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Preface 

Applied Mathematics is a fundamental field in which important societal challenges 
are considered and solved. Moreover, other areas, such as Engineering, Computer 
Science, Physics and Chemistry, observe the advances in applied mathematics in order to 
find new tools and mechanisms to be applied in their fields, improving the current 
methodologies and solving new challenges.  

The 15th International Conference on Computational and Mathematical 
Methods in Science and Engineering (CMMSE 2015), will be held at Rota, Cádiz 
(Spain), July 6th-10th, 2015, and it will bring together researchers from several disciplines 
of applied mathematics in order to present new advances in the area and share them 
with the rest of the scientific community. These achievements are detailed in the 
extended abstracts and papers accepted to the conference and will be collected in these 
proceedings of CMMSE 2015. The proceedings we have pleasure to present here

 four volumes  the first three correspond to the articles typeset in LaTeX and 
the four  to articles typeset in Word. 

We hope that during CMMSE 2015 the usual discussion about new advances 
and open problems provides the desirable exchange of ideas, comments and suggestions 
leading to the improvement and deepening of the papers presented to allow 
further development of the research occur. We also hope that the developed 
activity narrows and renews the links between participants. 

More than twenty symposia show the variety of disciplines considered in the 
conference, which are formed from high quality accepted papers. The first one, high-
performance computing, considers new large-scale problems that arise in fields like 
bioinformatics, computational chemistry, and astrophysics. Mathematically modeling the 
future Internet and developing future Internet security technology is a self-explanatory 
session. The third symposium addresses analytical, numerical and computational aspects 
of partial differential equations in life and materials science. Computational finance is a
session focusing on solving problems related to asset pricing, trading and risk analysis of 
financial assets that have no analytic solutions under realistic assumptions and thus 
require computational methods to be resolved. A forum for discussion of the growing 
impact of new technologies on teaching and the development of new tools to increase 
learning efficiency is provided in the symposium: new educational methodologies 
supported by new technologies. The symposium on mathematical models and 
information-intelligent transport systems researches in the field of flow-modelling of 
particles with motivated behavior in complex networks, applied to traffic flows, 
pedestrian flows, ecology, etc. The seventh symposium studies computational methods 
for linear and nonlinear optimization and numerical methods for solving nonlinear 
problems is given in another session. Bio-mathematics studies both theoretical and 
practical applications of population dynamics, eco-epidemiology, epidemiology of 
infectious diseases and molecular and antigenic evolution. The 10th symposium presents 
recent methodological developments in function approximation, multiway array 
decompositions, ODE and PDE solutions: applications from dynamical systems 
to quantum and statistical dynamics. Model problems aris n  in Computer 
Science, considering algebraic and computational (fuzzy) techniques is the main goal of 
mathematical models for computer science. The aim of the 15th symposium is to obtain a
consistent description of the transition from small clusters to a liquid or solid state,
which
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is a major challenge in computational chemistry and physics. Hypercomplex methods in 
mathematics and applications considers contributions on applications of hypercomplex 
algebras (quaternions, bi-complex number, Clifford algebras, etc.) to boundary value 
problems in mathematical physics, fluid mechanics and elasticity theory. Furthermore, 
general sequences, Fourier series expansions, signal processing, geometric algebras and 
their applications, etc., are also suitable topics. The enormous potential of fixed point 
theory, which is needed in mathematics, engineering, chemistry, biology, economics, 
computer science, and other sciences, justifies the great interest in fixed point theory in 
various abstract spaces and related applications. Computational methods in direct and 
inverse (systems of) PDE’s covers general phenomena formulated as control problems or 
inverse problems associated with mathematical models described by partial differential 
equations (PDE). Advances in the Numerical Solution of Nonlinear Time-Dependent 
Partial Differential Equations is focused on the latest theory and practice for the 
numerical solution of nonlinear time-dependent partial differential equations and their 
applications. An overview of mathematical and computational research focusing on 
corporate or government applications and problems arising from different economic 
sectors is presented in the mini-symposium: Industrial Mathematics. Parallel
implementation using hybrid architectures with accelerators, either GPUs or FPGAs, of 
numerical methods for solving problems within the following topics of interest: industrial 
mathematics, fluid mechanics, global optimization, finance, geophysical flows,
computational chemistry, electromagnetism, magneto hydrodynamics, atomic physics, 
relativistic flows; is given in the symposium: Numerical simulation on GPUs.

