Colonization Characteristics of Bacterial Communities on Plastic Debris Influenced by Environmental Factors and Polymer Types in the Haihe Estuary of Bohai Bay, China

Wenjie Li¹, Ying Zhang², Nan Wu¹, Ze Zhao¹, Wei'an Xu¹, Yongzheng Ma^{1*}, Zhiguang Niu^{1*}

¹ School of Marine Science and technology, Tianjin University, Tianjin 300072, China
² MOE Key Laboratory of Pollution Processes and Environmental Criteria / Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China

*Corresponding authors: <u>yongzheng.ma@tju.edu.cn</u> (Y. M.); <u>nzg@tju.edu.cn</u> (Z. N.)

Supporting Information

Number of pages: 34 Number of tables: 5 Number of figures: 9

List of contents

Figure S1: Studies on microbial communities attached to marine plastic debris (PD)
in the world
Table S1: Studies on degradation of plastic debris (PD) by marine bacterial
communities
Table S2: Physical and chemical parameters of the surface water in the Haihe
estuarine areas
Table S3: Photos of PD samples. S9
Table S4A: Difference analysis of biomass on PD after the six-week exposure based
on one-way ANOVA
Table S4B: Difference analysis of the average growth rate of biofilm on PD at
different in situ sites based on one-way ANOVA
Table S5: Difference analysis of alpha diversity based on One-way ANOVA. S15
Figure S2: PCA profile of pairwise community
Figure S3: Heatmap of marker genera on PD ($n = 5$) at different in situ sitesS21
Figure S4: Relative abundance of top 10 bacterial genera on PD at different in situ
sites
Figure S5: The Chao 1 index of different PD types in three-time periods
Figure S6: The major genera of bacterial communities (top 10) on different PD types
in three-time periods. S24
Figure S7: Heatmap of marker genera on different PD types $(n = 5)$
Figure S8: Redundancy analysis (RDA) identifying the correlation between the
relative abundance of conditional pathogen Vibrio on different substrates (SW, SD and
PD) and environmental factors
Figure S9: Heatmap of metabolic functions of bacteria genera on SW, SD and PD
samples after the six-week exposure based on FAPROTAX Software

Figure S1: Studies on microbial communities attached to marine plastic debris (PD) in the world. The red mark represented the in situ experiment (ISE), the blue mark represented the sampling experiment (SE), the orange mark represented the route sampling experiment (RSE). 1. SE in Sargasso Sea, western Atlantic Ocean¹ 2. SE in the coastal of Plymouth, UK² 3. ISE on intelligent buoy , the English Channel³ 4. RSE on the route of North Atlantic⁴ 5. ISE in Ostend, Belgium⁵ 6. ISE in Toulon Bay, France⁶ 7. SE in the southern coast of England⁷ 8. SE in coast of Belgium⁸ 9.SE in in coast of Catalonia, Spain⁹ 10. ISE in the Bay of Bengal, India¹⁰ 11. ISE in the coast of Qingdao, China East China Sea¹¹ 12. SE in China Yangtze Estuary¹² 13. ISE in Port Phillip Bay, Australia¹³ 14. SE in the coast of Australia¹⁴ 15. SE on the route of Hawaii to Vancouver¹⁵ 16. RSE on the route of Atlantic¹⁶ 17. RES on the route of Britain, Germany and Denmark route³

