex. These events are known as Sudden Stratospheric Warming 
events (SSW), as the temperature near the pole dramatically increase (up to 40° per 4 - 7 days) when the vortex is 
destroyed. Two types of SSW are classified nowadays: “displacement” with the center of the vortex shifted significantly 
towards the equator, and “split” with the vortex split into two vortices. There are periods of the extremely strong vortex 
as well. Variability of the PV intensity is the most influential factor of intraseasonal variability in the winter 
stratosphere. During springtime as the polar day is coming to high latitudes, temperature gradient decrease, so the polar 
vortex disappears. Summertime variability of the stratosphere dynamics is low, and there is no source of the 
stratosphere-troposphere coupling. 

It has been shown that weakenings of the polar vortex precede the shift of the storm tracks (main path of mid-latitude 
cyclones propagation) to the south, which may cause cold outbreaks in the North Atlantic - Europe region [6–10]. These 
anomalies may act in the troposphere up to 2 months [6,11]. Amplitudes of these anomalies are comparable to the effect 
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of the ENSO [3]. Therefore, one can extend and improve long-term weather forecast [12–16].  However, relatively little 
attention is paid to strong polar vortex events compared to SSW. One of the main reasons for that is the difficulty of 
their identification classification. 

There are a few metrics for the describing states of the PV [3,17]. Widely used key features of PV for applying 
different types of analysis are the aggregated and diagnostic parameters like maximum pressure anomaly, zonal-mean 
zonal winds, etc. These parameters do not preserve spatial characteristics like PV center shift from the North Pole, 
vortex shape parameters or various anomalies duration. 

Over last decades machine learning methods demonstrated spectacular results in research of climatic changes of 
atmospheric circulation [18–22]. Researchers mostly rely on state-of-the-art clustering methods. Using the resulting 
atmosphere states grouping one can assess atmospheric circulation characteristics and trends within each cluster. Most 
of this kind of works are focused on troposphere states research [18–20,22]. However, machine learning techniques are 
shown recently to be fruitful for stratosphere states clustering [21]. Mostly Kohonen self-organizing maps [23] is 
applied in these works for clustering. However, its ability to preserve the topology of a dataset is rarely used. 
Hierarchical agglomerative clustering is the less frequently used method [18,21]. For this type of clustering, the source 
data of geophysical fields are usually aggregated following a researcher sense of a particular operation ability to 
preserve the informational content. As a result, each PV state is represented with vectors. This procedure leads to the 
loss of crucial information about the spatial configuration of objects being researched. 

In our work, we focused on polar vortex states research with the use of geopotential height at 10hPa level (see section 
2.1 “Data and preprocessing”). We applied hierarchical agglomerative clustering method on the embedded 
representations of PV states that are generated by variational convolutional autoencoder with the sparsity constraint 
(hereafter SpCVAE) [24,25]. SpCVAE as a feature extractor and a tool for dimensionality reduction preserves features 
of PV spatial configuration, yet it is capable of decreasing the computational costs of clustering. Purposes of a SpCVAE 
here are dimensionality reduction and extraction of significant information based on the whole PV states dataset. Being 
a neural network trained end-to-end the SpCVAE avoids manual feature engineering. Thus there is no need to rely on 
a researcher`s sense of the importance of PV aggregated parameters. 

2 Data and methods 

2.1 Data and preprocessing 

We analyzed geopotential heights (HGT) and potential vorticity (PVt) fields at 10 hPa level from JRA-55 (Japanese 
55-year Reanalysis) in this study [26]. We considered wintertime period December-February (DJF) for 1958 - 2014 
years. The spatial resolution of the data is 1,25° х 1,25°; the upper level of the model is 0.1 hPa, which is crucial for 
the analysis of stratospheric processes. JRA-55 shown to be in good coherence with all modern reanalysis data (S-RIP 
[27]). The main advantage of JRA-55 is the extended period from the 1958 year in comparison with ERA-Interim 
(European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis data) and MERRA (NASA Modern 
Era Reanalysis for Research and Applications) that start from 1979. 

