Supporting Information

Sono-assisted surface energy driven assembly of 2D materials on flexible polymer substrates: A green assembly method using water

Dong Zhou¹, Ji Hao², Andy Clark³, Kyunghoon Kim⁴, Long Zhu¹, Jun Liu⁴, Xuemei Cheng³, Bo

Li ¹*

¹Department of Mechanical Engineering, Villanova University, Villanova, PA 19085, USA.
²National Renewable Energy Laboratory, Golden, CO 80401, USA
³Department of Physics, Bryn Mawr College, Bryn Mawr, PA 19010, USA.
⁴Department of Mechanical Engineering and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
Corresponding Author: E-mail: bo.li@villanova.edu

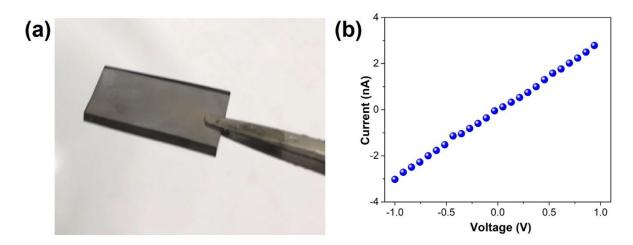


Figure S1. 10 s assembly of graphene on PDMS. (a), Digital camera image. (b), The corresponding I-V curve. Solution concentration 1 mg/mL.

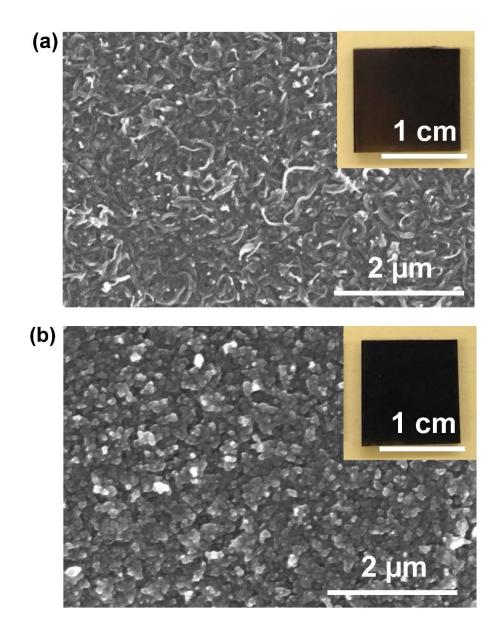


Figure S2. SEM images of assembled carbon nanotube **a** and carbon black **b** on PDMS substrates.

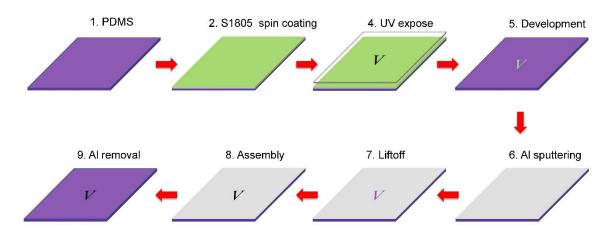


Figure S3. Sample preparation procedure for graphene assembly into a micro "V" letter.

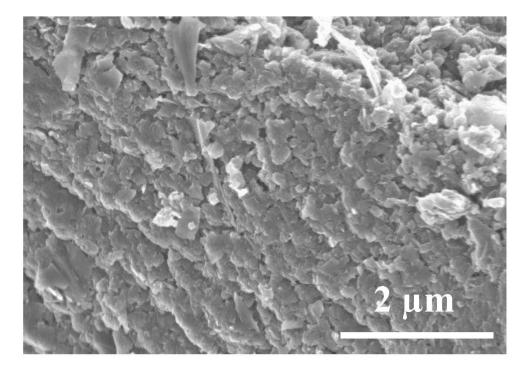


Figure S4. High magnification SEM image of assembled PDMS/graphene foam wall.

