GeoClaw-ArcGIS Integration for Advanced Modeling of Overland Hydrocarbon Plumes

Pi-Yueh Chuang ¹, Tracy Thorleifson ², Lorena Barba ¹

¹ Mechanical and Aerospace Engineering, the George Washington University

² G2 Integrated Solutions

Overview

- Background, motivation, and the aims of this work
- Modeling hydrocarbon overland flow with full shallow-water equations
 - GeoClaw
 - Added features and code modifications
- Integration with Microsoft Azure
- Integration with ArcGIS

HCA analysis

- Hazardous liquids HCA (high consequence area) analysis
 - To identify "could affect" pipeline segments
 - Required by Title 49 CFR §195.452
 - Time consuming

A large number of simulations

Flow model: low-fidelity vs. high-fidelity approaches

Low-fidelity models

- 1D open-channel modeling
- 1D gravity flow modeling

Need less computing power &

Currently popular for HCA
analysis

High-fidelity models

- 3D free-surface full Navier-Stokes equations
- 2D shallow-water equations (SWEs)
 - Full SWEs
 - Kinematic approximation
 - Diffusive approximation

Need higher computing power

&

No open-source option specifically for HCA analysis

This work

Full shallow-water equations solver

- For HCA analysis
- Open source license

Integration with cloud computing for large projects

- Microsoft Azure
- Scalable computing power
- Auto-scaling
- Usage-based charges

Integration with ArcGIS Pro

 Launching cloud simulations from a local machine/laptop

Solver for full shallow-water equations: GeoClaw

Websites

Official: http://www.clawpack.org/geoclaw

Source code: https://github.com/clawpack/geoclaw

Applications

- Tsunami simulations
- Storm surge simulations

Feature

- BSD-3 open-source license
- Adaptive mesh refinement
- Shared-memory parallelization

Adaptive mesh refinement:

- dynamic & non-uniform spatial resolution (raster grid)
- save calculations on areas that do not require high resolution

Missing from GeoClaw

Done in this work

Point source inflow (pipeline rupture point)

Interaction with inland water bodies

Darcy-Weisbach friction

Temperature-dependent viscosity

Evaporation model

Work in progress

Adhesion

Infiltration

Rupture point & viscosity model

- Point source inflow as rupture point
 - Multi-stage constant rate

- Temperature-dependent viscosity (Lewis-Squires, 1934)
 - Hydrocarbon viscosities highly depend on temperature

$$\mu_a^{-0.2661} = \mu_k^{-0.2661} + \frac{\left(T_a - T_k\right)}{233}$$

 T_a : desired temperature (°C)

 T_k : reference temperature (°C)

 μ_a : dynamic viscosity at the desired temperature (cP)

 μ_k : dynamic viscosity at the reference temperature (cP)

Darcy-Weisbach friction model

- Only require fluid viscosity and surface roughness
 - No extra experiments needed
 - Vegetation on the ground

Add to the right-hand-sides of the momentum equation

$$\begin{bmatrix} S_{fx} \\ S_{fy} \end{bmatrix} = \frac{f_{DW}}{8gh^3} \sqrt{(hu)^2 + (hv)^2} \begin{bmatrix} hu \\ hv \end{bmatrix}$$

