Supplementary information

¹³C NMR spectroscopic data of compounds:

Artobiloxanthone (2) ¹³C NMR (125 MHz, acetone-*d*₆) δ 21.99 (C-12), 22.27 (C-9), 28.20 (C-18), 28.54 (C-17), 38.14 (C-10), 78.71 (C-16), 99.78 (C-6), 102.03 (C-8), 103.7 (C-3'), 105.51 (C-4a), 107.03 (C-1'), 111.43 (C-3), 111.91 (C-13), 116.14 (C-14), 127.88 (C-6'), 129.88 (C-15), 136.68 (C-5'), 145.35 (C-4'), 150.92 (C-11), 151.57 (C-2'), 152.31 (C-8a), 159.48 (C-7), 161.80 (C-5), 162.57 (C-2), 181.27 (C=O, C-4).

Artoindonesianin P (3) ¹³C NMR (125 MHz, acetone-*d*₆) δ 21.18 (C-9), 23.07 (C-12), 28.54 (C-13), 50.05 (C-10), 94.44 (C-11), 95.23 (C-8), 100.11 (C-6), 105.22 (C-1'), 105.27 (C-4a), 103.73(C-3'), 112.96 (C-3), 133.92 (C-6'), 138.35 (C-5'), 147.88 (C-4'), 152.16 (C-2'), 158.57 (C-8a), 162.63 (C-5), 163.16 (C-2), 165.39 (C-7), 181.98 (C=O, C-4).

Cycloartobiloxanthone (4) ¹³C NMR (125 MHz, acetone-*d*₆) δ 20.61 (C-9), 23.10 (C-13), 28.51 (C-18), 28.53 (C-17), 28.71(C-12), 47.78 (C-10), 78.99 (C-16), 93.97 (C-11), 100.19 (C-6), 102.14 (C-8), 105.13 (C-4a), 105.64 (C-1'), 105.64 (C-3'), 112.95 (C-3), 116.21 (C-14), 128.16 (C-15), 133.96 (C-6'), 138.17 (C-5'), 147.30 (C-4'), 151.84 (C-2'), 152.31 (C-8a), 159.77 (C-5), 161.78 (C-2), 162.88 (C-7), 181.69 (C=O, C-4).

Artonin E (6) ¹³C NMR (125 MHz, acetone-*d*₆) δ 18.02 (C-13), 25.03 (C-9), 26.19 (C-12), 28.62 (C-17 and C-18), 79.12 (C-16), 100.06 (C-6), 101.94 (C-8), 105.07(C-3'), 105.94 (C-4a), 111.76 (C-1'), 115.79 (C-14), 117.40 (C-6'), 121.99 (C-3), 122.84 (C-10), 128.36 (C-15), 132.67 (C-11), 139.45 (C-5'), 149.83 (C-4'), 150.13 (C-2'), 153.61 (C-8a), 160.29 (C-7), 162.59 (C-5), 163.09 (C-2), 183.63 (C=O, C-4).

Figure S2. ¹³C-NMR spectrum of compound 1 (125mHz, acetone-*d*₆)

Figure S4. COSY spectrum of compound 1.

S3

Figure S5. HMBC spectrum of compound 1.

Figure S6. HMQC spectrum of compound 1.

Err[ppm / mmu] +4.8 / +1.9 U.S. Composition 12.5 C 21 H 19 O 7 100.0 383.1149

Figure S7. FABMS and HRFABMS data of compound 1.

Figure S9. ¹³C-NMR spectrum of compound 5 (125mHz, acetone- d_6)

Figure S10. DEPT135 spectrum of compound 5.

Figure S11. COSY spectrum of compound 5.

Figure S12. HMBC spectrum of compound 5.

Figure S13.HMQC spectrum of compound 5.

Figure S14. FABMS and HRFABMS data of compound 5.

Figure S15. ¹H-NMR spectrum of compound 2 (500mHz, acetone- d_6)

Data: A-F2,HR Date: 19-Jun-2018 14:03 Instrument: MStation Sample:-Indet: Direct Ion Mode: EH+ RT: 1.80 min Scam#: 28 Elements: Co 100/1, H 100/1, O 10/1 Mass Tolerance : 1000ppm, 3mmu if m/z > 3 Unsaturation (U.S.): -0.5 - 20.0 Observed m/z Int% Err[ppm / mmu] U.S. Composition 1 434.1363 21.31 -0.6 / -0.3 15.0 C25 H22 O7

Figure S17. HR-ESI-MS data of compound 2.

Figure S19. ¹³C-NMR spectrum of compound 3 (125mHz, acetone- d_6)

Data : F3-4 HR Date : 19	-Jun-2018 1	15:31				
Instrument : MStation						5
Sample : -						
Note : -						
Inlet : Direct Ion Mode : E	EI+					
RT : 1.94 min Scan# : 30						
Elements : C 100/1, H 100/1,	0 10/1					
Mass Tolerance : 1000ppn	n, 3mmu if m	/z>3				
Unsaturation (U.S.) : -0.5 - 20).0					
Observed m/z	Int%	Err[ppm	/ mmu]	U.S.	Composi	ition
1 368.0899	21.53	+0.8 /	+0.3	13.0	C20 H16	i 07

Figure S20. HR-ESI-MS data of compound 3.

Figure S21. ¹H-NMR spectrum of compound 4 (500mHz, acetone- d_6)

Figure S22. ¹³C-NMR spectrum of compound 4 (125mHz, acetone-*d*₆)

Figure S23. HR-ESI-MS data of compound 4.