Experimental type	Experimental site	Plastic types	Plastic degrading bacteria	Degradation time	Degradation efficiency	Reference
In situ	Italy	PE bag		33 days	degradation	17
experiment	Mediterranean				cracks	
In situ	The Baltic Sea	PE		12 months	not obvious	18
experiment	Netherlands	PE(Containing 8% starch)		12 months	0.6%	
In situ	Bay of Bengal	HDPE	Pseudomonas sp.	6 months	$1.5\% \sim 2.5\%$	19
experiment	India	LDPE	anaerobic	6 months	$0.5\% \sim 0.8\%$	
		PP		6 months	$0.5\% \sim 0.6\%$	
Laboratory	Bay of Bengal	bisphenol-A-carbonate	Pseudomonas sp.	12 months	9.0%	20
experiment	India					
Laboratory	Gulf of Mannar	HDPE	Arthrobacter sp.	30 days	12.0%	21
experiment	India		Pseudomonas sp.	30 days	15.0%	
Laboratory	Arabian Sea	PE	Kocuria palustris M16	30 days	1.0%	22
experiment	India		Bacillus pumilus M27	30 days	1.5%	
			Bacillus subtilis H1584	30 days	1.8%	
Laboratory	Mangrove	PE	Bacillus cereus	40 days	1.6%	23
experiment	Malaysia	PET		40 days	6.6%	
		PVC		40 days	7.4%	
Laboratory	Mangrove	PE	Bacillus gottheilii	40 days	6.2%	23
experiment	Malaysia	PET		40 days	3.0%	
		PP		40 days	3.2%	
		PVC		40 days	5.8%	

Table S1: Studies on degradation of plastic debris (PD) by marine bacterial communities. polyethylene (PE), high density polyethylene (HDPE), low density polyethylene (LDPE), polypropylene (PP), polyethylene terephthalate(PET), polyvinyl chloride polypropylene (PVC)

Laboratory	Mangrove	РР	Bacillus sp. strain 27	40 days	6.4%	24
experiment	Malaysia					
Laboratory	Mangrove	PP	Rhodococcus sp. Strain 36	40 days	4.0%	24
experiment	Malaysia					

In situ	Longitude	Latitude	Temperature	Salinity(‰)	Dissolved oxygen	pН	Total nitrogen	Total phosphorus
sites			(°C)		(mg/L)		(mg/L)	(mg/L)
S 1	117°42'41"E	38°59'20"N	21.20	8.21	11.12	8.89	3.14	0.442
S2	117°42′53″E	38°58'38"N	21.80	16.22	10.42	8.27	2.26	0.110
S3	117°45′19″E	38°57'34"N	21.60	27.15	9.56	8.29	1.26	0.115
S4	117°50'22"E	38°56'17"N	21.70	31.41	8.13	8.18	0.63	0.073
S5	117°53′5″E	38°58'16"N	20.60	31.56	8.80	8.06	0.25	0.058
S6	117°49'27″E	38°57'36"N	20.20	28.12	9.15	8.12	0.26	0.052
S 7	117°45′54″E	38°59'14"N	20.30	30.05	10.20	8.06	0.83	0.091
S 8	117°44′4″E	38°58'1"N	19.70	27.89	3.72	7.42	4.05	0.351
S9	117°46'41″E	38°55'55"N	19.40	29.89	10.92	7.56	2.07	0.113

Table S2A: Physical and chemical parameters of the surface water in the Haihe estuarine areas after the two-week exposure in 26 July 2018.

In situ	Longitude	Latitude	Temperature	Salinity(‰)	Dissolved oxygen	pН	Total nitrogen	Total phosphorus
sites			(°C)		(mg/L)		(mg/L)	(mg/L)
S 1	117°42'41"E	38°59'20"N	22.30	10.22	7.98	8.61	3.09	0.40
S2	117°42′53″E	38°58'38"N	22.40	18.54	7.02	7.98	1.96	0.12
S4	117°50'22"E	38°56'17"N	22.70	29.87	5.73	7.81	0.53	0.08
S5	117°53′5″E	38°58'16"N	22.60	30.23	5.46	7.78	0.29	0.05
S6	117°49'27"E	38°57'36"N	21.50	28.61	7.12	7.81	0.25	0.06
S7	117°45′54″E	38°59'14"N	22.30	29.62	7.92	7.68	0.76	0.10
S8	117°44'4″E	38°58'1"N	21.40	27.21	3.14	7.12	3.89	0.30
S9	117°46'41″E	38°55′55″N	21.90	29.89	7.86	7.32	2.01	0.11

Table S2B: Physical and chemical parameters of the surface water in the Haihe estuarine areas after the four-week exposure in 9 august 2018.