Source data for describing PV states were considered to be field values to the north from 40°N. 
At the preprocessing stage, timestep-defined snapshots of HGT and PVt fields were projected using North-polar 

Lambert azimuthal projection and interpolated to form a two-dimensional flat matrix of size 256x256. For each date of 
a year, we calculated the climatological median and subtracted it from each snapshot of this date (e.g., from all snapshots 
within January 25th of each year). Since we use the North-polar Lambert  azimuthal projection, only central rounded 
part of each sample is informative, so during all calculations, we used the mask 𝑀𝑀𝑖𝑖𝑖𝑖 (fig. 1b). 

We further normalized these snapshots, so all their values are limited and take values between 0.0 and 1.0: 

𝑥𝑥𝑖𝑖𝑖𝑖 =
𝑥𝑥𝑖𝑖𝑖𝑖 − min

𝑖𝑖,𝑖𝑖
𝑋𝑋

max
𝑖𝑖,𝑖𝑖

𝑋𝑋 − min
𝑖𝑖,𝑖𝑖

𝑋𝑋
 , (1) 

where 𝑋𝑋 denotes the whole dataset snapshots; 𝑥𝑥 is a particular snapshot, 𝑖𝑖 and 𝑗𝑗 are 𝑥𝑥 matrix  indices; min(𝑋𝑋) and 
max(𝑋𝑋) are calculated taking the mask 𝑀𝑀𝑖𝑖𝑖𝑖 into account. This kind of normalization applied to both HGT and PVt 
datasets separately. With this preprocessing procedure, the PV states dataset is represented with two fields containing 
21476 matrices of size 256 x 256 which values fit the range between 0.0 and 1.0. Some examples of this dataset are 
shown in fig. 1a. 
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(a) (b) 

Figure 1: (a) Examples from the dataset of PV states (HGT values only, normalized); (b) mask 𝑀𝑀𝑖𝑖𝑖𝑖 

2.2 Sparse variational convolutional autoencoder 

Convolutional autoencoder (CAE) is a particular type of neural autoencoders [24,25] which purpose is to deal with 
two-dimensional fields when it is crucial to take into account spatial relations between data anomalies. The fundamental 
purpose of autoencoders is the approximate copying of input data with some constraints imposed on the network 
structure. These constraints are often the restriction on the maximal dimensionality of the embedded representation 
obtained on the encoder output (see fig. 2), and the CAE is called undercomplete. In this sense, the whole undercomplete 
CAE is essentially a transformation: ℱ:𝐴𝐴 → 𝐻𝐻 → �̃�𝐴, where 𝐴𝐴 is an input example matrix, 𝐴𝐴 ∈ 𝔸𝔸; 𝐻𝐻 is its hidden 
representation vector such as 𝐻𝐻 ∈ ℋ where ℋ is a hidden representations space, and �̃�𝐴 is the reconstructed example 
matrix, �̃�𝐴 ∈ 𝔸𝔸. Here 𝔸𝔸 is the space ℝ𝑛𝑛 where 𝑛𝑛 is the number of pixels of input examples. In our study, 𝑛𝑛 = 2 ∗ 256 ∗
256 since HGT and PVt projected examples are matrices 256x256. The transformations 𝐴𝐴 → 𝐻𝐻 and 𝐻𝐻 → �̃�𝐴 are referred 
hereafter as encoder and decoder respectively. An autoencoder is trained with the loss function defined according to 
the similarity definition suitable to the problem. Mean squared error is a widely used loss function that is suitable for 
most tasks that imply the processing of geophysical fields. In a case of limited source data values, one may normalize 
them accordingly to use binary cross-entropy loss (BCE) (eq. 2). We normalized source data, so its values are limited 
(see Section 2.1) therefore we use BCE loss ℒ𝑏𝑏𝑏𝑏𝑏𝑏: 