Intersection with In-land hydrological features

Capture information required by hydrographic transport simulator

J	x	у	time	w/o evap	w/ evap
	A	В	С	D	E
6	-12460297	4985236.9	1559.1	3.79E+00	3.62E+00
7	-12460297	4985237.9	1592.9	1.15E-01	1.08E-01
8	-12460296	4985234.9	1517.4	2.42E-01	2.27E-01
9	-12460296	4985235.9	1517.4	3.92E+00	3.73E+00
10	-12460296	4985236.9	1559.1	3.79E+00	3.62E+00
11	-12460296	4985237.9	1592.9	1.15E-01	1.08E-01
12	-12460295	4985232.9	1462.6	1.26E+01	1.20E+01
13	-12460295	4985233.9	1462.6	1.27E+01	1.21E+01
14	-12460295	4985234.9	1517.4	3.46E-01	3.25E-01
15	-12460295	4985235.9	1517.4	2.43E-01	2.27E-01
16	-12460295	4985236.9	1808.2	2.78E-04	2.58E-04
17	-12460294	4985231.9	1463.9	1.02E+01	9.76E+00
18	-12460294	4985232.9	1462.6	2.28E+01	2.18E+01
19	-12460294	4985233.9	1462.6	1.27E+01	1.21E+01
20	-12460294	4985234.9	1517.4	1.04E-01	9.85E-02
21	-12460293	4985230.9	1537.5	8.60E-03	7.98E-03

Example of the output data regarding hydrocarbon-waterbody intersection

Evaporation models

Account for the primary product loss in hydrocarbon plume

Fingas' model for non-volatile fluids (1996)

- 1. Natural logarithm: $\%_{Evap} = (C_1 + C_2T) ln(t)$
- 2. Square root model: $\%_{Evap} = (C_1 + C_2)\sqrt{t}$
 - $\%_{Evan}$: percentage of evaporated against initial spill volume
 - $C_1 \& C_2$: coefficient obtained from experiments
 - T: ambient temperature ($^{\circ}$ C)
 - *t*: elapsed time (minutes)

Workflow features

- Automatically download topography and hydrologic features
 - 3DEP server & NHD servers (US data only)
 - ESRI World Elevation server (require ESRI credential)
- NetCDF raster output
 - CF-1.7 convention
 - Multidimensional dataset
- Docker image available
 - Useful for Windows machines

Validation: silicone oil, inclined glass plate

• Angle: 2.5°; Rate: 1.48e⁻⁶ m³/sec; Surface roughness: 0; No evaporation

Viscosity effect: horizontal plate spill

Gasoline:

• μ_a: 0.6512 cP @ 15°C

API gravity: 45°

• Rate: 1.48e⁻⁶ m³/sec

• Roughness: 0

No evaporation

Maya crude:

• μ_a: 332 cP @ 15°C

API gravity: 21.5°

Common settings of the demos

Inflow rate:

- \circ 0 min ~ 30 min: 0.5 m³/sec
- \circ 30 min ~ 210 min: 0.1 m³/sec
- o 0 m³/sec afterward
- Total volume released: 1980 m³
- Surface roughness: 0.1 m
- Ambient temperature: 25 °C
- Simulation time: 0 ~ 8 hr

Gasoline:

- μ_a: 0.6512 cP @ 15°C
- API gravity: 45°
- $\%_{Evap} = (13.2 + 0.21T) ln(t)$

Maya crude:

- μ_a: 332 cP @ 15°C
- API gravity: 21.5°
- $\%_{Evap} = (1.38 + 0.045T) ln(t)$

Demo: flat area

Demo: with inland water bodies

Demo: hill area (Maya crude)

Microsoft Azure

- geoclaw-azure-launcher
 - Source code:
 https://github.com/barbagroup/geoclaw-azure-launcher
 - Python modulehelpers.azuretools
- Required Azure services
 - Azure Batch account
 - Azure Storage account

Interface through ArcGIS Toolbox

- geoclaw-azure-launcher
 - Source code: https://github.com/barbagroup/geoclaw-azure-launcher
 - ArcGIS Toolbox Land-spill Azure.pyt
 - 6 tools
 - 1 tool to create GeoClaw inputs
 - 4 tools to communicate with Azure
 - 1 utility to create credential file

ArcGIS Python toolbox workflow

Check the demo video!