In situ	Longitude	Latitude	Temperature	Salinity(‰)	Dissolved oxygen	pН	Total nitrogen	Total phosphorus
sites			(°C)		(mg/L)		(mg/L)	(mg/L)
S1	117°42′41″E	38°59'20"N	24.20	11.12	3.95	8.31	3.21	0.36
S2	117°42′53″E	38°58'38"N	23.90	17.62	5.72	7.44	2.14	0.12
S4	117°50'22"E	38°56'17"N	24.20	29.86	4.53	7.29	0.56	0.08
S5	117°53′5″E	38°58'16"N	24.00	30.02	4.64	7.28	0.31	0.06
S7	117°45′54″E	38°59'14"N	23.10	29.14	4.21	7.26	0.72	0.11
S8	117°44'4″E	38°58′1″N	22.90	27.13	2.64	6.72	3.95	0.32
S9	117°46'41"E	38°55'55"N	23.10	29.34	4.32	6.85	2.14	0.09

Table S2C: Physical and chemical parameters of the surface water in the Haihe estuarine areas after the six-week exposure in 23 august 2018.

 Table S3: Photos of PD samples.

In situ sites	Plastic types	Two-week samples	Four-week samples	Six-week samples
S1	Polyvinyl chloride		T	And the second second
S1	Polypropylene		No.	
S 1	Polyethylene			
S 1	Expanded Polystyrene		0	
S 1	Polyurethane			
S2	Polyvinyl chloride		a climpton	大大
S2	Polypropylene	the state		
S2	polyethylene			
S2	Expanded Polystyrene			

S2	Polyurethane		1 1 1 1 1	
S3	Polyvinyl chloride	Charles and a second		
S3	Polypropylene			
S3	Polyethylene			
S3	Expanded Polystyrene			
S3	Polyurethane	(a)		
S4	Polyvinyl chloride			N NI
S4	polypropylene	2.3		No. of Concession, Name
S4	Polyethylene			
S4	Expanded Polystyrene			
S4	Polyurethane	(the second		

S5	Polyvinyl chloride		- Brend
S5	Polypropylene		-
S5	Polyethylene		
S5	Expanded Polystyrene		
S5	Polyurethane	(m)	1. 2.
S6	Polyvinyl chloride		
S6	Polypropylene	And a	
S6	Polyethylene		
S6	Expanded Polystyrene		
S6	Polyurethane	and and	
S7	Polyvinyl chloride		

S7	Polypropylene		
S7	Polyethylene		
S7	Expanded Polystyrene		
S7	Polyurethane		
S8	Polyvinyl chloride		and the
S 8	Polypropylene	And and and	
S8	Polyethylene		
S8	Expanded Polystyrene		the second
S 8	Polyurethane	(m)	
S9	Polyvinyl chloride		
S9	Polypropylene		

S9	Polyethylene		
S9	Expanded Polystyrene		
S9	Polyurethane		

Table S4A: Difference analysis of biomass on PD after the six-week exposure based on one-way ANOVA. Group represents a comparison of five plastic debris (PVC, PP, PE, PS, PU). Analysis significant results (p < 0.05) are highlighted in bold and Red.

		р			р			р			р		р
PVC	PP	0.14	PP	PE	0.13	PE	PS	0.01	PS	PU	0.01	Group	0.01
	PE	0.97		PS	0.01		PU	0.06					
	PS	0.01		PU	0.70								
	PU	0.64											

Table S4B: Difference analysis of the average growth rate of biofilm on PD at different in situ site based on one-way ANOVA. Group represents a comparison of seven in situ sites (S1, S2, S4, S5, S7, S8, S9). Analysis significant results (p < 0.05) are highlighted in bold and Red.

