Supporting Information

Metabolic activation of elemicin leads to the inhibition of stearoyl-CoA desaturase 1

Xiao-Nan Yang^{a,e}, Yi-Kun Wang^{a,b}, Xu Zhu^{a,b}, Xue-Rong Xiao^a, Man-Yun Dai^{a,b}, Ting Zhang^{a,b}, Yan Qu^a, Xiu-Wei Yang^c, Hong-Bo Qin^a, Frank J. Gonzalez^d, Fei Li^{a,*}

^aState Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China ^bUniversity of Chinese Academy of Sciences, Beijing 100049, China

^cSchool of Pharmaceutical Sciences, Peking University Health Science Center, Peking University, Beijing 100191, China

^dLaboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA

^eGuangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plant, Nanning 530023, China

*Address correspondence to:

Fei Li, Ph.D., Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China. Tel: +86-871-65216953, Email: lifeib@mail.kib.ac.cn.

Items	Descriptions	Pages
Method	Synthesis of 1'-hydroxyelemicin	S2/S14
Fig. S1	Plasma aminotransferase (ALT) activity after elemicin and	S4/S14
	1'-hydroxyelemicin	
Fig. S2	Comparison between elemicin and 1'-hydroxyelemicin	S5/S14
	toxicity	
Fig. S3	Reactive metabolite-GSH adduct in vivo and in vitro	S6/S14
Fig. S4	MS/MS spectra and fragmentation patterns of typical LPCs	S7/S14
Fig. S5	mRNA expression from genes related to LPC synthesis and	S8/S14
	metabolism	
Fig. S6	Influence of oleic acid supplementation on liver size and	S9/S14
	hepatic TG content	
Fig. S7	Plots of 1'-hydroxyelemicin formation from different	S10/S14
	elemicin concentrations	
Fig. S8	Molecular docking of elemicin with CYPs active cavity	S11/S14
Table S1	Sequences of the qPCR primers	S12/S14
Table S2	Identities of LPCs in mouse plasma.	S13/S14
Table S3	The number of hydrogen bond donor and receptors in the	S14/S14
	model of molecular docking.	

Synthesis of 1'-hydroxyelemicin

1'-Hydroxyelemicin was synthesized by substrate 3,4,5-trimethoxybenzaldenyde. The reaction was carried out as fallows. 3.4.5-Trimethoxybenzaldenyde (0.56 mmol, 110 mg dissolved in anhydrous tetrahydrofuran 2 mL) under nitrogen (N₂) was supplemented vinylmagnesium bromide (0.56 mL, 1 mol·L⁻¹,) dropwise at 0°C. After being stirred for 1 h at 25°C, the mixture was terminated with saturated aqueous NH₄Cl and extracted with ethyl acetate. The combined organic layer was washed sequentially with saturated aqueous sodium carbonate solution, water, and brine, and dried over Na₂SO₄, and the crude product filtered and concentrated. Further separation was accomplished by silica gel column chromatography using mobile phase EtOAc: Petroleum ether 1=10, at last afford the total pure product (103 mg) as a colorless oil liquid. The yield of 1'-hydroxyelemicin was 82% from raw material. The synthesized compounds were characterized by ¹H-NMR, ¹³C-NMR and HR-ESI-MS. The purity of 1'-hydroxyelemicin was > 98% measured by ultra-performance liquid chromatography (UPLC). ¹H-NMR (CDCl₃, 600 MHz): δ 3.86 (3H, s, OCH₃), 3.82(6H, s, 2OCH₃), 6.60 (2H, s, 2H/4H), 5.12 (1H, d, H1'), 6.03 (1H, d, H2'), 5.36/5.20 (2H, d, H3').¹³C-NMR (CDCl₃, 150MHz): δ 138.33(C-1), 103.13 (C-2), 153.32 (C-3), 137.2 (C-4), 153.32 (C-5), 103.13 (C-2/C-6), 75.39 (C-1'), 140.01 (C-2'), 115.24 (C-3'), 56.07 (3-OCH₃), 60.81 (4-OCH₃), 56.07 (5-OCH₃). HR-ESI-MS: m/z 225.1116 [M+H]⁺ (calculated for C₁₂H₁₇O₄, m/z225.1121).

Figure legends

Fig. S1. Plasma aminotransferase (ALT) activity after elemicin (E, 500 mg/kg) and 1'-hydroxyelemicin (E', 100 mg/kg).

Fig. S2. Comparison between elemicin (E) and 1'-hydroxyelemicin (E') toxicity at the oral dose of 100 mg/kg for three days.

Fig. S3. Reactive metabolite-GSH adduct in vivo and in vitro.

Fig. S4. MS/MS spectra and fragmentation patterns of typical LPCs.

