1	Supporting Information
2	
3	Shifts in the composition and activities of denitrifiers dominate CO_2 -stimulation of $\mathrm{N}_2\mathrm{O}$
4	emissions
5	
6	Yunpeng Qiu ^{†,//,*} , Yu Jiang ^{//,⊥} , Lijin Guo ^{//,\$} , Lin Zhang [†] , Kent O. Burkey ^{#,&} , Richard W. Zobel ^{&} ,
7	S. Chris Reberg-Horton ^{&} , H. David Shew ^{//} , Shuijin Hu ^{//,*}
8	
9	[†] College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing
10	210095, China
11	^{//} Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC
12	27695, USA
13	$^{\perp}$ Institute of Applied Ecology, Nanjing Agricultural University, Nanjing 210095, China
14	[§] Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, 570228,
15	China
16	[#] USDA-ARS, Plant Sciences Research Unit, Raleigh, NC 27607, USA
17	^{&} Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695,
18	USA
19	
20	*Corresponding author: shuijin_hu@ncsu.edu (S.H.), yunpeng_qiu@njau.edu.cn (Y.Q.)
21	Number of pages: 11
22	Number of figures: 8
23	Number of tables: 1

S1

25 Figure S1. The experiment was conducted in the USDA-ARS Plant Science Research CO₂ 26 facility at North Carolina State University. The facility consisted of 8 continuously stirred tank 27 reactor (CSTR) chambers designed for the exposure of plants to CO₂ and other gases. Each 28 CSTR is a cylindrical chamber covered with Teflon and measured 1.2 m in diameter by 1.4 m 29 tall. Compressed CO₂ was mixed with air and dispensed to the CSTR chambers using a 30 rotometer to control flow so that CO₂ concentration was maintained at a target level. The air 31 continuously moved out the CSTR and thus alleviated the heating effect of chambers. To 32 monitor CO₂ concentrations, an infrared analyzer (model 6252, LiCor Inc., Lincoln, NE, USA) 33 was used to measure CSTR chamber air CO₂ concentrations every two minutes. Two 34 experimental microcosms (Figure S2, see below) were placed into each CSTR chamber. 35 36 37 38

39

24

TEST compartments with gas collection chambers

HOST compartments with growing plants

40

41 Figure S2. A microcosm unit composed of six equal-size compartments for N₂O sampling in the 42 presence of growing plants. Three compartments in one row were assigned as the HOST 43 compartments where wheat was planted, and the other three were the TEST compartments where 44 gas samples were collected. When a mesh of 0.45 μ m was placed between the HOST and TEST 45 compartments, neither arbuscular mycorrhizal hyphae nor plant roots grow into the TEST 46 compartments. When a 20 µm mesh screen was placed between the two compartments, only AM 47 hyphae grow into the TEST compartments. When a 1.6 mm mesh was placed between the two 48 compartments, both AM hyphae and plant roots grow into the TEST compartments. Two 49 experimental microcosm units were placed into each CSTR chamber during the experiment. 50

Figure S4. Effects of CO₂ enrichment, N forms and AMF or plant roots on TEST soil microbial biomass C to N ratio (MBC/MBN). Values are means ± 1 SE (n=4). The significance levels are labeled with: *0.01< $P \le 0.05$.

S5

94 Figure S6. Effects of CO₂ enrichment, N forms and AMF or plant roots on soil CO₂ fluxes after

96 $aCO_2+NH_4^+$: ambient CO₂ and NH₄⁺ fertilization; (b) $eCO_2+NH_4^+$: elevated CO₂ and NH₄⁺

97 fertilization; (c) $aCO_2 + NO_3^{-1}$: ambient CO_2 and NO_3^{-1} fertilization; (d) $eCO_2 + NO_3^{-1}$: elevated CO_2

99

100

101

102

103 Figure S7. Effects of CO₂ enrichment, N forms and AMF or plant roots on soil N₂O fluxes after

104 a water and fertilization pulse corresponding to 40 kg N ha⁻¹ at 12th week of plant growth. (a)

105 aCO₂+NH₄⁺: ambient CO₂ and NH₄⁺ fertilization; (b) eCO₂+NH₄⁺: elevated CO₂ and NH₄⁺

106 fertilization; (c) $aCO_2 + NO_3^{-1}$: ambient CO_2 and NO_3^{-1} fertilization; (d) $eCO_2 + NO_3^{-1}$: elevated CO_2

and NO₃⁻ fertilization. Values are means ± 1 SE (n=4) at any given time point.

- 108
- 109
- 110
- 111
- 112

Figure S8. Effects of CO₂ enrichment, N forms and AMF or plant roots on abundances of

115 denitrification genes (*nir*S and *nos*Z). (a) gene copy numbers of *nir*S (log-transformed) (b) gene

116 copy numbers of *nosZ* (log-transformed). Values are means ± 1 SE (n=4). The significance

117 levels are labeled with: $^{\dagger}0.05 \le P \le 0.10$; $^{*}0.01 \le P \le 0.05$.

Table S1 Primers and qPCR conditions for the real-time PCR quantifications of *nir*S, *nir*K, and

	Target				
	genes	Primer	Sequence	qPCR conditions	References
-	nirS	nirSCd3aF	AACGYSAAGGARACSGG	Six TD CL: 98 °C for 10 s, 63 °C for 30 s, and 72 °C for 30 s with AT dropped by 1 °C to 58 °C; 40 CL: 98 °C for 10 s, 58 °C for 30 s, and 72 °C for 30 s	1
		nirSR3cd	GASTTCGGRTGSGTCTTSAYGAA		
		nirK876	ATYGGCGGVAYGGCGA	Same as <i>nir</i> S	
	nirK	nirK1040	GCCTCGATCAGRTTRTGGTT		2
		nosZ1F	WCSYTGTTCMTCGAGCCAG	Six TD CL: 98 °C for 10 s, 67 °C for 30 s, and 72 °C for 30 s with AT	
-	nosZ	nosZ1R	ATGTCGATCARCTGVKCRTTYTC	dropped by 1 °C to 62 °C; 40 CL: 98 °C for 10 s, 62 °C for 30 s, and 72 °C for 30 s	3
127	CL, TD, A	AT are short fo	or cycles, touchdown, and anneal	ing temperature, respectively	
128					
129					
130					
131					
132					
133					
134					
135					
136					
137					
138					
139					
140					
141					

*nos*Z genes extracted from soils

- **REFERENCES**
- 144 (1) Kandeler, E.; Deiglmayr, K.; Tscherko, D.; Bru, D.; Philippot, L. Abundance of narG, nirS,
- *nir*K, and *nos*Z genes of denitrifying bacteria during primary successions of a glacier foreland.
- 146 Appl. Environ. Microbiol. 2006, 72 (9), 5957–5962.
- 147 (2) Henry, S.; Baudoin, E.; López-Gutiérrez, J. C.; Martin-Laurent, F.; Brauman, A.; Philippot,
- 148 L. Quantification of denitrifying bacteria in soils by *nir*K gene targeted real-time PCR. J.
- *Microbiol. Methods*, **2004**, *59* (3), 327–335.
- 150 (3) Henry, S.; Bru, D.; Stres, B.; Hallet, S.; Philippot, L. Quantitative detection of the nosZ gene,
- 151 encoding nitrous oxide reductase, and comparison of the abundances of 16S rRNA, narG, nirK,
- 152 and *nos*Z genes in soils. *Appl. Environ. Microbiol.* **2006**, *72* (8), 5181-5189.