		р			р			р			р		р
S 1	S2	0.42	S2	S4	0.01	S4	S5	0.52	S5	S 7	0.01	Group	0.01
	S4	0.01		S5	0.01		S 7	0.03		S 8	0.01		
	S5	0.01		S 7	0.01		S 8	0.01		S9	0.01		
	S 7	0.01		S 8	0.02		S9	0.05					
	S 8	0.12		S9	0.01								
	S 9	0.01											
S 7	S 8	0.05	S 8	S9	0.03								
	S9	0.03											

Chao 1		n	Shannon		п	Simpson		n
index ^{1*}		P	index ^{1*}		P	index ^{1*}		Ľ
Group ^{1*}		0.01	Group ^{1*}		0.01	Group ^{1*}		0.01
S1	S2	0.10	S1	S2	0.02	S1	S2	0.01
	S 3	0.01		S3	0.01		S3	0.01
	S 4	0.01		S4	0.01		S4	0.01
	S5	0.01		S5	0.01		S5	0.01
	S 6	0.01		S 6	0.01		S6	0.01
	S 7	0.01		S 7	0.01		S 7	0.01
	S 8	0.01		S 8	0.01		S 8	0.01
	S9	0.01		S 9	0.01		S 9	0.01
S2	S3	0.18	S2	S 3	0.12	S2	S3	0.12
	S4	0.09		S4	0.01		S4	0.06
	S5	0.01		S5	0.01		S5	0.08
	S6	0.02		S6	0.09		S6	0.60
	S 7	0.01		S 7	0.01		S7	0.08
	S 8	0.12		S 8	0.07		S 8	0.85
	S 9	0.39		S 9	0.05		S9	0.08
S3	S 4	0.70	S3	S4	0.13	S3	S4	0.74
	S5	0.18		S5	0.32		S5	0.82
	S6	0.28		S 6	0.85		S6	0.30
	S 7	0.02		S 7	0.02		S 7	0.82
	S 8	0.81		S 8	0.78		S 8	0.17
	S9	0.63		S9	0.62		S9	0.83
S4	S5	0.33	S4	S5	0.58	S4	S5	0.92
	S 6	0.48		S 6	0.18		S 6	0.18
	S 7	0.06		S 7	0.39		S 7	0.92
	S 8	0.89		S 8	0.21		S 8	0.09
	S9	0.39		S 9	0.30		S9	0.91
S 5	S6	0.78	S 5	S 6	0.42	S5	S6	0.21
	S 7	0.33		S 7	0.16		S 7	0.92
	S 8	0.27		S 8	0.47		S 8	0.11
	S9	0.07		S 9	0.61		S 9	0.93
S 6	S 7	0.21	S 6	S 7	0.03	S 6	S 7	0.21
	S 8	0.40		S 8	0.92		S 8	0.74
	S 9	0.12		S9	0.75		S9	0.21
S 7	S 8	0.04	S 7	S 8	0.04	S 7	S 8	0.11
	S 9	0.01		S9	0.06		S9	0.94
S 8	S9	0.47	S 8	S9	0.83	S 8	S9	0.12

Table S5: Difference analysis of alpha diversity based on One-way ANOVA. Group represents a comparison of all sites. Analysis significant results (p < 0.05) are highlighted in bold and Red. 1* represents two weeks. 2* represents four weeks. 3* represents six weeks.