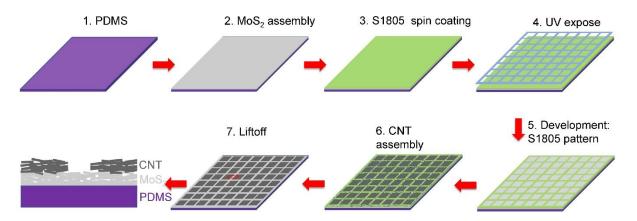
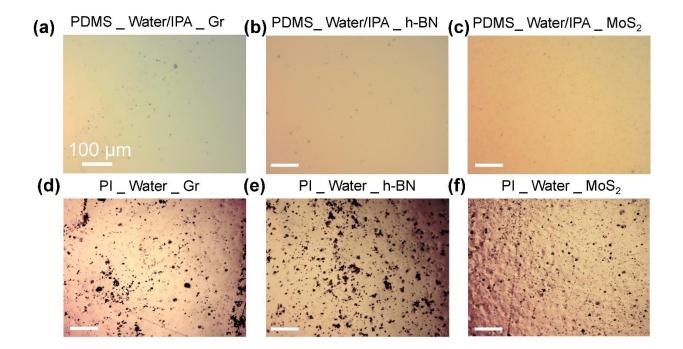



Figure S5. Combined micropatterning and multiple SASEDA processes Multiple SASEDA processes for MoS_2/CNT microscale device fabrication.

Figure S6. Optical images of static assembled samples. (a) (b) (c) are graphene, h-BN, and MoS_2 assembly on PDMS in water/IPA, respectively. (d) (e) (f) are graphene, h-BN and MoS2 assembly on PI in water, respectively. The scale bares are 100 μ m.

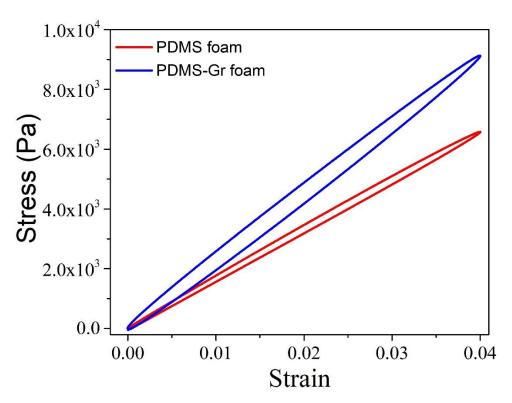
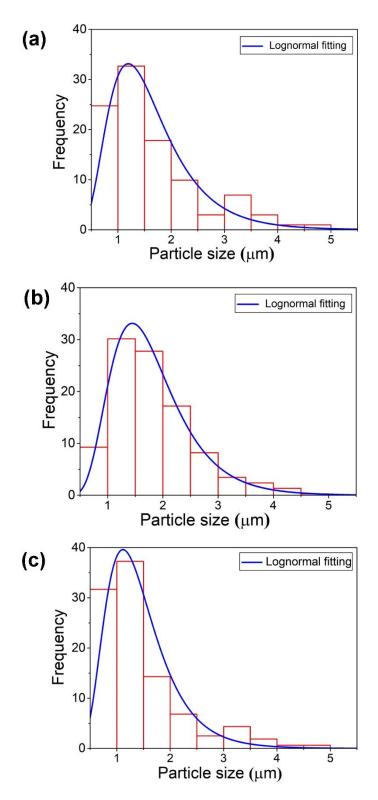
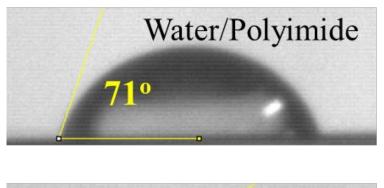




Figure S7. Mechanism properties of pure PDMS foam and assembled graphene/PDMS foam

Figure S8. Size distribution of graphene C-300 (a), h-BN (b) and MoS_2 (c). The projected area diameters were calculated and summarized. At least 100 particles were measured for each sample.

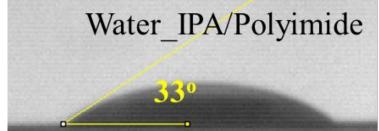


Figure S9. Contact angle data on polyimide substrate for water and water/IPA (1:1).