Figure S25. ¹³C-NMR spectrum of compound 6 (125mHz, acetone-*d*₆)

Data : A-F8_HR Sample: -		Date :	08-Jan-2019 17:22
Note : -			
Iniet : Direct		Ion Mo	de : FAB+
RT : 0.59 min		Scan#:	8
Elements : C 110/1,	H 130/1, O 8/1		
Mass Tolerance	: 100ppm, 5mmu if	m/z >	50
Unsaturation (U.S.)	: 0.0 - 30.0		
Observed m/z Int%	Err[ppm / mmu]	U.S.	Composition
437.1635 20.4	+7.8 / +3.4	13.5	C 25 H 25 O 7

Figure S26. HR-ESI-MS data of compound 6.

P

Figure S27. Dixon plots for α-glucosidase of compounds 1-6.

Figure S28. (A) The fluorescence effect of compound 2, (C) compound 4 and (E) compound 5 on fluorescence emission spectra of α -glucosidase, (B) Decrease in intensity of the emission plots of compounds, (D) Stern-Volmer plots of compounds at 37 °C, (F) Area under curve (AUC) of compounds.

1	MTISDHPETE	PKWWKEATIY	QIYPASFKDS	NNDGWGDLKG	ITSKLQYIKD
51	LGVDAIWVCP	FYDSPQQDMG	YDISNYEKVW	PTYGTNEDCF	ELIDKTHKLG
101	MKFITDLVIN	HCSTEHEWFK	ESRSSKTNPK	RDWFFWRPPK	GYDAEGKPIP
151	PNNWKSFFGG	SAWTFDETTN	EFYLRLFASR	QVDLNWENED	CRRAIFESAV
201	GFWLDHGVDG	FRIDTAGLYS	KRPGLPDSPI	FDKTSKLQHP	NWGSHNGPRI
251	HEYHQELHRF	MKNRVKDGRE	IMTVGEVAHG	SDNALYTSAA	RYEVSEVFSF
301	THVEVGTSPF	FRYNIVPFTL	KQWKEAIASN	FLFINGTDSW	ATTYIENHDQ
351	ARSITRFADD	SPKYRKISGK	LLTLLECSLT	GTL <mark>YVY</mark> QGQE	IGQINFKEWP
401	IEKYEDVDVK	NNYEIIKKSF	GKNSKEMKDF	FKGIALLSRD	HSRTPMPWTK
451	DKPNAGFTGP	DVKPWFLLNE	SFEQGINVEQ	ESRDDDSVLN	FWKRALQARK
501	K <mark>Y</mark> KELMI <mark>Y</mark> GY	DFQFIDLDSD	QIFSFTKEYE	DKTLFAALNF	SGEEIEFSLP
551	REGASLSFIL	GNYDDTDVSS	RVLKPWEGRI	YLVK	

Figure S29. Amino acid sequence of *Saccharomyces cerevisiae* α-glucosidase. The Trp(W), Phe(F), and Tyr(Y) residues are shown as yellow, cyan, and pink respectively.

Trp(W): 20, Phe(F): 41, Tyr(Y): 26

No.	1	5			
	$\delta_{\rm H} J ({\rm Hz})$	$\delta_{\rm C}$ m	$\delta_{ m H} J \left({ m Hz} ight)$	$\delta_{\rm C}{\rm m}$	
2		161.9		162.2	
3		111.7		121.7	
4		181.1		183.3	
4a		105.6		105.6	
5		162.9		162.8	
6	6.29 d (2.25)	98.7	6.15 s	99.6	
7		166.1		160.4	
8	6.65 d (2.25)	93.2		101.5	
8a		157.7		153.2	
9a	2.43 dd (15.98)	22.4	3.14 d (7)	24.7	
9b	3.39 d (15.95)				
10	3.99 d (6.3)	38.0	5.09 m	122.6	
11		145.4		132.2	
12	1.78 s	22.0	1.57 s	25.9	
13a	4.29 s	111.9	1.46 s	17.7	
13b	4.65 s				
14			5.61 d (10.1)	116.0	
14a			5.61 d (10.1)	126.9	
15				81.4	
16			1.42 s	27.2	
17			1.69 m	42.1	
18			2.07 m	23.4	
19			5.09 m	124.8	
20				132.4	
21			1.63 s	25.8	
22			1.54 s	17.7	
1'		106.6		111.5	
2'		151.4		149.7	
3'	6.50 s	103.8	6.59 s	104.8	
4'		151.2		149.8	
5'		136.9		139.1	
6'		129.4	6.88 s	117.2	
OMe	3.89 s	56.4			

Table S1. ¹H and ¹³C spectroscopic data of (δ in ppm, J in Hz) **1** and **5** (acetone- d_6)

Compounds	[I] (µM)	V_{\max}	$K_{ m m}$	$K_{ m ik}/K_{ m iv}$
2	0	9.337	186.0878	-
	7.5	9.7056	740.5780	76.6587
	15	9.6712	868.3559	102.4604
	30	9.8012	2117.5032	209.3396
3	0	6.5274	193.6945	-
	17.5	6.6800	301.7435	23.8593
	35	6.7889	439.0428	31.6240
	70	6.7204	627.7285	75.7804
4	0	6.8027	202.3061	-
	7.5	6.3816	397.2304	16.6987
	15	7.3692	812.0855	11.4837
	30	7.4627	1318.5821	20.2662
6	0	6.8013	194.8085	-
	7.5	5.0352	265.5740	3.7049
	15	4.2992	319.4798	2.5098
	30	3.6219	365.4835	1.8101

Table S2. Determination of K_{ik}/K_{iv} ratios by α -glucosidase enzyme inhibitory behaviours.