We would like to thank the plenary speakers for their outstanding contributions to
research and leadership in their respective fields, including physics, chemistry and
engineering. We would also like to thank the special session organizers and scientific 
committee members, who have played a very important part in setting the direction of 
CMMSE 2015. Finally, we would like to thank the participants because, without their 
interest and enthusiasm, the conference would not have been possible.

We cordially welcome all participants. We hope you enjoy the conference. 

Costa Ballena, Rota, Cádiz (Spain), July 4th, 2015

I. P. Hamilton, J. Vigo-Aguiar, B. Wade



@CMMSE  Preface- Page v 

CMMSE 2015 Mini-symposia

Session Title Organizers
High Performance Computing (HPC) CAPAP-H network
P.D.E.'S in Life and Material Sciences Paula Oliveira & J.A. Ferreira 

Computational Finance Juan C. Reboredo 
Computational Methods for Linear and 
Nonlinear Optimization

Maria Teresa Torres Monteiro

Numerical Methods for Solving Nonlinear 
Problems

Juan R. Torregrosa & A. Cordero

Bio-mathematics Ezio Venturino & Nico Stollenwerk & 
Maíra Aguiar & Roberto Cavoretto

Mathematical Models for Computer 
Science

Jesús Medina & Manuel Ojeda-Aciego

Analytical and numerical methods for 
fractional differential equations

Luisa Morgado &  Miguel Nobrega & 
Luis Ferrás 

Mathematics meets Chemistry –
Theoretical Models at the Nanoscale

Ian Hamilton & Peter Schwerdtfeger & 
Ottorino Ori & Istvan Laszlo

Hypercomplex methods in mathematics 
and applications

Klaus Gürlebe & Helmuth Malonek & 
Wolfgang Sproessing

Fixed Point Theory in various abstract 
spaces and related applications

Antonio F. Roldán López de Hierro & 
Juan Martínez Moreno

Computational methods in direct and 
inverse (systems of) PDE’s

Rob De Staelen

Advances in the Numerical Solution of 
Nonlinear Time-Dependent Partial 
Differential Equations

Bruce A. Wade & Abdul Q.M. Khaliq & 
Qin Sheng

Industrial Mathematics Bruece Wade
Numerical simulation on GPUs José Antonio García Rodríguez & José 

Manuel González Vida



@CMMSE  Preface- Page vi 

Acknowledgements 

We would like to express our gratitude to the University of Cádiz, for their
assistance.

We also would like to thank the Organizing Committee for their efforts 
devoted to the success of this conference:

 Pedro Alonso - Universidad de Oviedo - Gijón, Spain
 M. Teresa de Bustos - Universidad de Salamanca, Spain
 Raquel Cortina Parajón - Universidad de Oviedo, Spain
 Antonio Fernández - Universidad de Salamanca, Spain
 Fernando De la Prieta - Universidad de Salamanca, Spain
 Higinio Ramos Calle - University os Salamanca, Spain
 Antonio Roldán López de Hierro - University of Jaen, Spain
 Juan Martínez Moreno - University of Jaen, Spain
 Francisco García Pacheco - Universidad de Cadiz, Spain

CMMSE 2015 Plenary Speakers

 Wolfgang Sprößig - TU Bergakademie Freiberg, Germany
 Michel Marie Deza - Laboratoire Interdisciplinaire de Geometrie 

Appliquee, France
 Paul G. Mezey - Memorial University of Newfoundland, Canada
 Tim Sheng - Baylor University Texas, USA
 Ana Varbanescu - Technical University of Delft, Holland
 Peter Schwerdtfeger - University in Auckland, New Zealand
 Nico Stollenwerk - Lisbon University, Portugal



Proceedings of the 15th International Conference
on Computational and Mathematical Methods
in Science and Engineering, CMMSE 2015
3–7July, 2015.