Fig. S5. mRNA expression from genes related to LPC synthesis and metabolism.

Fig. S6. Influence of oleic acid supplementation on liver size and hepatic TG content.

Fig. S7. Plots of 1'-hydroxyelemicin formation from different elemicin concentrations.

Fig. S8. Molecular docking of elemicin with CYPs active cavity.

Fig. S1. Plasma aminotransferase (ALT) activity after elemicin (E, 500 mg/kg) and 1'-hydroxyelemicin (E', 100 mg/kg). (A) p> 0.05, no significant difference, compared with vehicle control. (B) p> 0.05, no significant difference, compared with vehicle control.

Fig. S2. Comparison between elemicin (E) and 1'-hydroxyelemicin (E') toxicity at the dose of 100 mg/kg for three days. **p < 0.01, significant difference, compared with vehicle control.

Fig. S3. Reactive metabolite-GSH adduct *in vivo* **and** *in vitro.* (A) The proposed scheme of 1'-hydroxyelemicin -GSH adduct. (B) Extraction ion chromatography of 1'-hydroxyelemicin -GSH adduct in MLMs, capture reaction, urine sample.

Fig. S4. MS/MS spectra and fragmentation patterns of typical LPCs. (A) 16:0-LysoPC. (B) 18:0-LysoPC. (C) 16:1-LysoPC. (D) 18:1-LysoPC. (E) 18:2-LysoPC. (F) 20:4-LysoPC.

Fig. S5. mRNA expression from genes related to LPCs synthesis and metabolism. p > 0.05, no significant difference, elemicin treatment (E) versus its vehicle control, 1'-hydroxyelemicin treatment (E') versus its vehicle control.

Fig. S6. Influence of oleic acid supplementation in mice. Liver size (A) and hepatic TG content (B). Influence of A939572 on the liver size (C). *p < 0.05, significant difference, 1'-hydroxyelemicin treatment (E') compared with vehicle control (E'C).

Fig. S7. Plots of 1'-hydroxyelemicin formation from different elemicin concentrations. (A) CYP1A1 (\bullet) and CYP1A2 (\blacktriangle). (B) CYP2C19 (\bullet), CYP3A4 (\bigstar), and CYP2A6 (\bullet).

Fig. S8. Molecular docking of elemicin with CYPs active cavity. (A) CYP2A6 pocket and elemicin. (B) CYP2C19 pocket and elemicin. (C) CYP3A4 pocket and elemicin. Elemicin was presented as blue structure, and endogenous ligand ferroheme of CYPs was presented as red structure.

Gene	Pubmed ID	Forward (5' to 3')	Reverse (5' to 3')
18S	19791	ATTGGAGCTGGAATTACCGC	CGGCTACCACATCCAAGGAA
Chka	12660	AAAGTGCTCTTGCGGCTCTA	GACCTCTCTGCAAGAATGGC
Chkb	12651	GCAGAGGTTCAGAAGGGTGA	CCCCAGAAAAAGTGAGATGC
Lypla1	18777	CCTTCACGGATTGGGAGATA	GGGGCATGTGGACAGATGTA
Lpcat1	210992	CACGAGCTGCGACTGAGC	ATGAAAGCAGCGAACAGGAG
Lpcat2	270084	ACCTGTTTCCGATGTCCTGA	CCAGGCCGATCACATACTCT
Pcytla	13026	AGCCCTATGTCAGGGTGACT	GGCATGACCAGAGTGAAACA
Scd1	20249	GCTCTACACCTGCCTCTTCG	CAGCCGAGCCTTGTAAGTTC

Table S1. Sequences of the qPCR primers.

No.	Observed	Rt	Formula	Mass error	Idoutity
	m/z	(min)	Formula	(ppm)	Identity
1	496.3398	10.79	$C_{24}H_{50}NO_7P[H]^+$	0.11	16:0-LPC
2	524.3710	12.13	$C_{26}H_{54}NO_7P[H]^+$	-0.09	18:0-LPC
3	494.3248	9.92	$C_{24}H_{48}NO_7P[H]^+$	1.46	16:1-LPC
4	522.3558	11.13	$C_{26}H_{52}NO_7P[H]^+$	0.77	18:1-LPC
5	520.3392	10.33	$C_{26}H_{50}NO_7P[H]^+$	-1.05	18:2-LPC
6	544.3395	10.36	$C_{28}H_{50}NO_7P[H]^+$	-0.45	20:4-LPC

Table S2. Identities of LPCs in mouse plasma.

Receptor	Covalent bonds	Ligand exposure points
CYP1A1	2	7
CYP1A2	1	4
CYP2A6	1	4
CYP2C19	1	3
CYP3A4	0	5

 Table S3. The number of hydrogen bond donor and receptors in the model of molecular docking.