Python Workflow for High-Fidelity Modeling of Overland Hydrocarbon Flows with GeoClaw and Cloud Computing

Pi-Yueh Chuang¹, Tracy Thorleifson², and Lorena A. Barba¹

- ¹ Mechanical and Aerospace Engineering, the George Washington University, Washington, DC, USA
- ² G2 Integrated Solutions, Houston, TX, USA

Summary

Motivation

Hydrocarbon overland flow plays a vital role in the analysis of pipeline rupture events (e.g., high-consequence area analysis). Low-fidelity models currently dominate these simulations due to the massive computing power required by high-fidelity models. Given the advance of the modern cloud computing technology, high-fidelity models may now be feasible for pipeline rupture analysis.

Goal

- Full shallow-water equation solver
- A fork from GeoClaw
- New features specific to pipeline rupture simulations: rupture point, inland water bodies, Darcy-Weisbach friction models, temperature-dependent viscosity, and evaporation models.
- Integration with Microsoft Azure
- Integration with ArcGIS Pro
- Equivalent workflow and interface in Jupyter Notebook with open-source library dependencies only.

Supplemental information

HCA (high-consequence area) analysis

HCA analysis identifies pipeline segments that could affect high-consequence areas defined by the US government.

GeoClaw

- Originally for tsunami simulations -10
- 2D full shallow-water equations
- OpenMP parallelization
- Adaptive mesh refinement

Microsoft Azure SDK for Python

Free and open-source Python API library for Azure.

ArcPy

Proprietary Python library provided by ArcGIS.

Cloud solution integration

Validation

Silicone oil on an inclined glass plate @ 2.5° Rate: 1.48e⁻⁶ m³/sec; Surface roughness: 0; No evaporation

Showcase

Verification: viscosity effect

Horizontal plate; rate: 1.48e⁻⁶ m³/sec; roughness: 0 m; no evaporation

Salt Lake City: flat terrain

Salt Lake City: w/ inland water bodies

Salt Lake City: w/ drainage feature Maya crude only

ArcGIS Pro Python Toolbox

Jupyter Notebook interface

Repositories

Showcase cases

Barba Group: https://lorenabarba.com/