ℒ𝑏𝑏𝑏𝑏𝑏𝑏(𝑋𝑋,𝑝𝑝) = −��𝑀𝑀𝑖𝑖𝑖𝑖�𝑥𝑥𝑖𝑖𝑖𝑖 lnℱ�𝑥𝑥𝑖𝑖𝑖𝑖��
𝑛𝑛

𝑖𝑖=0

𝑚𝑚

𝑖𝑖=0

 , (2) 

It was shown [24,25,28] that successful training of a neural network implies tuning its weights the way that the 
trainable part of the network extracts latent parameters distribution of the training dataset. With the trained CAE, the 
embedded representation [29,30] of input samples preserve enough information for the network to be able to reconstruct 
it with the appropriate quality. We use this feature of CAEs to perform dimensionality reduction with minimum loss of 
information about latent parameters variability and the spatial structure of PV states. 

We applied commonly used techniques of convolutional neural networks quality improvement called Transfer 
Learning (hereafter TL) [28,31–35] and Fine Tuning (hereafter FT) [36,37]. In practice, TL implies the construction of 
a new neural network based on a subset of layers of the network that was previously trained on a huge dataset, e.g., 
ImageNet [38]. Moreover, these layers are set to be “frozen,” that is, their weights are not optimized during training. 
This approach is fruitful when one uses a dataset which statistical characteristics are similar to ImageNet. In practice, 
it means that the new dataset images should contain visual patterns similar to ones that are frequently met in ImageNet. 
TL application significantly decreases the computational costs of new models training. Fine Tuning approach implies 
turning off the “frozen” state for some top layers of the transferred neural network. With this approach, one can tune 
the whole CAE taking into account the peculiar properties of the dataset. 

We applied the TL technique while building the encoder part of the CAE. We used pre-trained VGG-16 [39] as a 
transferred network. We used the convolutional part of VGG-16 and a set of new fully-connected layers attached to it. 
VGG-16 convolutional sub-network is denoted as “convolutional core” in fig. 2. We also applied several regularizations 
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to prevent overfitting. Particularly we used the dropout [40] approach and L2 regularization which penalizes high-value 
weights. 

In our model, the VGG-16 output is reshaped to a vector which is then the input for the encoder fully-connected 
part. This fully-connected part consists of three layers FC1, FC2, and FC3, which are alternating with dropout layers. 
FC3 is an intermediate one between encoder and decoder. The output of FC3 is the hidden representation of the input 
sample and the input vector for the decoder. 

Autoencoders usually tend to be symmetric. With this approach, we constructed the decoding part to be mirrored to 
the encoder. All the weights of the decoder are trainable. Following the best practices of composing convolutional 
autoencoders, we used two-dimensional upsampling layers which mirror max-pooling layers of the encoder. 
Upsampling here is an operation of repeating the layer`s input rows and columns by the specified number of times. 
Decoder outputs are the reconstructed HGT and PVt fields of input example which has to be similar to the input in a 
sense defined by the loss function of the network which is BCE loss (eq. 2.) 

The dimensionality constraint mentioned above is the dimensionality of ℋ. The common approach of the clustering 
involving autoencoders relies on their capability of projecting the input examples to the hidden representation space ℋ. 
This transformation was shown to be trained so that the examples which are close to each other in ℋ are similar [29]. 
However, the key feature of a dataset should be the opposite for the reliable, stable, and reproducible clustering, that is, 
similar examples should be located close to each other in ℋ. The ordinary undercomplete CAE does not guarantee this 
property of the projection 𝔸𝔸 → ℋ. This issue might be addressed with the variational autoencoder (VAE) [41] which 
was shown to produce continuous latent variables space ℋ. That is, with VAE involved, similar examples are located 
close to each other in ℋ. However, since the distribution of the features of 𝐻𝐻 is normal in case of VAE, the clustering 
cannot produce valuable results in the generated feature space ℋ. In our study, this issue is addressed with the constraint 
of sparsity, that is, features of the vector 𝐻𝐻 are forced to be Bernoulli-distributed. With this constraint, the hidden 
representation vectors 𝐻𝐻 tend to be sparse, that is, only a few features are non-zero for a particular example 𝐴𝐴. The 
undercomplete CAE with the mentioned constraints imposed is referred hereafter as sparse variational convolutional 
autoencoder (SpCVAE). Its structure is presented in fig. 2. As shown in fig. 2, the fields of the input example are 
processed separately, similar to the approach applied in [42]. 