The Holling-Tanner model considering an alternative food
for predator

Claudio Arancibia-Ibarra1 and Eduardo González-Olivares1
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Abstract

This work deals with a modified Leslie-Gower type predator-prey model where the
predators have an alternative food when the quantity of prey diminish and a Hollling
type II functional response is considered.

With both assumptions the model obtained has a significative difference with the
known May-Holling-Tanner model, since the new equilibrium point appears, which can
be a repellor or a saddle point for different set on the parameter space

We can obtain different dynamics according the parameter values and it can pos-
sible to prove that the existence of a unique postive equilibrium point which is global
asymptotically stable.

Also, for other parameter constraints we prove the existence of separatrix curves on
the phase plane that divide the behavior of the trajectories, which can have different
ω − lı́mit implying that solutions are highly sensitives to initial conditions.

Key words: Predator-prey model, Allee effect, separatrix, bifurcations, limit cycle,
stability

MSC 2000: 92D25; 34C23; 58F14; 58F21

1 Introduction

In this presentation a predator–prey model described by an autonomous bidimensional
differential equation system is analyzed considering the following aspects:

i) the functional response or predator consumption rate is hyperbolic a particular form
of Holling type II, and
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A modified Holling-Tanner model

iii) the equation for predator is the logistic-type, as in the Leslie–Gower model [1, 18].
In this type of model, the conventional environmental carrying capacity for predators

Ky is a function of the available prey quantity [1, 10, 11]. An iimportant case is the May-
Holling-Tanner model [3, 15, 18] whch plays a special role in Theoretical Ecology for its
interesting dynamics [15]. It was proposed by J.T. Tanner in 1975 [16] and based on the
Leslie-Gower scheme [18], in which Ky is proportional to prey abundance x = x (t), that is
Ky = K(x) = nx and the functional response is hyperbolic.

In this work, we modify the above asumption, considering that K(x) = nx + c, i.e.
the predators have an alternative food when the quantity of prey diminish; in that case,
it is said that the model is represented by a Leslie–Gower scheme and it is also known
as modified Leslie–Gower model [2, 4, 13]; if x = 0, then K(0) = c, concluding that the
predator is generalist since it search an alternative food.

The Leslie-Gower type predator-prey models (with c = 0) may present anomalies in
its predictions, because it predicts that even in very low prey population density, when the
consumption rate per predator is almost zero, predator population might increase, if the
predator/prey ratio is very small [18]. Then, the modified May-Holling-Tanner model) here
presented, studied partially in [20], can enhanced these anomalies.

On the other hand, the predator functional response or consumption function refers to
the change in attacked prey density per unit of time per predator when the prey density
changes [14]. In many predator-prey models is assumed the functional response grows
monotonic, being an inherent assumption the more prey in the environment, the better for
the predator [18].

Here, we will consider that the predator functional response is expressed by the function
h(x) = q x

x + a , a hyperbolic functional response [5, 17] corresponding to the Holling type
II [14]. The parameter a is a abruptness measure of the functional response [9]. If a → 0,
the curve grows quickly, while if a → K, the curve grows slowly, that is, a bigger amount
of prey is need to obtain q

2 .

We will describe the behavior by means of a bifurcation diagram [5], depending on the
parameter values and to classify the different dynamics resulting. Also, we compare the
results with those obtained for the May-Holling-Tanner [15] and the model anlyzed in[2]
considering Allee effect in prey [5].

