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All the formulas in this supplementary materials are cross-referenced in the main body

of the article.

1 Closed form quantities of the continuous state space

model

We give the quantities of continuous state space model representation in (11) in the main

body of the article.

For 1 ≤ i ≤ K, the SDE is

dθi(s)

ds
= Jiθi(s) + Lz(s),

where

Ji =


0 1 0

0 0 1

−λ3i −λ2i −3λi

 ,
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and L = (0, 0, 1)T .

Denote dj = |sj+1 − sj| for j = 1, ..., N − 1. We have the following expressions for the

solution of the SDE in (11) in the main body of the article,

Gi(sj) = eJidj =
e−λidj
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5
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with
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and
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for j = 1, ..., N and i = 1, ..., K.
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For j = 1, ..., N , the joint distribution of θi(s0:n) is given below
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...
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2 Combing feature data into the nonseparable model

To impute the methylation levels, some site-specific features such as genomic position, DNA

sequence properties, cis-regulatory element, can be used as covariates in a regression model.

Incorporating regressors/covariates is less studied in the nonseparable GaSP model. In this

section, we discuss a way to jointly model the site-specific features and output.

Let X(s)[q×1] be features at site s (including the intercept). Consider an extended model

Ye(s) = Aeṽ(s) + ε0, (S1)

for every s ∈ S , where Ye(s) = (XT (s); YT (s))T , the weight ṽ(·) is defined the same as in

(2) in the main body of the article, and ε0 ∼ MN(0, σ2
0IK+q). Let X(sD)[q×n] be the features

at sites sD and Ye(sD) = (XT (sD); YT (sD))T . The extended basis matrix Ae = UeDe/
√
n,

where Ue and De are still defined through the SVD decomposition Ye(sD) = UeDeVe. The

predictive distribution of the model (S1) can be obtained similarly to Lemma 2.

The connection among regression model, the separable GaSP model, and the nonsepa-

rable GaSP model shown in the previous section still holds. Let Ze follow a matrix nor-

mal distribution with mean zero and covariance Σe ⊗ Λ, where Σe =

 Σe
00 Σe

0∗

Σe
∗0 Σe

∗∗

 is a

(q+K)×(q+K) covariance matrix. The separable model is a special case of the nonseparable

GaSP model (S1) specified in Remark 2. The prediction by the regression model (19) with
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25% held-out CpG sites RMSE PCI(95%) LCI(95%) Accuracy
Nonseparable GaSP full model 0.083 0.956 0.278 0.969
Nonseparable GaSP by batch 0.091 0.923 0.258 0.966
75% held-out CpG sites RMSE PCI(95%) LCI(95%) Accuracy
Nonseparable GaSP full model 0.087 0.963 0.305 0.968
Nonseparable GaSP by batch 0.096 0.934 0.283 0.966

Table S1: Comparison of different methods in terms of out of sample prediction for WGBS
data with 25% and 75% CpG sites are held out for testing.

covariates Hi(sj) = (XT (sj); y
T (sj))

T is also a special case of the extended nonseparable

GaSP model specified in Remark 1.

3 Comparison to approximation method by blocks

In this subsection, we compare our exact and fast computation of the nonseparable GaSP

model with a straightforward approximation, in which the long sequence is divided into small

blocks and GaSP models are built independently in each block. Assume the data are divided

into M blocks, each with n0 inputs (where n = Mn0), the computational operations of which

are then O(Mn3
0) instead of O(n3) for the inversion of the covariance matrix.

For illustration purposes, the data are divided into 100 batches and 200 CpG sites are

used as the training data in each batch. We consider two scenarios, with 600 CpG sites

and 66 CpG sites between these 200 CpG sites being selected as the test CpG sites in each

batch, respectively. That means that roughly 75% and 25% of the data are held out. We

still assume the methylation levels for the first 20 samples are available at all CpG sites and

4 randomly selected samples are only partially observed. The total number of the test CpG

sites is 240, 000 and 26, 400, respectively.

As shown in Table S1, the prediction by the nonseparable GaSP with the full model is

about 10% better in terms of RMSE in both scenarios. This is further justified by Figure S1.

One possible reason is that the boundary effect is large in the approximation method when
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Figure S1: Boxplots of RMSEj for the test samples in batch j with 75% of CpG sites (left
panel) and 25% of CpG sites (right panel) being held-out, respectively, j = 1, . . . , 100.

we divide the data into batches. All these results suggest that simply approximating the

likelihood by batch yields inferior predictive results than the nonseparable GaSP model with

the full likelihood. Again, the implementation of the full model relies on the FFBS algorithm

discussed in Section 3 in the main body of the article.
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