Tool: CreateGeoClawCases

- Create GeoClaw cases for selected rupture points
 - Rupture points
 - Leak profile
 - Physical properties
 - Model parameters
 - Computational parameters
 - Topography and inland water bodies

▼ Misc	
✓ Skip setup if a case folder already exis	ts
▼ Advanced numerical parameters	
Initial time-step size (second). Use 0 for auto- setting.	0
Maximum time-step size (second)	4
Desired CFL number	0.9
Maximum allowed CFL number	0.95
Total AMR levels	2 🕶
AMR refinement ratio	4

Tool: RunCasesOnAzure & MonitorAzureResources

GUI for creating Azure resources and submitting simulations

Conclusion

- High-fidelity simulator that provides more accurate predictions of pipeline segments affecting an HCA
 - Model components: 2D full shallow-water equations, rupture point inflow, Darcy-Weisbach friction, temperature-dependent viscosity, evaporation, hydrocarbon plume/water bodies contact
 - Simulator features: automatic downloading from 3DEP and NHD; adaptive mesh refinement; shared-memory parallelization
- Scalable computing performance through Microsoft Azure cloud
- ArcGIS Pro toolbox

Q & A

- Acknowledgement
 - Tom Bell, G2 Integrated Solution
 - Kyle Mandli, Columbia University
- Source code URLs:
 - https://github.com/barbagroup/geoclaw
 - https://github.com/barbagroup/geoclaw-landspill-cases
 - https://github.com/barbagroup/geoclaw-azure-launcher
- Docker image on DockerHub
 - barbagroup/landspill

Extra slides

Darcy-Weisbach friction model

Add to the right-hand-sides of the momentum equation

$$\begin{bmatrix} S_{fx} \\ S_{fy} \end{bmatrix} = \frac{f_{DW}}{8gh^3} \sqrt{(hu)^2 + (hv)^2} \begin{bmatrix} hu \\ hv \end{bmatrix}$$

Three regime model
$$\begin{cases} Laminar \ (Re < 500) : \frac{24}{Re} \left(or \frac{16}{Re} \ for \ wide - open \ channel \right) \\ Transient \ (500 < Re < 1250) : \frac{0.224}{Re^{0.25}} \\ Full \ turbulent \ (Re > 1250) : \frac{0.25}{\log_{10}^2 \left(\sigma / 14.8h + 1.648Re^{0.9} \right)} \\ A = \left[2.457 \ln \left(\frac{1}{(1.75/Re)^{0.9} + 0.0675\sigma} \right) \right]^{16} \\ Churchill's \ B = \left(\frac{9382.5}{Re} \right)^{16} \\ model \ f_{DW} = 8 \times \left[\left(\frac{2}{Re} \right)^{12} + \frac{1}{(A+R)^{3/2}} \right]^{1/12} \end{cases}$$

Evaporation models

Evaporation

- Fingas' observation: contact area does not affect the evaporation rates of most hydrocarbon fluids when "the depths are shallow".
- Solution: treat volume on the ground and in the pipeline as a continuum
 - Initial volume: total volume that will be released to the domain
 - For each time step, both the volumes in the pipeline and on the ground undergo evaporation with percentage $\%_{Evap}$
 - Release rate is fixed => shorten the release period

Evaporation models

- Evaporation issues:
 - Oil has flown into water bodies also undergoes the same evaporation mechanism
 - High evaporation-rate fluids evaporate inside pipelines

- About 50% of the volume evaporates directly from inside the pipeline.
- i.e., 50% of the volume never participates in overland flow.

Tool: MonitorAzureResources

 Pop up a graphical monitor for the custer and tasks

Tool: DownloadData & DeleteAzureResources

- DownloadData
 - Synchronization mode

Delete cloud resources

scratch	
✓ Delete pool (cluster)	
✓ Delete job (task scheduler)	
Delete storage container	
Azure credential	
Encrypted file	- 1
Encrypted credential file	
$C: \ \ C: \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
Passcode for the credential file	

Tool: NewEncryptedAzureCredential

- Create an encrypted Azure credential file
 - Batch account name, key, and url
 - Storage account name and key
- Users don't have to copy & paste credential info every time