 

 

Figure 2: The structure of the sparse variational convolutional autoencoder. 
 
In our work, the only hyperparameter of the proposed SpCVAE is the number of nodes of the FC3 layer. This number 

at the same time is the number of features of the hidden representation 𝐻𝐻 (see fig. 2) and the dimensionality of ℋ 
(hereafter 𝐻𝐻𝐻𝐻𝑖𝑖𝐻𝐻). There is a trade-off between reconstruction quality and the 𝐻𝐻𝐻𝐻𝑖𝑖𝐻𝐻. We use the multiscale structural 
similarity (𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 [43]) as a measure for reconstruction quality. For optimization reasons, we use the metric (1 −
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀) with the rule “less is better” (fig. 3a). We have conducted the research of the reconstruction quality versus 
the 𝐻𝐻𝐻𝐻𝑖𝑖𝐻𝐻 (see fig. 3a). There is a reasonable value of 𝐻𝐻𝐻𝐻𝑖𝑖𝐻𝐻 = 96 since after this value the reconstruction quality stops 
improving significantly. There are more candidates for the best choice of 𝐻𝐻𝐻𝐻𝑖𝑖𝐻𝐻, however, only starting with the 
𝐻𝐻𝐻𝐻𝑖𝑖𝐻𝐻 = 96 the clustering results become stable and reproducible. Taking this result into account, we further used the 
SpCVAE with 96 neurons of layer FC3. We have trained this SpCVAE using the data described in section 2.1. We use 
then the encoder output in the inference mode of the trained SpCVAE as PV states representation of reduced 
dimensionality. 
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2.3 Hierarchical agglomerative clustering 

We applied Lance-Williams hierarchical agglomerative clustering [44–46] to define groups of stable PV states. This 
method is frequently used for atmosphere and stratosphere states clustering [18–22]. We applied this clustering method 
to PV states objects described with low-dimensional hidden representations generated by SpCVAE (see fig. 2). We 
considered the Euclidean metric as a distance between objects in this feature space. We used Ward minimal inter-cluster 
distance [47] as a criterion for clusters union. Ward inter-cluster distance between clusters U and V is the following: 

𝐻𝐻𝑊𝑊(𝑈𝑈,𝑉𝑉) =
‖𝑈𝑈‖‖𝑉𝑉‖
‖𝑈𝑈‖ + ‖𝑉𝑉‖

𝜌𝜌2 ��
𝑥𝑥𝑈𝑈
‖𝑈𝑈‖

𝑈𝑈

,�
𝑥𝑥𝑉𝑉
‖𝑉𝑉‖

𝑉𝑉

�  , (3) 

where 𝑥𝑥𝑈𝑈 and 𝑥𝑥𝑉𝑉 are embedded representation vectors for objects assigned to clusters 𝑈𝑈 and 𝑉𝑉 respectively; 𝜌𝜌 denotes 
Euclidean distance between vectors; ‖𝑈𝑈‖ and ‖𝑉𝑉‖ are elements number of clusters 𝑈𝑈 and 𝑉𝑉. Hierarchical agglomerative 
clustering algorithm for a set of objects 𝑥𝑥𝑖𝑖 , 𝑖𝑖 = 1 …𝑛𝑛 is represented with pseudocode: 