$\gamma_{ m pn}$	$\gamma_{ m ps}$	$\gamma_{ m ns}$	$W_{\rm psn}$	W _{pns}
11.62	38.84	13.89	41.11	-13.33
22.1	38.84	2.95	19.69	-13.79
10.12	38.84	11.96	40.68	-16.76
11.62	3.91	5.31	-2.4	13.02
22.1	3.91	8.37	-9.82	26.56
10.12	3.91	3.27	-2.94	9.48
24.47	11.2	13.89	0.62	27.16
12.96	11.2	2.95	1.19	4.71
19.2	11.2	11.96	3.96	19.96
	11.62 22.1 10.12 11.62 22.1 10.12 24.47 12.96	11.62 38.84 22.1 38.84 10.12 38.84 11.62 3.91 22.1 3.91 10.12 3.91 22.1 3.91 10.12 3.91 10.12 3.91 10.12 1.91 10.12 1.91	11.62 38.84 13.89 22.1 38.84 2.95 10.12 38.84 11.96 11.62 3.91 5.31 22.1 3.91 8.37 10.12 3.91 3.27 24.47 11.2 13.89 12.96 11.2 2.95	11.62 38.84 13.89 41.11 22.1 38.84 2.95 19.69 10.12 38.84 11.96 40.68 11.62 3.91 5.31 -2.4 22.1 3.91 8.37 -9.82 10.12 3.91 3.27 -2.94 24.47 11.2 13.89 0.62 12.96 11.2 2.95 1.19

 Table S1. Calculated interfacial energy and separation energy.

	Surface tension	Dispersive components	Polar components	Reference
Water	72.75	22.10	50.65	1
Water/IPA (1:1)	25.13	16.96	8.17	1
Graphene	53.0	39.1	13.9	2
MoS ₂	44.5	32.09	14.41	3
h-BN	58.27	27.99	30.28	4
PDMS	19.8	19.0	0.8	5
Polyimide ^{a)}	37.2	29.1	8.1	

Table S2. The summary of surface tension and surface tension components

^{a)}The surface tension and components of polyimide were calculated using the contact angles from Figure. S9 and the Fowkes surface energy theory: ²

$$\gamma_l(\cos\theta + 1) = 2 \left(\gamma_l^{\rm di} \gamma_s^{\rm di}\right)^{1/2} + 2 \left(\gamma_l^{\rm po} \gamma_s^{\rm po}\right)^{1/2}$$

where γ_l^{di} and γ_l^{po} are the liquid dispersive and polar components, respectively, and γ_s^{di} and γ_s^{po} are the solid dispersive and polar components, respectively. θ is the contact angle.

Supplementary References

1. Shen, J.; He, Y.; Wu, J.; Gao, C.; Keyshar, K.; Zhang, X.; Yang, Y.; Ye, M.; Vaita, R.; Lou, J. *et al.* Liquid Phase Exfoliation of Two-Dimensional Materials by Directly Probing and Matching Surface Tension Components. *Nano Lett.* **2015**, *15*, 5449-5454.

 Kozbial, A.; Li, Z.; Conaway, C.; McGinley, R.; Dhingra, S.; Vahdat, V.; Zhou, F.; D'urso,
 B.; Liu, H. Li, L. Study on The Surface Energy of Graphene by Contact Angle Measurements. *Langmuir*, 2014, *30*, 8598-8606.

3. Gaur, A. P.; Sahoo, S.; Ahmadi, M.; Dash, S. P.; Guinel, M. J. F.; Katiyar, R. S. Surface Energy Engineering for Tunable Wettability Through Controlled Synthesis of MoS₂. *Nano Lett.* **2014**, *14*, 4314-4321.

4. Annamalai, M.; Gopinadhan, K.; Han, S. A.; Saha, S.; Park, H. J.; Cho, E. B.; Kumar, B.; Patra, A.; Kim, S. W.; Venkatesan. T. Surfsace Energy and Wettability of Van der Waals Structures. *Nanoscale*, **2016**, *8*, 5764-5770.

5. Wu, S. Calculation of Interfacial Tension in Polymer Systems. *J. Polym. Sci. C: Polym. Symposia.* **1971**, *34*, 19-30.