2 The Model

The predator-prey model that will be analyzed is described by the autonomous bidimen-
sional differential equations system of Kolmogorov type [8] given by

Xμ :

⎧⎨⎩
dx
dt =

(
r
(
1− x

K

)
− qy

x+a

)
x

dy
dt = s

(
1− y

nx+c

)
y

(1)
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where x = x(t) and y = y(t) indicate the prey and predator population sizes respec-
tively, (number of individuals, density or biomass); μ = (r,K, q, a, s, n, c) ∈ R7

+ and for
biological reasons a < K. The parameters have the following meanings:

r is the intrinsic prey growth rate,

K is the prey environmental carrying capacity,

q is the consuming maximum rate per capita of the predators (satiation rate),

a is the amount of prey to reach one-half of q (that is, it is half saturation rate),

s is intrinsic predator growth rate,

n is the food quality and it indicates how the predators turn eaten prey into new
predator births,

c is the amount of alternative food available for the predators,

This last parameter indicates that the predator is generalist and that if it does not exist
available prey, it has a source of alternative food. Clearly, if c = 0, the predator carrying
capacity is K (x) = nx and system (1) is no defined in x = 0.

As system (1) is of Kolmogorov type, the coordinates axis are invariable sets and the
model is defined at

Ω = {(x, y) ∈ R2/ x ≥ 0, y ≥ 0} = R+
0 × R+

0

The equilibrium points of system (1) or vector field Xμ are (K, 0), (0, 0), (0, c) and
(xe, ye) satisfying the equation of the isoclines y = nx + c and y = r

q

(
1− x

K

)
(x+ a).

Clearly, (xe, ye) can be a positive equilibrium point (equilibrium at interior of the first
quadrant) or cannot exists there, depending of the sign of factor 1− x

K .

To simplify the calculus we follow the methodology used in[10, 12, 15], doing the change
of variable and the time rescaling, given by the function ϕ : Ω̆× R −→ Ω× R, so that

ϕ(u, v, τ) =

(
Ku,Knv,

(u + a
K )(u+ c

Kn)
rK τ

)
= (x, y, t)

and we have that

detDϕ(u, v, τ) =
Kn(u + a

K )(u+ c
Kn)

r > 0.

Thus, ϕ is a diffeomorphism[6], for this reason the vector fieldXμ, is topologically equiv-
alent to the vector field Yη = ϕ◦Xμ with Yη = P (u, v) ∂

∂u +Q(u, v) ∂
∂v and the associated

differential equation system is given by the polynomial system of forth degree.

Yη :

{
du
dτ ( (1− u) (u + A)−Qv)u (u+ C)
dv
dτ S ( u+ C − v) (u+A) v

(2)

where η = (A,S,C,Q) ∈ Δ =]0, 1[×R3
+ with A = a

K < 1, S = s
r , Q = nq

r and C = c
Kn .

System (2) is defined in

Ω̆ = {(u, v) ∈ R2/ u ≥ 0, v ≥ 0}.
The equilibrium points (2) or singularities of vector field Yη are (1, 0), (0, 0), (0, C) and

the points lie in the intersection of the curves

v = 1
Q (1− u) (u + A) and v = u+ C.
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Then, the abscise u is solution of the second degree equation:

u2 − (1−A−Q)u+ (CQ−A) = 0 (3)

2.1 Positive equilibrium points

Considering the Descartes signs rule and according to the sign of the factors 1−A−Q and
CQ−A, equation (3) has two, one or none positive roots.

1) If 1−A−Q > 0 and CQ−A > 0, the solutions of equation (3) are:

u1 =
1
2

(
1−A−Q−

√
Δ
)
and

u2 =
1
2

(
1−A−Q+

√
Δ
)

with Δ = (1−A−Q)2 − 4 (CQ−A).

Then, we have three possibilities:

1.1 There are not equilibrium points at interior of the first quadrant, if and only if,
Δ < 0.

1.2 There are two equilibrium points at interior of the first quadrant, if and only if,
Δ > 0, (u1, u1 + C) and (u2, u2 + C) and u1 < u2.

1.3 There is a unique equilibrium point at interior of the first quadrant, if and only if,
Δ = 0. In this case, the points coincide, i.e.,

(u1, u1 + C) = (u2, u2 + C) = (E,E + C)

with E = 1−A−Q
2 .