1. 𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝 = 1; initialize the starting set 𝑀𝑀1 – the universal set of one-element clusters {{𝑥𝑥1},{𝑥𝑥2},…,{𝑥𝑥𝑛𝑛}}; 
Ward inter-cluster distances calculated using eq. 3 are equal to halved element-to-element squared 
Euclidean distances; 

2. for each 𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝 = 2 … 𝑛𝑛 repeat: 
a. search for a pair of most close clusters in terms of Ward inter-cluster distances (eq. 3): 

(𝑈𝑈,𝑉𝑉)𝑡𝑡 = argmin
𝑈𝑈,𝑉𝑉∈𝑆𝑆𝑡𝑡

𝐻𝐻𝑊𝑊(𝑈𝑈,𝑉𝑉) . (4) 
b. unite 𝑈𝑈 and 𝑉𝑉, exclude 𝑈𝑈 and 𝑉𝑉 from 𝑀𝑀𝑡𝑡, add the united cluster to 𝑀𝑀𝑡𝑡: 

𝑊𝑊 = 𝑈𝑈 ∪ 𝑉𝑉, (5) 
𝑀𝑀𝑡𝑡+1 = (𝑀𝑀𝑡𝑡\{𝑈𝑈,𝑉𝑉}) ∪𝑊𝑊. (6) 

c. for each 𝐶𝐶 ∈ 𝑀𝑀𝑡𝑡+1, calculate inter-cluster distances to 𝐻𝐻𝑊𝑊(𝐶𝐶,𝑊𝑊) using eq. 3. 

Agglomerative hierarchical clustering procedure with Ward inter-cluster distance definition (eq. 3) is the one 
demonstrated most valuable results in a set of synthetic clustering problems [48]. With this procedure, the only 
hyperparameter is the target clusters number 𝐾𝐾. We use the empirical “elbow rule” to choose the best clusters number. 
Additionally, we considered topic-specific reasoning: we wanted the clustering method to be capable of discriminating 
weak PV states of types “displacement” and “split” yet to be capable of discriminating various shifted states that were 
demonstrated recently to be present [21]. 

 

 
(a) (b) 

Figure 3: (a) (1 −𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀) as a measure of reconstruction quality versus 𝐻𝐻𝐻𝐻𝑖𝑖𝐻𝐻 (lower is better); (b) mean 
silhouette score (higher is better) versus clusters number with the fixed encoder which is producing lower-
dimensional representations 𝐻𝐻 of 𝐻𝐻𝐻𝐻𝑖𝑖𝐻𝐻 = 96. 

We considered mean Silhouette score (hereafter 𝑀𝑀𝑠𝑠𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠) as a measure for clustering quality and used it for “elbow 
rule”. We calculated 𝑀𝑀𝑠𝑠𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠 using Euclidean metric of the hidden representation feature space ℋ. For each 𝑖𝑖-th object 
of the 𝑗𝑗-th cluster 𝑥𝑥𝑖𝑖 ∈ 𝐶𝐶𝑖𝑖: 𝑎𝑎(𝑥𝑥𝑖𝑖) is the mean distance between 𝑥𝑥𝑖𝑖 and all other objects of cluster 𝐶𝐶𝑖𝑖; 𝑏𝑏(𝑥𝑥𝑖𝑖) is the mean 
distance between 𝑥𝑥𝑖𝑖 and all the objects of all other clusters: 

𝑎𝑎(𝑥𝑥𝑖𝑖) =
1

�𝐶𝐶𝑖𝑖�
� 𝐻𝐻(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑘𝑘)

𝑥𝑥𝑘𝑘∈𝐶𝐶𝑗𝑗,𝑘𝑘≠𝑖𝑖

 , (7) 
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𝑏𝑏(𝑥𝑥𝑖𝑖) =
1

‖𝒯𝒯‖ − �𝐶𝐶𝑖𝑖�
� 𝐻𝐻(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑘𝑘)