Chao 1		р	Shannon		р	Simpson		р
index ^{2*}			Index ^{2*}			Index ^{2*}		
Group ^{2*}		0.01	Group ^{2*}		0.09	Group ^{2*}		0.61
S1	S2	0.45	S1	S2	0.80	S1	S2	0.89
	S4	0.01		S4	0.03		S4	0.22
	S5	0.01		S 5	0.17		S5	0.75
	S6	0.01		S6	0.83		S6	0.73
	S7	0.01		S 7	0.03		S 7	0.37
	S 8	0.01		S 8	0.92		S 8	0.91
	S9	0.01		S9	0.32		S 9	0.44
S2	S4	0.01	S2	S4	0.04	S2	S4	0.18
	S5	0.01		S5	0.26		S5	0.86
	S6	0.03		S 6	0.97		S6	0.86
	S7	0.01		S 7	0.05		S 7	0.30
	S 8	0.01		S 8	0.73		S 8	0.98
	S9	0.01		S9	0.45		S9	0.57
S4	S5	0.72	S4	S 5	0.35	S4	S5	0.13
	S6	0.11		S 6	0.04		S6	0.13
	S7	0.30		S 7	0.95		S 7	0.75
	S 8	0.72		S 8	0.02		S 8	0.18
	S9	0.16		S9	0.19		S9	0.64
S5	S6	0.21	S5	S 6	0.24	S5	S6	0.93
	S7	0.16		S 7	0.39		S 7	0.23
	S 8	0.48		S 8	0.14		S 8	0.84
	S9	0.29		S9	0.70		S9	0.28
S 6	S7	0.01	S6	S 7	0.05	S 6	S 7	0.23
	S 8	0.06		S 8	0.76		S 8	0.84
	S9	0.84		S9	0.43		S9	0.28
S 7	S 8	0.48	S 7	S 8	0.02	S 7	S 8	0.31
	S9	0.02		S9	0.21		S 9	0.89
S 8	S9	0.08	S 8	S9	0.28	S 8	S9	0.38
Chao 1		р	Shannon		р	Simpson		р
index ^{3*}			Index ^{3*}			Index ^{3*}		
Group ^{3*}		0.01	Group ^{3*}		0.06	Group ^{3*}		0.21
S 1	S2	0.21	S 1	S2	0.05	S 1	S2	0.71
	S4	0.01		S4	0.25		S4	0.17
	S5	0.01		S 5	0.45		S5	0.51
	S 7	0.01		S 7	0.40		S7	0.42
	S 8	0.01		S 8	0.72		S 8	0.21
	S9	0.01		S9	0.66		S9	0.76
S2	S4	0.01	S2	S4	0.01	S2	S4	0.09
	S5	0.01		S 5	0.01		S5	0.31
	S 7	0.01		S 7	0.01		S 7	0.25
	S 8	0.01		S 8	0.11		S 8	0.38

	S9	0.08		S9	0.02		S9	0.50
S4	S5	0.89	S4	S5	0.70	S4	S5	0.47
	S 7	0.47		S 7	0.75		S 7	0.56
	S 8	0.47		S 8	0.14		S 8	0.01
	S 9	0.17		S 9	0.48		S9	0.28
S5	S 7	0.56	S5	S 7	0.94	S5	S 7	0.89
	S 8	0.55		S 8	0.27		S 8	0.06
	S 9	0.13		S 9	0.75		S9	0.72
S 7	S 8	0.93	S 7	S 8	0.24	S 7	S 8	0.05
	S 9	0.04		S 9	0.69		S9	0.62
S 8	S9	0.04	S 8	S 9	0.42	S 8	S9	0.13

0

Figure S2: PCA profile of pairwise community dissimilarity indices (Bray–Curtis), calculated from marker genera of the bacteria communities on PD at different sites (n = 9), ovals indicated the 95% confidence intervals for each sample type. Green circles represent the interaction zones between the freshwater and seawater (F-S zones). Blue circles represent special zones (Sp zones). Red circles represent the in situ sites with significant difference (ANOVA, p < 0.05). (A) PCA profile after the two-week exposure. (B) PCA profile after the four-week exposure. (C) PCA profile after the six-week exposure.

Figure S3: Heatmap of marker genera on PD (n = 5) at different in situ sites (n = 9). (A) Heatmap after the two-week exposure. (B) Heatmap after the four-week exposure. (C) Heatmap after the six-week exposure.