2) If 1−A−Q > 0 and CQ−A < 0, or 1−A−Q < 0 and CQ−A < 0, the solutions
of equation (3) are u1 < 0 < u2. In this case, a unique equilibrium point at interior of the
first quadrant exists:

(u2, u2 + C) = (L,L+ C)

with L = 1
2

(
1−A−Q+

√
Δ
)
.

3) If 1−A−Q = 0 and CQ−A < 0, equation (3) has two solutions, one positive and
other negative. Then, is one critical point at interior of the first quadrant (F, F + C)

with F =
√

A− C (1−A) and A− C (1−A) > 0.

4) If 1−A−Q > 0 and CQ−A = 0, equation (3) has two solutions

u1 = 0 and u2 = G = 1−A−Q = 1−A− A
C .

Then,
(
C−A−AC

C , (C−A)(C+1)
C

)
is the unique equilibrium point at interior of the first

quadrant.

5) Equation (3) does not have solutions and then, there are not equilibrium points at
interior of the first quadrant, if and only if, 1−A−Q = 0 and CQ−A > 0, or 1−A−Q < 0
and CQ−A = 0, or 1−A−Q < 0 and CQ−A > 0.
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The above classification implies the study of different cases in this class of systems,
according to the quantity of the equilibrium points.

3 Main results

For system (2) we have the following results:

Lemma 1 The set Γ̃ =
{
(u, v) ∈ Ω̃/ 0 ≤ u ≤ 1, v ≥ 0

}
is an invariant region

Proof. Clearly the u − axis and the v − axis are invariant sets because the system is a
Kolmogorov type.

If u = 1, we have
du
dτ = −Qv (1 + C) < 0

and whatever it is the sign of
dv
dτ = S (1 +A) ( 1 + C − v) v

the trajectories enter and remain in the region Γ̃.

Lemma 2 The solutions are bounded

Proof. Using the Poincaré compactification [6, 7] we make a change of variables and a time
rescaling given by the function θ : Ω̃× R −→ Ω̆× R.

So that:
θ (X,Y, T ) =

(
X
Y , 1

Y , Y 3T
)
= (u, v, τ)

Doing a large algebraic work we get the system:

Ūη :

{
dX
dT = −X

(
X3 + (AY − Y + CY + SY )X2 + a1X + a2

)
dY
dT = −SY 2

(
X2 + (AY + CY − 1)X +AY (CY − 1)

)
with:
a1 = MY 2 − CY 2 −AY 2 + SY 2 +ACY 2 −AMY 2 − CMY 2

a2 = QY 2 − SY 2 −ACY 3 +AMY 3 + CMY 3 +ASY 3 + CSY 3 −ACMY 3

The Jacobian matrix[3] in the new system is

DŪη(X,Y ) =

(
−
(
4X3 + b1X

2 + b2X + b3
)
−DJ (1, 2)

−SY 2 (2X +AY + CY − 1) −DJ (2, 2)

)
with:

DJ (1, 2) = X
(
(A+ C + S − 1)X2 + b4X + b5

)
DJ (2, 2) = SY

(
2X2 − 3AY − 2X + 4ACY 2 + 3AXY + 3CXY

)
and

b1 = 3AY − 3Y + 3CY + 3SY
b2 = 2QY − 2CY 2 − 2AY 2 − 2SY + 2ACY 2 + 2ASY 2 + 2CSY 2

b3 = CQY 2 −ASY 2 −ACY 3 +ACSY 3

b4 = Q− S − 2AY − 2CY + 2ACY + 2ASY + 2CSY
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b5 = 2CQY − 2ASY − 3ACY 2 + 3ACSY 2

Evaluating the Jacobian matrix DŪη(X,Y ) in the point (0, 0) we obtain

DŪη (0, 0) =

(
0 0
0 0

)
To desingularize the origin in the vector field Ūη we apply the blowing-up method [7].