𝑥𝑥𝑘𝑘∈𝒯𝒯\𝐶𝐶𝑗𝑗

 , (8) 

where 𝒯𝒯 is the whole dataset, ‖𝒯𝒯‖ is the number of its elements, 𝐶𝐶𝑖𝑖 is the cluster that 𝑥𝑥𝑖𝑖 is assigned to, ‖𝐶𝐶𝑖𝑖‖ is the 
number of its elements; 𝐻𝐻(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑘𝑘) is the function defining the distance between 𝑥𝑥𝑖𝑖 and 𝑥𝑥𝑘𝑘. 𝐻𝐻(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑘𝑘) is the Euclidean 
distance in our study. With these notations 𝑀𝑀𝑠𝑠𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠 for one object 𝑥𝑥𝑖𝑖 is given by: 

𝑠𝑠(𝑥𝑥𝑖𝑖) =
𝑏𝑏(𝑥𝑥𝑖𝑖) − 𝑎𝑎(𝑥𝑥𝑖𝑖)

max�𝑏𝑏(𝑥𝑥𝑖𝑖), 𝑎𝑎(𝑥𝑥𝑖𝑖)�
 , (9) 

and mean 𝑀𝑀𝑠𝑠𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠 is given by: 

𝑀𝑀(𝒯𝒯) =
1
‖𝒯𝒯‖

�𝑠𝑠(𝑥𝑥𝑖𝑖)
𝒯𝒯

 . (10) 

𝑀𝑀𝑠𝑠𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠 for each 𝑥𝑥𝑖𝑖 is the measure of its similarity to the cluster 𝐶𝐶𝑖𝑖 and yet its dissimilarity to all the other elements 
outside 𝐶𝐶𝑖𝑖. So the higher 𝑀𝑀𝑠𝑠𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠, the more 𝑥𝑥𝑖𝑖 is similar to 𝐶𝐶𝑖𝑖 and the less similar to other clusters. Therefore, mean 
Silhouette score (eq. 10) is considered as a measure of clustering quality with the rule “higher is better”. Even though 
the maximum mean 𝑀𝑀𝑠𝑠𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠 is achieved with two clusters, more reasoning should be involved when one is choosing 
the number of clusters. First, there should be observed “split” and “displacement” SSW events. There are also should 
be observed at least one strong pole-centered state, and some other shifted states which were presented recently [21]. 
For each number of clusters more than 3 we inspected maps of mean geopotential heights at 10hPa level. We have 
chosen the minimal number of clusters that let us discriminate weak states of PV of types “displacement” and “split”. 
This discrimination is observed starting from 𝐾𝐾 = 7. With this reasoning, the group “L” of clustering results 
(see fig. 3b) should not be considered as an option. There is also group “N” of clustering results which are characterized 
by low mean Sscore, that is, low clustering quality. The results within the “M” group are characterized by too high 
clusters number or low clustering quality. In our study, the group “region of interest” is considered as a group of 
promising clustering results (fig. 3b). The numbers of clusters which produces high average 𝑀𝑀𝑠𝑠𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠 within this group 
are 12 and 13. In our study, we use 𝐾𝐾 = 12. 

Summarizing the proposed method for clustering states of PV here is its general structure: 
1. Prepare and preprocess PV states data (HGT and PVt fields); 
2. Construct sparse variational convolutional autoencoder (fig. 2); train this SpCVAE on prepared PV states 

dataset; 
3. Apply dimensionality reduction using trained SpCVAE. Representation of the reduced dimensionality is 

the encoder output for each PV state presented to SpCVAE as input example; 
4. Apply hierarchical agglomerative clustering; 
5. Choose the best hidden representation dimensionality 𝐻𝐻𝐻𝐻𝑖𝑖𝐻𝐻 and best clusters number 𝐾𝐾 based on the 

metrics of examples reconstruction 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀, clustering quality 𝑀𝑀𝑠𝑠𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠, stability and reproducibility of 
clustering, and additional problem-specific reasoning (fig. 3). 

