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Synthesis of 1′-hydroxyelemicin

1′-Hydroxyelemicin was synthesized by substrate 3,4,5-trimethoxybenzaldenyde. The 
reaction was carried out as fallows. 3,4,5-Trimethoxybenzaldenyde (0.56 mmol, 110 
mg dissolved in anhydrous tetrahydrofuran 2 mL) under nitrogen (N2) was 
supplemented vinylmagnesium bromide (0.56 mL, 1 mol.L-1,) dropwise at 0℃. After 
being stirred for 1 h at 25℃, the mixture was terminated with saturated aqueous 
NH4Cl and extracted with ethyl acetate. The combined organic layer was washed 
sequentially with saturated aqueous sodium carbonate solution, water, and brine, and 
dried over Na2SO4, and the crude product filtered and concentrated. Further 
separation was accomplished by silica gel column chromatography using mobile 
phase EtOAc: Petroleum ether 1=10, at last afford the total pure product (103 mg) as 
a colorless oil liquid. The yield of 1′-hydroxyelemicin was 82% from raw material. 
The synthesized compounds were characterized by 1H-NMR, 13C-NMR and 
HR-ESI-MS. The purity of 1′-hydroxyelemicin was > 98% measured by 
ultra-performance liquid chromatography (UPLC). 1H-NMR (CDCl3, 600 MHz): δ 
3.86 (3H, s, OCH3), 3.82(6H, s, 2OCH3), 6.60 (2H, s, 2H/4H), 5.12 (1H, d, H1′) , 6.03 
(1H, d, H2′), 5.36/5.20 (2H, d, H3′).13C-NMR (CDCl3, 150MHz): δ 138.33(C-1), 
103.13 (C-2), 153.32 (C-3), 137.2 (C-4), 153.32 (C-5), 103.13 (C-2/C-6), 75.39 
(C-1′), 140.01 (C-2′), 115.24 (C-3′), 56.07 (3-OCH3), 60.81 (4-OCH3), 56.07 
(5-OCH3). HR-ESI-MS: m/z 225.1116 [M+H]+ (calculated for C12H17O4, m/z 
225.1121).
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Figure legends

Fig. S1. Plasma aminotransferase (ALT) activity after elemicin (E, 500 mg/kg) and 
1′-hydroxyelemicin (E′, 100 mg/kg). 

Fig. S2. Comparison between elemicin (E) and 1′-hydroxyelemicin (E′) toxicity at the 
oral dose of 100 mg/kg for three days.

Fig. S3. Reactive metabolite-GSH adduct in vivo and in vitro.

Fig. S4. MS/MS spectra and fragmentation patterns of typical LPCs.

Fig. S5. mRNA expression from genes related to LPC synthesis and metabolism.

Fig. S6. Influence of oleic acid supplementation on liver size and hepatic TG content. 

Fig. S7. Plots of 1′-hydroxyelemicin formation from different elemicin 
concentrations. 

Fig. S8. Molecular docking of elemicin with CYPs active cavity.
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Fig. S1. Plasma aminotransferase (ALT) activity after elemicin (E, 500 mg/kg) 
and 1′-hydroxyelemicin (E′, 100 mg/kg). (A) p> 0.05, no significant difference, 
compared with vehicle control. (B) p> 0.05, no significant difference, compared with 
vehicle control.
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Fig. S2. Comparison between elemicin (E) and 1′-hydroxyelemicin (E′) toxicity at 
the dose of 100 mg/kg for three days. **p < 0.01, significant difference, compared 
with vehicle control. 
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Fig. S3. Reactive metabolite-GSH adduct in vivo and in vitro. (A) The proposed 
scheme of 1′-hydroxyelemicin -GSH adduct. (B) Extraction ion chromatography of 
1′-hydroxyelemicin -GSH adduct in MLMs, capture reaction, urine sample.
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Fig. S4. MS/MS spectra and fragmentation patterns of typical LPCs. (A) 16:0- 
LysoPC. (B) 18:0-LysoPC. (C) 16:1-LysoPC. (D) 18:1-LysoPC. (E) 18:2-LysoPC. 
(F) 20:4-LysoPC.
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Fig. S5. mRNA expression from genes related to LPCs synthesis and metabolism. 
p > 0.05, no significant difference, elemicin treatment (E) versus its vehicle control, 
1′-hydroxyelemicin treatment (E′) versus its vehicle control.
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Fig. S6. Influence of oleic acid supplementation in mice. Liver size (A) and hepatic 
TG content (B). Influence of A939572 on the liver size (C). *p < 0.05, significant 
difference, 1′-hydroxyelemicin treatment (E′) compared with vehicle control (E′C). 
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Fig. S7. Plots of 1′-hydroxyelemicin formation from different elemicin 
concentrations. (A) CYP1A1 (●) and CYP1A2 (▲). (B) CYP2C19 (●), CYP3A4 
(▲), and CYP2A6 (♦).
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Fig. S8. Molecular docking of elemicin with CYPs active cavity. (A) CYP2A6 
pocket and elemicin. (B) CYP2C19 pocket and elemicin. (C) CYP3A4 pocket and 
elemicin. Elemicin was presented as blue structure, and endogenous ligand ferroheme 
of CYPs was presented as red structure.
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Table S1. Sequences of the qPCR primers.

Gene Pubmed ID Forward (5′ to 3′) Reverse (5′ to 3′)

18S 19791 ATTGGAGCTGGAATTACCGC CGGCTACCACATCCAAGGAA

Chka 12660 AAAGTGCTCTTGCGGCTCTA GACCTCTCTGCAAGAATGGC

Chkb 12651 GCAGAGGTTCAGAAGGGTGA CCCCAGAAAAAGTGAGATGC

Lypla1 18777 CCTTCACGGATTGGGAGATA GGGGCATGTGGACAGATGTA

Lpcat1 210992 CACGAGCTGCGACTGAGC ATGAAAGCAGCGAACAGGAG

Lpcat2 270084 ACCTGTTTCCGATGTCCTGA CCAGGCCGATCACATACTCT

Pcyt1a 13026 AGCCCTATGTCAGGGTGACT GGCATGACCAGAGTGAAACA

Scd1 20249 GCTCTACACCTGCCTCTTCG CAGCCGAGCCTTGTAAGTTC
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Table S2. Identities of LPCs in mouse plasma. 

No.
Observed 

m/z

Rt

(min)
Formula

Mass error 

(ppm)
Identity

1 496.3398 10.79 C24H50NO7P[H]+ 0.11 16:0-LPC

2 524.3710 12.13 C26H54NO7P[H]+ -0.09 18:0-LPC

3 494.3248 9.92 C24H48NO7P[H]+ 1.46 16:1-LPC

4 522.3558 11.13 C26H52NO7P[H]+ 0.77 18:1-LPC

5 520.3392 10.33 C26H50NO7P[H]+ -1.05 18:2-LPC

6 544.3395 10.36 C28H50NO7P[H]+ -0.45 20:4-LPC
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Table S3. The number of hydrogen bond donor and receptors in the model of 
molecular docking.

Receptor Covalent bonds Ligand exposure points

CYP1A1 2 7

CYP1A2 1 4

CYP2A6 1 4

CYP2C19 1 3

CYP3A4 0 5