By the change of variables X = rw and Y = w and the time rescaling given by ζ = w2T
[19], the following system is obtained:

Ŭη :

{
dr
dζ = r (−CQ−Qr +ACw −ACrw)
dw
dζ = Sw (A+ r − rw −ACw −Arw − Crw)

The Jacobian matrix of the system is:

DŬη (r, w) =

(
ACw − 2Qr − CQ− 2ACrw −ACr (r − 1)

−Sw (w +Aw + Cw − 1) Ŭ (2, 2)

)
with Ŭ (2, 2) = −S (2rw − r −A+ 2ACw + 2Arw + 2Crw)
Evaluating the matrix DŬη (r, w) in the point (0, 0) we obtain:

DŬη(0, 0) =

(
−CQ 0
0 AS

)
from here we obtain:

detDŬη (0, 0) = −CAQS < 0
Therefore, we have that (0, 0) is a hyperbolic saddle point of the vector field Ŭ and a

non-hyperbolic saddle point of the vector fieldof Ū ; then, the point (0,∞) is a saddle point
in the vector field Yη. Then, the trajectories of system (2) are bounded.

To determine the nature of the equilibrium points we must obtain the Jacobian matrix
of system (2), that is:

DYη (u, v) =

(
−4u3 + 3c1u

2 + 2c2u+ c3 −Qu (u+ C)
Sv (A+ C + 2u− v) S (A+ u) (C + u− 2v)

)
with

c1 = 1− C −A
c2 = (A− C (A− 1)−Qv)
c3 = C (A−Qv)

3.1 Nature of equilibrium points over the axis

Lemma 3 For all η = (A,S,C,Q) ∈]0, 1[×R3
+ the singularity (1, 0) is a saddle point.

Proof. Evaluating the Jacobian matrix in the point we obtain:

DYη (1, 0) = (C + 1)

(
− (A+ 1) −Q

0 S (A+ 1)

)
Then, we obtain that the

detDYη (1, 0) = −S (A+ 1)2 < 0.
Therefore, (1, 0) is saddle point.
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Lemma 4 The point P0 = (0, 0) is a repellor point for any parameter value.

Proof. As the Jacobian matrix in the origin is

DYη (0, 0) =

(
AC 0
0 ACS

)
Then, it has that the detDYη(0, 0) = A2C2S > 0 and trDYη(0, 0) = AC (1 + S) > 0
Therefore, the equilibrium (0, 0) is a repellor point.

Lemma 5 The equilibrium PC = (0, C) is
i) a saddle point, if and only if, CQ−A < 0.
ii) an attractor point, if and only if, CQ−A > 0.
iii) a non hyperbolic attractor point, if and only if, CQ−A = 0.

Proof. The Jacobian matrix evaluated in the point is

DYη(0, C) = C

(
A−QC 0

AS −AS

)
Then, we obtain that the detDYη (0, C) = AS (CQ−A) and trDYη (0, C) = A−QC−

AS.
Therefore, the point (0, C) is
i) a saddle point, if and only if, CQ−A < 0, because detDYη (0, C) < 0.
ii) an attractor point, if and only if, CQ − A > 0, since detDYη (0, C) > 0 and

trDYη (0, C) < 0.
iii) If CQ−A = 0, then, we obtain that detDYη (0, C) = 0 and trDYη (0, C) < 0.
In this case, the Jacobian matrix has a proper zero value.
Applying the Central Manifold Theorem, let u = a2v

2 + a3v
3 + a4v

4 + ...+ anv
n,

then, du
dv =

du
dτ
dv
dτ

.

After an algebraic work we obtain a2 = a3 = a4 = ... = a20 = 0. This means that the
tangent curve in v = C approach to the axis v. Therefore, we have that it is an attractor
point not hyperbolic.

3.2 Nature of positive equilibrium points

The positives singularities lie at the straight line v = u+ C,
Let h (u) = (1− u) (u+A), then

h (u)− (u+ C)Q = 0
and we have the Jacobian matrix is:

DYη (u, u+ C) = (u+ C)

(
h′ (u)u −Qu

S (u+A) −S (u+A)

)
with h′ (u) = (1− 2u−A). So,

detDYη (u, u+ C) = S (u+A) (Q− h′ (u))u
trDYη (u, u+ C) = h′ (u)u− S (u+A)
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a) If Q > h′ (u) implies that detDYλ (u, u) > 0 and the behavior of singularity depends
on the sign of the trDYλ(u, u)

b) If Q < h′ (u), then detDYλ (u, u) < 0 and (u, u) is a saddle point.
c) If Q = h′ (u), then the two equilibrium points coincide.