3 Results and discussion 

We applied the approach presented in Section 2 to the dataset described in Section 2.1, “Data and preprocessing.” 
PV states were clustered using 𝐾𝐾 = 12 number of clusters. We calculated the map of mean geopotential heights at 
10hPa level for each cluster. These maps are shown in fig. 4. We also selectively inspected individual PV states 
represented by HGT fields. Visual inspection of these examples shows that PV states grouped by the proposed method 
are similar to each other within each cluster. SSW events are clearly seen in the composites in fig. 4: cluster 2 for “split” 
type and clusters 1 and 3 for “displacement” type. 

We have conducted a more detailed analysis of the clusters 1-3. The calendar in fig. 6 presents the periods associated 
with the states of the clusters 1-3 and concurrently the known SSW events identified by experts. Central dates of the 
“split” and “displacement” SSWs obtained by Charlton and Polvani for period 1958 – 2002 [49], and non-classified 
SSWs from [50] for period 2003 - 2013 are shown. Almost all expert-defined SSW events are clearly colocated in time 
with the segments of clusters 1-3. Most of “split” SSW events are co-located with the cluster 2 or with the segment 
consisting of states associated with two clusters including cluster 2. The only one SSW event in 2002 missing 
corresponding states of clusters 1-3 is a subject for further research. 

Central dates of the SSWs are defined as the dates when zonal-mean zonal winds at 10hPa and 60°N fall below 
zero m/s (became easterly). In fig. 5b, we present zonal wind averaged along 60°N for each cluster. In this figure, 
clusters 1-3 are distinctively characterized by winds close to zero or even easterly winds. This behavior is consistent 
with the nature and definition of SSW events [17]. Since there was no expert-level knowledge involved during 
clustering, we may consider the proposed method to be capable of objective weak vortex clustering. 

It is also clear that clusters 10 and 12 represent strong vortex centered on the pole, and only a slight shift is observed 
for cluster 12. In fig. 5a the frequency histogram is shown for the clusters obtained in this study. Cluster 10 is the most 
frequent state of PV, which is consistent with the current understanding of the nature of PV. Clusters 4-9 and 11 
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represent shifted PV states of different intensity, which may be estimated by the zonal mean zonal wind at 60°N shown 
in fig. 5b. In accordance with the recent study [21], there are different shift directions: towards the Atlantic (clusters 7 
and 11), towards Eurasia (clusters 4-6 and 8) and North America (cluster 9). 

 
Figure 4: HGT (102 m) fields composites for each cluster. 

 
 

  
(a) (b) 

Figure 5: (a) Histogram of occurrence of PV states associated with each cluster; (b) zonal mean zonal wind along 
60°N lat 
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Figure 6: Diagram of occurrences of SSW events based on clustering result (colored segments) and their 
correspondence to the known SSW events [49,50]. 

4 Conclusion 

We propose a sparse convolutional variational autoencoder as a dimensionality reduction tool. With this model, we 
extracted valuable features of PV states initially represented by geopotential height and potential vorticity at 10hPa 
level. Using the representation of reduced dimensionality, we applied the Lance-Williams hierarchical agglomerative 
clustering with Ward inter-cluster distance definition.  This method for the first time is capable of discriminating weak 
PV states of types “displacement” and “split,” which is crucial for the analysis of the stratosphere-troposphere 
interactions. The proposed method is also capable of classifying stable states of strong PV characterizing by different 
directions of its center shift. This classification is found to be physically valid and consistent with recent studies. The 
presented clustering method the first time provides an opportunity to analyze the influence of the strong PV 
characterized by various shift directions on characteristics of tropospheric circulation. 

The proposed clustering method provides an opportunity of researching climatic changes of wintertime stratosphere, 
which is crucial for improving seasonal forecast skill and assessing the long-term variability of the climate system. 

Results of this work can be used as a basis for new stratosphere-troposphere interactions research for existing and 
future climate scenarios. 
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