Figure S4: Relative abundance of top 10 bacterial genera on PD at different in situ sites. (A) Relative abundance of top 10 bacterial genera on PD after the two-week exposure. (B) Relative abundance of top 10 bacterial genera on PD after the four-week exposure. (C) Relative abundance of top 10 bacterial genera on PD after the six-week exposure.

Figure S5: The Chao 1 index of different types of PD in three-time periods.

Figure S6: The major genera of bacterial communities (top 10) on different PD types in three-time periods. (A) The major genera of bacterial communities (top 10) on different PD after the two-week exposure. (B) The major genera of bacterial communities (top 10) on different PD after the four-week exposure. (C) The major genera of bacterial communities (top 10) on different PD after the six-week exposure.

Figure S7: Heatmap of marker genus on different PD types (n = 5), the data for each PD is derived from the sum of the same PD at all in situ sites (n = 9). (A) Heatmap after the two-week exposure. (B) Heatmap after the four-week exposure. (C) Heatmap after the six-week exposure.

Figure S8: Redundancy analysis (RDA) identifying the correlation between the relative abundance of conditional pathogen *Vibrio* on different substrates (SW, SD and PD) and environmental factors, including T(temperature), Sal (salinity), DO (dissolved oxygen), pH, TN (total nitrogen) and TP (total phosphorus). (A) RDA after the two-week exposure. (B) RDA after the four-week exposure. (C) RDA after the six-week exposure.

Figure S9: Heatmap of metabolic functions of bacteria genera on SW, SD and PD samples after the six-week exposure based on FAPROTAX Software. Metabolic functions are shown in the table below.

1	chemoheterotrophy	31	animal_parasites_or_symbionts	61	denitrification
2	reductive_acetogenesis	32	mammal_gut	62	nitrous_oxide_denitrification
3	ureolysis	33	human_gut	63	nitrite_denitrification
4	plastic_degradation	34	fish_parasites	64	nitrate_denitrification
5	phototrophy	35	human_pathogens_all	65	anammox
6	photoheterotrophy	36	human_pathogens_diarrhea	66	dissimilatory_arsenite_oxidation
7	aerobic_anoxygenic_phototrophy	37	human_pathogens_gastroenteritis	67	arsenite_oxidation_energy_yielding
8	photoautotrophy	38	human_pathogens_meningitis	68	arsenite_oxidation_detoxification
9	oxygenic_photoautotrophy	39	human_pathogens_nosocomia	69	dissimilatory_arsenate_reduction
10	anoxygenic_photoautotrophy	40	human_pathogens_pneumonia	70	arsenate_respiration
11	anoxygenic_photoautotrophy_Fe_oxi dizing	41	human_pathogens_septicemia	71	arsenate_detoxification
12	anoxygenic_photoautotrophy_S_oxidi zing	42	invertebrate_parasites	72	respiration_of_sulfur_compounds
13	anoxygenic_photoautotrophy_H2_oxi dizing	43	aerobic_chemoheterotrophy	73	thiosulfate_respiration
14	cyanobacteria	44	fermentation	74	sulfite_respiration
15	chloroplasts	45	ligninolysis	75	dark_sulfite_oxidation
16	predatory_or_exoparasitic	46	manganese_respiration	76	sulfur_respiration
17	chlorate_reducers	47	manganese_oxidation	77	sulfate_respiration
18	intracellular_parasites	48	dark_oxidation_of_sulfur_compounds	78	nitrification