Theorem 6 The equilibrium point (u1, u1 + C) is a saddle point, if h′ (u1) �= S(u1+A)
u1

.

Proof. As the Jacobian matrix is

DYη (u1, u1 + C) = (u1 + C)

(
h′ (u1)u1 −Qu1
S (u1 +A) −S (u1 +A)

)
.

Thus, detDYη (u1, u1 + C) = S (u1 +A) (Q− h′ (u1))u1

with Q− h′ (u1) = −
√
(1−A−Q)2 − 4 (CQ−A) < 0

Therefore, the equilibrium (u1, u1 + C) is saddle point.

Theorem 7 The equilibrium point (u2, u2 + C) is

i) an attractor point. if h′ (u2) <
S(u2+A)

u2

ii) a repellor surrounded by a limit cycle, if h′ (u2) >
S(u2+A)

u2

iii) weak focus if h′ (u2) =
S(u2+A)

u2

Proof. As the Jacobian matrix is

DYη(u2, u2 + C) = (u2 + C)

(
h′ (u2)u2 −Qu2
S (u2 +A) −S (u2 +A)

)
then, detDYη(u2, u2 + C) = S (u2 +A) (Q− h′ (u2))u2

with Q− h′ (u2) =
√
(A+Q− 1)2 − 4 (CQ−A) > 0

and the behavior depends on
tr(DYη(u2, u2 + C)) = h′ (u2)u2 − S (u2 +A)

i) If h′ (u2) <
S(u2+A)

u2
, then trDYη (u2, u2 + C) < 0.

Therefore, the point (u2, u2 + C) is an attractor.

ii) If h′ (u2) >
S(u2+A)

u2
, then trDYη (u2, u2 + C) > 0, therefore the point (u2, u2 + C) is

a repellor and by Poincaré-Bendixon Theorem, is surrounded by a limit cycle.
iii) When h′ (u2) =

S(u2+A)
u2

, then trDYη (u2, u2 + C) = 0, and the point (u2, u2 + C) is
a weak focus, and its weakness must be determined.

Theorem 8 The equilibrium point (E,E + C) is
i) a saddle-node attractor if 2AS > (1−A−Q) (Q− S)
ii) a saddle-node repellor if 2AS > (1−A−Q) (Q− S)
iii) a cusp point if 2AS = (1−A−Q) (Q− S)

Proof. In the equilibrium point (E,E + C) =
(
1−A−Q

2 , 1−A−Q+2C
2

)
the Jacobian matrix

is
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DY η (E,E + C) = c1

(
y1 −y1
y2 −y2

)
with c1 = 1−A−Q, y1 = 1

4Qc1 (c1 + 2C), y2 = 1
4S (c1 + 2A) (c1 + 2C).

Then, detDYη (E,E + C) = 0, and
trDYη (E,E + C) = (1−A−Q) (Q− S)− 2AS

a) If 2AS > (1−A−Q) (Q− S), the point is a saddle-node attractor.
b) If 2AS < (1−A−Q) (Q− S), the point is a saddle-node repellor.
c) If 2AS = (1−A−Q) (Q− S), the Jacobian matrix is

DYη (E,E + C) = 1
4Q (1−A−Q+ 2C) (1−A−Q)

(
1 −1
1 −1

)
whose Jordan form matrix [3] is J =

(
0 1
0 0

)
and we have the Bogdanov-Takens bifurcation [21], and the point (E,E + C) is a cusp

point.

Theorem 9 The equilibrium point (L,L+ C) with

L = 1
2

(
1−A−Q+

√
(A+Q− 1)2 − 4 (CQ−A)

)
is:

i) a local attractor point, if and only if, (1− 2L−A)L < S (A+ L),
ii) a repellor point surrounded by a limit cycle, if and only if, (1− 2L−A)L > S (A+ L),
iii) a weak focus, if and only if, (1− 2L−A)L = S (A+ L).