-					
19	fumarate_respiration	49	dark_thiosulfate_oxidation	79	aerobic_nitrite_oxidation
20	nitrogen_respiration	50	dark_sulfur_oxidation	80	aerobic_ammonia_oxidation
21	nitrate_reduction	51	dark_sulfide_oxidation	81	methylotrophy
22	nitrate_respiration	52	xylanolysis	82	methanol_oxidation
23	iron_respiration	53	cellulolysis	83	methanogenesis
24	dark_iron_oxidation	54	nitrite_respiration	84	hydrogenotrophic_methanogenesis
25	hydrocarbon_degradation	55	nitrite_ammonification	85	methanogenesis_by_reduction_of_methyl _compounds_with_H2
26	aliphatic_non_methane_hydrocarbon_ degradation	56	nitrate_ammonification	86	methanogenesis_by_CO2_reduction_with _H2
27	aromatic_compound_degradation	57	nitrogen_fixation	87	methanogenesis_using_formate
28	aromatic_hydrocarbon_degradation	58	dark_hydrogen_oxidation	88	methanogenesis_by_disproportionation_o f_methyl_groups
29	oil_bioremediation	59	knallgas_bacteria	89	acetoclastic_methanogenesis
30	plant_pathogen	60	chitinolysis	90	methanotrophy

References:

(1) Carpenter, E. J.; Smith, K. L. J. Plastics on the Sargasso sea surface. *Science (New York, N.Y.)* **1972**, *175*, (4027), 1240-1.

(2) Lobelle, D.; Cunliffe, M. Early microbial biofilm formation on marine plastic debris. *Mar. Pollut. Bull.* **2011**, *62*, (1), 197-200.

(3) Oberbeckmann, S.; Loeder, M. G. J.; Gerdts, G.; Osborn, A. M. Spatial and seasonal variation in diversity and structure of microbial biofilms on marine plastics in Northern European waters. *Fems Microbiol. Ecol.* **2014**, *90*, (2), 478-492.

(4) Zettler, E. R.; Mincer, T. J.; Amaral-Zettler, L. A. Life in the "Plastisphere": Microbial communities on plastic marine debris. *Environ. Sci. Technol.* **2013**, *47*, (13), 7137-7146.

(5) De Tender, C.; Devriese, L. I.; Haegeman, A.; Maes, S.; Vangeyte, J.; Cattrijsse, A.; Dawyndt, P.; Ruttink, T. Temporal dynamics of bacterial and fungal colonization on plastic debris in the North Sea. *Environ. Sci. Technol.* **2017**, *51*, (13), 7350-7360.

(6) Briand, J. F.; Djeridi, I.; Jamet, D.; Coupe, S.; Bressy, C.; Molmeret, M.; Le Berre, B.; Rimet, F.; Bouchez, A.; Blache, Y. Pioneer marine biofilms on artificial surfaces including antifouling coatings immersed in two contrasting French Mediterranean coast sites. *Biofouling* **2012**, *28*, (5), 453-63.

(7) Carpenter, E. J.; Anderson, S. J.; Harvey, G. R.; Miklas, H. P.; Peck, B. B. Polystyrene spherules in coastal waters. *Science (New York, N.Y.)* **1972**, *178*, (4062), 749-50.

(8) De Tender, C. A.; Devriese, L. I.; Haegeman, A.; Maes, S.; Ruttink, T.; Dawyndt, P. Bacterial Community Profiling of plastic litter in the Belgian part of the North Sea. *Environ. Sci. Technol.* **2015**, *49*, (16), 9629-9638.

(9) Maso, M.; Garces, E.; Pages, F.; Camp, J. Drifting plastic debris as a potential vector for dispersing Harmful Algal Bloom (HAB) species. *Sci. Mar.* **2003**, *67*, (1), 107-111.

(10) Artham, T.; Sudhakar, M.; Venkatesan, R.; Madhavan Nair, C.; Murty, K. V. G. K.; Doble, M. Biofouling and stability of synthetic polymers in sea water. *Int. Biodeter. Biodegr.* **2009**, *63*, (7), 884-890.