Proof. The Jacobian matrix is

DYη (L,L+ C) = (L+ C)

(
(1− 2L−A)L −QL

S (L+A) −S (L+A)

)
then, detDYη (L,L+ C) = LS (L+A) (2L+A− 1 +Q) > 0,
and the behavior depends on

trDYη (L,L+ C) = (1− 2L−A)L− S (L+A)
i) If (1− 2L−A)L < S (L+A), then trDYη (L,L+ C) < 0.
Therefore, the point (L,L+ C) is an attractor.
ii) If (1− 2L−A)L > S (L+A), then trDYη (L,L+ C) > 0.
Therefore, the point (L,L+ C) is surrounded by a limit cycle as consequence of Poincaré-

Bendixon Theorem.
iii) If (1− 2L−A)L = S (L+A), then trDYη (L,L+ C) = 0.
Thus, the point (L,L+ C) is a weak focus, and the weakness must be determined.

Theorem 10 The equilibrium point (F, F + C)
with F =

√
A− CQ is:

i) a local attractor point, if and only if, (1− 2F −A)F < S (F +A),
ii) a repellor point surrounded by a limit cycle, if and only if, (1− 2F −A)F >

S (F +A),
iii) a weak focus, if and only if, (1− 2F −A)F = S (F +A).
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Proof. Evaluating the Jacobian matrix it has

DY η(F, F + C) = (F + C)

(
(1− 2F −A)F −QF

S (F +A) −S (F +A)

)
then, detDYη (F, F + C) = FS (F +A) (2F +A+Q− 1) > 0,

and the behavior depends on

trDYη (F, F + C) = (1− 2F −A)F − S (F +A)

i) If (1− 2F −A)F < S (F +A), then trDYη (F, F + C) < 0.

Therefore, the point (F, F + C) is an attractor.

ii) If (1− 2F −A)F > S (F +A), then trDYλ (F, F + C) > 0.

Therefore, the point (F, F + C) is a repellor, surrounded by a limit cycle, by Poincaré-
Bendixon theorem.

iii) If (1− 2F −A) = S (F +A), then trDYη (F, F + C) = 0.

So, the point (F, F + C) is a weak focus and its weakness must be determined

4 Conclusions

In this work, a modified Leslie-Gower predator-prey model [4, 13] was studied. By means a
diffeomorphism we analyzed a topologically equivalent system depending on four parameters
establishing the local stability of the equilibrium points and we have that the points (0, 0)
and (1, 0) are always a repellor and a saddle point respectively, for all parameter values.

We show that the dynamics of the model in which the predators has an alternative food
to low densities of prey, differs of the May Holling-Tanner model [3, 15], since the model
here studied can have one, two or none positive equilibrium points at interior of the first
quadrant with a more varied dynamic; meanwhile, the May-Holling-Tanner has a unique
equilibrium point and it has not a cusp point.

The model here studied has a behavior more closed to the model studied in [2], where
the Allee effect provokes a similar dynamics by the existence of two positive equilibriuem
points.

An important result is the existence of two positive equilibrium points, being one of
them always is a saddle point. The other can be an attractor, a repellor or a weak focus,
depending of the trace of its Jacobian matrix. Also, both equilibrium points can collapse
and we obtain a cusp point (Bogdanov-Takens bifurcation) [21].

When, two equilibrium point exist at interior of the first quadrant, the point (0, C) is
an attractor determining a separatrix curve which divides the phase plane in two regions.
The trajectories having initial conditions above this curve have the point (0, C) as their
ω − limit, meanwhile those that lie below the separatrix can have a positive equilibrium
point or a limit cycle as their ω − limit.

This implies that there exists a great possibility of the population of prey can go to ex-
tinction, although the ratio prey-predator is high (many prey and little predator); however,
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the populations can coexist for a same set of parameter values for which the population of
prey is depleted
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