(11) Dang, H.; Li, T.; Chen, M.; Huang, G. Cross-ocean distribution of rhodobacterales bacteria as primary surface colonizers in temperate coastal marine waters. *Appl. Environ. Microb.* **2007**, *74*, (1), 52-60.

(12) Jiang, P.; Zhao, S.; Zhu, L.; Li, D. Microplastic-associated bacterial assemblages in the intertidal zone of the Yangtze Estuary. *Sci. Total Environ.* **2018**, *624*, 48-54.

(13) Webb, H. K.; Crawford, R. J.; Sawabe, T.; Ivanova, E. P. Poly(ethylene terephthalate) polymer surfaces as a substrate for bacterial attachment and biofilm formation. *Microbes Environ*. **2009**, *24*, (1), 39-42.

(14) Reisser, J.; Shaw, J.; Hallegraeff, G.; Proietti, M.; Barnes, D. K.; Thums, M.; Wilcox, C.; Hardesty, B. D.; Pattiaratchi, C. Millimeter-sized marine plastics: a new pelagic habitat for microorganisms and invertebrates. *Plos One* **2014**, *9*, (6), e100289.

(15) Carson, H. S.; Nerheim, M. S.; Carroll, K. A.; Eriksen, M. The plastic-associated microorganisms of the North Pacific Gyre. *Mar. Pollut. Bull.* **2013**, *75*, (1-2), 126-132.

(16) Debroas, D.; Mone, A.; Ter Halle, A. Plastics in the North Atlantic garbage patch: A boat-microbe for hitchhikers and plastic degraders. *Sci. Total Environ.* **2017**, *599-600*, 1222-1232.

(17) Eich, A.; Mildenberger, T.; Laforsch, C.; Weber, M. Biofilm and diatom succession on polyethylene (PE) and biodegradable plastic bags in two marine habitats: Early signs of

degradation in the pelagic and benthic zone? **2015**, *10*, (9), e0137201.

(18) Rutkowska, M.; Heimowska, A.; Krasowska, K.; Janik, H. Biodegradability of polyethylene starch blends in sea water. *Pol. J. Environ. Stud.* **2002**, *11*, (3), 267-271.

(19) Sudhakar, M.; Trishul, A.; Doble, M.; Suresh Kumar, K.; Syed Jahan, S.; Inbakandan, D.; Viduthalai, R. R.; Umadevi, V. R.; Sriyutha Murthy, P.; Venkatesan, R. Biofouling and biodegradation of polyolefins in ocean waters. *Polym. Degrad. Stabil.* **2007**, *92*, (9), 1743-1752.

(20) Artham, T.; Doble, M. Fouling and degradation of polycarbonate in seawater: field and lab studies. *J. Polym. Environ.* **2009**, *17*, (3), 170-180.

(21) Balasubramanian, V.; Natarajan, K.; Hemambika, B.; Ramesh, N.; Sumathi, C. S.; Kottaimuthu, R.; Rajesh, K. V. High-density polyethylene (HDPE)-degrading potential bacteria from marine ecosystem of Gulf of Mannar, India. *Lett. Appl. Microbiol.* **2010**, *51*, (2), 205-11.

(22) Harshvardhan, K.; Jha, B. Biodegradation of low-density polyethylene by marine bacteria from pelagic waters, Arabian Sea, India. *Mar. Pollut. Bull.* **2013**, *77*, (1-2), 100-106.

(23) Auta, H. S.; Emenike, C. U.; Fauziah, S. H. Screening of *bacillus* strains isolated from mangrove ecosystems in Peninsular Malaysia for microplastic degradation. *Environ. Pollut.* **2017**, *231*, 1552-1559.

(24) Auta, H. S.; Emenike, C. U.; Jayanthi, B.; Fauziah, S. H. Growth kinetics and biodeterioration of polypropylene microplastics by *Bacillus* sp. and *Rhodococcus* sp. isolated from mangrove sediment. *Mar. Pollut. Bull.* **2018**, *127*, 15-21.